
HAL Id: hal-03900810
https://hal.science/hal-03900810v1

Preprint submitted on 21 Dec 2022 (v1), last revised 18 Mar 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mean-field neural networks-based algorithms for
McKean-Vlasov control problems *

Huyên Pham, Xavier Warin

To cite this version:
Huyên Pham, Xavier Warin. Mean-field neural networks-based algorithms for McKean-Vlasov control
problems *. 2022. �hal-03900810v1�

https://hal.science/hal-03900810v1
https://hal.archives-ouvertes.fr

Mean-field neural networks-based algorithms for
McKean-Vlasov control problems ∗

Huyên Pham† Xavier Warin ‡

December 21, 2022

Abstract

This paper is devoted to the numerical resolution of McKean-Vlasov control problems via
the class of mean-field neural networks introduced in our companion paper [25] in order to learn
the solution on the Wasserstein space. We propose several algorithms either based on dynamic
programming with control learning by policy or value iteration, or backward SDE from stochastic
maximum principle with global or local loss functions. Extensive numerical results on different
examples are presented to illustrate the accuracy of each of our eight algorithms. We discuss and
compare the pros and cons of all the tested methods.

Keywords: McKean-Vlasov control, mean-field neural networks, learning on Wasserstein space, dy-
namic programming, backward SDE, deep learning algorithms.

1 Introduction
This paper is concerned with the numerical resolution of McKean-Vlasov (MKV) control, also called
mean-field control (MFC) problems over finite horizon. The dynamics of the controlled state process
X = (Xt)t valued in Rd is driven by the mean-field SDE (stochastic differential equation):

dXt = b(Xt,PXt , αt)dt+ σ(Xt,PXt , αt)dWt, 0 ≤ t ≤ T, X0 ∼ µ0,

where W is a d-dimensional Brownian motion on a filtered probability space (Ω,F ,F = (Ft)t,P),
the initial distribution µ0 of X0 lies in P2(Rd), the Wasserstein space of square-integrable probability
measures, α ∈ A is a control process, i.e, an F-progressively measurable process valued in A ⊂ Rm,
and PXt denotes the law of Xt, valued on P2(Rd), under standard assumptions on the coefficients b,
σ defined on Rd ×P2(Rd)×A, and valued respectively in Rd and Rd×d. The objective is to minimize
over controls α ∈ A, a cost functional in the form

J(α) = E
[∫ T

0

f(Xt,PXt , αt)dt+ g(XT ,PXT)
]
, → v(µ0) = inf

α∈A
J(α), (1.1)

where f is a running cost function on Rd×P2(Rd)×A, and g is a terminal cost function on Rd×P2(Rd).
The theory and applications of mean-field control problems that study models of large population

of interacting agents controlled by a social planner, have generated a vast literature in the last decade,
and we refer to the monographs [4], [6], [7] for a comprehensive treatment of this topic. As analytical
solutions to MFC are rarely available, it is crucial to design efficient numerical schemes for solving
such problem, and the main challenging issue is the infinite dimensional feature of MFC coming from
the distribution law state variable.

∗This work is supported by FiME, Laboratoire de Finance des Marchés de l’Energie, and the “Finance and Sustainable
Development” EDF - CACIB Chair.

†LPSM, Université Paris Cité, & FiME pham at lpsm.paris
‡EDF R&D & FiME xavier.warin at edf.fr

1

mailto:pham at lpsm.paris
mailto:xavier.warin at edf.fr

Following the tremendous impact of machine learning methods for solving high-dimensional partial
differential equations (PDEs) and control problems, see e.g. the survey papers [3], [16], and the
link to the website deeppde.org, some recent works have proposed deep learning schemes for MFC,
based on neural network approximations of the feedback control and/or the value function solution
to the Hamilton-Jacobi-Bellman equation or backward stochastic differential equations (BSDEs). In
these articles, the authors consider either approximate feedback control by standard feedforward neural
networks with input the time and the state variableXt in Rd by viewing the law ofXt as a deterministic
function of time (see [24], [9], [12], [14], [27], [26]), or consider a particle approximation of the MFC for
reducing the problem to a finite-dimensional problem that is numerically solved by means of symmetric
neural networks, see [13]. However, the outputs obtained by these deep learning schemes only provide
an approximation of the solution for a given initial distribution of the state process. Hence, for another
distribution µ0 of the initial state, these algorithms have to be run again.

In this paper, we aim to compute the minimal cost function v(µ0) for any µ0 ∈ P2(Rd), and to
find the optimal control, which can be searched w.l.o,g. in the class of feedback control, i.e., in the
form αt = a(t,Xt,PXt), 0 ≤ t ≤ T , for some measurable function a on [0, T] × Rd × P2(Rd). In
other words, our goal is to learn the value function and optimal feedback control on the Wasserstein
space. We shall rely on a new class of neural networks, introduced in our companion paper [25], called
mean-field neural networks with input a probability measure in order to approximate mappings on the
Wasserstein space. We then develop several numerical schemes based either on dynamic programming
(DP) or stochastic maximum principle (SMP). We first propose, in the spirit of [17], [18] a global
learning of the feedback control approximated by a mean-field neural network. In the DP approach,
we then propose two algorithms inspired by [20]: the first one learns the control by policy iteration
while the second one learns sequentially the control and value function by value iteration. In the SMP
approach, we exploit the backward SDE characterization of the solution, and propose five different
algorithms in line with recent methods developed in the context of standard BSDE (see [11], [21], [15])
that we extend to MKV BSDE with various choices of global or local loss functions to be minimized
in the training of mean-field neural networks. We then provide extensive numerical experiments on
three examples: a mean-field systemic risk model, a min/max linear quadratic model, and the classical
mean-variance problem. We compare and discuss the advantages and drawbacks of all our algorithms.

The rest of the paper is organized as follows. We recall in Section 2 some key results about the
characterization of MKV control problems by DP or SMP approach, and introduce the class of mean-
field neural networks. Section 3 presents three algorithms based on DP, while Section 4 develops five
algorithms based on the BSDE representation of the solution to MKV. The performances of all our
algorithms are illustrated via three examples in Section 5. Finally, we give in Section 6 some concluding
remarks about the pros and cons of the different schemes.

2 Preliminaries

2.1 Characterization of McKean-Vlasov control
Solution to the MKV control problem (1.1) can be characterized by dynamic programming (DP) or
maximum principle methods (see [6] for a detailed treatment of this topic). We recall the main results
that will be used for designing our algorithms. In the DP approach, one considers the dynamic version
of problem (1.1) by defining the decoupled value function V defined on [0, T] × Rd × P2(Rd), which
satisfies the backward recursion:

V (t,Xt,PXt) = inf
α∈A

E
[∫ t+h

t

f(Xs,PXs , αs)ds+ V (t+ h,Xt+h,PXt+h)
∣∣Ft],

for any t ∈ [0, T), h ∈ (0, T − t], and starting from the terminal condition V (T, x, µ) = g(x, µ), for
(x, µ) ∈ [0, T]× P2(Rd), so that v(µ0) = E[V (0, X0, µ0)]. By sending h to zero, we derive the master

2

http://deeppde.org/intro/

Bellman equation for the value function (see section 6.5.2 in [6])

∂tV (t, x, µ) + b
(
x, µ, â(x, µ,U(t, x, µ), ∂xU(t, x, µ))

)
· ∂xV (t, x, µ)

+
1

2
σσᵀ(x, µ, â(x, µ,U(t, x, µ), ∂xU(t, x, µ)) · ∂2

xxV (t, x, µ)

+ Eξ∼µ
[
b
(
ξ, µ, â(ξ, µ,U(t, ξ, µ), ∂xU(t, ξ, µ))

)
· ∂µV (t, x, µ)(ξ)

+
1

2
σσᵀ(ξ, µ, â(ξ, µ,U(t, ξ, µ), ∂xU(t, ξ, µ)) · ∂x′∂µV (t, x, µ)(ξ)

]
+ f

(
x, µ, â(x, µ,U(t, x, µ), ∂xU(t, x, µ))

)
= 0,

for (t, x, µ) ∈ [0, T)×Rd ×P2(Rd). Here · is the inner product in Euclidian spaces, ᵀ is the transpose
operator for a matrix, x′ ∈ Rd 7→ ∂µV (t, x, µ)(x′) ∈ Rd is the Lions derivative on P2(Rd) (see [6]),
the notation Eξ∼µ[.] means that the expectation is taken w.r.t. the random variable ξ distributed
according to the law µ,

U(t, x, µ) = ∂xV (t, x, µ) + Eξ∼µ
[
∂µV (t, ξ, µ)(x)

]
(2.1)

= ∂µv(t, µ)(x), with v(t, µ) := Eξ∼µ[V (t, ξ, µ)],

and it is assumed that for any (x, µ, p,M) ∈ Rd × P2(Rd)× Rd × Rd×d, there exists a minimizer

â(x, µ, p,M) ∈ argmin
a∈A

H(x, µ, p,M, a),

with H(x, µ, p,M, a) := b(x, µ, a) · p+
1

2
σσᵀ(x, µ, a) ·M + f(x, µ, a),

which is Lipschitz in all its variables, so that we get an optimal feedback control given by

a?(t, x, µ) = â(x, µ,U(t, x, µ), ∂xU(t, x, µ)), (t, x, µ) ∈ [0, T]× Rd × P2(Rd). (2.2)

In the case where the diffusion coefficient σ(x, µ) does not depend on the control variable a, and so
â(x, µ, p) does not depend on the variable M , we have a probabilistic characterization of the solution
in terms of forward-backward SDE of MKV type: by setting

Yt = V (t,Xt,PXt), Zt = σ(Xt,PXt)ᵀ∂xV (t,Xt,PXt), 0 ≤ t ≤ T,

it follows from Itô’s formula and Master Bellman equation that (X,Y, Z) satisfies the forward-backward
SDE{

dXt = b(Xt,PXt , â(Xt,PXt , Pt)
)
dt+ σ(Xt,PXt)dWt, 0 ≤ t ≤ T, X0 ∼ µ0

dYt = −f
(
Xt,PXt , â(Xt,PXt , Pt)

)
dt+ Zt · dWt, 0 ≤ t ≤ T, YT = g(XT ,PXT),

(2.3)

where the pair (Pt,Mt)t = (U(t,Xt,PXt), ∂xU(t,Xt,PXt)σ(Xt,PXt))t of adjoint processes, valued in
Rd × Rd×d, satisfies from the Pontryagin maximum principle the backward SDE:

dPt = −∂xH
(
Xt,PXt , Pt,Mt, â(Xt,PXt , Pt)

)
dt

− Ẽ
[
∂µH

(
X̃t,PXt , P̃t, M̃t, â(X̃t,PXt , P̃t)

)
(Xt)

]
dt+MtdWt, 0 ≤ t ≤ T,

PT = ∂xg(XT ,PXT) + Ẽ
[
∂µg(X̃T ,PXT)(XT)

]
,

(2.4)

where (X̃, P̃ , M̃) are independent copies of (X,P,M) on (Ω̃, F̃ , P̃). Under the assumption that (x, µ)
∈ Rd×P2(Rd) 7→ g(x, µ) is convex, (x, µ, a) ∈ Rd×P2(Rd)×A (with A convex set) 7→ H(x, µ, p,M, a)
is convex for any (p,M), together with additional regularity conditions on the coefficients b, σ, f, g, it
is known from [5] that the solution to the adjoint BSDE (2.4) yields an optimal control given by

α∗t = a?(t,Xt,PXt) = â(Xt,PXt , Pt), 0 ≤ t ≤ T.

