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 in order to learn the solution on the Wasserstein space. We propose several algorithms either based on dynamic programming with control learning by policy or value iteration, or backward SDE from stochastic maximum principle with global or local loss functions. Extensive numerical results on different examples are presented to illustrate the accuracy of each of our eight algorithms. We discuss and compare the pros and cons of all the tested methods.

Introduction

This paper is concerned with the numerical resolution of McKean-Vlasov (MKV) control, also called mean-field control (MFC) problems over finite horizon. The dynamics of the controlled state process X = (X t ) t valued in R d is driven by the mean-field SDE (stochastic differential equation): dX t = b(X t , P Xt , α t )dt + σ(X t , P Xt , α t )dW t , 0 ≤ t ≤ T, X 0 ∼ µ 0 , where W is a d-dimensional Brownian motion on a filtered probability space (Ω, F, F = (F t ) t , P), the initial distribution µ 0 of X 0 lies in P 2 (R d ), the Wasserstein space of square-integrable probability measures, α ∈ A is a control process, i.e, an F-progressively measurable process valued in A ⊂ R m , and P Xt denotes the law of X t , valued on P 2 (R d ), under standard assumptions on the coefficients b, σ defined on R d × P 2 (R d ) × A, and valued respectively in R d and R d×d . The objective is to minimize over controls α ∈ A, a cost functional in the form

J(α) = E T 0 f (X t , P Xt , α t )dt + g(X T , P X T ) , → v(µ 0 ) = inf α∈A J(α), (1.1) 
where f is a running cost function on R d ×P 2 (R d )×A, and g is a terminal cost function on R d ×P 2 (R d ).

The theory and applications of mean-field control problems that study models of large population of interacting agents controlled by a social planner, have generated a vast literature in the last decade, and we refer to the monographs [START_REF] Bensoussan | Mean field games and mean field type control theory[END_REF], [START_REF] Carmona | Probabilistic Theory of Mean Field Games: vol. I, Mean Field FBSDEs, Control, and Games[END_REF], [START_REF] Carmona | Probabilistic Theory of Mean Field Games[END_REF] for a comprehensive treatment of this topic. As analytical solutions to MFC are rarely available, it is crucial to design efficient numerical schemes for solving such problem, and the main challenging issue is the infinite dimensional feature of MFC coming from the distribution law state variable.

Following the tremendous impact of machine learning methods for solving high-dimensional partial differential equations (PDEs) and control problems, see e.g. the survey papers [START_REF] Beck | An overview on deep learning-based approximation methods for partial differential equations[END_REF], [START_REF] Germain | Neural networks based algorithms for stochastic control and PDEs in finance[END_REF], and the link to the website deeppde.org, some recent works have proposed deep learning schemes for MFC, based on neural network approximations of the feedback control and/or the value function solution to the Hamilton-Jacobi-Bellman equation or backward stochastic differential equations (BSDEs). In these articles, the authors consider either approximate feedback control by standard feedforward neural networks with input the time and the state variable X t in R d by viewing the law of X t as a deterministic function of time (see [START_REF] Pfeiffer | Numerical methods for mean-field-type optimal control problems[END_REF], [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: II-the finite horizon case[END_REF], [START_REF] Fouque | Deep Learning Methods for Mean Field Control Problems with Delay[END_REF], [START_REF] Germain | Numerical resolution of McKean-Vlasov FBSDEs using neural networks[END_REF], [START_REF] Ruthotto | A machine learning framework for solving high-dimensional mean field game and mean field control problems[END_REF], [START_REF] Reisinger | A fast iterative PDE-based algorithm for feedback controls of nonsmooth mean-field control problems[END_REF]), or consider a particle approximation of the MFC for reducing the problem to a finite-dimensional problem that is numerically solved by means of symmetric neural networks, see [START_REF] Germain | DeepSets and derivative networks for solving symmetric PDEs[END_REF]. However, the outputs obtained by these deep learning schemes only provide an approximation of the solution for a given initial distribution of the state process. Hence, for another distribution µ 0 of the initial state, these algorithms have to be run again.

In this paper, we aim to compute the minimal cost function v(µ 0 ) for any µ 0 ∈ P 2 (R d ), and to find the optimal control, which can be searched w.l.o,g. in the class of feedback control, i.e., in the form α t = a(t, X t , P Xt ), 0 ≤ t ≤ T , for some measurable function a on [0, T ] × R d × P 2 (R d ). In other words, our goal is to learn the value function and optimal feedback control on the Wasserstein space. We shall rely on a new class of neural networks, introduced in our companion paper [START_REF] Pham | Mean-field neural networks: learning mappings on Wasserstein space[END_REF], called mean-field neural networks with input a probability measure in order to approximate mappings on the Wasserstein space. We then develop several numerical schemes based either on dynamic programming (DP) or stochastic maximum principle (SMP). We first propose, in the spirit of [START_REF] Gobet | Sensitivity analysis using Itô-Malliavin calculus and martingales, and application to stochastic optimal control[END_REF], [START_REF] Han | Deep Learning Approximation for Stochastic Control Problems[END_REF] a global learning of the feedback control approximated by a mean-field neural network. In the DP approach, we then propose two algorithms inspired by [START_REF] Huré | Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis[END_REF]: the first one learns the control by policy iteration while the second one learns sequentially the control and value function by value iteration. In the SMP approach, we exploit the backward SDE characterization of the solution, and propose five different algorithms in line with recent methods developed in the context of standard BSDE (see [START_REF] Han | Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations[END_REF], [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF], [START_REF] Germain | Approximation Error Analysis of Some Deep Backward Schemes for Nonlinear PDEs[END_REF]) that we extend to MKV BSDE with various choices of global or local loss functions to be minimized in the training of mean-field neural networks. We then provide extensive numerical experiments on three examples: a mean-field systemic risk model, a min/max linear quadratic model, and the classical mean-variance problem. We compare and discuss the advantages and drawbacks of all our algorithms.

The rest of the paper is organized as follows. We recall in Section 2 some key results about the characterization of MKV control problems by DP or SMP approach, and introduce the class of meanfield neural networks. Section 3 presents three algorithms based on DP, while Section 4 develops five algorithms based on the BSDE representation of the solution to MKV. The performances of all our algorithms are illustrated via three examples in Section 5. Finally, we give in Section 6 some concluding remarks about the pros and cons of the different schemes.

Preliminaries

Characterization of McKean-Vlasov control

Solution to the MKV control problem (1.1) can be characterized by dynamic programming (DP) or maximum principle methods (see [START_REF] Carmona | Probabilistic Theory of Mean Field Games: vol. I, Mean Field FBSDEs, Control, and Games[END_REF] for a detailed treatment of this topic). We recall the main results that will be used for designing our algorithms. In the DP approach, one considers the dynamic version of problem (1.1) by defining the decoupled value function V defined on [0, T ] × R d × P 2 (R d ), which satisfies the backward recursion:

V (t, X t , P Xt ) = inf α∈A E t+h t f (X s , P Xs , α s )ds + V (t + h, X t+h , P X t+h ) F t , for any t ∈ [0, T ), h ∈ (0, T -t],
and starting from the terminal condition V (T, x, µ) = g(x, µ), for

(x, µ) ∈ [0, T ] × P 2 (R d ), so that v(µ 0 ) = E[V (0, X 0 , µ 0 )].
By sending h to zero, we derive the master Bellman equation for the value function (see section 6.5.2 in [START_REF] Carmona | Probabilistic Theory of Mean Field Games: vol. I, Mean Field FBSDEs, Control, and Games[END_REF])

