
HAL Id: hal-03900804
https://hal.science/hal-03900804

Submitted on 15 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-Robust Strong Knapsack Cuts for Capacitated
Location-Routing and Related Problems

Pedro Liguori, Ali Ridha Mahjoub, Guillaume Marques, Ruslan Sadykov,
Eduardo Uchoa

To cite this version:
Pedro Liguori, Ali Ridha Mahjoub, Guillaume Marques, Ruslan Sadykov, Eduardo Uchoa. Non-
Robust Strong Knapsack Cuts for Capacitated Location-Routing and Related Problems. Inria Centre
at the University of Bordeaux. 2022. �hal-03900804�

https://hal.science/hal-03900804
https://hal.archives-ouvertes.fr

Non-Robust Strong Knapsack Cuts for Capacitated

Location-Routing and Related Problems

Pedro Henrique Liguori∗1, A. Ridha Mahjoub†1, Guillaume Marques‡2, Ruslan
Sadykov§3, and Eduardo Uchoa¶4

1LAMSADE CNRS UMR 7243, Université Paris-Dauphine PSL Research
University, Paris, 75016, France
2Atoptima, Bordeaux, France

3EDGE, Inria Bordeaux Sud–Ouest, Bordeaux, France
4Engenharia de Produção, University Federal Fluminense, Niteroi-RJ, 24210-240,

Brazil

2 December 2022

Abstract

The Capacitated Location-Routing Problem consists in, given a set of locations and a
set of customers, determining in which locations one should install depots with limited ca-
pacity, and for each depot, design a number of routes to supply customer demands. We
provide a formulation that includes depot variables, edge variables, assignment variables,
and an exponential number of route variables, together with some new families of valid
inequalities, leading to a branch-cut-and-price algorithm. The main original methodological
contribution of the article is the Route Load Knapsack Cuts, a family of non-robust cuts,
defined over the route variables, devised to strengthen the depot capacity constraints. We
explore the monotonicity and the superadditivity properties of those cuts to adapt the la-
beling algorithm, used in the pricing, for handling the additional dual variables efficiently.
Computational experiments show that several Capacitated Location-Routing previously un-
solved instances from the literature can now be solved to optimality. Additional experiments
with hard instances of the Vehicle Routing Problem with Capacitated Multiple Depots and
with instances of the Vehicle Routing Problem with Time Windows and Shifts indicate that
the newly proposed cuts are also effective for those problems.

1 Introduction

Location-Routing Problems (LRPs) arise when combining two classic combinatorial optimization
problems: facility location and vehicle routing. In fact, the integration of both levels of deci-
sions, i.e., depot location and vehicle routing, makes the LRP an interesting model for several
practical applications, from the design of telecommunications networks to the operation of very
competitive supply chains. Making decisions on the location of depots and the routing of vehicles
independently usually leads to strongly suboptimal planning results, as observed by Salhi and
Rand (1989). As a result, LRPs have been extensively studied in the literature, as surveyed in

∗phliguori@gmail.com
†ridha.mahjoub@lamsade.dauphine.fr
‡guillaume.marques@atoptima.com
§ruslan.sadykov@inria.fr
¶eduardo uchoa@id.uff.br

1

Schneider and Drexl (2017). The importance of LRPs is currently rising due to the surge of
home delivery services and e-commerce. In those contexts, solving LRPs help in determining
the location of urban depots from which customers would be served on vehicle routes.

The Capacitated LRP (CLRP) is defined as follows. Consider an undirected graph G =
(V,E), with V = I ∪ J and E = EIJ ∪EJ , where nodes in I represent possible depot locations,
nodes in J denote customers, EJ is the set of all pairs of distinct nodes in J , and EIJ = I × J .
Note that subgraph (J, EJ) is a complete graph, subgraph (I ∪ J, EIJ) is a complete bipartite
graph, and vertices of I form an independent set. For each edge e ∈ E, there is a cost ce ∈ R+.
For each depot location i ∈ I, there is an opening cost fi ∈ R+ and a capacity Wi ∈ Z+. For
each customer j ∈ J , there is a demand dj ∈ Z+. Finally, there is an unlimited number of
identical vehicles with capacity Q ∈ Z+. A route is a cycle in G passing through exactly one
depot of I and through a set of distinct customers in J having total demand not exceeding Q.
We say that a route leaves (or is incident to) the depot i in I that it contains. A CLRP solution
is a set of opened depots I ′ ⊂ I and a set of routes such that: (i) all routes leave opened depots,
(ii) all customers are visited exactly once, and (iii) the sum of the demands in all routes leaving
a depot i ∈ I ′ should not exceed Wi. The goal is to minimize the sum of the opening costs
plus the cost of the edges in the routes. We remark that we are assuming that there are no
split deliveries, so each customer should be indeed visited only once. That modeling assumption
is reasonable because the edges in G actually represent shortest paths between pairs of points,
obtained from a street/road network. If the shortest path between A and B happens to pass by
the street segment in front of customer C, this is not counted as a visit to C.

A closely related problem, also considered in this article, is the Vehicle Routing Problem with
Capacitated Multiple Depots (VRP-CMD). It differs from CLRP only by having zero opening
costs, so all depots can be considered as opened. The third problem addressed here is the Vehicle
Routing Problem with Time Windows and Shifts (VRPTW-S), introduced in Dabia et al. (2019).
The problem is a generalization of the classic VRPTW, in which we have a single depot, which
is already open. In addition to demands, every customer j ∈ J also has a time window [lj , uj]
during which it should be visited. In the VRPTW-S, there is a set I of shifts. Each shift i ∈ I is
characterized by a time window [li, ui] during which a vehicle may leave the depot, and a capacity
Wi limiting the total load of vehicles departing during the shift. To reduce the VRPTW-S to the
LRP with time windows, we introduce a fictive depot for every shift. The position of all fictive
depots is the same as the original depot. However, a time window for leaving every fictive depot
i ∈ I is set to [li, ui]. As for the VRP-CMD, all fictive depots are considered to be open.

All those problems have a nested knapsack structure. The customers are first assigned to
routes that have the following knapsack-like constraints: the sum of the demands (the load)
should not exceed vehicle capacity. Then the routes themselves are attached to depots/shifts
subject to knapsack-like constraints: the sum of the loads should not exceed depot/shift capacity.
Similar nested knapsack structures are encountered in several other problems, some of which are
mentioned in the literature review in Section 2.

Branch-Cut-and-Price (BCP) algorithms are the best existing methods for the exact solution
of most vehicle routing variants (see, e.g., Poggi and Uchoa (2014) and Costa et al. (2019)). A
crucial issue in that kind of algorithm is the impact of cut separation on the pricing. According
to the classification proposed in Poggi and Uchoa (2003), a family of cuts is robust if they do not
change the structure of the pricing subproblem. A BCP algorithm is said to be to robust if it only
uses robust cuts. A prototypical example of a robust BCP algorithm for VRP is Fukasawa et al.
(2006). The robust VRP cuts are expressed over the edge/arc variables of a suitable original
compact formulation, they are translated to the route variables using a linear mapping. In that
way, the dual variables of the separated cuts only change edge/arc costs in the pricing. On the
other hand, cuts that can only be expressed directly over the route variables are non-robust.
Each separated cut adds an extra resource to the labeling algorithm used in the pricing, making
it harder.

Non-robust cuts are often stronger than robust ones precisely because they have access to full
route information instead of only having access to “small bits of routes” (edge/arc variables). In

2

fact, non-robust cuts for VRPs often explore the set-partitioning constraints that state that each
customer should be visited by exactly one route. Classic set-partitioning cuts (like the Clique cuts
used in Baldacci et al. (2008)), in spite of being potentially very strong, are not really practical:
a few dozen such cuts already makes the pricing intractable. The Subset Row cuts, introduced
in Jepsen et al. (2008), are a family of set-partitioning cuts purposely created to be used in a
BCP context, designed to be less harmful to the pricing subproblem. An important advance was
the introduction of limited-memory cuts (Pecin et al., 2014), a technique (first used on Subset
Row cuts and later generalized to Rank-1 cuts in Pecin et al. (2017b)) to dynamically adjust
cut coefficients in order to substantially reduce their negative impact on the pricing. In spite of
those improvements, those limited-memory cuts are still non-robust and should be handled with
care. Indeed, the BCPs in Pecin et al. (2014) and Pessoa et al. (2020) use a roll-back mechanism
to remove active non-robust cuts (of course, losing bound quality) when the pricing becomes too
expensive.