We are then led to consider the generic form of MKV forward-backward (X,Y,Z):{
dXt = B(Xt,PXt ,Yt)dt+ σ(Xt,PXt)dWt, 0 ≤ t ≤ T, X0 ∼ µ0,

dYt = Ẽ
[
H(Xt,PXt ,Yt,Zt, X̃t, Ỹt, Z̃t)

]
dt+ ZtdWt, 0 ≤ t ≤ T, YT = G(XT ,PXT).

(2.5)

3

2.2 Mean-field neural networks
The solution to MKV control problem, i.e., value function and optimal feedback control, are mappings
of the state process and its probability distribution. In order to approximate such mappings, we shall
rely on mean-field neural networks introduced in our companion paper [25]. Those are mappings

N : µ ∈ P2(Rd) 7→ N (µ)(·) : Rd → Rp, with quadratic growth condition,

in one of the following forms:

(i) Bin density: N (µ)(x) = Φ(x,pµ), for x ∈ Rd, µ ∈ D2(Rd) the subset of probability measures µ in
P2(Rd) which admit density functions pµ with respect to the Lebesgue measure λd on Rd. Here,
Φ is a standard feedforward neural network from Rd × RK into Rp, and pµ = (pµk)k∈J1,KK is the
bin weight of the discrete density approximation of pµ on a fixed bounded rectangular domain
K of Rd divided into K bins: ∪Kk=1Bin(k) = K, of center xk, with same area size h = λd(K)/K,
hence given by (see Figure 1 in the case of one dimensional Gaussian distribution for µ):

pµk =
pµ(xk)∑K

k=1 pµ(xk)h
, k = 1, . . . ,K.

(ii) Cylindrical: N (µ)(·) = Ψ(·, < ϕ, µ >), where Ψ is a feedforward network function (outer neural
network) from Rd × Rq into Rp, and ϕ is another feedforward network function (inner neural
network) from Rd into Rq (called latent space). Here we denote < ϕ, µ > :=

∫
ϕ(x)µ(dx).

Figure 1: Bin approximation of a Gaussian distribution.

The relevance of mean-field neural networks is theoretically justified in [25] by universal approximation
theorems, and it has been also shown how they can be trained accurately from samples of probability
measures µ = LD(p) with discrete density of bin weight p = (pk)k∈J1,KK drawn randomly on DK =

{p = (pk)k∈J1,KK ∈ RK+ :
∑K
k=1 pkh = 1}, and simulations of random variables X ∼ µ by inverse

transform. Notice that for µ = LD(p), we have pµ = p, and so the bin density network at such µ is
equal to N (µ)(.) = Φ(.,p). On the other hand, for any cylindrical function F of the measure in the
form F (µ) = Ψ(< ϕ, µ >), we can compute it approximately from samples X(n), n = 1, . . . , N , of µ
by: F (µ) ' Ψ

(
1
N

∑N
n=1 ϕ(X(n))

)
. This is the case in particular for cylindrical neural network.

3 Dynamic programming-based algorithms
We consider a time discretization of the MKV control problem by fixing a time grid T = {ti = i∆t : i =
0, . . . , NT }, with ∆t = T/NT , and introducing the corresponding mean-field Markov decision process:
minimize over feedback controls a on T × Rd × P2(Rd) the cost functional

JNT (a) = E
[NT−1∑

i=0

f(Xi, µi, a(ti, Xi, µi))∆t+ g(XNT , µNT)
]
,

where

Xi+1 = Xi + b(Xi, µi, a(ti, Xi, µi))∆t+ σ(Xi, µi, a(ti, Xi, µi))∆Wi,

=: F∆t(Xi, µi, a(ti, Xi, µi),∆Wi), i = 0, . . . , NT − 1, X0 ∼ µ0,

4

with ∆Wi := Wti+1 −Wti , and µi = PXi denotes the law of Xi.
We present two classes of algorithms. The first one is learning the control by a single optimization

but allows us to compute the solution of the problem (1.1) and therefore the solution of the correspon-
ding master Bellman equation only at time t = 0 for all distributions µ0. The second class with two
other algorithms solves NT local optimization problems, and allows us to compute the master equation
at all dates for all distributions.

3.1 Global learning on control
In the spirit of the method introduced in [17], [18], which does not actually rely on dynamic program-
ming, we replace feedback controls by time-dependent mean-field neural networks N (t, µ)(x) valued
in A ⊂ Rm, with input t ∈ [0, T], µ ∈ P2(Rd), and x ∈ Rd, and minimize over the parameters θ of this
mean-field neural network N = Nθ the global cost function

J(θ) = E
[NT−1∑

i=0

f(Xi, µi,Nθ(ti, µi)(Xi))∆t+ g(XNT , µNT)
]
,

with

Xi+1 = F∆t(Xi, µi,Nθ(ti, µi)(Xi),∆Wi), i = 0, . . . , NT − 1, X0 ∼ µ0.

In practice, for i = 1, . . . , NT , µi has to be estimated/approximated from samples of Xi, and this is
done as follows. We use a training batch of M probability measures µ(m)

0 = LD(p(m)) in D2(Rd) from
samples p(m) = (p

(m)
k)k∈J1,KK, m = 1, . . . ,M , in DK . Then, for each m, we sample X(m),(n)

0 , n =

1, . . . , N , from µ
(m)
0 , and for i = 0, . . . , NT − 1, X(m),(n)

i+1 , n = 1, . . . , N are sampled as

X
(m),(n)
i+1 = F∆t(X

(m),(n)
i , µ̂

(m)
i ,Nθ(ti, µ̂(m)

i)(X
(m),(n)
i),∆W

(m),(n)
i),

with µ̂(m)
i = LD(p̂

(m)
i), p̂(m)

0 = p(m), and p̂
(m)
i = (p̂

(m)
i,k)k∈J1,KK are the estimated density weights in

DK of X(m),(n)
i , i = 1, . . . , NT (truncated on K), namely:

p̂
(m)
i,k =

#{n ∈ J1, NK : ProjK(X
(m),(n)
i) ∈ Bin(k)}

Nh
, k = 1, . . . ,K,

where ProjK(.) is the projection on K. The cost function is then approximated by

JM,N (θ) =
1

MN

M∑
m=1

[N∑
n=1

NT−1∑
i=0

f
(
X

(m),(n)
i , µ̂

(m)
i ,Nθ(ti, µ̂(m)

i)(X
(m),(n)
i)

)
∆t+ g(X

(m),(n)
NT

, µ̂
(m)
NT

)
]
.

The pseudo-code using a gradient descent method is described in Algorithm 1.

Algorithm 1: Global learning on the control
Input data: A time-dependent mean-field neural network Nθ(t, µ)(x).
Initialization: learning rate γ and parameters θ
for each epoch do

Generate a batch of M initial distributions µ(m)
0 , m = 1, . . . ,M ;

for m = 1, . . . ,M do
Generate Brownian increments ∆W

(m),(n)
i , i = 0, . . . , NT − 1, n = 1, . . . , N ;

Compute sample trajectories X(m),(n)
0 , X(m),(n)

i , n = 1, . . . , N , and estimate µ̂(m)
i , i =

1, . . . , NT ,
Compute the batch cost JM,N (θ) and its gradient ∇θJM,N (θ) ;
Update θ ← θ − γ∇θJM,N (θ) ;

Return: The set of optimized parameters θ∗.

5

The output of this global algorithm is an approximation of the optimal feedback control at initial
time t0 = 0 by a mean-field neural network Nθ∗(t0, .), and yields approximation of the optimal control
at other times ti, i = 1, . . . , NT − 1, by mean-field neural networks Nθ∗(ti, µi)(Xi) along the law µi,
and state Xi explored during the learning algorithm. The value function can then be estimated at
initial time t0 by regression as follows: we approximate the initial value function by a mean-field neural
neural network ϑη(µ)(x) valued in R, and minimize over the parameters η of this neural network the
quadratic loss function

E
∣∣∣NT−1∑
i=0

f(Xi, µi,Nθ∗(ti, µi)(Xi))∆t+ g(XNT , µNT)− ϑη(µ0)(X0)
∣∣∣2,

where

Xi+1 = F∆t(Xi, µi,Nθ∗(ti, µi)(Xi),∆Wi), i = 0, . . . , NT − 1, X0 ∼ µ0.

3.2 Control learning by policy iteration
Our next algorithm is inspired by the method in [20], which is a combination of the global algorithm on
control and dynamic programming. We replace at any time ti, i = 0, . . . , NT − 1, feedback controls by
mean-field neural networks Nθi with parameter θi, and proceed by backward induction for computing
approximate optimal controls: for i = NT − 1, . . . , 0, keep track of the approximate optimal feedback
controls Nθ∗j , j = i+ 1, . . . , NT − 1, and minimize over θi the cost function:

Ji(θi) = E
[
f(Xi, µi,Nθi(µi)(Xi))∆t+

NT−1∑
j=i+1

f(Xj , µj ,Nθ∗j (µj)(Xj))∆t+ g(XNT , µNT)
]
,

(with the convention that the above sum over j is empty when i = NT − 1) where{
Xi+1 = F∆t(Xi, µi,Nθi(µi)(Xi),∆Wi), Xi ∼ µi,
Xj+1 = F∆t(Xj , µj ,Nθ∗j (µj)(Xj),∆Wj), j = i+ 1, . . . , NT − 1.

(3.1)

In the practical implementation, the cost function Ji(.) is approximately computed from a training
of M probability measures µ(m)

i = LD(p
(m)
i) in D2(Rd) with samples p

(m)
i = (p

(m)
i,k)k∈J1,KK, m =

1, . . . ,M , in DK . For each batch m, one then computes N samples X(m),(n)
i ∼ µ

(m)
i , X(m),(n)

j , j
= i + 1, . . . , NT − 1, n = 1, . . . , N , according to (3.1) with estimated probability measures µ̂(m)

j =

LD(p̂
(m)
j), as in Section 3.1, and thus approximate the local cost function by

JiM,N (θi) =
1

MN

M∑
m=1

N∑
n=1

[
f(X

(m),(n)
i , µ

(m)
i ,Nθi(µ

(m)
i)(X

(m),(n)
i))∆t

+

NT−1∑
j=i+1

f(X
(m),(n)
j , µ̂

(m)
j ,Nθ∗j (µ̂

(m)
j)(X

(m),(n)
j))∆t+ g(X

(m),(n)
NT

, µ̂
(m)
NT

)
]
.

The pseudo-code is described in Algorithm 2.