∂ t V (t, x, µ) + b x, µ, â(x, µ, U(t, x, µ), ∂ x U(t, x, µ)) • ∂ x V (t, x, µ) + 1 2 σσ (x, µ, â(x, µ, U(t, x, µ), ∂ x U(t, x, µ)) • ∂ 2 xx V (t, x, µ) + E ξ∼µ b ξ, µ, â(ξ, µ, U(t, ξ, µ), ∂ x U(t, ξ, µ)) • ∂ µ V (t, x, µ)(ξ) + 1 2 σσ (ξ, µ, â(ξ, µ, U(t, ξ, µ), ∂ x U(t, ξ, µ)) • ∂ x ∂ µ V (t, x, µ)(ξ) + f x, µ, â(x, µ, U(t, x, µ), ∂ x U(t, x, µ)) = 0, for (t, x, µ) ∈ [0, T ) × R d × P 2 (R d ).
Here • is the inner product in Euclidian spaces, is the transpose operator for a matrix, [START_REF] Carmona | Probabilistic Theory of Mean Field Games: vol. I, Mean Field FBSDEs, Control, and Games[END_REF]), the notation E ξ∼µ [.] means that the expectation is taken w.r.t. the random variable ξ distributed according to the law µ,

x ∈ R d → ∂ µ V (t, x, µ)(x ) ∈ R d is the Lions derivative on P 2 (R d ) (see
U(t, x, µ) = ∂ x V (t, x, µ) + E ξ∼µ ∂ µ V (t, ξ, µ)(x) (2.1) = ∂ µ v(t, µ)(x), with v(t, µ) := E ξ∼µ [V (t, ξ, µ)],
and it is assumed that for any

(x, µ, p, M ) ∈ R d × P 2 (R d ) × R d × R d×d , there exists a minimizer â(x, µ, p, M ) ∈ argmin a∈A H(x, µ, p, M, a), with H(x, µ, p, M, a) := b(x, µ, a) • p + 1 2 σσ (x, µ, a) • M + f (x, µ, a),
which is Lipschitz in all its variables, so that we get an optimal feedback control given by

a (t, x, µ) = â(x, µ, U(t, x, µ), ∂ x U(t, x, µ)), (t, x, µ) ∈ [0, T ] × R d × P 2 (R d ). (2.2) 
In the case where the diffusion coefficient σ(x, µ) does not depend on the control variable a, and so â(x, µ, p) does not depend on the variable M , we have a probabilistic characterization of the solution in terms of forward-backward SDE of MKV type: by setting

Y t = V (t, X t , P Xt ), Z t = σ(X t , P Xt ) ∂ x V (t, X t , P Xt ), 0 ≤ t ≤ T,
it follows from Itô's formula and Master Bellman equation that (X, Y, Z) satisfies the forward-backward SDE

dX t = b(X t , P Xt , â(X t , P Xt , P t ) dt + σ(X t , P Xt )dW t , 0 ≤ t ≤ T, X 0 ∼ µ 0 dY t = -f X t , P Xt , â(X t , P Xt , P t ) dt + Z t • dW t , 0 ≤ t ≤ T, Y T = g(X T , P X T ), (2.3) 
where the pair (P t , M t ) t = (U(t, X t , P Xt ), ∂ x U(t, X t , P Xt )σ(X t , P Xt )) t of adjoint processes, valued in R d × R d×d , satisfies from the Pontryagin maximum principle the backward SDE:

     dP t = -∂ x H X t , P Xt , P t , M t , â(X t , P Xt , P t ) dt -Ẽ ∂ µ H Xt , P Xt , Pt , Mt , â( Xt , P Xt , Pt ) (X t ) dt + M t dW t , 0 ≤ t ≤ T, P T = ∂ x g(X T , P X T ) + Ẽ ∂ µ g( XT , P X T )(X T ) , (2.4) 
where ( X, P , M ) are independent copies of (X, P, M ) on ( Ω, F, P). Under the assumption that

(x, µ) ∈ R d × P 2 (R d ) → g(x, µ) is convex, (x, µ, a) ∈ R d × P 2 (R d ) × A (with A convex set) → H(x, µ, p, M, a)
is convex for any (p, M ), together with additional regularity conditions on the coefficients b, σ, f, g, it is known from [START_REF] Carmona | Forward-backward stochastic differential equations and controlled McKean-Vlasov dynamics[END_REF] that the solution to the adjoint BSDE (2.4) yields an optimal control given by α * t = a (t, X t , P Xt ) = â(X t , P Xt , P t ), 0 ≤ t ≤ T. We are then led to consider the generic form of MKV forward-backward (X, Y, Z):

dX t = B(X t , P Xt , Y t )dt + σ(X t , P Xt )dW t , 0 ≤ t ≤ T, X 0 ∼ µ 0 , dY t = Ẽ H(X t , P Xt , Y t , Z t , Xt , Ỹt , Zt ) dt + Z t dW t , 0 ≤ t ≤ T, Y T = G(X T , P X T ).
(2.5)

Mean-field neural networks

The solution to MKV control problem, i.e., value function and optimal feedback control, are mappings of the state process and its probability distribution. In order to approximate such mappings, we shall rely on mean-field neural networks introduced in our companion paper [START_REF] Pham | Mean-field neural networks: learning mappings on Wasserstein space[END_REF]. Those are mappings

N : µ ∈ P 2 (R d ) → N (µ)(•) : R d → R p , with quadratic growth condition,
in one of the following forms:

(i) Bin density:

N (µ)(x) = Φ(x, p µ ), for x ∈ R d , µ ∈ D 2 (R d
) the subset of probability measures µ in P 2 (R d ) which admit density functions p µ with respect to the Lebesgue measure λ d on R d . Here, Φ is a standard feedforward neural network from R d × R K into R p , and p µ = (p µ k ) k∈ 1,K is the bin weight of the discrete density approximation of p µ on a fixed bounded rectangular domain K of R d divided into K bins: ∪ K k=1 Bin(k) = K, of center x k , with same area size h = λ d (K)/K, hence given by (see Figure 1 in the case of one dimensional Gaussian distribution for µ):

p µ k = p µ (x k ) K k=1 p µ (x k )h , k = 1, . . . , K. (ii) Cylindrical: N (µ)(•) = Ψ(•, < ϕ, µ >),
where Ψ is a feedforward network function (outer neural network) from R d × R q into R p , and ϕ is another feedforward network function (inner neural network) from R d into R q (called latent space). Here we denote < ϕ, µ > := ϕ(x)µ(dx). The relevance of mean-field neural networks is theoretically justified in [START_REF] Pham | Mean-field neural networks: learning mappings on Wasserstein space[END_REF] by universal approximation theorems, and it has been also shown how they can be trained accurately from samples of probability measures µ = L D (p) with discrete density of bin weight p = (p k ) k∈ 1,K drawn randomly on

D K = {p = (p k ) k∈ 1,K ∈ R K + : K k=1 p k h = 1}
, and simulations of random variables X ∼ µ by inverse transform. Notice that for µ = L D (p), we have p µ = p, and so the bin density network at such µ is equal to N (µ)(.) = Φ(., p). On the other hand, for any cylindrical function F of the measure in the form F (µ) = Ψ(< ϕ, µ >), we can compute it approximately from samples X (n) , n = 1, . . . , N , of µ by:

F (µ) Ψ 1 N N n=1 ϕ(X (n) )
. This is the case in particular for cylindrical neural network.

Dynamic programming-based algorithms

We consider a time discretization of the MKV control problem by fixing a time grid T = {t i = i∆t : i = 0, . . . , N T }, with ∆t = T /N T , and introducing the corresponding mean-field Markov decision process: minimize over feedback controls a on T × R d × P 2 (R d ) the cost functional

J N T (a) = E N T -1 i=0 f (X i , µ i , a(t i , X i , µ i ))∆t + g(X N T , µ N T ) , where X i+1 = X i + b(X i , µ i , a(t i , X i , µ i ))∆t + σ(X i , µ i , a(t i , X i , µ i ))∆W i , =: F ∆t (X i , µ i , a(t i , X i , µ i ), ∆W i ), i = 0, . . . , N T -1, X 0 ∼ µ 0 ,
with ∆W i := W ti+1 -W ti , and µ i = P Xi denotes the law of X i .

We present two classes of algorithms. The first one is learning the control by a single optimization but allows us to compute the solution of the problem (1.1) and therefore the solution of the corresponding master Bellman equation only at time t = 0 for all distributions µ 0 . The second class with two other algorithms solves N T local optimization problems, and allows us to compute the master equation at all dates for all distributions.