This work proposes a BCP algorithm for the CLRP, that is easily adapted to the VRP-
CMD and the VRPTW-S. The algorithm is based on a formulation of the problem that includes,
besides depot variables, assignment variables and edge variables, an exponential number of route
variables. The BCP also uses robust cuts (including two newly proposed families) and non-
robust limited-memory Rank-1 cuts. However, the main methodological advance is the Route
Load Knapsack Cuts (RLKCs), a new family of non-robust cuts derived from the constraints
that state that the sum of loads of the routes attached to a depot should not exceed its capacity.

Dabia et al. (2019) recently proposed four families of non-robust cover cuts (y-cover, k-cover,
p-cover, and q-cover) for the similar nested knapsack structure found in VRPTW-S. The newly
proposed RLKCs have the following advantages over those cover cuts:

• They are more general and stronger. The cuts in Dabia et al. (2019) are inspired by classic
knapsack cover cuts and only have coefficients 0 or 1 on their left-hand side. In contrast,
RLKCs include all the facets of the so-called Master Knapsack Polyhedron and can have
many distinct coefficients on their left-hand side.

• The cover cuts in Dabia et al. (2019) have a significant negative effect on the performance
of the proposed labeling algorithm used in their pricing. In fact, those authors limit the
number of active such cuts to 50 in their BCP algorithm, in order to keep the pricing
tractable. In contrast, we present a modified labeling algorithm that, by exploring mono-
tonicity and superadditivity properties, can handle RLKCs in a very efficient way. Indeed,
our BCP algorithm freely separates RLKCs and does not need any special mechanism to
control them.

The remainder of the paper is organized as follows. Section 2 reviews the literature on the
CLRP and on some related problems with the nested knapsack structure. Section 3 contains
a polynomially sized integer programming formulation for the CLRP, as well as known and
new families of valid inequalities for it. Section 4 presents an extension of that formulation, by
introducing an exponential number of route variables. Section 5 describes the new RLKCs, also
showing how they are separated and how they change the labeling algorithm used for the pricing.
Section 6 presents extensive computational experiments on CLRP, VRP-CMD and VRPTW-S.
Conclusions and research perspectives are given in Section 7. Detailed instance-by-instance
computational results are presented in the appendices.

2 Literature review

The idea of combining two levels of decision, depot location and vehicle routing, is not new.
The first exact method for the LRP is due to Laporte and Nobert (1981) in which the authors
develop a Branch-and-Cut algorithm for solving a special case where a single depot must be
opened among a list of possible depot locations. Afterward, Laporte et al. (1986) investigate
the CLRP with multi-depots to be opened and subject to vehicle capacities. The computational

3

results reported show that they were able to solve instances with 8 depot locations and 20
customers. In a later work, Laporte et al. (1988) discuss the CLRP in a context of asymmetrical
costs, where vehicle capacities are replaced by constraints on the maximum length of the routes.
Instances are then solved by a Branch-and-Cut algorithm.

Belenguer et al. (2011) use a two-index formulation for the CLRP. By adapting some of the
valid inequalities from the CVRP literature, together with others conceived specifically for the
CLRP, the authors devise a Branch-and-Cut algorithm. From the computational experiments
reported, their approach is able to solve instances with 5 depot locations and 50 customers.
Contardo et al. (2013) extend the work of Belenguer et al. (2011) and present four different
arc-flow formulations for which they derive several new families of valid inequalities, giving both
heuristic and exact separation procedures. The computation results show that a three-index flow
formulation is stronger than the two-index counterparts, however, this does not always culminate
in a better algorithmic performance.

The first use of column generation on CLRP is due to Berger et al. (2007). Here, the authors
develop a Branch-and-Price algorithm to solve instances with uncapacitated depots and routes
limited by a maximum length. The authors report computational experiments on instances with
10 depot locations and up to 100 customers, some of which are solved to optimality within
a running time of two hours. Akca et al. (2009) give a set partitioning formulation for the
standard CLRP and solve it by a branch-and-price algorithm. The authors apply three distinct
heuristics to price negative reduced cost columns, calling the exact labeling algorithm only when
the heuristics fail to find such columns. They were able to solve instances with up to 5 depot
locations and 40 customers.

Baldacci et al. (2011b) propose a solution strategy for the CLRP that consists in solving the
VRP-CMD for each possible set of opened depots and keeping the solution with the smallest
cost. They propose a sophisticated lower bounding procedure that can reduce a lot the number
of tested sets, by identifying many sets of locations that cannot lead to optimal solutions. Their
algorithm clearly outperforms the solution methods known at that time.

Contardo et al. (2014) also develop an approach based on the enumeration of subsets of
depot locations. A Branch-and-Cut algorithm over the formulation proposed in Belenguer et al.
(2011), strengthened by some valid inequalities introduced in Contardo et al. (2013), is used
for identifying subsets that can not lead to solutions better than a given upper bound. Then,
for each such subset of depots that can possibly lead to improving solutions, the corresponding
VRP-CMD instance is solved as follows. First, a strong lower bound is obtained by cut-and-
column, then all columns whose reduced costs are not greater than the gap between the upper
and lower bounds are enumerated, and finally, the standard set-partitioning formulation having
the enumerated columns is solved by a standard MILP solver. The obtained computational
results are better than those in Baldacci et al. (2011b), solving two additional instances and
providing tighter lower bounds for unsolved instances.

As observed by Schneider and Drexl (2017), both the algorithms proposed by Baldacci et al.
(2011b) and Contardo et al. (2014) are very sophisticated and rely on a number of complex
algorithmic and implementation refinements. A point worth mentioning is that these methods
exploit the fact that the instances then found in the literature have a rather small number of
depot locations, at most 10. Hence, the proposed smart enumeration of all subsets of depots
is more likely to be manageable. However, it is unclear if those methods could be able to deal
with larger instances, such as the new benchmarks introduced by Schneider and Löffler (2019)
containing 15, 20 and 30 depot locations.

The CLRP is also a fruitful topic for the development of heuristics. Many of those methods
work in a two-stage hierarchical fashion: first decide which depots to open and then optimize the
vehicle routing. We refer the reader to the survey of Schneider and Drexl (2017) for a complete
overview of heuristic methods for CLRP.

We now review the literature on some related problems with the nested knapsack structure.
First of all, the VRP-CMD, the particular case of CLRP where all depots are already opened,
still has that structure. As mentioned before, Baldacci et al. (2011b) and Contardo et al.

4

(2014) have to deal with VRP-CMD subproblems when solving the CLRP. Both works do that
by adapting existing approaches, Baldacci and Mingozzi (2009) and Contardo and Martinelli
(2014), respectively, for the multi-depot vehicle routing problem with uncapacitated depots.
Actually, Contardo et al. (2014) also use valid inequalities proposed by Belenguer et al. (2011) and
Contardo et al. (2013). The VRP-CMD is again encountered as a subproblem by Ben Mohamed
et al. (2020) when solving the two-echelon stochastic multi-period capacitated location-routing
problem by a logic-based Benders decomposition algorithm. Those authors solve the VRP-CMD
by a direct adaptation of the BCP algorithm in Sadykov et al. (2021). No specific inequalities
for the VRP-CMD are used.

Dabia et al. (2019) introduced the Vehicle Routing Problem with Time Windows and Shifts
(VRPTW-S). In this generalization of the class vehicle routing problem with time windows, the
time horizon is divided in non-overlapping shifts. Depending of the time when a route leaves from
the depot, this route is assigned to one of the shifts. The total amount of freight delivered by
routes belonging to a shift is limited by a loading capacity. Thus, the nested knapsack structure
appears, as every customer’s demand contributes to the vehicle capacity and the shift loading
capacity constraints. Dabia et al. (2019) propose a BCP algorithm for the VRPTW-S. Their
main contribution concerns new cover inequalities for the problem. These inequalities are related
to the RLKCs proposed in this paper, as they are also derived from the higher-level knapsack
inequalities (for the shift loading capacities) over route variables.