6

Algorithm 2: Learning by policy iteration
Input data: Mean-field neural networks Nθi ;
for i = NT − 1, . . . , 0 do

Initialization: learning rate γ and parameters θi ;
for each epoch do

Generate a batch of M distributions µ(m)
i , m = 1, . . . ,M ;

for m = 1, . . . ,M do
Generate Brownian increments ∆W

(m),(n)
k , k = i, . . . , NT − 1, n = 1, . . . , N ;

Compute sample trajectories X(m),(n)
i , X(m),(n)

j , n = 1, . . . , N , and estimate µ̂(m)
j , j

= i+ 1, . . . , NT ,
Compute the batch cost JiM,N (θi) and its gradient ∇θJiM,N (θi) ;
Update θi ← θi − γ∇θJiM,N (θi) ;

θ∗i = θi
Return: Optimized parameters θ∗i , i = 0, . . . , NT − 1.

The output of this algorithm is an approximation of the optimal feedback control at any time ti by
a mean-field neural network Nθ∗i , i = 0, . . . , NT − 1. The value function can then be estimated at any
time ti by regression as follows: we approximate the value function at time ti by a mean-field neural
neural network ϑηi(µ)(x) valued in R, and minimize over the parameters ηi of this neural network the
quadratic loss function

E
∣∣∣NT−1∑
j=i

f(Xj , µj ,Nθ∗j (µj)(Xj))∆t+ g(XNT , µNT)− ϑηi(µi)(Xi)
∣∣∣2, (3.2)

where

Xj+1 = F∆t(Xj , µj ,Nθ∗j (µj)(Xj),∆Wj), j = i, . . . , NT − 1, Xi ∼ µi.

3.3 Control learning by value iteration
The two previous algorithms provide low bias estimates of the learnt controls, but in general high-
variance estimate due to this cumulated sum over the cost functions. Moreover, these algorithms are
very memory demanding as, at each epoch, all the N trajectories for the M distributions have to be
generated for the O(NT) time values and stored. To circumvent this possible variance issue, we propose
an alternate algorithm of actor-critic type, similarly as in [20] (called there hybrid algorithm), where
the feedback control and value function are learnt sequentially. We are given a family of mean-field
neural networks Nθi and ϑηi , i = 0, . . . , NT − 1, for the approximation of the feedback control (actor)
and value function (critic). We proceed by backward induction as follows: starting from ϑ∗NT (µ)(x) =
g(x, µ), we minimize over θi, for i = NT − 1, . . . , 0, the cost function

Ji(θi) = E
[
f(Xi, µi,Nθi(µi)(Xi))∆t+ ϑ∗i+1(µi+1)(Xi+1)

]
,

where

Xi+1 = F∆t(Xi, µi,Nθ(ti, µi)(Xi),∆Wi), Xi ∼ µi, (3.3)

update θ∗i as the resulting optimal parameter, then minimize over ηi the quadratic loss function

Li(ηi) = E
∣∣∣f(Xi, µi,Nθ∗i (µi)(Xi))∆t+ ϑ∗i+1(µi+1)(Xi+1)− ϑηi(µi)(Xi)

∣∣∣2,
update η∗i as the resulting optimal parameter, and set ϑ∗i = ϑη∗i . Again, in the practical implemen-
tation, we use a training of M probability measures µ(m)

i = LD(p
(m)
i) in D2(Rd) with samples p

(m)
i

= (p
(m)
i,k)k∈J1,KK, m = 1, . . . ,M , in DK . For each batch m, one then computes N samples X(m),(n)

i ∼

7

µ
(m)
i , X(m),(n)

i+1 according to (3.3) with estimated probability measure µ̂(m)
i+1 = LD(p̂

(m)
i+1), as in Section

3.1, and approximate the function Ji by

JiM,N (θi) =
1

MN

M∑
m=1

N∑
n=1

[
f(X

(m),(n)
i , µ

(m)
i ,Nθi(µ

(m)
i)(X

(m),(n)
i))∆t+ ϑ∗i+1(µ

(m)
i+1)(X

(m),(n)
i+1)

]
,

while similarly the second loss function Li is approximated by

LiM,N (ηi) =
1

MN

M∑
m=1

N∑
n=1

∣∣∣f(X
(m),(n)
i , µ

(m)
i ,Nθ∗i (µ

(m)
i)(X

(m),(n)
i))∆t+ ϑ∗i+1(µ

(m)
i+1)(X

(m),(n)
i+1)

− ϑηi(µ
(m)
i)(X

(m),(n)
i)

∣∣∣2.
The pseudo-code is described in Algorithm 3.

Algorithm 3: Actor/critic algorithm: learning by value iteration
Input data: Mean-field neural networks Nθi , ϑηi , i = 0, . . . , NT − 1 ;
Initialization: ϑ∗NT (µ)(x) = g(x, µ);
for i = NT − 1, . . . , 0 do

Initialization: learning rates γC , γV and parameters θi, ηi ;
for each epoch do

Generate a batch of M distributions µ(m)
i , m = 1, . . . ,M ;

for each batch m do
Generate Brownian increments ∆W

(m),(n)
i , n = 1, . . . , N ;

Compute samples X(m),(n)
i , X(m),(n)

i+1 , n = 1, . . . , N , and estimate µ̂(m)
i+1

Compute the batch cost JiM,N (θi) and its gradient ∇θJiM,N (θi) ;
Update θi ← θi − γ∇θJiM,N (θi) ;

Store optimized parameter θ∗i ;
for each epoch do

Generate a batch of M distributions µ(m)
i , m = 1, . . . ,M ;

for each batch m do
Generate Brownian increments ∆W

(m),(n)
i , n = 1, . . . , N ;

Compute samples X(m),(n)
i , X(m),(n)

i+1 , n = 1, . . . , N , and estimate µ̂(m)
i+1

Compute the batch cost LiM,N (ηi) and its gradient ∇ηLiM,N (ηi) ;
Update ηi ← ηi − γ∇ηLiM,N (ηi) ;

ϑ∗i = ϑη∗i
Return: The optimized parameters θ∗i , η∗i , i = 0, . . . , NT − 1

The output of this algorithm is an approximation of the optimal feedback control and value function
at any time ti by mean-field neural networks Nθ∗i , and ϑη∗i , i = 0, . . . , NT − 1.

4 Backward SDE-based algorithms
We start from the time discretization of the MKV forward-backward SDE (2.5) that characterizes the
solution to the MKV control problem:{
Xi+1 = Xi +B(Xi, µi,Yi)∆t+ σ(Xi, µi)∆Wi, i = 0, . . . , NT − 1, X0 ∼ µ0,

Yi+1 = Yi + Ẽ
[
H(Xi, µi,Yi,Zi, X̃i, Ỹi, Z̃i)

]
∆t+ Zi∆Wi, i = 0, . . . , NT − 1, YNT = G(XNT , µNT).

8

4.1 Local algorithms
We adapt the deep backward scheme in [21] to our context. We are given a family of mean-field neural
networks Yθi(µ)(x),Zθi(µ)(x), i = 0, . . . , NT − 1 (by misuse of notation, we also denote by Y and Z
the neural networks for the approximation of the pair component of the MKV BSDE), and proceed
by backward induction as follows: starting from Y∗NT (µ)(x) = G(x, µ), we minimize over θi, for i =
NT − 1, . . . , 0, the loss function

Li(θi) = E
∣∣∣Y∗i+1(µi+1)(Xi+1)− Yθi(µi)(Xi)−Zθi(µi)(Xi)∆Wi

− Ẽ
[
H(Xi, µi,Yθi(µi)(Xi),Zθi(µi)(Xi), X̃i,Yθi(µi)(X̃i),Zθi(µi)(X̃i))

]
∆t
∣∣∣2,

where

Xi+1 = Xi +B(Xi, µi,Yθi(µi)(Xi))∆t+ σ(Xi, µi)∆Wi, Xi ∼ µi, (4.1)

update θ∗i as the resulting optimal parameter, and set Y∗i = Yθ∗i . In the practical implementa-
tion, we use a training of M probability measures µ(m)

i = LD(p
(m)
i) in D2(Rd) with samples p

(m)
i

= (p
(m)
i,k)k∈J1,KK, m = 1, . . . ,M , in DK . For each batch m, one then computes N independent sam-

ples X(m),(n)
i , X̃(m),(n)

i ∼ µ
(m)
i , n = 1, . . . , N , X(m),(n)

i+1 according to (4.1) with estimated probability
measure µ̂(m)

i+1 as in Section 3.1, and approximate the loss function by

LiM,N (θi) =
1

MN

M∑
m=1

N∑
n=1

∣∣∣Y∗i+1(µ̂
(m)
i+1)(X

(m),(n)
i+1)− Yθi(µ

(m)
i)(X

(m),(n)
i)−Zθi(µ

(m)
i)(X

(m),(n)
i)∆Wi

− ∆t

N

N∑
n′=1

H(X
(m),(n)
i , µ

(m)
i ,Yθi(µ

(m)
i)(X

(m),(n)
i),Zθi(µ

(m)
i)(X

(m),(n)
i),

X̃
(m),(n′)
i ,Yθi(µ

(m)
i)(X̃

(m),(n′)
i),Zθi(µ

(m)
i)(X̃

(m),(n′)
i))

∣∣∣2.
The pseudo-code is described in Algorithm 4. It is in the spirit of the actor/critic algorithm 3, but

now Y and Z are learnt simultaneously.

Algorithm 4: Deep backward algorithm
Input data: Mean-field neural networks Yθi , Zθi ;
Initialization: Y∗NT (µ)(x) = G(x, µ);
for i = NT − 1, . . . , 0 do

Initialization: learning rate γ, and parameter θi ;
for each epoch do

Generate a batch of M distributions µ(m)
i , m = 1, . . . ,M ;

for each batch m do
Generate Brownian increments ∆W

(m),(n)
i , n = 1, . . . , N ;

Compute samples X(m),(n)
i , X̃(m),(n)

i , X(m),(n)
i+1 , n = 1, . . . , N , and estimate µ̂(m)

i+1

Compute the batch loss LiM,N (θi) and its gradient ∇θLiM,N (θi) ;
Update θi ← θi − γ∇θLiM,N (θi);

Y∗i = Yθ∗i
Return: The set of optimized parameters θ∗i , i = 0, . . . , NT − 1

We also propose a multi-step version of the above algorithm following the idea in [15], and in the
spirit of the policy iteration in Section 3.2. We proceed by backward induction for i = NT − 1, . . . , 0,
by keeping track of the approximate optimal mean-field neural networks Y∗j , Z∗j , j = i+1, . . . , NT −1,

9

and minimize over θi the loss function

L̃i(θi) = E
∣∣∣G(XNT , µNT)−

NT−1∑
j=i+1

Z∗j (µj)(Xj)∆Wj −Zθi(µi)(Xi)∆Wi − Yθi(µi)(Xi)

−
NT−1∑
j=i+1

Ẽ
[
H(Xj , µj ,Y∗j (µj)(Xj),Z∗j (µj)(Xj), X̃j ,Y∗j (µj)(X̃j),Z∗j (µj)(X̃j))

]
∆t

− Ẽ
[
H(Xi, µi,Yθi(µi)(Xi),Zθi(µi)(Xi), X̃i,Yθi(µi)(X̃i),Zθi(µi)(X̃i))

]
∆t
∣∣∣2,

where{
Xi+1 = Xi +B(Xi, µi,Yθi(µi)(Xi))∆t+ σ(Xi, µi)∆Wi, Xi ∼ µi,
Xj+1 = Xj +B(Xj , µj ,Y∗j (µj)(Xj))∆t+ σ(Xj , µj)∆Wj , j = i+ 1, . . . , NT − 1.