Global learning on control

In the spirit of the method introduced in [17], [START_REF] Han | Deep Learning Approximation for Stochastic Control Problems[END_REF], which does not actually rely on dynamic programming, we replace feedback controls by time-dependent mean-field neural networks N (t, µ)(x) valued in A ⊂ R m , with input t ∈ [0, T ], µ ∈ P 2 (R d ), and x ∈ R d , and minimize over the parameters θ of this mean-field neural network N = N θ the global cost function

J(θ) = E N T -1 i=0 f (X i , µ i , N θ (t i , µ i )(X i ))∆t + g(X N T , µ N T ) , with X i+1 = F ∆t (X i , µ i , N θ (t i , µ i )(X i ), ∆W i ), i = 0, . . . , N T -1, X 0 ∼ µ 0 .
In practice, for i = 1, . . . , N T , µ i has to be estimated/approximated from samples of X i , and this is done as follows. We use a training batch of M probability measures µ

(m) 0 = L D (p (m) ) in D 2 (R d ) from samples p (m) = (p (m) k ) k∈ 1,K , m = 1, . . . , M , in D K . Then, for each m, we sample X (m),(n) 0 , n = 1, . . . , N , from µ (m) 0 , and for i = 0, . . . , N T -1, X (m),(n) i+1
, n = 1, . . . , N are sampled as 

X (m),(n) i+1 = F ∆t (X (m),(n) i , μ (m) 
i , N θ (t i , μ(m) i )(X (m),(n) i ), ∆W (m),(n) i ), with μ(m) 
p(m) i,k = #{n ∈ 1, N : Proj K (X (m),(n) i ) ∈ Bin(k)} N h , k = 1, . . . , K,
where Proj K (.) is the projection on K. The cost function is then approximated by

J M,N (θ) = 1 M N M m=1 N n=1 N T -1 i=0 f X (m),(n) i , μ(m) i , N θ (t i , μ(m) i )(X (m),(n) i ) ∆t + g(X (m),(n) N T , μ(m) N T ) .
The pseudo-code using a gradient descent method is described in Algorithm 1.

Algorithm 1: Global learning on the control Input data: A time-dependent mean-field neural network N θ (t, µ)(x).

Initialization: learning rate γ and parameters θ

for each epoch do Generate a batch of M initial distributions µ (m) 0 , m = 1, . . . , M ; for m = 1, . . . , M do Generate Brownian increments ∆W (m),(n) i , i = 0, . . . , N T -1, n = 1, . . . , N ; Compute sample trajectories X (m),(n) 0 , X (m),(n) i , n = 1, . . . , N , and estimate μ(m) i , i = 1, . . . , N T , Compute the batch cost J M,N (θ) and its gradient ∇ θ J M,N (θ) ; Update θ ← θ -γ∇ θ J M,N (θ) ; Return: The set of optimized parameters θ * .
The output of this global algorithm is an approximation of the optimal feedback control at initial time t 0 = 0 by a mean-field neural network N θ * (t 0 , .), and yields approximation of the optimal control at other times t i , i = 1, . . . , N T -1, by mean-field neural networks N θ * (t i , µ i )(X i ) along the law µ i , and state X i explored during the learning algorithm. The value function can then be estimated at initial time t 0 by regression as follows: we approximate the initial value function by a mean-field neural neural network ϑ η (µ)(x) valued in R, and minimize over the parameters η of this neural network the quadratic loss function

E N T -1 i=0 f (X i , µ i , N θ * (t i , µ i )(X i ))∆t + g(X N T , µ N T ) -ϑ η (µ 0 )(X 0 ) 2 ,
where

X i+1 = F ∆t (X i , µ i , N θ * (t i , µ i )(X i ), ∆W i ), i = 0, . . . , N T -1, X 0 ∼ µ 0 .

Control learning by policy iteration

Our next algorithm is inspired by the method in [START_REF] Huré | Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis[END_REF], which is a combination of the global algorithm on control and dynamic programming. We replace at any time t i , i = 0, . . . , N T -1, feedback controls by mean-field neural networks N θi with parameter θ i , and proceed by backward induction for computing approximate optimal controls: for i = N T -1, . . . , 0, keep track of the approximate optimal feedback controls N θ * j , j = i + 1, . . . , N T -1, and minimize over θ i the cost function:

J i (θ i ) = E f (X i , µ i , N θi (µ i )(X i ))∆t + N T -1 j=i+1 f (X j , µ j , N θ * j (µ j )(X j ))∆t + g(X N T , µ N T ) ,
(with the convention that the above sum over j is empty when i

= N T -1)
where

X i+1 = F ∆t (X i , µ i , N θi (µ i )(X i ), ∆W i ), X i ∼ µ i , X j+1 = F ∆t (X j , µ j , N θ * j (µ j )(X j ), ∆W j ), j = i + 1, . . . , N T -1. (3.1)
In the practical implementation, the cost function J i (.) is approximately computed from a training of M probability measures µ

(m) i = L D (p (m) i ) in D 2 (R d ) with samples p (m) i = (p (m) i,k ) k∈ 1,K , m = 1, . . . , M , in D K . For each batch m, one then computes N samples X (m),(n) i ∼ µ (m) i , X (m),(n) j , j = i + 1, . . . , N T -1, n = 1, . . . , N , according to (3.1) with estimated probability measures μ(m) j = L D (p (m) j
), as in Section 3.1, and thus approximate the local cost function by

J i M,N (θ i ) = 1 M N M m=1 N n=1 f (X (m),(n) i , µ (m) i , N θi (µ (m) i )(X (m),(n) i ))∆t + N T -1 j=i+1 f (X (m),(n) j , μ(m) j , N θ * j (μ (m) j )(X (m),(n) j ))∆t + g(X (m),(n) N T , μ(m) N T ) .
The pseudo-code is described in Algorithm 2.

Algorithm 2: Learning by policy iteration

Input data: Mean-field neural networks N θi ; for i = N T -1, . . . , 0 do Initialization: learning rate γ and parameters θ i ;

for each epoch do Generate a batch of M distributions µ (m) i , m = 1, . . . , M ; for m = 1, . . . , M do Generate Brownian increments ∆W (m),(n) k , k = i, . . . , N T -1, n = 1, . . . , N ; Compute sample trajectories X (m),(n) i , X (m),(n) j
, n = 1, . . . , N , and estimate μ(m)

j , j = i + 1, . . . , N T , Compute the batch cost J i M,N (θ i ) and its gradient ∇ θ J i M,N (θ i ) ; Update θ i ← θ i -γ∇ θ J i M,N (θ i ) ; θ * i = θ i Return: Optimized parameters θ * i , i = 0, . . . , N T -1.
The output of this algorithm is an approximation of the optimal feedback control at any time t i by a mean-field neural network N θ * i , i = 0, . . . , N T -1. The value function can then be estimated at any time t i by regression as follows: we approximate the value function at time t i by a mean-field neural neural network ϑ ηi (µ)(x) valued in R, and minimize over the parameters η i of this neural network the quadratic loss function

E N T -1 j=i f (X j , µ j , N θ * j (µ j )(X j ))∆t + g(X N T , µ N T ) -ϑ ηi (µ i )(X i ) 2 , (3.2) 
where

X j+1 = F ∆t (X j , µ j , N θ * j (µ j )(X j ), ∆W j ), j = i, . . . , N T -1, X i ∼ µ i .

Control learning by value iteration

The two previous algorithms provide low bias estimates of the learnt controls, but in general highvariance estimate due to this cumulated sum over the cost functions. Moreover, these algorithms are very memory demanding as, at each epoch, all the N trajectories for the M distributions have to be generated for the O(N T ) time values and stored. To circumvent this possible variance issue, we propose an alternate algorithm of actor-critic type, similarly as in [START_REF] Huré | Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis[END_REF] (called there hybrid algorithm), where the feedback control and value function are learnt sequentially. We are given a family of mean-field neural networks N θi and ϑ ηi , i = 0, . . . , N T -1, for the approximation of the feedback control (actor) and value function (critic). We proceed by backward induction as follows: starting from ϑ * N T (µ)(x) = g(x, µ), we minimize over θ i , for i = N T -1, . . . , 0, the cost function

J i (θ i ) = E f (X i , µ i , N θi (µ i )(X i ))∆t + ϑ * i+1 (µ i+1 )(X i+1 ) ,
where

X i+1 = F ∆t (X i , µ i , N θ (t i , µ i )(X i ), ∆W i ), X i ∼ µ i , (3.3) 
update θ * i as the resulting optimal parameter, then minimize over η i the quadratic loss function

L i (η i ) = E f (X i , µ i , N θ * i (µ i )(X i ))∆t + ϑ * i+1 (µ i+1 )(X i+1 ) -ϑ ηi (µ i )(X i ) 2 ,
update η * i as the resulting optimal parameter, and set ϑ * i = ϑ η * i . Again, in the practical implementation, we use a training of M probability measures µ

(m) i = L D (p (m) i ) in D 2 (R d ) with samples p (m) i = (p (m) i,k ) k∈ 1,K , m = 1, . . . , M , in D K . For each batch m, one then computes N samples X (m),(n) i ∼ µ (m) i , X (m),(n) i+1 according to (3.3) with estimated probability measure μ(m) i+1 = L D (p (m)
i+1 ), as in Section 3.1, and approximate the function J i by

J i M,N (θ i ) = 1 M N M m=1 N n=1 f (X (m),(n) i , µ (m) i , N θi (µ (m) i )(X (m),(n) i ))∆t + ϑ * i+1 (µ (m) i+1 )(X (m),(n) i+1
) , while similarly the second loss function L i is approximated by

L i M,N (η i ) = 1 M N M m=1 N n=1 f (X (m),(n) i , µ (m) i , N θ * i (µ (m) i )(X (m),(n) i ))∆t + ϑ * i+1 (µ (m) i+1 )(X (m),(n) i+1 ) -ϑ ηi (µ (m) i )(X (m),(n) i ) 2 .
The pseudo-code is described in Algorithm 3.