Tilk et al. (2021) introduced the last-mile Vehicle Routing Problem with Delivery Options
(VRPDO), in which some requests can be shipped to alternative locations with possibly different
time windows. Moreover, when delivery options share a common location, e.g., a locker, capac-
ities must be respected when assigning shipments. Thus, we have here the double knapsack
structure, as customer deliveries are subject to both vehicle and delivery location capacities.
Knapsack constraints are however not nested: two customer deliveries by the same vehicle do
not necessarily contribute to the same higher-level knapsack constraints corresponding to the
delivery location capacities. Tilk et al. (2021) propose a branch-cut-and-price algorithm for the
VRPDO which is similar to the one for the standard VRPTW except for a different graph used
when solving the pricing problem. No specific valid inequalities based on the knapsack structure
of the problem are proposed.

Albareda-Sambola et al. (2009) introduced the capacity and distance-constrained plant loca-
tion problem. It is an extension of the discrete capacitated plant location problem, where the
customers assigned to each plant have to be packed in groups that will be served by one vehicle
each. The constraints include two types of capacities. On the one hand, plants are capacitated,
and the demands of the customers are indivisible. On the other hand, the total distance trav-
eled by each vehicle to serve its assigned customers in round trips plant–customer–plant is also
limited. This problem also has a nested knapsack structure. Here however different quanti-
ties contribute to the lower-level and higher-level knapsack constraints: plant–customer–plant
distances to the former and customer demands to the latter. The authors proposed integer
programming formulations and a tabu search heuristic. Later, Fazel-Zarandi and Beck (2012)
proposed a logic-based Benders decomposition algorithm for this problem.

3 Formulation with a Polynomial Number of Variables and
Additional Cuts

In this section, we present Formulation (F), the 3-index formulation proposed in Contardo et al.
(2013). That formulation can be viewed as a disaggregated-by-depot version of the formulation
introduced by Belenguer et al. (2011). Given sets U,W ⊆ V , let Ū = V \ U and denote by
δ(U,W) ⊆ E the set of edges containing one endpoint in U and the other in W . We denote
δ(U, Ū) simply by δ(U), and δ({v}, V \ {v}) by only δ(v). For a given set of customers S ⊆ J ,
let d(S) =

∑
j∈S dj , and define r(S) = ⌈d(S)/Q⌉ as a lower bound on the number of vehicles

needed to serve all the customers in S.

5

3.1 Formulation (F)

For every depot location i ∈ I, define a binary variable yi which takes value 1 if the depot i is
opened, and zero otherwise. For every i ∈ I and j ∈ J , define a binary variable zij that takes
the value 1 if the customer j is assigned to depot i. For every depot i ∈ I and customer j ∈ J ,
let xi(i,j) ∈ {0, 1, 2} be a variable indicating how many times edge (i, j) ∈ EIJ is traversed by
a route leaving depot i. If the customer j is served by a dedicated route incident to i, i.e., a
route of the form i-j-i, variable xi(i,j) takes value 2. Finally, with every depot i ∈ I and edge

(j, k) ∈ EJ , let x
i
(j,k) be a binary variable that takes 1 if a route incident to depot i traverses the

edge (j, k), and zero, otherwise. The CLRP can be formulated as the following Mixed Integer
Programming (MIP) problem:

(F) ≡ min
∑
i∈I

fi yi +
∑
i∈I

∑
e∈E

ce x
i
e (1)∑

i∈I

zij = 1, ∀ j ∈ J, (2)∑
e∈δ(j)

xie = 2 zij , ∀ i ∈ I, j ∈ J, (3)

zij ≤ yi, ∀ i ∈ I, j ∈ J, (4)∑
j∈J

dj zij ≤Wi yi, ∀ i ∈ I, (5)

∑
i∈I

∑
e∈δ(S)

xie ≥ 2 r(S), ∀ S ⊆ J, (6)

xie ∈ {0, 1}, ∀ i ∈ I, e ∈ EJ , (7)

xie ∈ {0, 1, 2}, ∀ i ∈ I, e ∈ EIJ , (8)

yi ∈ {0, 1}, ∀ i ∈ I, (9)

zij ∈ {0, 1}, ∀ i ∈ I, j ∈ J. (10)

Inequalities (2) guarantee that every customer is assigned to exactly one depot. Inequal-
ities (3) are the degree constraints for customer nodes. These inequalities assure that, if the
customer j is served by depot i, then there must exist exactly two edges of a route leaving depot
i which are incident to customer j. In the case that customer j is serviced by a dedicated route
from depot i, this inequality is satisfied by variable xiij assuming the value 2. Inequalities (4)
have the format of Generalized Upper Bound (GUB) constraints and imply that a customer can
only be served from an open depot. Inequalities (5) guarantee that the total demand supplied
by the depot does not exceed its capacity. Inequalities (6), the so-called Rounded Capacity Cuts
(RCC), introduced in the context of the CVRP (Laporte and Nobert, 1983), determine a lower
bound on the minimum number of vehicles that must service S. Finally, inequalities (7)–(10)
are the variable domains.

Even though inequalities (6) only express a lower bound on the number of vehicles needed
to serve S, (F) is indeed a complete formulation for the CLRP, and not only a relaxation. This
follows from the fact that every customer must be assigned to exactly one open depot, and once
they are assigned (i.e., all y and z variables are fixed to 0 or 1), the problem decomposes into a
number of independent CVRP-like subproblems, for which constraints (3), (6)-(8) suffice.

3.2 Additional Cuts

Since there are relatively many GUB inequalities (4), it is more efficient to separate only those
that are violated. This can be easily done by inspection. There are an exponential number of
RCC inequalities (6). They can be separated using the procedures described in Lysgaard et al.

6

(2004). In the remainder of this section, we present other inequalities used to strengthen (F).

3.2.1 Depot Cover Inequalities (COV)

We use cover inequalities to strengthen knapsack-like inequalities (5). The inequality corre-
sponding to depot i ∈ I differs from a standard knapsack inequality because its capacity Wi

is multiplied by yi. Yet, known inequalities for the standard knapsack problem can be readily
adapted by also multiplying their right-hand side by yi. Given a subset J ′ ⊂ J of customers
such that

∑
j∈J′ dj > Wi, the following depot cover inequality∑

j∈J′

zij ≤ (|J ′| − 1) yi (11)

is valid for the CLRP .

These inequalities are exactly separated by a newly proposed procedure that generalizes the
separation procedure for the standard knapsack cover inequality, as presented for instance in
Wolsey (1998). Let (ȳ, z̄) be a fractional solution to (F), restricted to variables y and z. The
procedure consists in solving the following IP for each depot i such that ȳi > 0,

(COV − Sep) ≡ z = min
∑
j∈J

(ȳi − z̄ij)wj (12)

∑
j∈J

djwj ≥Wi + 1, (13)

wj ∈ {0, 1}, ∀ j ∈ J. (14)

Variable wj equals 1 if customer j belongs to the cover J ′, 0 otherwise. Let z∗ be the value of
the optimal solution to the IP, if z∗ < ȳi, then the depot cover inequality characterized by J ′

and i is violated by ȳi − z∗. The correctness of (COV-Sep) follows directly from the fact that
(11) is equivalent to: ∑

j∈J′

(yi − zij) ≥ yi. (15)

By complementing the w variables, IP (COV-Sep) can be transformed into a 0-1 knapsack
problem and solved by pseudo-polynomial algorithms that are very efficient in practice (Pferschy
et al., 2004).

3.2.2 Fenchel Cuts (FC) over the y variables

In a feasible solution to the CLRP , the total capacity of the opened depots must be larger
than the total demand of the customers:

∑
i∈I Wiyi ≥

∑
j∈J dj . We use a Fenchel Cut (FC)

separation scheme to obtain new valid inequalities from that covering constraint. The separation
of Fenchel cuts for MIPs was pioneered in Boyd (1993, 1994), and used, for example, by Boccia
et al. (2008) to strengthen knapsack constraints. The idea of FC separation is to solve an LP in
order to find the coefficients of a cutting plane separating the current fractional solution from
the convex hull of the integer solutions of a certain subproblem (defined by a restricted set of
variables and constraints).

Define the set of binary points satisfying the covering constraint as:

H =

h |
∑
i∈I

Wihi ≥
∑
j∈J

dj , h ∈ {0, 1}|I|
 . (16)

Let ȳ be the current fractional solution of (F) restricted to y and define a vector of variables α

7

having dimension |I|.