(4.2)

In the practical implementation, we use a training of M probability measures µ(m)
i , m = 1, . . . ,M ,

and for each batch m, one then computes N samples X(m),(n)
i ,X̃(m),(n)

i ∼ µ
(m)
i , X(m),(n)

j , X̃(m),(n)
j , j

= i + 1, . . . , NT − 1, according to (4.2) with estimated probability measures µ̂(m)
j = LD(p̂

(m)
j), as in

Section 3.1, and approximate the loss function by L̃iM,N (θi), i = 0, . . . , NT − 1.

The pseudo-code is described in Algorithm 5.

Algorithm 5: Deep backward multi-step algorithm
Input data: Mean-field neural networks Yθi , Zθi , and Brownian increments ∆Wi, i =
0, . . . , NT − 1 ;
for i = NT − 1, . . . , 0 do

Initialization: learning rate γ, and parameter θi ;
for each epoch do

Generate a batch of M distributions µ(m)
i , m = 1, . . . ,M ;

for each batch m do
Generate Brownian increments ∆W

(m),(n)
k , ∆̃W

(m),(n)
k , k = i, . . . , NT − 1, n =

1, . . . , N ;
Compute samples X(m),(n)

i , X̃(m),(n)
i , X(m),(n)

j , X̃(m),(n)
j , n = 1, . . . , N , and

estimate µ̂(m)
j , j = i+ 1, . . . , NT

Compute the batch loss L̃iM,N (θi) and its gradient ∇θL̃iM,N (θi) ;
Update θi ← θi − γ∇θL̃iM,N (θi);

Y∗i = Yθ∗i , Z
∗
i = Zθ∗i

Return: The set Y∗i = Yθ∗i , Z
∗
i = Zθ∗i , i = 0, . . . , NT − 1

The output of these two algorithms 4 and 5 yields in particular an approximation of the function
U in (2.1) by the mean-field neural network Y∗i at any time ti, hence an approximation of the optimal
feedback control defined in (2.2). We can then estimate the value function at any time by regression
similarly as in (3.2). Alternately, by considering the value function in the BSDE as in (2.3), we can
obtain an approximation of V via the mean-field neural network Y∗i at any time ti.

4.2 Global algorithms
In the spirit of the deep BSDE method in [19], we consider a mean-field neural network Uθ(µ)(x), and
time dependent mean-field neural network Zθ(t, µ)(x), for approximating respectively the initial value
of the Y component, and the Z component at any time of the MKV BSDE. We then define by forward
induction: starting from X0 ∼ µ0, Y0 = Uθ(µ0)(X0), for i = 0, . . . , NT − 1,

Xi+1 = Xi +B(Xi, µi,Yi)∆t+ σ(Xi, µi)∆Wi,

Yi+1 = Yi + Ẽ
[
H(Xi, µi,Yi,Zθ(ti, µi)(Xi), X̃i, Ỹi,Zθ(ti, µi)(X̃i))

]
∆t+ Zθ(ti, µi)(Xi)∆Wi, (4.3)

10

and minimize over θ the global loss function

L(θ) = E
∣∣∣YNT −G(XNT , µNT)

∣∣∣2.
In practical implementation, we use a training sample of probability measures µ(m)

0 , and then for each
m, N samples X(m),(n)

0 ∼ µ(m)
0 , Y(m),(n)

0 = U0(µ
(m)
0)(X

(m),(n)
0), n = 1, . . . , N , and for i = 0, . . . , NT −1

X
(m),(n)
i+1 = X

(m),(n)
i +B(X

(m),(n)
i , µ̂

(m)
i ,Y(m),(n)

i)∆t+ σ(X
(m),(n)
i , µ̂

(m),(n)
i)∆Wi,

Y(m),(n)
i+1 = Y(m),(n)

i +
∆t

N

N∑
n′=1

H(X
(m),(n)
i , µ̂

(m)
i ,Y(m),(n)

i ,Zθ(ti, µ̂(m)
i)(X

(m),(n)
i),

X̃
(m),(n′)
i , Ỹ(m),(n′)

i ,Zθ(ti, µ̂(m)
i)(X̃

(m),(n′)
i)) + Zθ(ti, µ̂(m)

i)(X
(m),(n)
i)∆Wi,

where X̃(m),(n)
i , Ỹ(m),(n)

i are independent copies of X(m),(n)
i , Y(m),(n)

i , while µ̂(m)
0 = µ

(m)
0 , µ̂(m)

i , i =
1, . . . , NT , are estimated as in Section 3.1. The loss function is then approximated by

LM,N (θ) =
1

MN

M∑
m=1

N∑
n=1

∣∣∣Y(m),(n)
NT

−G(X
(m),(n)
NT

, µ̂
(m)
NT

)
∣∣∣2.

The pseudo-code is described in Algorithm 6.

Algorithm 6: Deep MKV BSDE
Input data: A mean-field neural network Uθ(µ)(x), and a time-dependent mean-field neural
network Zθ(t, µ)(x).
Initialization: learning rate γ and parameters θ
for each epoch do

Generate a batch of M initial distributions µ(m)
0 , m = 1, . . . ,M .;

for each batch m do
Generate Brownian increments ∆W

(m),(n)
i , i = 0, . . . , NT − 1, n = 1, . . . , N . ;

Compute sample trajectories X(m),(n)
i , X̃(m),(n)

i , Y(m),(n)
i , Ỹ(m),(n)

i , n = 1, . . . , N , and
estimate µ̂(m)

i , i = 0, . . . , NT ,
Compute the batch loss LM,N (θ) and its gradient ∇θLM,N (θ) ;
Update θ ← θ − γ∇θLM,N (θ) ;

Return: the set of optimized parameters θ∗.

The output of this global deep BSDE algorithm is an approximation of the Y component of the
BSDE at initial time t0 = 0 by a mean-field neural network Uθ∗ , and yields approximation of the Z
component at times ti, i = 0, . . . , NT − 1, by mean-field neural networks Zθ∗(ti, µi)(Xi) along the law
µi, and state Xi explored during the learning algorithm. The value function can then be estimated
at any time tk by regression as follows: we approximate the value function at time tk by a mean-field
neural neural network ϑηk(µ)(x) valued in R, and minimize over the parameters ηk of this neural
network the quadratic loss function

E
∣∣∣Yk − ϑηk(µk)(Xk)

∣∣∣2, (4.4)

where (Xk, Yk) are generated by using equation (4.3) for i = 0, . . . , k−1 (here Yk is the first component
of Yk = (Yk, Pk) in (2.3)-(2.4)), and µk is estimated from the distribution of the Xk.

In order to avoid the cost of solving equation (4.4) at each time step, we can propose two other
global methods permitting to obtain directly the value function.

We first present a variation of the deep BSDE algorithm by considering two time-dependent mean-
field neural networks Yθ(t, µ)(x) and Zθ(t, µ)(x), for approximating the pair solution of the MKV BSDE

11

at any time. We then define by forward induction: starting from X0 ∼ µ0, for i = 0, . . . , NT − 1,

Xi+1 = Xi +B(Xi, µi,Yθ(ti, µi)(Xi))∆t+ σ(Xi, µi)∆Wi, (4.5)

and minimize over θ the global loss function as a sum of local loss functions:

L̃(θ) = E
[NT−1∑

i=1

∣∣∣Yθ(ti+1, µi+1)(Xi+1)− Yθ(ti, µi)(Xi)−Zθ(ti, µi)(Xi)∆Wi

− Ẽ
[
H(Xi, µi,Yθ(ti, µi)(Xi),Zθ(ti, µi)(Xi), X̃i,Yθ(ti, µi)(X̃i),Zθ(ti, µi)(X̃i))

]
∆t
∣∣∣2],

with the convention that Yθ(tNT , µ)(x) = G(x, µ). In practical implementation, we use a training
sample of probability measures µ(m)

0 , and then for each m = 1, . . . ,M , N samples X(m),(n)
0 ∼ µ

(m)
0 ,

X
(m),(n)
i , X̃(m),(n)

i , n = 1, . . . , N , according to (4.5), and estimated probability measures µ̂(m)
i , i =

1, . . . , NT . The loss function is then approximated by L̃M,N (θ).
The pseudo-code is described in Algorithm 7.

Algorithm 7: Deep MKV BSDE global/local
Input data: Two time-dependent mean-field neural network Y(t, µ)(x), Zθ(t, µ)(x).
Initialization: learning rate γ and parameters θ ;
for each epoch do

Generate a batch of M initial distributions µ(m)
0 , m = 1, . . . ,M ;

for each batch m do
Generate Brownian increments ∆W

(m),(n)
i , i = 0, . . . , NT − 1, n = 1, . . . , N . ;

Compute sample trajectories X(m),(n)
i , X̃(m),(n)

i , n = 1, . . . , N , and estimate µ̂(m)
i , i =

0, . . . , NT ,
Compute the batch loss L̃M,N (θ) and its gradient ∇θL̃M,N (θ) ;
Update θ ← θ − γ∇θL̃M,N (θ) ;

Return: the set of optimized parameters θ∗.

Finally, we present a multi-step version of the deep MKV BSDE algorithm. We consider two time-
dependent mean-field neural networks Yθ(t, µ)(x) and Zθ(t, µ)(x), for approximating the pair solution
of the MKV BSDE at any time, and define by forward induction: starting from X0 ∼ µ0, for i =
0, . . . , NT − 1,

Xi+1 = Xi +B(Xi, µi,Yθ(ti, µi)(Xi))∆t+ σ(Xi, µi)∆Wi. (4.6)

The global loss function to be minimized is in the form

Lmulti(θ) = E
[NT−1∑

i=0

∣∣∣G(XNT , µNT)−
NT−1∑
j=i

Zθ(tj , µj)(Xj)∆Wj − Yθ(ti, µi)(Xi)

−
NT−1∑
j=i

Ẽ
[
H(Xj , µj ,Yθ(tj , µj)(Xj),Zθ(tj , µj)(Xj), X̃j ,Yθ(tj , µj)(X̃j),Zθ(tj , µj)(X̃j))

]
∆t
∣∣∣2].

Again, in practical implementation, we use a training sample of probability measures µ(m)
0 , and then

for each m ∈ {1, . . . ,M}, N samples X(m),(n)
0 ∼ µ

(m)
0 , X(m),(n)

i , X̃(m),(n)
i , n = 1, . . . , N , according to

(4.6), and estimated probability measures µ̂(m)
i , i = 1, . . . , NT . The loss function is then approximated

by LmultiM,N (θ).

The pseudo-code is described in Algorithm 8.