Algorithm 3: Actor/critic algorithm: learning by value iteration

Input data: Mean-field neural networks N θi , ϑ ηi , i = 0, . . . , N T -1 ; Initialization: ϑ * N T (µ)(x) = g(x, µ); for i = N T -1, . . . , 0 do Initialization: learning rates γ C , γ V and parameters θ i , η i ; for each epoch do Generate a batch of M distributions µ (m) i , m = 1, . . . , M ; for each batch m do Generate Brownian increments ∆W (m),(n) i , n = 1, . . . , N ; Compute samples X (m),(n) i , X (m),(n) i+1 
, n = 1, . . . , N , and estimate μ(m)

i+1 Compute the batch cost J i M,N (θ i ) and its gradient ∇ θ J i M,N (θ i ) ; Update θ i ← θ i -γ∇ θ J i M,N (θ i ) ; Store optimized parameter θ * i ; for each epoch do Generate a batch of M distributions µ (m) i , m = 1, . . . , M ; for each batch m do Generate Brownian increments ∆W (m),(n) i , n = 1, . . . , N ; Compute samples X (m),(n) i , X (m),(n) i+1
, n = 1, . . . , N , and estimate μ(m)

i+1 Compute the batch cost L i M,N (η i ) and its gradient ∇ η L i M,N (η i ) ; Update η i ← η i -γ∇ η L i M,N (η i ) ; ϑ * i = ϑ η * i Return: The optimized parameters θ * i , η * i , i = 0, . . . , N T -1
The output of this algorithm is an approximation of the optimal feedback control and value function at any time t i by mean-field neural networks N θ * i , and

ϑ η * i , i = 0, . . . , N T -1.

Backward SDE-based algorithms

We start from the time discretization of the MKV forward-backward SDE (2.5) that characterizes the solution to the MKV control problem:

X i+1 = X i + B(X i , µ i , Y i )∆t + σ(X i , µ i )∆W i , i = 0, . . . , N T -1, X 0 ∼ µ 0 , Y i+1 = Y i + Ẽ H(X i , µ i , Y i , Z i , Xi , Ỹi , Zi ) ∆t + Z i ∆W i , i = 0, . . . , N T -1, Y N T = G(X N T , µ N T ).

Local algorithms

We adapt the deep backward scheme in [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] to our context. We are given a family of mean-field neural networks Y θi (µ)(x), Z θi (µ)(x), i = 0, . . . , N T -1 (by misuse of notation, we also denote by Y and Z the neural networks for the approximation of the pair component of the MKV BSDE), and proceed by backward induction as follows: starting from Y * N T (µ)(x) = G(x, µ), we minimize over θ i , for i = N T -1, . . . , 0, the loss function

L i (θ i ) = E Y * i+1 (µ i+1 )(X i+1 ) -Y θi (µ i )(X i ) -Z θi (µ i )(X i )∆W i -Ẽ H(X i , µ i , Y θi (µ i )(X i ), Z θi (µ i )(X i ), Xi , Y θi (µ i )( Xi ), Z θi (µ i )( Xi )) ∆t 2 ,
where

X i+1 = X i + B(X i , µ i , Y θi (µ i )(X i ))∆t + σ(X i , µ i )∆W i , X i ∼ µ i , (4.1) 
update θ * i as the resulting optimal parameter, and set

Y * i = Y θ * i .
In the practical implementation, we use a training of M probability measures µ

(m) i = L D (p (m) i ) in D 2 (R d ) with samples p (m) i = (p (m) i,k ) k∈ 1,K , m = 1, . . . , M , in D K . For each batch m, one then computes N independent sam- ples X (m),(n) i , X(m),(n) i ∼ µ (m) i , n = 1, . . . , N , X (m),(n) i+1
according to (4.1) with estimated probability measure μ(m) i+1 as in Section 3.1, and approximate the loss function by

L i M,N (θ i ) = 1 M N M m=1 N n=1 Y * i+1 (μ (m) i+1 )(X (m),(n) i+1 ) -Y θi (µ (m) i )(X (m),(n) i ) -Z θi (µ (m) i )(X (m),(n) i )∆W i - ∆t N N n =1 H(X (m),(n) i , µ (m) i 
, Y θi (µ

(m) i )(X (m),(n) i ), Z θi (µ (m) i )(X (m),(n) i ), X(m),(n ) i , Y θi (µ (m) i )( X(m),(n ) i ), Z θi (µ (m) i )( X(m),(n ) i )) 2 .
The pseudo-code is described in Algorithm 4. It is in the spirit of the actor/critic algorithm 3, but now Y and Z are learnt simultaneously. 

∆W (m),(n) i , n = 1, . . . , N ; Compute samples X (m),(n) i , X(m),(n) i , X (m),(n) i+1
, n = 1, . . . , N , and estimate μ(m) i+1

Compute the batch loss L i M,N (θ i ) and its gradient

∇ θ L i M,N (θ i ) ; Update θ i ← θ i -γ∇ θ L i M,N (θ i ); Y * i = Y θ * i Return: The set of optimized parameters θ * i , i = 0, . . . , N T -1
We also propose a multi-step version of the above algorithm following the idea in [START_REF] Germain | Approximation Error Analysis of Some Deep Backward Schemes for Nonlinear PDEs[END_REF], and in the spirit of the policy iteration in Section 3.2. We proceed by backward induction for i = N T -1, . . . , 0, by keeping track of the approximate optimal mean-field neural networks Y * j , Z * j , j = i + 1, . . . , N T -1, and minimize over θ i the loss function

Li (θ i ) = E G(X N T , µ N T ) - N T -1 j=i+1 Z * j (µ j )(X j )∆W j -Z θi (µ i )(X i )∆W i -Y θi (µ i )(X i ) - N T -1 j=i+1 Ẽ H(X j , µ j , Y * j (µ j )(X j ), Z * j (µ j )(X j ), Xj , Y * j (µ j )( Xj ), Z * j (µ j )( Xj )) ∆t -Ẽ H(X i , µ i , Y θi (µ i )(X i ), Z θi (µ i )(X i ), Xi , Y θi (µ i )( Xi ), Z θi (µ i )( Xi )) ∆t 2 ,
where

X i+1 = X i + B(X i , µ i , Y θi (µ i )(X i ))∆t + σ(X i , µ i )∆W i , X i ∼ µ i , X j+1 = X j + B(X j , µ j , Y * j (µ j )(X j ))∆t + σ(X j , µ j )∆W j , j = i + 1, . . . , N T -1. (4.2)
In the practical implementation, we use a training of M probability measures µ (m) i

, m = 1, . . . , M , and for each batch m, one then computes N samples Compute the batch loss Li M,N (θ i ) and its gradient

X (m),(n) i , X(m),(n) i ∼ µ (m) i , X (m),(n) j , X ( 
∇ θ Li M,N (θ i ) ; Update θ i ← θ i -γ∇ θ Li M,N (θ i ); Y * i = Y θ * i , Z * i = Z θ * i Return: The set Y * i = Y θ * i , Z * i = Z θ * i , i = 0, . . . , N T -1
The output of these two algorithms 4 and 5 yields in particular an approximation of the function U in (2.1) by the mean-field neural network Y * i at any time t i , hence an approximation of the optimal feedback control defined in (2.2). We can then estimate the value function at any time by regression similarly as in (3.2). Alternately, by considering the value function in the BSDE as in (2.3), we can obtain an approximation of V via the mean-field neural network Y * i at any time t i .