(FC− Sep) ≡ z = min
∑
i∈I

ȳi αi (17)∑
i∈I

hi αi ≥ 1, ∀ h ∈ H, (18)

αi ≥ 0, ∀ i ∈ I. (19)

After solving that LP, if z∗ < 1, then
∑

i∈I αi yi ≥ 1 is a valid Fenchel cut that is violated by ȳ.

The potential difficulty with that Fenchel cut separation is the enumeration of the set H.
A point h ∈ H is said to be minimal if there is no other point h′ ∈ H such that h′ ≤ h. It
can be seen that non-minimal points lead to redundant constraints in (18). So, it suffices to
enumerate the set of minimal points in H. In our experiments with CLRP, as all instances
from the literature have |I| ≤ 20, solving (FC-Sep) was never too time-consuming. However,
for larger values of |I| it may be necessary to generate constraints (18) dynamically, as done in
Boccia et al. (2008).

3.2.3 Depot Capacity Cuts (DCC)

A generalization of rounded capacity cuts is the so-called depot capacity cuts introduced by
Belenguer et al. (2011). Let R ⊆ I and S ⊆ J be such that d(S) > W (R), implying that
the available capacity of depots in R is not sufficient to meet the demand of S. Let r(S,R) =
⌈(d(S)−W (R))/Q⌉ be a lower bound on the number of vehicles coming from I \ R needed to
serve set S. Then, a depot capacity cut is the following inequality:∑

i∈I\R

∑
e∈δ(S)

xie ≥ 2r(S, R). (20)

It can be seen that Rounded Capacity Cuts (6) correspond to the depot capacity cuts where
R = ∅.

Belenguer et al. (2011) have also verified that it is possible to strengthen inequalities (20),
in what they called improved depot capacity cuts. The idea is to consider the effect of variable
yi1 , for some depot i1 ∈ R. The whole family of cuts can be written as:∑

i∈I\R

∑
e∈δ(S)

xie ≥ 2r(S,R) + 2(1− yi1)
(
r(S,R \ {i1})− r(S,R)

)
,

∀R ⊆ I, i1 ∈ R, S ⊆ J : d(S) > W (R).

(21)

The validity of improved depot capacity cuts can be proved by considering the two possible
values for yi1 . When yi1 = 1, inequality (21) reduces to (20). On the other hand, for the
case where yi1 = 0, the right-hand side of inequality (21) becomes r(S,R \ {i1}), which is
correct. An improved depot capacity cut clearly dominates the corresponding inequality (20)
when r(S,R \ {i1}) > r(S,R). Contardo et al. (2013) proposed alternative inequalities that also
strengthen inequalities (20) by considering the y variable of a single depot in R.

By extending those lines of reasoning to two depots in R, we now propose a new family of
improved depot capacity cuts.

Theorem 1. Given S ⊆ J , and R ⊆ I such that d(S) > W (R), and a pair of vertices i1, i2 ∈ R,
the following inequality is valid for formulation (F)∑

i∈I\R
∑

e∈δ(S) x
i
e ≥ 2r(S,R)yi1 + 2r(S,R \ {i1})yi2

+2r(S,R \ {i1, i2})(1− yi1 − yi2).
(22)

Proof. First consider the case where yi1 = yi2 = 1. The right-hand side of (22) simplifies to
2r(S,R) +

(
2r(S,R \ {i1}) − 2r(S,R \ {i1, i2})

)
. Since 2r(S,R \ {i1}) − 2r(S,R \ {i1, i2}) ≤ 0,

8

the inequality is redundant with respect to inequality (20). Then, consider a solution for which
yi1 = 1 and yi2 = 0. In this case, the right-hand side of (22) reduces to 2r(S,R), and this
inequality is equivalent to (20). If yi1 = 0 and yi2 = 1, the right-hand side of (22) becomes
2r(S,R \ {i2}), which is correct. Finally, if yi1 = yi2 = 0 then the right-hand side of (22)
becomes 2r(S,R \ {i1, i2}), which is also correct.

In what follows, we describe our heuristic separation for inequalities (21) and (22). Let (x̄, ȳ)
be a fractional solution to (F), restricted to variables x and y. If the problem variant is solved
in which all depots are already opened, we set ȳi = 1 for all i ∈ I. The heuristic considers the
collection R of all depot subsets R such that 1 ≤ |R| ≤ 2 and ȳi > 0 for all i ∈ R. This collection
is randomly shuffled, and first ⌈ψ · |I|⌉ subsets are selected. We use values ψ = 7 if |I| < 15,
ψ = 5 if 15 ≤ |I| < 20, and ψ = 3.6 if 20 ≤ |I|. The same seed is always used to initialize the
random number generator in order to have the deterministic behavior of the algorithm.

On every iteration, we fix a depot subset R in the collection of selected subsets. Let S̃(R)
be the set of customers who are visited only by vehicles starting in depots in R: S̃(R) = {j ∈
J :

∑
i∈R

∑
e∈δ(j) x̄

i
e = 2}. Then we use the following greedy construction heuristic similar

to the one presented by Lysgaard et al. (2004) for separating RCCs. For each seed customer
j ∈ J \ S̃(R), we set S = S̃(R) ∪ {j} and then iteratively expand S by one customer and check
inequalities (21) and (22) for the resulting pair (R,S) and all possible i1, i2 ∈ R. If all depots
are already open, then only the original inequality (20) is verified for violation. The customer j
we add to S is the one that minimizes the value

∑
i∈I\R

∑
e∈δ(S∪{j}) x̄

i
e subject to the restriction

that we have not generated the set S ∪ {j} before during the current iteration with fixed R.
When we cannot expand the current set S without generating a previously generated set, we
proceed to the next seed.

4 Extended Formulation with an Exponential Number of
Variables

4.1 Formulation (EF)

The linear relaxation of formulation (F), even with the previously presented valid inequalities,
provides lower bounds that are not strong enough for developing a state-of-the-art algorithm.
Hence, we present a stronger extended formulation obtained by introducing route variables.
Given i ∈ I, we denote by Ω(i) the set of all possible routes incident to depot i. The set of
all routes, i.e., ∪i∈IΩ(i), will be denoted simply by Ω. Furthermore, given ω ∈ Ω, i(ω) ∈ I
denotes the depot in which route ω is incident to, J(ω) ⊆ J is the set of customers visited by
route ω. For each route ω ∈ Ω, we associate a load, denoted by d(ω), which is given by the sum
of demands of the customers visited by the route, i.e., d(ω) =

∑
j∈J(ω) dj . Moreover, for each

route ω ∈ Ω, we define the cost c(ω) as the sum of the costs of the edges traversed by the route,
i.e., c(ω) =

∑
e∈E b

ω
e ce, where b

ω
e is the number of times edge e appears in ω (this coefficient can

have values 0, 1 or 2; the last case happens when ω visits a single customer j, so edge (i(ω), j)
is used twice). Given ω ∈ Ω, let aωj be a binary coefficient indicating whether customer j ∈ J
is visited by route ω. For every route ω ∈ Ω, let variable λω indicate whether route ω is used in
the solution. New variables λ can be linked to the x and z variables in formulation (F) by the
following equations:

xie =
∑

ω∈Ω(i)

bωe λω, ∀ i ∈ I, e ∈ E, (23)

zij =
∑

ω∈Ω(i)

aωj λω, ∀ i ∈ I, j ∈ J. (24)

9

Performing those variable substitutions, the following Extended Formulation is obtained:

(EF) ≡ min
∑
i∈I

fi yi +
∑
ω∈Ω

(∑
e∈E

bωe ce

)
λω (25)∑

ω∈Ω

aωj λω = 1, ∀ j ∈ J, (26)∑
ω∈Ω(i)

aωj λω ≤ yj , ∀ i ∈ I, j ∈ J, (27)

∑
ω∈Ω(i)

∑
j∈J

dja
ω
j

λω ≤Wi yi, ∀ i ∈ I, (28)

∑
ω∈Ω

 ∑
e∈δ(S)

bωe

λω ≥ 2 r(S), ∀ S ⊆ J, (29)

∑
ω∈Ω(i)

bωe λω ∈ {0, 1}, ∀ i ∈ I, e ∈ EJ , (30)

∑
ω∈Ω(i)

bωe λω ∈ {0, 1, 2}, ∀ i ∈ I, e ∈ EIJ , (31)

yi ∈ {0, 1}, ∀ i ∈ I, (32)∑
ω∈Ω(i)

aωj λω ∈ {0, 1}, ∀ i ∈ I, j ∈ J, (33)

λω ∈ {0, 1} ∀ ω ∈ Ω. (34)

The objective function and the constraints in (25)–(33) correspond directly to (1)–(10), except
that there is no counterpart for equalities (3). Those equalities, that would be translated as

∑
ω∈Ω(i)

 ∑
e∈δ(j)

bωe

λω =
∑

ω∈Ω(i)

2aωj λω, ∀ i ∈ I, j ∈ J, (35)

would be redundant in (EF), since the definition of route implies that
∑

e∈δ(j) b
ω
e = 2aωj for every

j ∈ J and ω ∈ Ω. Inequalities (27) are still called GUBs, while (29) are still RCCs. Constraints
(30) and (31) are equivalent to the integrality constraints over the x variables. Constraints (33)
are equivalent to the integrality constraints over the z variables.