12

Algorithm 8: Deep multi-step MKV BSDE
Input data: Two time-dependent mean-field neural networks Y(t, µ)(x), Zθ(t, µ)(x).
Initialization: learning rate γ and parameters θ ;
for each epoch do

Generate a batch of M initial distributions µ(m)
0 , m = 1, . . . ,M ;

for each batch m do
Generate Brownian increments ∆W

(m),(n)
i , i = 0, . . . , NT − 1, n = 1, . . . , N . ;

Compute sample trajectories X(m),(n)
i , X̃(m),(n)

i , n = 1, . . . , N , and estimate µ̂(m)
i , i =

0, . . . , NT ,
Compute the batch loss LmultiM,N (θ) and its gradient ∇θLmultiM,N (θ) ;
Update θ ← θ − γ∇θLmultiM,N (θ) ;

Return: the set of optimized parameters θ∗.

The output of Algorithms 7 and 8 is an approximation of the Y component of the BSDE at initial
time t0 = 0 by a mean-field neural network Yθ∗(t0, .)(.), and yields approximation of the Y, at other
times ti, i = 1, . . . , NT − 1, and Z at times ti, i = 0, . . . , NT − 1, by mean-field neural networks
Yθ∗i (ti, µi)(Xi), Zθ∗(ti, µi)(Xi) along the law µi, and state Xi explored during the learning algorithm.

5 Numerical examples
We shall illustrate the results of our different algorithms on three test cases. The two first examples
are MKV control problems where the diffusion coefficient is constant, and the BSDE approach can
be used. The third example is a classical mean variance problem, hence with control on the diffusion
coefficient. We then test the three cases using the dynamic programming-based algorithms and for the
two first cases using also the backward SDE-based algorithms.

For each problem, we will test the optimized solutions v(µ0) found by using different initial distri-
butions µ0 and compare the result obtained to the analytical solution or the reference calculated by
an other method. For all test cases, we keep the same parameters for the neural networks:

• For the bin method, we take 2 layers of 20 neurons.

• For the cylinder method, we take 2 layers of 20 neurons for the two networks.

For both methods we use the tanh activation function. At each iteration of the ADAM gradient
method [23], we consider for each of the M tested distributions N = 100000 realizations of the process
X. These parameters are chosen accordingly the results of [25]. We either take a batch size equal to
M = 5, M = 8, M = 10 or M = 20, using between 30000 to 120000 gradient iterations: we have
to adapt the batch size and the number of gradient iterations to be able to solve the problem on the
graphic card GPU NVidia V100 32Go (memory limitation) and in order to obtain the result in less
than 3 days. K in the tables below is the number of bins used, and ∆t = T/NT is the time step.

5.1 The test examples
5.1.1 Systemic risk model

We consider a mean-field model of systemic risk introduced in [8]. This model was introduced in the
context of mean field games but here we consider a cooperative version. The limit problem (when
the number of banks is large) of the social planner (central bank) is formulated as follows. The
log-monetary reserve of the representative bank is governed by the mean-reverting controlled McKean-
Vlasov dynamics

dXt =
[
κ(E[Xt]−Xt) + αt] dt+ σdWt, X0 ∼ µ0,

13

where α = (αt)t is the control rate of borrowing/lending to a central bank that aims to minimize the
functional cost

J(α) = E
[∫ T

0

f̃(Xt,E[Xt], αt) dt+ g̃(XT ,E[XT])
]
→ v(µ0) = inf

α
J(α), (5.1)

where the running and terminal costs are given by

f̃(x, x̄, a) =
1

2
a2 − qa(x̄− x) +

η

2
(x̄− x)2, g̃(x, x̄) =

c

2
(x− x̄)2,

for some positive constants q, η, c > 0, with q2 ≤ η.
The explicit solution of the linear-quadratic McKean-Vlasov control problem (5.1) is solved via the

resolution of a Riccati equation (see [2]), and is analytically given by

v(t, µ) =

∫
R
V (t, x, µ)µ(dx) = Qt

∫
R

(x− µ̄)2µ(dx) + σ2

∫ T

t

Qs ds, (5.2)

where we set µ̄ := Eξ∼µ[ξ] =
∫
R xµ(dx), and

Qt = −1

2

[
κ+ q −

√
∆

√
∆ sinh(

√
∆(T − t)) + (κ+ q + c) cosh(

√
∆(T − t))√

∆ cosh(
√

∆(T − t)) + (κ+ q + c) sinh(
√

∆(T − t))

]
,

with
√

∆ =
√

(κ+ q)2 + η − q2, and∫ T

t

Qs ds =
1

2
ln
[

cosh(
√

∆(T − t)) +
κ+ q + c√

∆
sinh(

√
∆(T − t))

]
− 1

2
(κ+ q)(T − t).

In this example, the function â that attains the infimum of the Hamiltonian function is â(x, µ, p) =
q(µ̄−x)−p, the function in (2.1) is U(t, x, µ) = 2Qt(x− µ̄), which yields the optimal feedback control:
a?(t, x, µ) = (q + 2Qt)(µ̄− x). The BSDE (2.3)-(2.4) is then written as dXt =

[
(κ+ q)(E[Xt]−Xt)− Pt]dt+ σdWt, X0 ∼ µ0,

dYt = −
[

1
2 (η − q2)(E[Xt]−Xt)

2 + 1
2P

2
t

]
dt+ ZtdWt, YT = c

2 (XT − E[XT])2,
dPt =

[
− (κ+ q)(E[Pt]− Pt) + (η − q2)(E[Xt]−Xt)

]
dt+MtdWt, PT = −c(E[XT]−XT).

For the numerical tests of the different methods, we take σ = 1, κ = 0.6, q = 0.8, T = 0.2, C = 2,
η = 2. We solve the problem (5.1) using our various algorithms and compare the solution obtained at
t = 0 with v(0, µ0) given by (5.2) for different initial distributions µ0 plotted on Figure 2:

• Case 1 : Gaussian with µ̄0 = 0, std(µ0) = 0.2,

• Case 2 : Gaussian with µ̄0 = 0.3, std(µ0) = 0.05,

• Case 3 : Gaussian with µ̄0 = 0., std(µ0) = 0.05,

• Case 4 : Mixture of two Gaussian random variables: X0 = P (−k + θY) + (1− P)(k + θȲ) with
P a Bernouilli random variable with parameter 1

2 , k =
√

3
10 , θ = 0.1, Y, Ȳ ∼ N (0, 1),

• Case 5 : Mixture of two Gaussian random variables X0 = P (−k+ θY) + (1−P)(−k+ θȲ) with
P a Bernouilli random variable with parameter 1

2 , k = 0.25, θ = 0.1, Y, Ȳ ∼ N (0, 1),

• Case 6 : Mixture of 3 Gaussian random variables : X0 = [−1b3Uc=0k + 1b3Uc=1k] + θY with
U ∼ U(0, 1), k = 0.3, θ = 0.07, Ȳ ∼ N (0, 1).

14

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Figure 2: Distribution µ0 tested on the systemic case.

Notice that case 1 and 4 have the same variance for µ0 so that the values v(0, µ0) of (5.2) should
be the same. Similarly, values of case 2 and 3 are the same.

5.1.2 Min/max linear quadratic MKV control

We next consider a mean-field model in which the dynamics is linear, the running cost is quadratic in
the position, the control and the expectation of the position, while the terminal cost gives inventive to
be close to one of two targets. This type of model is inspired by the min-LQG problem of [28]. More
precisely, we consider the following controlled McKean-Vlasov dynamics

dXt =
[
AXt + ĀE[Xt] +Bαt

]
dt+ σ dWt, X0 ∼ µ0,

where α = (αt)t is the control, and the agent aims to minimize the functional cost

J(α) = E
[∫ T

0

f(Xt,E[Xt], αt) dt+ g(XT)
]
→ v(µ0) = inf

α
J(α),

where the running and terminal costs are given by

f(x, x̄, a) =
1

2

(
Qx2 + Q̄(x− Sx̄)2 +Ra2

)
, g(x) = min

{
|x− ζ1|2, |x− ζ2|2

}
,

for some non-negative constants Q, Q̄, S, R, and two real numbers ζ1 and ζ2.
In this example, the BSDE (2.3)-(2.4) is then written as
dXt = [AXt + ĀE[Xt]− B2

R Pt]dt+ σdWt, X0 ∼ µ0

dYt = − 1
2

[
QX2

t + Q̄(Xt − SE[Xt])
2 + B2

R P
2
t

]
dt+ ZtdWt, YT = min[|XT − ζ1|2, |XT − ζ2|2]

dPt = −
[
APt + ĀE[Pt] +QXt + Q̄(Xt − E[Xt]) + Q̄(S − 1)2E[Xt]

]
dt+MtdWt,

PT = 2
(
XT −min(ζ1, ζ2)1

XT≤ ζ1+ζ2
2
−max(ζ1, ζ2)1

XT>
ζ1+ζ2

2

)
.

For the numerical tests, we take A = 1, Ā = 0.5, B = 1, Q = Q̄ = R = S = 1, σ = 0.5, ζ1 = 0.25,
ζ2 = 1.75. We first solve the problem (1.1) by the different algorithms and we can compare the solution
v(µ0) obtained for different distributions µ0 to a reference calculated using [9] approach. Notice that
[9] method needs to be run for each initial distribution tested. We use three different distributions µ0

plotted on Figure 3:

15

• Case 1 : Gaussian distribution µ̄0 = 1, std(µ0) = 0.2. The reference values are 0.484 for T = 0.2,
and 0.818 for T = 0.5.

• Case 2 : Mixture of two Gaussian random variables : X0 = P (ζ1 + θY) + (1− P)(ζ2 + θȲ) with
P a Bernouilli random variable with parameter 1

2 , θ = 0.15, Y, Ȳ , Ỹ ∼ N (0, 1), with reference
values 0.494 for T = 0.2, and 1.082 for T = 0.5.

• Case 3 : Mixture of three Gaussian random variables: X0 = [1b5Uc<2ζ1+1b5Uc>3ζ2+12≤b5Uc≤3(ζ1+
ζ2)]+θY with U ∼ U(0, 1), θ = 0.05 with reference values 0.491 for T = 0.2, and 0.836 for T = 0.5.

Case 1 Case 2 Case 3

Figure 3: Distribution µ0 tested on the min/max linear case.

5.1.3 Mean-variance problem

We consider the celebrated Markowitz portfolio selection problem where an investor can invest at any
time t an amount αt in a risky asset (assumed for simplicity to follow a Black-Scholes model with
constant rate of return β and volatility ν > 0), hence generating a wealth process X = Xα with
dynamics

dXt = αtβdt+ αtνdWt, 0 ≤ t ≤ T, X0 ∼ µ0.

The goal is then to minimize over portfolio control α the mean-variance criterion:

J(α) = λVar(Xα
T)− E[Xα

T],

where λ > 0 is a parameter related to the risk aversion of the investor.
We refer to [22] for the McKean-Vlasov approach to Markowitz mean-variance problems (in a more

general context), and we recall that the solution to the Bellman equation is given by

V (t, x, µ) = λe−R(T−t)(x− µ̄)2 − x− 1

4λ

[
eR(T−t) − 1

]
, (5.3)

U(t, x, µ) = 2λe−R(T−t)(x− Eµ[ξ])− 1,

where we set R := β2/ν2. Moreover, the optimal feedback control is given by

a∗(t, x, µ) = − β

ν2

(
x− µ̄− eR(T−t)

2λ

)
.