Global algorithms

In the spirit of the deep BSDE method in [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF], we consider a mean-field neural network U θ (µ)(x), and time dependent mean-field neural network Z θ (t, µ)(x), for approximating respectively the initial value of the Y component, and the Z component at any time of the MKV BSDE. We then define by forward induction: starting from X 0 ∼ µ 0 , Y 0 = U θ (µ 0 )(X 0 ), for i = 0, . . . , N T -1,

X i+1 = X i + B(X i , µ i , Y i )∆t + σ(X i , µ i )∆W i , Y i+1 = Y i + Ẽ H(X i , µ i , Y i , Z θ (t i , µ i )(X i ), Xi , Ỹi , Z θ (t i , µ i )( Xi )) ∆t + Z θ (t i , µ i )(X i )∆W i , (4.3) 
and minimize over θ the global loss function

L(θ) = E Y N T -G(X N T , µ N T ) 2 .
In practical implementation, we use a training sample of probability measures µ (m) 0 , and then for each m, N samples

X (m),(n) 0 ∼ µ (m) 0 , Y (m),(n) 0 = U 0 (µ (m) 0 )(X (m),(n) 0
), n = 1, . . . , N , and for i = 0, . . . , N T -1

X (m),(n) i+1 = X (m),(n) i + B(X (m),(n) i , μ(m) i , Y (m),(n) i )∆t + σ(X (m),(n) i , μ(m),(n) i )∆W i , Y (m),(n) i+1 = Y (m),(n) i + ∆t N N n =1 H(X (m),(n) i , μ(m) i , Y (m),(n) i , Z θ (t i , μ(m) i )(X (m),(n) i ), X(m),(n ) i , Ỹ(m),(n ) i , Z θ (t i , μ(m) i )( X(m),(n ) i )) + Z θ (t i , μ(m) i )(X (m),(n) i )∆W i ,
where

X(m),(n) i , Ỹ(m),(n) i are independent copies of X (m),(n) i , Y (m),(n) i , while μ(m) 0 = µ (m) 0 , μ (m) 
i , i = 1, . . . , N T , are estimated as in Section 3.1. The loss function is then approximated by

L M,N (θ) = 1 M N M m=1 N n=1 Y (m),(n) N T -G(X (m),(n) N T , μ(m) N T ) 2 .
The pseudo-code is described in Algorithm 6. The output of this global deep BSDE algorithm is an approximation of the Y component of the BSDE at initial time t 0 = 0 by a mean-field neural network U θ * , and yields approximation of the Z component at times t i , i = 0, . . . , N T -1, by mean-field neural networks Z θ * (t i , µ i )(X i ) along the law µ i , and state X i explored during the learning algorithm. The value function can then be estimated at any time t k by regression as follows: we approximate the value function at time t k by a mean-field neural neural network ϑ η k (µ)(x) valued in R, and minimize over the parameters η k of this neural network the quadratic loss function

E Y k -ϑ η k (µ k )(X k ) 2 , (4.4) 
where (X k , Y k ) are generated by using equation (4.3) for i = 0, . . . , k -1 (here

Y k is the first component of Y k = (Y k , P k ) in (2.3)-(2.4))
, and µ k is estimated from the distribution of the X k .

In order to avoid the cost of solving equation (4.4) at each time step, we can propose two other global methods permitting to obtain directly the value function.

We first present a variation of the deep BSDE algorithm by considering two time-dependent meanfield neural networks Y θ (t, µ)(x) and Z θ (t, µ)(x), for approximating the pair solution of the MKV BSDE The output of Algorithms 7 and 8 is an approximation of the Y component of the BSDE at initial time t 0 = 0 by a mean-field neural network Y θ * (t 0 , .)(.), and yields approximation of the Y, at other times t i , i = 1, . . . , N T -1, and Z at times t i , i = 0, . . . , N T -1, by mean-field neural networks

Y θ * i (t i , µ i )(X i ), Z θ * (t i , µ i )(X i )
along the law µ i , and state X i explored during the learning algorithm.

Numerical examples

We shall illustrate the results of our different algorithms on three test cases. The two first examples are MKV control problems where the diffusion coefficient is constant, and the BSDE approach can be used. The third example is a classical mean variance problem, hence with control on the diffusion coefficient. We then test the three cases using the dynamic programming-based algorithms and for the two first cases using also the backward SDE-based algorithms.

For each problem, we will test the optimized solutions v(µ 0 ) found by using different initial distributions µ 0 and compare the result obtained to the analytical solution or the reference calculated by an other method. For all test cases, we keep the same parameters for the neural networks:

• For the bin method, we take 2 layers of 20 neurons.

• For the cylinder method, we take 2 layers of 20 neurons for the two networks.

For both methods we use the tanh activation function. At each iteration of the ADAM gradient method [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF], we consider for each of the M tested distributions N = 100000 realizations of the process X. These parameters are chosen accordingly the results of [START_REF] Pham | Mean-field neural networks: learning mappings on Wasserstein space[END_REF]. We either take a batch size equal to M = 5, M = 8, M = 10 or M = 20, using between 30000 to 120000 gradient iterations: we have to adapt the batch size and the number of gradient iterations to be able to solve the problem on the graphic card GPU NVidia V100 32Go (memory limitation) and in order to obtain the result in less than 3 days. K in the tables below is the number of bins used, and ∆t = T /N T is the time step.

The test examples

Systemic risk model

We consider a mean-field model of systemic risk introduced in [START_REF] Carmona | Mean field games and systemic risk[END_REF]. This model was introduced in the context of mean field games but here we consider a cooperative version. The limit problem (when the number of banks is large) of the social planner (central bank) is formulated as follows. The log-monetary reserve of the representative bank is governed by the mean-reverting controlled McKean-Vlasov dynamics

dX t = κ(E[X t ] -X t ) + α t ] dt + σdW t , X 0 ∼ µ 0 ,
where α = (α t ) t is the control rate of borrowing/lending to a central bank that aims to minimize the functional cost

J(α) = E T 0 f (X t , E[X t ], α t ) dt + g(X T , E[X T ]) → v(µ 0 ) = inf α J(α), (5.1)
where the running and terminal costs are given by

f (x, x, a) = 1 2 a 2 -qa(x -x) + η 2 (x -x) 2 , g(x, x) = c 2 (x -x) 2 ,
for some positive constants q, η, c > 0, with q 2 ≤ η.

The explicit solution of the linear-quadratic McKean-Vlasov control problem (5.1) is solved via the resolution of a Riccati equation (see [START_REF] Basei | A weak martingale approach to linear-quadratic McKean-Vlasov stochastic control problem[END_REF]), and is analytically given by

v(t, µ) = R V (t, x, µ)µ(dx) = Q t R (x -μ) 2 µ(dx) + σ 2 T t Q s ds, (5.2) 
where we set μ := E ξ∼µ [ξ] = R xµ(dx), and

Q t = - 1 2 κ + q - √ ∆ √ ∆ sinh( √ ∆(T -t)) + (κ + q + c) cosh( √ ∆(T -t)) √ ∆ cosh( √ ∆(T -t)) + (κ + q + c) sinh( √ ∆(T -t)) , with √ ∆ = (κ + q) 2 + η -q 2 ,
and

T t Q s ds = 1 2 ln cosh( √ ∆(T -t)) + κ + q + c √ ∆ sinh( √ ∆(T -t)) - 1 2 (κ + q)(T -t).
In this example, the function â that attains the infimum of the Hamiltonian function is â(x, µ, p) = q(μ -x) -p, the function in (2.1) is U(t, x, µ) = 2Q t (x -μ), which yields the optimal feedback control: a (t, x, µ) = (q + 2Q t )(μ -x). The BSDE (2.3)-(2.4) is then written as

   dX t = (κ + q)(E[X t ] -X t ) -P t ]dt + σdW t , X 0 ∼ µ 0 , dY t = -1 2 (η -q 2 )(E[X t ] -X t ) 2 + 1 2 P 2 t dt + Z t dW t , Y T = c 2 (X T -E[X T ]) 2 , dP t = -(κ + q)(E[P t ] -P t ) + (η -q 2 )(E[X t ] -X t ) dt + M t dW t , P T = -c(E[X T ] -X T ).
For the numerical tests of the different methods, we take σ = 1, κ = 0.6, q = 0.8, T = 0.2, C = 2, η = 2. We solve the problem (5.1) using our various algorithms and compare the solution obtained at t = 0 with v(0, µ 0 ) given by (5.2) for different initial distributions µ 0 plotted on Figure 2: • Case 1 : Gaussian with μ0 = 0, std(µ 0 ) = 0.2,

• Case 2 : Gaussian with μ0 = 0.3, std(µ 0 ) = 0.05,

• Case 3 : Gaussian with μ0 = 0., std(µ 0 ) = 0.05,

• Case 4 : Mixture of two Gaussian random variables: Notice that case 1 and 4 have the same variance for µ 0 so that the values v(0, µ 0 ) of (5.2) should be the same. Similarly, values of case 2 and 3 are the same.