When solving the linear relaxation of (EF) by column generation, both GUBs and RCCs
should still be separated on demand. Other inequalities defined over the x, y and z variables,
like COVs, FCs, and DCCs, can also be added to (EF), after their x and z terms are translated
to λ using expressions (23) and (24), respectively. We remark that it is never necessary to branch
over individual λ variables (which would make the pricing subproblem harder) in order to have
an integer solution. Since formulation (EF) is a stronger extension of a complete formulation
(F), it is enough to make sure that y, x and z are integer.

4.2 Limited Memory Rank-1 Cuts

Rank-1 cuts for vehicle routing problems are obtained by the Chvátal-Gomory rounding of set-

partitioning constraints (26) relaxed to ≤ 1 inequalities. For a non-negative vector α ∈ Z|J|
+ of

multipliers, the following rank-1 cut is valid:

∑
ω∈Ω

∑
j∈J

αja
w
j

λω ≤

∑
j∈J

αj

 . (36)

10

An inequality (36) obtained using a vector of multipliers with k positive components is called
a k-row rank-1 cut. If all positive components of α are the same, the corresponding inequality
is called a subset-row cut. Jepsen et al. (2008) introduced 3-row and 5-row subset-row cuts.
Petersen et al. (2008) first considered using general rank-1 cuts of format (36). Pecin et al.
(2017b) studied k-row rank-1 cuts with k ≤ 5, determining all dominant vectors of multipliers:
if a k-row rank-1 cut with k ≤ 5 is violated, then at least one rank-1 cut obtained using a
dominant vector of multipliers is also violated. Those are exactly the multipliers used in this
work.

The use of the limited memory variant of those cuts, introduced by Pecin et al. (2017a), is
crucial to reduce the impact of those non-robust cuts on the practical performance of the labeling
algorithm used in the pricing.

4.3 Branch-Cut-and-Price algorithm

Formulation (EF) plus robust cuts, together with limited-memory rank-1 cuts, can be solved by
an adaptation of the Branch-and-Cut-and-Price (BCP) algorithm presented in Sadykov et al.
(2021) for the Heterogeneous Fleet Vehicle Routing Problem (HFVRP). The adaptation is rela-
tively straightforward because each of the multiple depots can be viewed as defining a different
vehicle type.

In that BCP algorithm, the linear relaxation of (EF), i.e., the master problem, is solved
by a column and cut generation procedure. Column generation is an iterative approach that
alternates between solving the master problem with a restricted number of variables λ and the
pricing problem. The latter is solved to find variables λ with a negative reduced cost if they exist,
given the current dual solution of the restricted master. The pricing problem, decomposed into
subproblems by vehicle types (depots), is solved by the bucket-graph based labeling algorithm.
For the LRP and VRP-CMD that algorithm considers a single resource, corresponding to the
vehicle capacity. For VRPTW-S there is an additional resource for considering the time windows.
In addition, the bucket arc elimination procedure is employed to remove arcs from the bucket
graph used by the labeling algorithm and thus, reduce its running time in future iterations.
An elementary route enumeration procedure is also exploited to enumerate all routes which
can participate in an improving solution. If the enumeration is successful for a vehicle type,
the corresponding pricing subproblem is solved by inspection. If all pricing subproblems are
enumerated, and the total number of enumeration routes is small, the formulation (EF) with all
corresponding variables λ is solved by the MIP solver.

The y variables, some constraints and also the robust cuts (described in Section 3.2) used
in formulation (EF) do not exist in the HFVRP formulation. However, they only modify the
master problem and do not have any impact on the structure of the pricing problem. So, the
bucket graph based labeling algorithm used to solve it does not need to change.

As in (Sadykov et al., 2021), branching is performed by adding constraints to the master
LP that correspond to tightening lower and upper bounds on the values of some aggregated
variables. The following aggregated variables are used for this purpose.

• The number of open depots in a subset I ′ ⊆ I, 1 ≤ |I ′| ≤ 4: gND
I′ =

∑
i∈I′ yi.

• The number of vehicles starting in depot i ∈ I: gVN
i = 1

2

∑
j∈J x

i
ij .

• The total number of vehicles: gTVN =
∑

i∈I g
VN
i .

• The number of customers served from depot i ∈ I: gCN
i =

∑
j∈J zij .

• Assignment of customer j ∈ J to depot i ∈ I: zij .

• Participation of edge e ∈ E in the solution: gEDG
e =

∑
i∈I x

i
e.

Branching on the number of open depots has a higher priority. Branching on other aggregated
variables has the same but lower priority. The branching aggregated variable is chosen among

11

ones with the same priority by the multi-phase strong branching procedure, described in (Sadykov
et al., 2021).

To improve feasible solutions, after each node in the branch-and-bound tree we use the
following heuristic similar to the one introduced by Pessoa et al. (2009). In an iterative procedure,
we decrease the artificial bound in order to divide the primal-dual gap by two in each iteration.
Then, we perform elementary route enumeration for each pricing subproblem. The iterative
procedure stops when the enumeration succeeds for all subproblems. Afterward, we pick 5000
elementary routes with the smallest reduced cost and add them to the master problem. Finally,
we use IBM CPLEX MIP to solve the resulting problem with a time limit of 20 seconds. We
activate the polishing heuristic (Rothberg, 2007) implemented in CPLEX.

5 New Family of Non-Robust Cuts

In this section, we present a new family of valid inequalities derived from knapsack-like con-
straints (28). These inequalities are non-robust and do change the pricing. We make extensive
use of the properties that characterize the facets of the so-called master knapsack polytope,
properties that are used in the definition of the newly proposed cuts, in order to propose effective
separation procedures and also for minimizing the necessary modifications to the labeling algo-
rithm using in the pricing, keeping it efficient even after an arbitrary number of such cuts are
added.

5.1 Route Load Knapsack Cuts

The master knapsack polytope is defined as:

PMKP(W) = conv

{
t ∈ ZW

+ :

W∑
q=1

q tq ≤W

}
.

Next theorem characterizes the non-trivial facets (those that are not described by non-negativity

inequalities tq ≥ 0, 1 ≤ q ≤W , or by
∑W

q=1 q tq ≤W itself) of this polytope.

Theorem 2 (Aráoz (1974), Aráoz et al. (2003)). Each non-trivial facet of PMKP(W) can be
described by an inequality of format ξt ≤ 1 such that the coefficient vector ξ ∈ RW

+ is an extreme
point of the following system of linear constraints:

ξ1 = 0, (37)

ξW = 1, (38)

ξq + ξW−q = 1, ∀1 ≤ q ≤W/2, (39)

ξq + ξq′ ≤ ξq+q′ , ∀q + q′ ≤W. (40)

Constraints (39) and (40), define, respectively, the complementarity and superadditivity prop-
erties that should be satisfied by any inequality defining a non-trivial facet PMKP(W). The
superadditivity together with (37) implies the monotonicity property (the coefficients in vector
ξ are non-decreasing) because ξq = 0 + ξq = ξ1 + ξq ≤ ξq+1.