We test our algorithms with the parameters β = 0.1, ν = 0.4, λ = 0.5. We compare the solutions
obtained at t = 0 to the analytical solution v(µ0) = Eξ∼µ0

[V (0, ξ, µ0)] given by (5.3) for different initial
distributions µ0 plotted in Figure 4, and explicitly given by:

• Case 1 : Gaussian distribution with µ̄0 = 0.1, std(µ0) = 0.2.

• Case 2 : Gaussian distribution with µ̄0 = 0.2, std(µ0) = 0.025.

16

• Case 3 : Gaussian distribution with µ̄0 = 0.3, std(µ0) = 0.025.

• Case 4 : Mixture of two Gaussian random variables: X0 = P (−k+a+θY)+(1−P)(−k+a+θȲ)

with P a Bernouilli random variable with parameter 1
2 , k =

√
3

10 ,a = 0.1, θ = 0.1, Y, Ȳ ∼ N (0, 1),

• Case 5 : Mixture of two Gaussian random variables: X0 = P (−k+a+θY)+(1−P)(−k+a+θȲ)
with P a Bernouilli random variable with parameter 1

2 , a = 0.05, k = 0.1, θ = 0.1, Y, Ȳ ∼ N (0, 1),

• Case 6 : Mixture of 3 Gaussian random variables: X0 = a+ [−1b5Uc<2k + 1b5Uc>3k] + θY with
U ∼ U(0, 1), a = 0.2, k = 0.3, θ = 0.07,Ȳ ∼ N (0, 1).

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Figure 4: Distribution µ0 tested on the mean variance case.

5.2 Results for dynamic programming-based algorithms
5.2.1 The systemic risk model

We report the results for this model of section 5.1.1 in Tables 1, 2 and 3. It turns out that the results
obtained by Algorithms 1 and 2 are excellent and very close. We can see that results with K = 100
or K = 200 bins for the bins method are very close. Notice that with the bins method, we have to
limit the number K of bins due to memory issues for these two algorithms. We clearly see the effect
of the convergence of the Euler scheme used to discretized the equations on the convergence rate. The
Bins method and the Cylinder method provide very similar results but as the cost of Algorithm 1 is

in O(NT) while the cost of Algorithm 2 is in O(
NT (NT − 1)

2
), Algorithm 1 is clearly preferred.

17

Method K ∆t = T
NT

Case 1 Case 2 Case 3
Calc Anal Calc Anal Calc Anal

Bins 100 0.02 0.1670 0.1642 0.1495 0.1446 0.1497 0.1446
Bins 100 0.01 0.1651 0.1642 0.1472 0.1446 0.1470 0.1446

Cylinder 500 0.02 0.1684 0.1642 0.1489 0.1446 0.1492 0.1446
Cylinder 500 0.01 0.1665 0.1642 0.1469 0.1446 0.1467 0.1446
Method K ∆t = T

NT
Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal
Bins 100 0.02 0.1675 0.1642 0.1824 0.1812 0.1792 0.1772
Bins 100 0.01 0.1648 0.1642 0.1803 0.1812 0.1766 0.1772

Cylinder 500 0.02 0.1684 0.1642 0.1848 0.1812 0.1817 0.1772
Cylinder 500 0.01 0.1660 0.1642 0.1835 0.1812 0.1795 0.1772

Table 1: Global Algorithm 1 for systemic risk with T = 0.2, K = [−1.38, 1.62].

Method K ∆t = T
NT

Case 1 Case 2 Case 3
Calc Anal Calc Anal Calc Anal

Bins 100 0.02 0.1692 0.1642 0.1493 0.1446 0.1495 0.1446
Bins 100 0.01 0.1673 0.1642 0.1478 0.1446 0.1470 0.1446
Bins 200 0.01 0.1674 0.1642 0.1480 0.1446 0.1477 0.1446

Cylinder 500 0.02 0.1688 0.1642 0.1492 0.1446 0.1490 0.1446
Cylinder 500 0.01 0.1662 0.1642 0.1468 0.1446 0.1471 0.1446
Method K ∆t = T

NT
Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal
Bins 100 0.02 0.1691 0.1642 0.1862 0.1821 0.1822 0.1772
Bins 100 0.01 0.1670 0.1642 0.1836 0.1812 0.1799 0.1772
Bins 200 0.01 0.1675 0.1642 0.1844 0.1812 0.1800 0.1772

Cylinder 500 0.02 0.1684 0.1642 0.1862 0.1812 0.1819 0.1772
Cylinder 500 0.01 0.1663 0.1642 0.1836 0.1812 0.1794 0.1772

Table 2: Policy iteration Algorithm 2 for systemic risk with T = 0.2, K = [−1.38, 1.62].

The results obtained by the value iteration Algorithm 3 are still good but less accurate than the
results obtained by the two other algorithms. The cylinder methods appears to be the best of the two
methods. We notice a small degradation of the results as we refine the time step with the bins method.
Notice that the memory used by this algorithm is small compared to the two other algorithms and it
permits to take a high number K of bins for the bins method (even if it is not necessary on this case).

Method K ∆t = T
NT

Case 1 Case 2 Case 3
Calc Anal Calc Anal Calc Anal

Bins 500 0.02 0.1620 0.1642 0.1373 0.1446 0.1698 0.1446
Bins 500 0.01 0.1873 0.1642 0.1673 0.1446 0.1841 0.1446

Cylinder 500 0.02 0.1722 0.1642 0.1540 0.1446 0.1554 0.1446
Cylinder 500 0.01 0.1704 0.1642 0.1520 0.1446 0.1571 0.1446
Method K ∆t = T

NT
Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal
Bins 500 0.02 0.1630 0.1642 0.1809 0.1812 0.1755 0.1772
Bins 500 0.01 0.1880 0.1642 0.2037 0.1812 0.1991 0.1772

Cylinder 500 0.02 0.1722 0.1642 0.1880 0.1812 0.1843 0.1772
Cylinder 500 0.01 0.1704 0.1642 0.1864 0.1812 0.1827 0.1772

Table 3: Value iteration Algorithm algorithm 3 for systemic risk with T = 0.2, K = [−1.38, 1.62].

18

5.2.2 The min/max MKV model

Results for T = 0.2 are reported in table 4, 6, 8: they are very good for all algorithms and network
used. Results for T = 0.5 are reported in table 5, 7, 9, and also give excellent results. Notice that with
Algorithm 2, it is impossible to solve the problem with T = 0.5 using NT = 50 due to memory issues
and the time needed limited to 3 days. As we increase the number of time steps for Algorithm 3, we
observe for the bins methods, as in the previous test case, a small degradation of the results due to an
accumulation of regression error, and therefore Algorithm 1 should be preferred.

Case 1 Case 2 Case 3
Method K T

NT
Calc Ref Calc Ref Calc Ref

Bins 100 0.02 0.481 0.483 0.502 0.494 0.489 0.491
Bins 100 0.01 0.481 0.483 0.503 0.494 0.489 0.491
Bins 200 0.01 0.484 0.483 0.498 0.494 0.491 0.491

Cylinder 500 0.02 0.484 0.483 0.493 0.494 0.491 0.491
Cylinder 500 0.01 0.484 0.483 0.494 0.494 0.491 0.491

Table 4: Global Algorithm 1 with T = 0.2, K = [0.21, 2.72].

Case 1 Case 2 Case 3
Method K T

NT
Calc Ref Calc Ref Calc Ref

Bins 100 0.02 0.830 0.818 1.100 1.082 0.848 0.836
Bins 100 0.01 0.833 0.818 1.104 1.082 0.850 0.836
Bins 200 0.01 0.831 0.818 1.092 1.082 0.848 0.836

Cylinder 500 0.02 0.814 0.818 1.080 1.082 0.831 0.836
Cylinder 500 0.01 0.819 0.818 1.085 1.082 0.837 0.836

Table 5: Global Algorithm 1 with T = 0.5, K = [−0.4, 3.21].

Case 1 Case 2 Case 3
Method K T

NT
Calc Ref Calc Ref Calc Ref

Bins 100 0.02 0.480 0.483 0.502 0.494 0.489 0.491
Bins 200 0.02 0.482 0.483 0.496 0.494 0.491 0.491

Cylinder 500 0.02 0.484 0.483 0.493 0.494 0.491 0.491

Table 6: Policy iteration Algorithm 2 with T = 0.2, K = [0.21, 2.72].

Case 1 Case 2 Case 3
Method K T

NT
Calc Ref Calc Ref Calc Ref

Bins 100 0.02 0.819 0.818 1.088 1.082 0.836 0.836
Bins 200 0.02 0.818 0.818 1.090 1.082 0.836 0.836

Cylinder 500 0.02 0.814 0.818 1.081 1.082 0.831 0.836

Table 7: Policy iteration Algorithm 2 with T = 0.5, K = [−0.4, 3.21].

19

Case 1 Case 2 Case 3
Method K T

NT
Calc Ref Calc Ref Calc Ref

Bins 100 0.02 0.494 0.483 0.512 0.494 0.502 0.491
Bins 200 0.02 0.490 0.483 0.493 0.494 0.495 0.491

Cylinder 500 0.02 0.486 0.483 0.493 0.494 0.491 0.491

Table 8: Value iteration Algorithm 3 with T = 0.2, K = [0.21, 2.72].

Case 1 Case 2 Case 3
Method K T

NT
Calc Ref Calc Ref Calc Ref

Bins 100 0.02 0.800 0.818 1.084 1.082 0.817 0.836
Bins 200 0.02 0.810 0.818 1.079 1.082 0.828 0.836
Bins 200 0.01 0.835 0.818 1.114 1.082 0.853 0.836

Cylinder 500 0.02 0.811 0.818 1.088 1.082 0.829 0.836
Cylinder 500 0.01 0.810 0.818 1.078 1.082 0.827 0.836

Table 9: Value iteration Algorithm 3 with T = 0.5, K = [−0.4, 3.21].

5.2.3 The mean variance problem

We do not report results from Algorithm 3: indeed, they diverge for all discretizations tested. Results
for the two other algorithms are given in Tables 10 and 12 for T = 0.2, and in Tables 11 and 13 for T
= 0.5. Notice that the number of bins taken for the bins network has to be high to get an accurate
solution.

Method K Case 1 Case 2 Case 3
Calc Anal Calc Anal Calc Anal

Bins 100 -0.0954 -0.0865 -0.1147 -0.1059 -0.3139 -0.3050
Bins 200 -0.0907 -0.0865 -0.1104 -0.1059 -0.3094 -0.3050
Bins 400 -0.0882 -0.0865 -0.1081 -0.1059 -0.3071 -0.3050

Cylinder 500 -0.0884 -0.0865 -0.1078 -0.1060 -0.3070 -0.3051
Method K Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal
Bins 100 -0.0952 -0.0865 -0.0547 -0.0464 -0.1769 -0.1683
Bins 200 -0.0908 -0.0865 -0.0510 -0.0464 -0.1724 -0.1683
Bins 400 -0.0894 -0.0865 -0.0487 -0.0464 -0.1703 -0.1683

Cylinder 500 -0.0883 -0.0865 -0.0485 -0.0464 -0.1703 -0.1683

Table 10: Global Algorithm 1, T = 0.2, K = [−0.85, 0.9], T
NT

= 0.02.