X 0 = P (-k + θY ) + (1 -P )(k + θ Ȳ ) with P a Bernouilli random variable with parameter 1 2 , k = √ 3 10 , θ = 0.1, Y, Ȳ ∼ N (0, 1), • Case 5 : Mixture of two Gaussian random variables X 0 = P (-k + θY ) + (1 -P )(-k + θ Ȳ ) with P a Bernouilli random variable with parameter 1 2 , k = 0.25, θ = 0.1, Y, Ȳ ∼ N (0, 1), • Case 6 : Mixture of 3 Gaussian random variables : X 0 = [-1 3U =0 k + 1 3U =1 k] + θY with U ∼ U (0, 1), k = 0.3, θ = 0.07, Ȳ ∼ N (0, 1).

Min/max linear quadratic MKV control

We next consider a mean-field model in which the dynamics is linear, the running cost is quadratic in the position, the control and the expectation of the position, while the terminal cost gives inventive to be close to one of two targets. This type of model is inspired by the min-LQG problem of [START_REF] Salhab | A dynamic game model of collective choice in multiagent systems[END_REF]. More precisely, we consider the following controlled McKean-Vlasov dynamics

dX t = AX t + ĀE[X t ] + Bα t dt + σ dW t , X 0 ∼ µ 0 ,
where α = (α t ) t is the control, and the agent aims to minimize the functional cost

J(α) = E T 0 f (X t , E[X t ], α t ) dt + g(X T ) → v(µ 0 ) = inf α J(α),
where the running and terminal costs are given by

f (x, x, a) = 1 2 Qx 2 + Q(x -S x) 2 + Ra 2 , g(x) = min |x -ζ 1 | 2 , |x -ζ 2 | 2 ,
for some non-negative constants Q, Q, S, R, and two real numbers ζ 1 and ζ 2 .

In this example, the BSDE (2.3)-(2.4) is then written as

         dX t = [AX t + ĀE[X t ] -B 2 R P t ]dt + σdW t , X 0 ∼ µ 0 dY t = -1 2 QX 2 t + Q(X t -SE[X t ]) 2 + B 2 R P 2 t dt + Z t dW t , Y T = min[|X T -ζ 1 | 2 , |X T -ζ 2 | 2 ] dP t = -AP t + ĀE[P t ] + QX t + Q(X t -E[X t ]) + Q(S -1) 2 E[X t ] dt + M t dW t , P T = 2 X T -min(ζ 1 , ζ 2 )1 X T ≤ ζ 1 +ζ 2 2 -max(ζ 1 , ζ 2 )1 X T > ζ 1 +ζ 2 2 .

For the numerical tests, we take

A = 1, Ā = 0.5, B = 1, Q = Q = R = S = 1, σ = 0.5, ζ 1 = 0.25, ζ 2 = 1.
75. We first solve the problem (1.1) by the different algorithms and we can compare the solution v(µ 0 ) obtained for different distributions µ 0 to a reference calculated using [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: II-the finite horizon case[END_REF] approach. Notice that [START_REF] Carmona | Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: II-the finite horizon case[END_REF] method needs to be run for each initial distribution tested. We use three different distributions µ 0 plotted on Figure 3: • Case 1 : Gaussian distribution μ0 = 1, std(µ 0 ) = 0.2. The reference values are 0.484 for T = 0.2, and 0.818 for T = 0.5.

• Case 2 : Mixture of two Gaussian random variables : X 0 = P (ζ 1 + θY ) + (1 -P )(ζ 2 + θ Ȳ ) with P a Bernouilli random variable with parameter 1 2 , θ = 0.15, Y, Ȳ , Ỹ ∼ N (0, 1), with reference values 0.494 for T = 0.2, and 1.082 for T = 0.5.

• Case 3 : Mixture of three Gaussian random variables:

X 0 = [1 5U <2 ζ 1 +1 5U >3 ζ 2 +1 2≤ 5U ≤3 (ζ 1 + ζ 2 )
]+θY with U ∼ U (0, 1), θ = 0.05 with reference values 0.491 for T = 0.2, and 0.836 for T = 0.5.

Case 1 Case 2 Case 3

Figure 3: Distribution µ 0 tested on the min/max linear case.

Mean-variance problem

We consider the celebrated Markowitz portfolio selection problem where an investor can invest at any time t an amount α t in a risky asset (assumed for simplicity to follow a Black-Scholes model with constant rate of return β and volatility ν > 0), hence generating a wealth process X = X α with dynamics

dX t = α t βdt + α t νdW t , 0 ≤ t ≤ T, X 0 ∼ µ 0 .
The goal is then to minimize over portfolio control α the mean-variance criterion:

J(α) = λVar(X α T ) -E[X α T ],
where λ > 0 is a parameter related to the risk aversion of the investor. We refer to [START_REF] Ismail | Robust Markowitz mean-variance portfolio selection under ambiguous covariance matrix[END_REF] for the McKean-Vlasov approach to Markowitz mean-variance problems (in a more general context), and we recall that the solution to the Bellman equation is given by

V (t, x, µ) = λe -R(T -t) (x -μ) 2 -x - 1 4λ e R(T -t) -1 , (5.3) 
U(t, x, µ) = 2λe -R(T -t) (x -E µ [ξ]) -1,
where we set R := β 2 /ν 2 . Moreover, the optimal feedback control is given by

a * (t, x, µ) = - β ν 2 x -μ - e R(T -t) 2λ .
We test our algorithms with the parameters β = 0.1, ν = 0.4, λ = 0.5. We compare the solutions obtained at t = 0 to the analytical solution v(µ 0 ) = E ξ∼µ0 [V (0, ξ, µ 0 )] given by (5.3) for different initial distributions µ 0 plotted in Figure 4, and explicitly given by:

• Case 1 : Gaussian distribution with μ0 = 0.1, std(µ 0 ) = 0.2.

• Case 2 : Gaussian distribution with μ0 = 0.2, std(µ 0 ) = 0.025. 

Results for dynamic programming-based algorithms

The systemic risk model

We report the results for this model of section 5.1.1 in Tables 1, 2 and 3. It turns out that the results obtained by Algorithms 1 and 2 are excellent and very close. We can see that results with K = 100 or K = 200 bins for the bins method are very close. Notice that with the bins method, we have to limit the number K of bins due to memory issues for these two algorithms. We clearly see the effect of the convergence of the Euler scheme used to discretized the equations on the convergence rate. The Bins method and the Cylinder method provide very similar results but as the cost of Algorithm The results obtained by the value iteration Algorithm 3 are still good but less accurate than the results obtained by the two other algorithms. The cylinder methods appears to be the best of the two methods. We notice a small degradation of the results as we refine the time step with the bins method. Notice that the memory used by this algorithm is small compared to the two other algorithms and it permits to take a high number K of bins for the bins method (even if it is not necessary on this case). 13: Policy iteration Algorithm 2 , T = 0.5, K = [-0.85, 0.9], T N T = 0.02.

Method

Again, in term of accuracy, Algorithms 1 and 2 give similar accurate results and the memory taken by both algorithms is close. However Algorithm 1 has to be preferred as the computation time is far lower when we are interested by computing the solution only at time t = 0.