The master polytope PMKP(W) corresponds to an integer knapsack problem with right-hand
side W where all possible left-hand side coefficients, from 1 to W , do exist. General integer
knapsack problems do not have all possible left-hand side coefficients. However, all non-trivial
facets of a general integer knapsack polytope with right-hand sideW are projections (obtained by
eliminating the non-existing coefficients) of some facet of PMKP(W) (see Chopra et al. (2015)).
Therefore, Theorem 2 also yields a (pseudo-polynomial) exact LP-based separation procedure
for the general integer knapsack polytope. For example, consider the general integer knapsack
problem with three variables defined by 2t2 + 3t3 + 4t4 ≤ 5, t ∈ Z3

+. A solution to its linear

12

relaxation is t2 = 2, t3 = 1/3, and t4 = 0. We can cut that point by solving the following
LP: z = max 2ξ2 + 1/3 ξ3 subject to ξ1 = 0, ξ5 = 1, ξ1 + ξ4 = 1, ξ2 + ξ3 = 1, 2ξ1+ ≤ ξ2,
ξ1 + ξ2 ≤ ξ3, ξ1 + ξ3 ≤ ξ4, ξ1 + ξ4 ≤ ξ5, 2ξ2+ ≤ ξ4, ξ2 + ξ3 ≤ ξ5. The optimal solution to that
LP is the extreme point ξ1 = 0, ξ2 = ξ3 = 0.5, ξ3 = ξ4 = 1, with z = 7/6. So, by Theorem
2, 0.5t2 + 0.5t3 + t4 + t5 ≤ 1 defines a facet of PMKP(5). By eliminating the non-existing
coefficients one obtains 0.5t2 + 0.5t3 + t4 ≤ 1, a facet-defining cut for the original knapsack
problem. This LP-based separation procedure is rarely used in practice for the following reason:
even if the integer knapsack problem is very sparse, having only a few non-zero coefficients, it
is still necessary to solve an LP with W variables and O(W 2) constraints. Yet, the theoretical
properties characterized in Theorem 2 may be very helpful, as will be seen next.

Define θiq as an integer variable indicating how many routes with a total load of exactly q
units, where 1 ≤ q ≤ Wi, leave depot i ∈ I. Those variables θ are simply an aggregation of
variables λ and can be expressed as:

θiq =
∑

ω∈Ω(i): d(ω)=q

λω, ∀ i ∈ I, 1 ≤ q ≤Wi. (41)

Then, inequalities (28) imply that:

Wi∑
q=1

q θiq ≤Wi yi, i ∈ I. (42)

We want to obtain strong cuts from (42). The following result proved in the Appendix, shows
that Theorem 2 still provides a characterization of the desired inequalities.

Theorem 3. ξt ≤ 1 defines a non-trivial facet of PMKP(Wi) if and only if ξθ ≤ yi defines a

non-trivial facet of conv{(θi, yi) ∈ ZWi
+ × {0, 1} :

∑Wi

q=1 q θq ≤Wiyi}.

However, in order to also obtain some inequalities that are not facet-defining but can be
cheaply separated, we exclude the complementarity conditions (39) from the following definition.

Definition 1. Given a depot i ∈ I and a vector ξ ∈ RWi
+ satisfying (37)–(38) and (40), the

inequality
Wi∑
q=1

ξq θ
i
q ≤ yi, (43)

is known as a Route Load Knapsack Cut (RLKC).

Theorem 4. A Route Load Knapsack Cut (43) is valid for (EF).

Proof. Let (θ̄i, ȳi) ∈ ZWi
+ ×{0, 1} be an integer solution of (EF) restricted to the variables θ and

y related to depot i. If ȳi = 0, then θ̄iq = 0 for all 1 ≤ q ≤Wi, due to (42). Thus, inequality (43)
is satisfied.

Consider now the case ȳi = 1. Let ξ(q) = ξq be a function defined for integer values between
1 and Wi. By the repeated application of (37)–(38), (40) and due to the fact that θ̄i satisfies
(42), we have that

Wi∑
q=1

ξq θ̄
i
q ≤ ξ(

Wi∑
q=1

qθ̄iq) ≤ ξ(Wi) = 1 = ȳi.

Thus, inequality (43) is also satisfied.

In order to illustrate the proof for the case ȳi = 1, consider an example where Wi = 6 and
θ̄i = (1, 2, 0, 0, 0, 0). Then, ξ1 + ξ2 + ξ2 ≤ ξ3 + ξ2 ≤ ξ5 = ξ(5) ≤ ξ(6) = 1 = ȳi.

13

A Chvàtal-Gomory rounding of constraints (42) using multipliers β ∈ R, where β ≥ 1/Wi,
obtain inequalities

Wi∑
q=1

⌊β q⌋
⌊βWi⌋

θiq ≤ yi, i ∈ I, (44)

which are RLKCs. The supperadditive property of the coefficients follows from the fact that
⌊r⌋ + ⌊r′⌋ ≤ ⌊r + r′⌋ for all r, r′ ∈ R+. However, the complementarity property is usually not
satisfied.

5.2 Separation

Separation of RLKCs is done separately for each depot i ∈ I. For clarity, we omit index i for
the remainder of this section: we have Ω = Ω(i), θ = θi, y = yi, W = Wi. Let (θ̄, ȳ) denote the
current fractional solution.

First, we separate RLKCs by Chvàtal-Gomory rounding. For every q such θ̄q > 0, we consider
multipliers β = p/q, p = 1, . . . , q − 1, and check whether constraint (44) is violated.

Secondly, we separate stronger RLKCs, where the ξ coefficients satisfy all the conditions
in Theorem 2. It would be possible to perform an exact separation by solving: maximize
z =

∑W
i=1 θ̄qξq, subject to (37)–(40). If z > y, then inequality (43) would be violated. Moreover,

by solving that LP using a simplex-based algorithm, the obtained coefficients would be extreme
points of (37)–(40), so the separated RLKCs would always be facet-defining. However, as there
are W variables and O(W 2) constraints in that LP, that would be too time-consuming for large
values of W . Also, the generation of a single violated cut per iteration would be undesirable due
to possible convergence issues.

Therefore, we separate the RLKCs that correspond to the 1/k-facets of the master knapsack
polytope. A non-trivial facet ξt ≤ 1 of PMKP(W) is called an 1/k-facet if k is the smallest
possible integer such that

ξq ∈ {0/k, 1/k, 2/k, . . . , k/k} ∪ 1/2, 1 ≤ q ≤W. (45)

Using both theoretical arguments and computational experiments, it was shown in Chopra et al.
(2015) that the 1/k-facets for small values of k are by far the most important facets for obtaining
a good approximation to PMKP(W).

Let ξ ∈ RW
+ be a non-decreasing vector that satisfies (37)–(38) and (45), for a certain k. Such

a vector can be uniquely determined by a non-decreasing sequence (am) where am represents the
first index q with ξq ≥ m/k for m ∈ {1, . . . , k} ∪ {k/2} (a0 is not part of the sequence because
it would always have value 1). The vector ξ corresponding to a certain value of k and to (am)
will be denoted by ξk−(am).

Theorem 5 (Chopra et al. (2015)). A vector ξk−(am) satisfies (37)–(40) if and only if

2 ≤ am ≤ am′ ≤ (W + 1)/2, ∀m < m′ ≤ k/2, (46)

am + ak+1−⌈m⌉ =W + 1, ∀m ≤ k/2, (47)

am + am′ ≥ a⌈m+m′⌉ ∀m ≤ m′ with ⌈m+m′⌉ ≤ k. (48)

In that case, ξk−(am) is said to define a 1/k-inequality

In our separation algorithm, we enumerate non-decreasing sequences (am) satisfying con-
straints (46)–(48) that correspond to 1/6-, 1/8-, or 1/10-inequalities. Let Φ = {q : 1 ≤ q ≤
W, θ̄q > 0}.

To separate 1/6-inequalities ξ6−(am), we enumerate triples (a1, a2, a3) such that am ∈ Φ or
{W − am} ∈ Φ for m = 1, . . . 3, and 2 ≤ a1 ≤ a2 ≤ a3 ≤ (W + 1)/2. Values a4, a5, a6 are then
obtained from equalities (47). According to constraints (48), for each triple (a1, a2, a3), we verify

14

2a1 ≥ a2, a1 + a2 ≥ a3, a1 + 2a3 ≥ W + 1 (obtained from a1 + a3 ≥ a4 or from a3 + a3 ≥ a6),
and 2a2 + a3 ≥W + 1 (obtained from a2 + a3 ≥ a5 or from a2 + a2 ≥ a4).