Method K Case 1 Case 2 Case 3
Calc Anal Calc Anal Calc Anal

Bins 200 -0.1018 -0.0965 -0.1214 -0.1156 -0.3200 -0.3147
Bins 400 -0.0976 -0.0965 -0.1163 -0.1156 -0.3149 -0.3147

Cylinder 500 -0.0987 -0.0965 -0.1179 -0.1156 -0.3172 -0.3147
Method K Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal
Bins 200 -0.1022 -0.0965 -0.0613 -0.0562 -0.1842 -0.1786
Bins 400 -0.0969 -0.0965 -0.0562 -0.0562 -0.1788 -0.1786

Cylinder 500 -0.0985 -0.0965 -0.0583 -0.0562 -0.1804 -0.1786

Table 11: Global Algorithm 1, T = 0.5, K = [−0.85, 0.9], T
NT

= 0.02.

20

Method K Case 1 Case 2 Case 3
Calc Anal Calc Anal Calc Anal

Bins 100 -0.0959 -0.0865 -0.1143 -0.1060 -0.3138 -0.3051
Bins 200 -0.0906 -0.0865 -0.1102 -0.1059 -0.3094 -0.3050
Bins 400 -0.0884 -0.0865 -0.1083 -0.1059 -0.3072 -0.3050

Cylinder 500 -0.0884 -0.0865 -0.1078 -0.1060 -0.3070 -0.3051
Method K Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal
Bins 100 -0.0954 -0.0865 -0.0553 -0.0464 -0.1766 -0.1683
Bins 200 -0.0908 -0.0865 -0.0505 -0.0464 -0.1723 -0.1683
Bins 400 -0.0887 -0.0865 -0.0482 -0.0464 -0.1704 -0.1683

Cylinder 500 -0.0883 -0.0865 -0.0485 -0.0464 -0.1703 -0.1683

Table 12: Policy iteration Algorithm 2 , T = 0.2, K = [−0.85, 0.9], T
NT

= 0.02.

Method K Case 1 Case 2 Case 3
Calc Anal Calc Anal Calc Anal

Bins 400 -0.0978 -0.0965 -0.1171 -0.1156 -0.3140 -0.3147
Cylinder 500 -0.0986 -0.0965 -0.1175 -0.1156 -0.3164 -0.3147
Method K Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal
Bins 400 -0.0985 -0.0965 -0.0579 -0.0562 -0.1789 -0.1786

Cylinder 500 -0.0986 -0.0965 -0.0583 -0.0562 -0.1807 -0.1786

Table 13: Policy iteration Algorithm 2 , T = 0.5, K = [−0.85, 0.9], T
NT

= 0.02.

Again, in term of accuracy, Algorithms 1 and 2 give similar accurate results and the memory taken
by both algorithms is close. However Algorithm 1 has to be preferred as the computation time is far
lower when we are interested by computing the solution only at time t = 0.

5.3 Results for Backward SDE-based algorithms
5.3.1 The systemic risk model

Results for the systemic example of section 5.1.1 are given in Tables 14, 15, 16, 17 and 18. All the
proposed methods converge very accurately to the solution. As previously seen in the results of the
dynamic programming-based algorithms, the number of bins does not need to be large for the bins
network. For this test case, the numerical values obtained does not permit to select the best algorithm.
As Algorithm 5 is by far the most costly, it should not be the preferred choice. It is difficult to compare
the other algorithms in terms of computing time, but all global algorithms have roughly the same cost
in terms of time and the local deep backward algorithm 4 is certainly more costly as we have to
achieve an optimization per time step. This drawback due to the number of optimizations is reduced
by transfer learning, namely the fact that at each time step the problem is much more smaller to solve
as we can initialize the parameters of networks at a given time step by the parameters of networks of
the preceding time step. On the other hand, we point out that all the global algorithms are too far
memory consuming to be able to compete with the local deep backward algorithm 4 which seems to
be globally the best choice.

21

Method K T
NT

Case 1 Case 2 Case 3
Calc Anal Calc Anal Calc Anal

Bins 100 0.02 0.1690 0.1642 0.1493 0.1446 0.1497 0.1446
Bins 200 0.02 0.1689 0.1642 0.1494 0.1446 0.1494 0.1446
Bins 100 0.01 0.1664 0.1642 0.1474 0.1446 0.1470 0.1446
Bins 200 0.01 0.1664 0.1642 0.1472 0.1446 0.1471 0.1446

Cylinder 500 0.02 0.1683 0.1642 0.1491 0.1446 0.1492 0.1446
Cylinder 500 0.01 0.1664 0.1642 0.1472 0.1446 0.1466 0.1446
Method K T

NT
Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal
Bins 100 0.02 0.1690 0.1642 0.1860 0.1812 0.1816 0.1772
Bins 200 0.02 0.1687 0.1642 0.1853 0.1812 0.1818 0.1772
Bins 200 0.01 0.1669 0.1642 0.1838 0.1812 0.1801 0.1772
Bins 200 0.01 0.1666 0.1642 0.1835 0.1812 0.1796 0.1772

Cylinder 500 0.02 0.1683 0.1642 0.1858 0.1812 0.1816 0.1772
Cylinder 500 0.01 0.1665 0.1642 0.1837 0.1812 0.1795 0.1772

Table 14: Local deep backward BSDE Algorithm 4, T = 0.2, K = [−1.38, 1.62].

Method K T
NT

Case 1 Case 2 Case 3
Calc Anal Calc Anal Calc Anal

Bins 200 0.02 0.1709 0.1642 0.1513 0.1446 0.1516 0.1446
Bins 200 0.01 0.1672 0.1642 0.1479 0.1446 0.1475 0.1446

Cylinder 500 0.02 0.1688 0.1642 0.1494 0.1446 0.1489 0.1446
Cylinder 500 0.01 0.1663 0.1642 0.1469 0.1446 0.1472 0.1446
Method K T

NT
Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal
Bins 200 0.02 0.1711 0.1642 0.1881 0.1812 0.1838 0.1772
Bins 200 0.01 0.1671 0.1642 0.1845 0.1812 0.1800 0.1772

Cylinder 500 0.02 0.1686 0.1642 0.1855 0.1812 0.1817 0.1772
Cylinder 500 0.01 0.1662 0.1642 0.1834 0.1812 0.1787 0.1772

Table 15: Deep backward multi-step Agorithm 5, T = 0.2, K = [−1.38, 1.62].

Method K T
NT

Case 1 Case 2 Case 3
Calc Anal Calc Anal Calc Anal

Bins 100 0.02 0.1691 0.1642 0.1496 0.1446 0.1498 0.1446
Bins 200 0.02 0.1691 0.1642 0.1495 0.1446 0.1497 0.1446
Bins 200 0.01 0.1663 0.1642 0.1468 0.1446 0.1471 0.1446

Cylinder 500 0.02 0.1686 0.1642 0.1491 0.1446 0.1492 0.1446
Cylinder 500 0.01 0.1665 0.1642 0.1466 0.1446 0.1466 0.1446
Method K T

NT
Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal
Bins 100 0.02 0.1692 0.1642 0.1858 0.1812 0.1815 0.1772
Bins 200 0.02 0.1694 0.1642 0.1863 0.1812 0.1824 0.1772
Bins 200 0.01 0.1668 0.1642 0.1838 0.1812 0.1793 0.1772

Cylinder 500 0.02 0.1686 0.1642 0.1857 0.1812 0.1816 0.1772
Cylinder 500 0.01 0.1667 0.1642 0.1836 0.1812 0.1795 0.1772

Table 16: Global deep MKV BSDE Algorithm 6, T = 0.2, K = [−1.38, 1.6].

22

Method K T
NT

Case 1 Case 2 Case 3
Calc Anal Calc Anal Calc Anal

Bins 200 0.02 0.1753 0.1642 0.1545 0.1446 0.1706 0.1446
Bins 200 0.01 0.1670 0.1642 0.1483 0.1446 0.1597 0.1446

Cylinder 500 0.02 0.1684 0.1642 0.1496 0.1446 0.1491 0.1446
Cylinder 500 0.01 0.1667 0.1642 0.1469 0.1446 0.1468 0.1446
Method K T

NT
Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal
Bins 200 0.02 0.1758 0.1642 0.1931 0.1812 0.1887 0.1772
Bins 200 0.01 0.1661 0.1642 0.1841 0.1812 0.1797 0.1772

Cylinder 500 0.02 0.1687 0.1642 0.1856 0.1812 0.1816 0.1772
Cylinder 500 0.01 0.1664 0.1642 0.1836 0.1812 0.1793 0.1772

Table 17: Global/local deep MKV BSDE Algorithm 7, T = 0.2, K = [−1.38, 1.62].

Method K T
NT

Case 1 Case 2 Case 3
Calc Anal Calc Anal Calc Anal

Bins 200 0.02 0.1689 0.1642 0.1507 0.1446 0.1528 0.1446
Bins 200 0.01 0.1664 0.1642 0.1470 0.1446 0.1469 0.1446

Cylinder 500 0.02 0.1685 0.1642 0.1489 0.1446 0.1494 0.1446
Cylinder 500 0.01 0.1658 0.1642 0.1470 0.1446 0.1468 0.1446
Method K T

NT
Case 4 Case 5 Case 6

Calc Anal Calc Anal Calc Anal
Bins 200 0.02 0.1692 0.1642 0.1868 0.1812 0.1821 0.1772
Bins 200 0.01 0.1666 0.1642 0.1829 0.1812 0.1796 0.1772

Cylinder 500 0.02 0.1687 0.1642 0.1855 0.1812 0.1817 0.1772
Cylinder 500 0.01 0.1661 0.1642 0.1834 0.1812 0.1795 0.1772

Table 18: Global deep multi-step MKV BSDE Algorithm 8, T = 0.2, K = [−1.38, 1.62].

5.3.2 The min/max MKV model

Results for this example of Section 5.1.2 are reported in Tables 19, 20, 21, 22 and 23. All algorithms
seem to converge to the good solution except the global deep MKV BSDE Algorithm 6 that always
converges on our tests (repeated many times) to a slightly different solution while using the cylinder
network. Notice that, by using the bins network, we avoid the problem on this test case. Again it
is not feasible to refine the time step when implementing the deep backward multi-step Algorithm 5
due to the computational time taken by the algorithm. The local deep backward Algorithm 4 seems
to be the best as the results obtained in Table 19 are very good and the memory needed rather small.
Either bins or cylinder networks can be used.