Results for Backward SDE-based algorithms

The systemic risk model

Results for the systemic example of section 5.1.1 are given in Tables 14,15, 16, 17 and 18. All the proposed methods converge very accurately to the solution. As previously seen in the results of the dynamic programming-based algorithms, the number of bins does not need to be large for the bins network. For this test case, the numerical values obtained does not permit to select the best algorithm. As Algorithm 5 is by far the most costly, it should not be the preferred choice. It is difficult to compare the other algorithms in terms of computing time, but all global algorithms have roughly the same cost in terms of time and the local deep backward algorithm 4 is certainly more costly as we have to achieve an optimization per time step. This drawback due to the number of optimizations is reduced by transfer learning, namely the fact that at each time step the problem is much more smaller to solve as we can initialize the parameters of networks at a given time step by the parameters of networks of the preceding time step. On the other hand, we point out that all the global algorithms are too far memory consuming to be able to compete with the local deep backward algorithm 4 which seems to be globally the best choice. 

Method

The min/max MKV model

Results for this example of Section 5.1.2 are reported in Tables 19,[START_REF] Huré | Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis[END_REF][START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF]22 and 23. All algorithms seem to converge to the good solution except the global deep MKV BSDE Algorithm 6 that always converges on our tests (repeated many times) to a slightly different solution while using the cylinder network. Notice that, by using the bins network, we avoid the problem on this test case. Again it is not feasible to refine the time step when implementing the deep backward multi-step Algorithm 5 due to the computational time taken by the algorithm. The local deep backward Algorithm 4 seems to be the best as the results obtained in Table 19 are very good and the memory needed rather small. Either bins or cylinder networks can be used. • Both networks, either bins or cylinder, can be implemented. Notice that cylinder methods use less memory than bins methods especially when the number of bins has to be high to get a good accuracy.

When the maximum Pontryagin principle is not directly available, we distinguish two cases:

• First case is when the volatility of the forward process is not controlled. Then two options are available:

-When the number of time steps it not too high, the global learning algorithm [START_REF] Han | Solving high-dimensional partial differential equations using deep learning[END_REF], [START_REF] Gobet | Sensitivity analysis using Itô-Malliavin calculus and martingales, and application to stochastic optimal control[END_REF] seems to be the best in terms of accuracy. Then it is possible to get the function value after t = 0 at "visited distributions" by regression.

-When the number of time steps is too high, memory issues force us to use the control learning by value iteration of [START_REF] Huré | Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis[END_REF]. Another option could be to use an hydrid algorithm as proposed in [START_REF] Warin | Reservoir optimization and Machine Learning methods[END_REF].

• Second case is when there is control on the diffusion coefficient, and then only the global learning algorithm should be implemented.

Notice that the global learning algorithm may sometimes converge to a bad solutions as experienced in [START_REF] Chan-Wai-Nam | Machine learning for semi linear PDEs[END_REF], [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF], [START_REF] Andersson | Convergence of a robust deep FBSDE method for stochastic control[END_REF]. Then the control learning by policy iteration of [START_REF] Huré | Deep neural networks algorithms for stochastic control problems on finite horizon: convergence analysis[END_REF] can be used to check the convergence of the global learning algorithm especially when the loss of the global learning algorithm does not goes to zero as we increase the number of time steps.
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 1 Figure 1: Bin approximation of a Gaussian distribution.

  ) k∈ 1,K are the estimated density weights in D K of X (m),(n) i , i = 1, . . . , N T (truncated on K), namely:

Algorithm 4 :

 4 Deep backward algorithmInput data: Mean-field neural networks Y θi , Z θi ; Initialization: Y * N T (µ)(x) = G(x, µ); for i = N T -1, . . . ,0 do Initialization: learning rate γ, and parameter θ i ; for each epoch do Generate a batch of M distributions µ (m) i , m = 1, . . . , M ; for each batch m do Generate Brownian increments

Algorithm 5 :,

 5 m),(n) j , j = i + 1, . . . , N T -1, according to (4.2) with estimated probability measures μ(m) j = L D (p (m) j ), as in Section 3.1, and approximate the loss function by Li M,N (θ i ), i = 0, . . . , N T -1. The pseudo-code is described in Algorithm 5. Deep backward multi-step algorithm Input data: Mean-field neural networks Y θi , Z θi , and Brownian increments ∆W i , i = 0, . . . , N T -1 ; for i = N T -1, . . . , 0 do Initialization: learning rate γ, and parameter θ i ; for each epoch do Generate a batch of M distributions µ (m) i , m = 1, . . . , M ; for each batch m do Generate Brownian increments ∆W (m),(n) k , ∆W (m),(n) k , k = i, . . . , N T -1, n = 1, . . . , N ; Compute samples X j = i + 1, . . . , N T

Algorithm 6 :,

 6 Deep MKV BSDE Input data: A mean-field neural network U θ (µ)(x), and a time-dependent mean-field neural network Z θ (t, µ)(x). Initialization: learning rate γ and parameters θ for each epoch do Generate a batch of M initial distributions µ (m) 0 , m = 1, . . . , M .; for each batch m do Generate Brownian increments ∆W (m),(n) i , i = 0, . . . , N T -1, n = 1, . . . , N . ; i = 0, . . . , N T , Compute the batch loss L M,N (θ) and its gradient ∇ θ L M,N (θ) ; Update θ ← θ -γ∇ θ L M,N (θ) ; Return: the set of optimized parameters θ * .

Algorithm 8 :

 8 Deep multi-step MKV BSDE Input data: Two time-dependent mean-field neural networks Y(t, µ)(x), Z θ (t, µ)(x). Initialization: learning rate γ and parameters θ ; for each epoch do Generate a batch of M initial distributions µ (m) 0 , m = 1, . . . , M ; for each batch m do Generate Brownian increments ∆W (m),(n) i , i = 0, . . . , N T -1, n = 1, . . . , N . ; Compute sample trajectories X (m),(n) i , X(m),(n) i , n = 1, . . . , N , and estimate μ(m) i , i = 0, . . . , N T , Compute the batch loss L multi M,N (θ) and its gradient ∇ θ L multi M,N (θ) ; Update θ ← θ -γ∇ θ L multi M,N (θ) ; Return: the set of optimized parameters θ * .
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 2 Figure 2: Distribution µ 0 tested on the systemic case.

• Case 3 : 3 10Figure 4 :

 334 Figure 4: Distribution µ 0 tested on the mean variance case.

  02 0.8249 0.8180 1.0896 1.0820 0.8427 0.8360 Cylinder 500 0.01 0.8312 0.8180 1.0946 1.0820 0.8487 0.8360 Table 19: Deep backward Algorithm 4, T = 0.5, K = [-0.40, 3.21].

Table 1 :

 1 Global Algorithm 1 for systemic risk with T = 0.2, K = [-1.38, 1.62].

	1 is

Table 2 :

 2 Policy iteration Algorithm 2 for systemic risk with T = 0.2, K = [-1.38, 1.62].

Table 3 :

 3 Value iteration Algorithm algorithm 3 for systemic risk with T = 0.2, K = [-1.38, 1.62].5.2.2 The min/max MKV modelResults for T = 0.2 are reported in table 4, 6, 8: they are very good for all algorithms and network used. Results for T = 0.5 are reported in table 5, 7, 9, and also give excellent results. Notice that with Algorithm 2, it is impossible to solve the problem with T = 0.5 using N T = 50 due to memory issues and the time needed limited to 3 days. As we increase the number of time steps for Algorithm 3, we observe for the bins methods, as in the previous test case, a small degradation of the results due to an accumulation of regression error, and therefore Algorithm 1 should be preferred.