As an example, consider a case where Q = 70, W = 140 and a fractional solution where
the non-zeros are θ̄38 = 1/14, θ̄53 = 1/2, θ̄65 = 16/14, θ̄70 = 1/2, and ȳ = 277/280. The

best rounding cut, obtained with multiplier β = 1/53, is
∑105

q=53
1
2θq +

∑140
q=106 θq ≤ y, yielding

a violation of around 0.082. That cut is not facet-defining. However, there is a better 1/6-
inequality cutting that fractional point. By taking a1 = 38 and a2 = a3 = 53 (so, a4 = a5 = 88

and a6 = 103), we get the facet-defining
∑52

q=38
1
6θq +

∑87
q=53

1
2θq +

∑102
q=88

5
6θq +

∑140
q=103 θq ≤ y,

yielding a violation of around 0.094.

To separate 1/8-inequalities ξ8−(am), we enumerate tuples (a1, a2, a3, a4) such that am ∈ Φ
or {W − am} ∈ Φ for m = 1, . . . 4, and 2 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ (W + 1)/2. Values a5,
a6, a7, a8 are then obtained from equalities (47). According to constraints (48), for each tuple
(a1, a2, a3, a4) we verify 2a1 ≥ a2, a1 + a2 ≥ a3, a1 + a3 ≥ a4, 2a2 ≥ a4, a1 + 2a4 ≥ W + 1,
a2 + a3 + a4 ≥W + 1, and 3a3 ≥W + 1.

To separate 1/10-inequalities ξ10−(am), we enumerate tuples (a1, a2, a3, a4, a5) such that am ∈
Φ or {W − am} ∈ Φ for m = 1, . . . 5, and 2 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5 ≤ (W + 1)/2. Values a6,
a7, a8, a9, a10 are then obtained from equalities (47). According to constraints (48), for each
tuple (a1, a2, a3, a4, a5) we verify 2a1 ≥ a2, a1 + a2 ≥ a3, a1 + a3 ≥ a4, a1 + a4 ≥ a5, 2a2 ≥ a4,
a2+ a3 ≥ a5, a1+2a5 ≥W +1, a2+ a4+ a5 ≥W +1, a3+2a4 ≥W +1, and 2a3+ a5 ≥W +1.

For each sequence (am) which verifies (46)–(48), we generate vector ξk−(am), and check if the
corresponding inequality (43) is violated by θ̄. If a positive violation is found, the inequality is
added to the restricted master problem. Some additional remarks on this separation procedure:

• A separated 1/k- inequality, defined by ξk−(am), is not necessarily a facet (it is if and only
if that vector is an extreme point of (37)–(40)). Yet, repeated separation rounds until
no violation is found obtains exactly the same bounds that would be obtained by only
separating 1/k-facets.

• The enumerative approach used in the procedure is likely to be effective even for large
values of W because of the typical sparsity of the fractional solution vector (if W is large,
usually |Φ| << W).

• An 1/k′-inequality is also an 1/k-inequality if k′ is a divisor of k. So, 1/2-, 1/3-, 1/4-, and
1/5-inequalities are also being separated by the procedure.

5.3 Modifying the Labeling Algorithm

Given a dual solution to the linear relaxation of the restricted Master Formulation, the pricing
problem searches for variables λω with a negative reduced cost. The pricing problem can be
decomposed into |I| similar subproblems, one for each depot i ∈ I. In this section, we consider
a pricing subproblem for a fixed depot i.

In the absence of non-robust Rank-1 cuts (36) and RLKCs (43), the reduced cost of variable
λω corresponding to route ω ∈ Ω(i) can be expressed as the sum of reduced costs for every edge
in the route, defined as follows. Assume that there are M active robust constraints or cuts,
the m-th such constraint having dual variable τm. Using the fact that zij = 1/2

∑
e∈δ(j) x

i
e,

i ∈ I, j ∈ J (Equations (3)), we can eliminate the z variables and express the robust constraint
m in format: ∑

i∈I

∑
e∈E

ηime xie +
∑
i∈I

ιmi yi ≤ bm.

Actually, Constraints (2) are equalities, but this does not make difference. So, the reduced cost
of an edge e for a subproblem i ∈ I is given by:

c̄ie = ce −
M∑

m=1

ηime τm.

15

Then, the pricing problem is modeled as a resource-constrained elementary shortest path problem
(RCSPP) in the following complete directed graphDi = ({i}∪J,A). The reduced cost c̄a of every
pair of opposite arcs (u, v) and (v, u) ∈ A, corresponding to e = (u, v) ∈ E, is set to c̄ie. We have
a single capacity resource. The resource consumption of arc (j, j′) ∈ A is equal to 1

2dj +
1
2dj′ ,

considering that di = 0. That symmetric definition, in the sense that the consumption of arcs
(j, j′) and (j′, j) are always identical, improves the efficiency of the labeling algorithm. Bounds
on the accumulated resource consumption are [0, Q], for every node j ∈ {i} ∪ J . The RCSPP is
then to find an elementary cycle of minimum reduced cost starting and finishing in node i. We
apply the bi-directional bucket graph based labeling algorithm proposed by Sadykov et al. (2021)
to solve this RCSPP. That labeling algorithm already incorporates the modifications needed for
handling limited-memory Rank-1 cuts and the ng-route relaxation, following ideas from Baldacci
et al. (2011a); Jepsen et al. (2008); Pecin et al. (2017a).

The main goal of this section is to describe the additional modifications of the basic labeling
algorithm for handling RLKPs (43). Assume that there is a set Γ of active RLKPs, constraint
γ ∈ Γ having negative dual variable πγ . The coefficient of a variable λω in an RLKC γ is defined
by a non-decreasing and superadditive function ξγ(d(ω)) on the route total load d(ω). Thus,
the total contribution of all RLKCs to the reduced cost of λω is g(d(ω)) =

∑
γ∈Γ −πγξγ(d(ω)).

Being a positive linear combination of functions ξγ(d(ω)), function g(d(ω)) is also non-decreasing
and superadditive.

In the labeling algorithm, each label L represents a partial path ω(L) from the node i. Let
J(L) be the set of customers visited by the partial path, j(L) be the final node of the partial
path, c̄(L) be the sum of reduced costs of arcs in the partial path, and q(L) be the total capacity
resource consumption of the partial path. The algorithm consists in an enumeration of all
feasible partial paths. For that, every label L is extended by taking each arc a′ = (j(L), j′)
outgoing from node j(L). After extension, a new label L′ is created, for which, j(L′) = j′,
q(L′) = q(L) + 1

2dj(L) +
1
2dj(L′), and c̄(L′) = c̄(L) + c̄a′ . To avoid complete enumeration, a

dominance rule should be used to remove labels that cannot lead to the minimum reduced cost
path when extended. A label L dominates label L′ if for any completion path ω such that union
of paths ω(L′) and ω is feasible, i.e., (ω(L′), ω) ∈ Ω, we have i) union of paths ω(L) and ω is
also feasible and ii) reduced cost of path (ω(L′), ω) is not smaller than the reduced cost of path
(ω(L), ω). The next theorem gives a valid dominance rule.

Theorem 6. Given a non-decreasing function g(d(ω)) representing the contribution of the
RLKCs to the reduced cost of a path ω ∈ Ω(i), label L dominates label L′ if j(L) = j(L′),
J(L) ⊆ J(L′), q(L) ≤ q(L′), and c̄(L) ≤ c̄(L′).

Proof. Consider an arbitrary partial path ω starting at node j(L) = j(L′) and finishing at node
i. If path (ω(L′), ω) is feasible then path (ω(L), ω) is also feasible due to conditions j(L) = j(L′),
J(L) ⊆ J(L′), and q(L) ≤ q(L′). The reduced cost of path (ω(L′), ω) is not smaller than that
of (ω(L), ω), as the total reduced costs of arcs of the former is not smaller due to c̄(L) ≤ c̄(L′),
and the contribution of RLKCs to the reduced cost of (ω(L′), ω) is not smaller than the one of
(ω(L), ω) due to q(L) ≤ q(L′). Thus, L dominates L′.