Method K T
NT

Case 1 Case 2 Case 3
Calc Ref Calc Ref Calc Ref

Bins 100 0.02 0.8355 0.8180 1.1074 1.0820 0.8537 0.8360
Bins 200 0.02 0.8278 0.8180 1.0962 1.0820 0.8462 0.8360
Bins 200 0.01 0.8343 0.8180 1.0998 1.0820 0.8513 0.8360

Cylinder 500 0.02 0.8249 0.8180 1.0896 1.0820 0.8427 0.8360
Cylinder 500 0.01 0.8312 0.8180 1.0946 1.0820 0.8487 0.8360

Table 19: Deep backward Algorithm 4, T = 0.5, K = [−0.40, 3.21].

23

Method K T
NT

Case 1 Case 2 Case 3
Calc Ref Calc Ref Calc Ref

Bins 200 0.02 0.8277 0.8180 1.0966 1.0820 0.8453 0.8360
Cylinder 500 0.02 0.8259 0.8180 1.0904 1.0820 0.8427 0.8360

Table 20: Deep backward multi-step Algorithm 5, T = 0.5, K = [−0.40, 3.21].

Method K T
NT

Case 1 Case 2 Case 3
Calc Ref Calc Ref Calc Ref

Bins 200 0.02 0.8299 0.8180 1.0977 1.0820 0.8485 0.8360
Bins 100 0.01 0.8447 0.8180 1.1111 1.0820 0.8625 0.8360
Bins 200 0.01 0.8369 0.8180 1.1018 1.0820 0.8566 0.8360

Cylinder 500 0.02 0.7801 0.8180 1.0493 1.0820 0.7968 0.8360
Cylinder 500 0.01 0.7597 0.8180 1.0325 1.0820 0.7767 0.8360

Table 21: Global deep MKV BSDE Algorithm 6, T = 0.5, K = [−0.40, 3.21].

Method K T
NT

Case 1 Case 2 Case 3
Calc Ref Calc Ref Calc Ref

Bins 200 0.02 0.8528 0.8180 1.1003 1.0820 0.8692 0.8360
Bins 100 0.01 0.9146 0.8180 1.1120 1.0820 0.9219 0.8360
Bins 200 0.01 0.8406 0.8180 1.1001 1.0820 0.8560 0.8360

Cylinder 500 0.02 0.8305 0.8180 1.0952 1.0820 0.8466 0.8360
Cylinder 500 0.01 0.8666 0.8180 1.1104 1.0820 0.8817 0.8360

Table 22: Global/local deep MKV BSDE Algorithm 7, T = 0.5, K = [−0.40, 3.21].

Method K T
NT

Case 1 Case 2 Case 3
Calc Ref Calc Ref Calc Ref

Bins 200 0.02 0.8380 0.8180 1.1004 1.0820 0.8497 0.8360
Bins 200 0.01 0.8353 0.8180 1.1002 1.0820 0.8520 0.8360

Cylinder 500 0.02 0.8265 0.8180 1.0902 1.0820 0.8434 0.8360
Cylinder 500 0.01 0.8319 0.8180 1.0951 1.0820 0.8487 0.8360

Table 23: Global deep multi-step MKV BSDE Algorithm 8, T = 0.5, K = [−0.40, 3.21].

6 Conclusion
We have tested numerous algorithms to solve the McKean-Vlasov control problem (1.1) by using
mean-field neural networks. When the problem admits a Backward SDE representation from the
Pontryagin maximum principle, it is clearly more interesting to adopt this approach than the dynamic
programming-based approaches for several reasons:

• the BSDE approach provides algorithms that are very stable. This is certainly due to the fact
that in the Pontryagin principle, the BSDE has a driver which is a function of Y (instead of
classical approach based on the function value giving a driver as a function of Z) as already
noticed in [14].

• It is possible to use the local deep backward algorithm [21] that yields very accurate results and
is not limited by the number of time steps due to transfer learning. Moreover, the method gives
the solution of the problem at each time steps for all the distributions.

24

• Both networks, either bins or cylinder, can be implemented. Notice that cylinder methods use
less memory than bins methods especially when the number of bins has to be high to get a good
accuracy.

When the maximum Pontryagin principle is not directly available, we distinguish two cases:

• First case is when the volatility of the forward process is not controlled. Then two options are
available:

– When the number of time steps it not too high, the global learning algorithm [19], [17]
seems to be the best in terms of accuracy. Then it is possible to get the function value after
t = 0 at "visited distributions" by regression.

– When the number of time steps is too high, memory issues force us to use the control
learning by value iteration of [20]. Another option could be to use an hydrid algorithm as
proposed in [29].

• Second case is when there is control on the diffusion coefficient, and then only the global learning
algorithm should be implemented.

Notice that the global learning algorithm may sometimes converge to a bad solutions as experienced in
[10], [21], [1]. Then the control learning by policy iteration of [20] can be used to check the convergence
of the global learning algorithm especially when the loss of the global learning algorithm does not goes
to zero as we increase the number of time steps.

References
[1] K. Andersson, A. Andersson, and C. W Oosterlee. “Convergence of a robust deep FBSDE method

for stochastic control”. In: to appear in SIAM J. Sci. Comput (2022).

[2] M. Basei and H. Pham. “A weak martingale approach to linear-quadratic McKean-Vlasov stochas-
tic control problem”. In: Journal of Optimization Theory and Applications 181.2 (2019), pp. 347–
382.

[3] C. Beck, M. Hutzenthaler, A. Jentzen, and B. Kuckuck. “An overview on deep learning-based
approximation methods for partial differential equations”. In: Discrete Contin. Dyn. Syst. Ser.
B (2020).

[4] A. Bensoussan, J. Frehse, and P. Yam. Mean field games and mean field type control theory.
Springer Briefs in Mathematics. Springer, 2013.

[5] R. Carmona and F. Delarue. “Forward–backward stochastic differential equations and controlled
McKean–Vlasov dynamics”. In: The Annals of Probability 43.5 (2015), pp. 2647–2700.

[6] R. Carmona and F. Delarue. Probabilistic Theory of Mean Field Games: vol. I, Mean Field
FBSDEs, Control, and Games, Springer, 2018.

[7] R. Carmona and F. Delarue. Probabilistic Theory of Mean Field Games: vol. II, Mean Field
FBSDEs, Control, and Games, Springer, 2018.

[8] R. Carmona, J.-P. Fouque, and L. Sun. “Mean field games and systemic risk”. In: Commun.
Math. Sci. 13.4 (2015), pp. 911–933.

[9] R. Carmona and M. Laurière. “Convergence analysis of machine learning algorithms for the nu-
merical solution of mean field control and games: II- the finite horizon case”. In: arXiv:1908.01613,
to appear in The Annals of Applied Probability (2019).

[10] Q. Chan-Wai-Nam, J. Mikael, and X. Warin. “Machine learning for semi linear PDEs”. In: Journal
of Scientific Computing 79.3 (2019), pp. 1667–1712.

[11] W. E, J. Han, and A. Jentzen. “Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations”. In: Com-
munications in Mathematics and Statistics 5.4 (2017), pp. 349–380.

25

[12] J.-P. Fouque and Z. Zhang. “Deep Learning Methods for Mean Field Control Problems with
Delay”. In: Frontiers in Applied Mathematics and Statistics 6 (2020).

[13] M. Germain, M. Laurière, H. Pham, and X. Warin. “DeepSets and derivative networks for solving
symmetric PDEs”. In: Journal of Scientific Computing 91.63 (2022).

[14] M. Germain, J. Mikael, and X. Warin. “Numerical resolution of McKean-Vlasov FBSDEs using
neural networks”. In: to appear in Methodology and Computing in Applied Probability (2019).

[15] M. Germain, H. Pham, and X. Warin. “Approximation Error Analysis of Some Deep Backward
Schemes for Nonlinear PDEs”. In: SIAM Journal on Scientific Computing 44.1 (2022), A28–A56.

[16] M. Germain, H. Pham, and X. Warin. “Neural networks based algorithms for stochastic con-
trol and PDEs in finance”. In: arXiv:2101.08068 to appear in Machine Learning And Data Sci-
ences For Financial Markets: A Guide To Contemporary Practices. Ed. by A. Capponi and C.A.
Lehalle. Cambridge University Press, 2022.

[17] E. Gobet and R. Munos. “Sensitivity analysis using Itô-Malliavin calculus and martingales, and
application to stochastic optimal control”. In: SIAM Journal on Control and Optimization 43.5
(2005), pp. 1676–1713.

[18] J. Han and W. E. “Deep Learning Approximation for Stochastic Control Problems”. In: NIPS.
2016.

[19] J. Han, A. Jentzen, and W. E. “Solving high-dimensional partial differential equations using deep
learning”. In: Proceedings of the National Academy of Sciences 115.34 (2018), pp. 8505–8510.

[20] C. Huré, H. Pham, A. Bachouch, and N. Langrené. “Deep neural networks algorithms for stochas-
tic control problems on finite horizon: convergence analysis”. In: SIAM J. Numer. Anal. 59.1
(2021), pp. 525–557.

[21] C. Huré, H. Pham, and X. Warin. “Deep backward schemes for high-dimensional nonlinear PDEs”.
In: Mathematics of Computation 89.324 (2020), pp. 1547–1579.

[22] A. Ismail and H. Pham. “Robust Markowitz mean-variance portfolio selection under ambiguous
covariance matrix”. In: Mathematical Finance 29.174-207 (2019).

[23] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization”. In: arXiv preprint
arXiv:1412.6980 (2014).

[24] L. Pfeiffer. “Numerical methods for mean-field-type optimal control problems”. In: Pure Appl.
Funct. Anal. 1.4 (2016), pp. 629–655.

[25] H. Pham and X. Warin. “Mean-field neural networks: learning mappings on Wasserstein space”.
In: arXiv:2210.15179 (2022).

[26] C. Reisinger, W. Stockinger, and Y. Zhang. “A fast iterative PDE-based algorithm for feedback
controls of nonsmooth mean-field control problems”. In: arXiv:2108.06740 (2021).

[27] L. Ruthotto, S. J. Osher, W. Li, L. Nurbekyan, and S. W. Fung. “A machine learning framework
for solving high-dimensional mean field game and mean field control problems”. In: Proc. Natl.
Acad. Sci. USA 117.17 (2020), pp. 9183–9193.

[28] R. Salhab, R. P. Malhamé, and J. Le Ny. “A dynamic game model of collective choice in multi-
agent systems”. In: 2015 IEEE 54th Annual Conference on Decision and Control (CDC). 2015,
pp. 4444–4449.

[29] X. Warin. “Reservoir optimization and Machine Learning methods”. In: arXiv:2106.08097 (2021).

26

	Introduction
	Preliminaries
	Characterization of McKean-Vlasov control
	Mean-field neural networks

	Dynamic programming-based algorithms
	Global learning on control
	Control learning by policy iteration
	Control learning by value iteration

	Backward SDE-based algorithms
	Local algorithms
	Global algorithms

	Numerical examples
	The test examples
	Systemic risk model
	Min/max linear quadratic MKV control
	Mean-variance problem

	Results for dynamic programming-based algorithms
	The systemic risk model
	The min/max MKV model
	The mean variance problem

	Results for Backward SDE-based algorithms
	The systemic risk model
	The min/max MKV model

	Conclusion