		K	∆t = T N T	Case 1	Case 2	Case 3
				Calc	Anal	Calc	Anal	Calc	Anal
	Bins	500	0.02	0.1620 0.1642 0.1373 0.1446 0.1698 0.1446
	Bins	500	0.01	0.1873 0.1642 0.1673 0.1446 0.1841 0.1446
	Cylinder 500	0.02	0.1722 0.1642 0.1540 0.1446 0.1554 0.1446
	Cylinder 500	0.01	0.1704 0.1642 0.1520 0.1446 0.1571 0.1446
	Method	K	∆t = T N T	Case 4 Calc Anal	Case 5 Calc Anal	Case 6 Calc Anal
	Bins	500	0.02	0.1630 0.1642 0.1809 0.1812 0.1755 0.1772
	Bins	500	0.01	0.1880 0.1642 0.2037 0.1812 0.1991 0.1772
	Cylinder 500	0.02	0.1722 0.1642 0.1880 0.1812 0.1843 0.1772
	Cylinder 500	0.01	0.1704 0.1642 0.1864 0.1812 0.1827 0.1772

Table 4 :

 4 Global Algorithm 1 with T = 0.2, K = [0.21, 2.72].

				Case 1	Case 2	Case 3
	Method	K	T N T	Calc	Ref	Calc	Ref	Calc	Ref
	Bins	100 0.02 0.830 0.818 1.100 1.082 0.848 0.836
	Bins	100 0.01 0.833 0.818 1.104 1.082 0.850 0.836
	Bins	200 0.01 0.831 0.818 1.092 1.082 0.848 0.836
	Cylinder 500 0.02 0.814 0.818 1.080 1.082 0.831 0.836
	Cylinder 500 0.01 0.819 0.818 1.085 1.082 0.837 0.836

Table 5 :

 5 Global Algorithm 1 with T = 0.5, K = [-0.4, 3.21].

				Case 1	Case 2	Case 3
	Method	K	T N T	Calc	Ref	Calc	Ref	Calc	Ref
	Bins	100 0.02 0.480 0.483 0.502 0.494 0.489 0.491
	Bins	200 0.02 0.482 0.483 0.496 0.494 0.491 0.491
	Cylinder 500 0.02 0.484 0.483 0.493 0.494 0.491 0.491

Table 6 :

 6 Policy iteration Algorithm 2 with T = 0.2, K = [0.21, 2.72].

				Case 1	Case 2	Case 3
	Method	K	T N T	Calc	Ref	Calc	Ref	Calc	Ref
	Bins	100 0.02 0.819 0.818 1.088 1.082 0.836 0.836
	Bins	200 0.02 0.818 0.818 1.090 1.082 0.836 0.836
	Cylinder 500 0.02 0.814 0.818 1.081 1.082 0.831 0.836

Table 7 :

 7 Policy iteration Algorithm 2 with T = 0.5, K = [-0.4, 3.21].

	Method	K	Case 1	Case 2	Case 3
			Calc	Anal	Calc	Anal	Calc	Anal
	Bins	100 -0.0959 -0.0865 -0.1143 -0.1060 -0.3138 -0.3051
	Bins	200 -0.0906 -0.0865 -0.1102 -0.1059 -0.3094 -0.3050
	Bins	400 -0.0884 -0.0865 -0.1083 -0.1059 -0.3072 -0.3050
	Cylinder 500 -0.0884 -0.0865 -0.1078 -0.1060 -0.3070 -0.3051
	Method	K	Case 4	Case 5	Case 6
			Calc	Anal	Calc	Anal	Calc	Anal
	Bins	100 -0.0954 -0.0865 -0.0553 -0.0464 -0.1766 -0.1683
	Bins	200 -0.0908 -0.0865 -0.0505 -0.0464 -0.1723 -0.1683
	Bins	400 -0.0887 -0.0865 -0.0482 -0.0464 -0.1704 -0.1683
	Cylinder 500 -0.0883 -0.0865 -0.0485 -0.0464 -0.1703 -0.1683

Table 12 :

 12 Policy iteration Algorithm 2 , T = 0.2, K = [-0.85, 0.9], T N T = 0.02.

	Method	K	Case 1	Case 2	Case 3
			Calc	Anal	Calc	Anal	Calc	Anal
	Bins	400 -0.0978 -0.0965 -0.1171 -0.1156 -0.3140 -0.3147
	Cylinder 500 -0.0986 -0.0965 -0.1175 -0.1156 -0.3164 -0.3147
	Method	K	Case 4	Case 5	Case 6
			Calc	Anal	Calc	Anal	Calc	Anal
	Bins	400 -0.0985 -0.0965 -0.0579 -0.0562 -0.1789 -0.1786
	Cylinder 500 -0.0986 -0.0965 -0.0583 -0.0562 -0.1807 -0.1786
	Table					

Table 17 :

 17 .1753 0.1642 0.1545 0.1446 0.1706 0.1446 Bins 200 0.01 0.1670 0.1642 0.1483 0.1446 0.1597 0.1446 Cylinder 500 0.02 0.1684 0.1642 0.1496 0.1446 0.1491 0.1446 Cylinder 500 0.01 0.1667 0.1642 0.1469 0.1446 0.1468 0.1446 Method K Global/local deep MKV BSDE Algorithm 7, T = 0.2, K = [-1.38, 1.62].

		K	T N T	Case 1 Calc Anal	Case 2 Calc Anal	Case 3 Calc Anal
	Bins	200 0.02 0T N T Calc Case 4 Anal	Case 5 Calc Anal	Case 6 Calc Anal
	Bins	200 0.02 0.1758 0.1642 0.1931 0.1812 0.1887 0.1772
	Bins	200 0.01 0.1661 0.1642 0.1841 0.1812 0.1797 0.1772
	Cylinder 500 0.02 0.1687 0.1642 0.1856 0.1812 0.1816 0.1772
	Cylinder 500 0.01 0.1664 0.1642 0.1836 0.1812 0.1793 0.1772
	Method	K	T N T	Case 1 Calc Anal	Case 2 Calc Anal	Case 3 Calc Anal
	Bins	200 0.02 0.1689 0.1642 0.1507 0.1446 0.1528 0.1446
	Bins	200 0.01 0.1664 0.1642 0.1470 0.1446 0.1469 0.1446
	Cylinder 500 0.02 0.1685 0.1642 0.1489 0.1446 0.1494 0.1446
	Cylinder 500 0.01 0.1658 0.1642 0.1470 0.1446 0.1468 0.1446
	Method	K	T N T	Case 4 Calc Anal	Case 5 Calc Anal	Case 6 Calc Anal
	Bins	200 0.02 0.1692 0.1642 0.1868 0.1812 0.1821 0.1772
	Bins	200 0.01 0.1666 0.1642 0.1829 0.1812 0.1796 0.1772
	Cylinder 500 0.02 0.1687 0.1642 0.1855 0.1812 0.1817 0.1772
	Cylinder 500 0.01 0.1661 0.1642 0.1834 0.1812 0.1795 0.1772

Table 18 :

 18 Global deep multi-step MKV BSDE Algorithm 8, T = 0.2, K = [-1.38, 1.62].

* This work is supported by FiME, Laboratoire de Finance des Marchés

at any time. We then define by forward induction: starting from X 0 ∼ µ 0 , for i = 0, . . . , N T -1,

and minimize over θ the global loss function as a sum of local loss functions:

with the convention that Y θ (t N T , µ)(x) = G(x, µ). In practical implementation, we use a training sample of probability measures µ The pseudo-code is described in Algorithm 7. 

, n = 1, . . . , N , and estimate μ(m) i , i = 0, . . . , N T , Compute the batch loss LM,N (θ) and its gradient ∇ θ LM,N (θ) ; Update θ ← θ -γ∇ θ LM,N (θ) ; Return: the set of optimized parameters θ * .

Finally, we present a multi-step version of the deep MKV BSDE algorithm. We consider two timedependent mean-field neural networks Y θ (t, µ)(x) and Z θ (t, µ)(x), for approximating the pair solution of the MKV BSDE at any time, and define by forward induction: starting from X 0 ∼ µ 0 , for i = 0, . . . , N T -1,

The global loss function to be minimized is in the form

Again, in practical implementation, we use a training sample of probability measures µ (m) 0 , and then for each m ∈ {1, . . . , M }, N samples 

The mean variance problem

We do not report results from Algorithm 3: indeed, they diverge for all discretizations tested. Results for the two other algorithms are given in Tables 10 and12 for T = 0.2, and in Tables 11 and13 for T = 0.5. Notice that the number of bins taken for the bins network has to be high to get an accurate solution. 

Method

Conclusion

We have tested numerous algorithms to solve the McKean-Vlasov control problem (1.1) by using mean-field neural networks. When the problem admits a Backward SDE representation from the Pontryagin maximum principle, it is clearly more interesting to adopt this approach than the dynamic programming-based approaches for several reasons:

• the BSDE approach provides algorithms that are very stable. This is certainly due to the fact that in the Pontryagin principle, the BSDE has a driver which is a function of Y (instead of classical approach based on the function value giving a driver as a function of Z) as already noticed in [START_REF] Germain | Numerical resolution of McKean-Vlasov FBSDEs using neural networks[END_REF].

• It is possible to use the local deep backward algorithm [START_REF] Huré | Deep backward schemes for high-dimensional nonlinear PDEs[END_REF] that yields very accurate results and is not limited by the number of time steps due to transfer learning. Moreover, the method gives the solution of the problem at each time steps for all the distributions.