Theorem 6 essentially says that RLKCs do not change the dominance rule in the labeling al-
gorithm. However, RLKCs do affect that algorithm in more subtle ways. The forward-backward
route symmetry is exploited in the bi-directional labeling algorithm as follows. Every label L is
extended only if q(L) ≤ Q/2. After the label extension phase, the concatenation phase is per-
formed, in which partial paths corresponding to two generated labels are concatenated to form
a complete path. To speed up this concatenation phase, completion bounds are used. Given a
node j ∈ J and a set of labels L such that j(L) = j for all L ∈ L, completion bound B1(j,L)
gives the minimum reduced cost of labels in L: B1(j,L) = minL∈L{c̄(L)}. Due to the fact that
function g(q) is non-decreasing, value

c̄(L′) + g(q(L′)) +B1(j,L) (49)

gives a valid lower bound for the reduced cost of any complete path obtained by concatenation of
paths ω(L′) and ω(L) with j(L′) = j and L ∈ L. If value (49) is not smaller than the minimum

16

reduced cost of a complete feasible path found so far, then concatenation of label L′ with all
labels in a set L may be skipped, saving significant time.

However, completion bounds B(j,L) may not be tight as the reduced cost of labels do
not include the contribution of RLKCs. We can reinforce completion bounds B1 by defining
B2(j,L) = minL∈L{c̄(L) + g(q(L))}. The total load of any concatenated path (w(L′), w(L)),
where j(L′) = j(L), is equal to q(L) + q(L′). Thus g(q(L) + q(L′)), i.e., the contribution of
RLKCs to the reduced cost of this path, is not smaller than g(q(L))+ g(q(L′) due to superaddi-
tivity of function g(q). Therefore, value (49) in which B1 is replaced by B2 is still a valid lower
bound for the reduced cost of any complete path obtained by concatenation of paths ω(L′) and
ω(L) with j(L′) = j and L ∈ L.

Completion bounds are used not only in the concatenation phase of the labeling algorithm but
also during the bucket arc elimination procedure, as well as in the elementary route enumeration
procedure. So, the superadditivity property of RLKCs plays an important role in keeping those
algorithms efficient.

6 Computational experiments

The algorithm is implemented in C++ language. We use the following third-party libraries and
codes:

• BaPCod library (Sadykov and Vanderbeck, 2021) which implements the BCP framework;

• RCSP library, developed by Sadykov et al. (2021) which implements the bucket graph based
labeling algorithm, bucket arc elimination procedure, elementary route enumeration, and
also the separation algorithms for R1Cs and RCCs;

• IBM CPLEX Optimizer version 12.10 as the LP and MIP solver.

Experiments are run on a single thread of a 2x18-core Cascade Lake Intel Xeon Skylake Gold
6240 server at 2.6 GHz and having 196 GB of RAM.

6.1 Capacitated Location-Routing Instances

The proposed BCP algorithm is tested on instances from the literature. The first set of instances,
which we denote as PPW06, was introduced by Prins et al. (2006) and contains instances with
20, 50, 100, or 200 customers, and with 5 or 10 possible depot locations. As we do not consider
the four instances with only 20 customers, the set has 26 instances. The second set of instances,
which we denote as TB99, was introduced by Tuzun and Burke (1999). Depots are uncapacitated
in those instances. We only consider the nine instances, with 100 or 150 customers and 10
possible depot locations, that were also considered in Contardo et al. (2014): P111112, P111212,
P112112, P112212, P113112, P113212, P131212, P131112, P131212, and P132112. The third
set of instances, which we denote as SL19, was introduced by Schneider and Löffler (2019). We
consider the instances with 100, 200 or 300 customers, and with 5, 10, 15, or 20 possible depot
locations.

In the first experiment, we assess the impact of different families of cuts on the efficiency of
our algorithm. That evaluation is performed on classic PPW06 instances. We test the following
variants of the BCP algorithm :

• BCP0 — the base variant obtained by adapting in a straightforward way (by adding de-
pot opening variables and depot capacity constraints) the best MDVRP algorithm in the
literature (Sadykov et al., 2021) for the CLRP. Only two families of cuts are separated:
rounded capacity cuts (RCC) and limited-memory rank-1 cuts (lm-R1C). Those cuts are
generic for many VRP variants and do not take the particular structure of CLRP into
account.

17

• BCPall — the variant, in which all families of cuts described in this paper are used. This
means that problem-specific RLKCs, DCCs, FCs, COVs, and GUBs are also separated.

• BCPall - CUT — the variant, in which all families of cuts are used except one (either RLKC,
DCC, FC, COV, or GUB).

To exclude as much as possible the randomness related to finding good primal solutions earlier,
all algorithm variants are given as initial primal bounds the values of the best-known solutions
(the best solutions found in the recent literature, but also the improving solutions obtained
during this work). The time limit is set to 12 hours.

Table 1 gives an overview of the performance of seven variants of our algorithm. The columns
give the variant, average primal-dual relative gap after solving the root node, the geometric mean
of the time needed for solving the root node (in seconds), the average number of branch-and-
bound nodes, the geometric mean and the arithmetic mean (average) of total solution time in
seconds, and the number of instances solved within the time limit. The total solution time is
equal to the time limit for the unsolved instances.

In Figure 1, we also give the performance profile for all the tested variants of the BCP
algorithm. Each point (X,Y) of the line corresponding to a variant says that for Y instances
the solution time for this variant is not more than X times larger than the minimum solution
time for all variants. So, the higher is the line corresponding to a variant, the more efficient is
this variant. The horizontal axis in that graphic is logarithmic.

Table 1: Comparison of variants of the BCP algorithm on CLRP instances PPW06

Root Average Geomean
Variant Gap Time (s) Nodes Time (s) Time (s) Solved
BCP0 4.46% 57.9 19.2 6373.8 758.7 24/26
BCPall−GUB 3.08% 99.0 9.0 3314.6 481.0 25/26
BCPall−DCC 0.85% 101.0 9.1 5995.1 504.6 24/26
BCPall−FC 0.67% 111.4 4.4 3174.7 283.9 25/26
BCPall−RLKC 0.52% 114.7 4.1 2994.8 264.0 25/26
BCPall−COV 0.49% 114.4 4.6 3172.6 273.4 25/26
BCPall 0.48% 115.0 4.1 3109.0 265.5 25/26

1 2 5 10 20
0

5

10

15

20

25

time ratio to best

n
u
m
b
er

of
in
st
an

ce
s

BCP0

BCPall-RLKC

BCPall-DCC

BCPall-FC

BCPall-COV

BCPall-GUB

BCPall

Figure 1: Performance profiles of BCP variants on CLRP instances PPW06

From the results, we can see that adding all problem-specific cuts makes the BCP algorithm

18

significantly more efficient than the base variant. Among individual families of cuts, DCCs have
the most impact on the mean solution time, and allow one to solve one more instance. GUBs
have the most impact on the average root gap. The impact of the family FC is smaller. The
families COV and RLKC have a modest impact both on the root gap and on the total solution
time.

We believe that the efficiency of RLKCs depends on the instance characteristics, and in
particular on the ratio ρ between the vehicle capacity and the average depot capacity: ρ =

Q∑
i∈I Wi/|I| . Our hypothesis is that the larger is value ρ, the larger should be the impact of

the family RLKC. In fact, ratio ρ is rather small for instances PPW06, and it decreases with
the increase of the instance size. It is on average 0.3 for instances with 50 customers, 0.18 for
instances with 100 customers, and 0.1 for instances with 200 customers. Thus, a small impact
of RLKCs is expected.

To test this hypothesis, we generated additional instances which are based on those in the set
PPW06, but with ratio ρ equal to 0.3, 0.5, and 0.7. The procedure to modify an original instance
with value ρ to obtain the instance with desired ratio ρ′ is the following. First, we multiply the
capacity and the cost of depots by factor σ: f ′i = ⌈σfi⌉, and W ′

i = ⌈σWi⌉ for all i ∈ I, where

σ = max

{
ρ

ρ′
,

∑
j∈J dj∑

i∈I Wi −maxi∈I Wi

}
.

Value σ is calculated in such a way that, for any depot i ∈ I, there exists a feasible solution to the
modified instance with depot i closed, i.e. opening of any depot cannot be fixed by preprocessing.
In the case σ > ρ/ρ′, we additionally increase the vehicle capacity: Q′ = ⌈Qρσ/ρ′⌉.

The modified instances are more difficult than the original ones: we could not obtain good
feasible solutions for instances with 200 customers. Thus, we consider only modified instances
with 50 and 100 customers. In total, we use 20 instances with ρ = 0.3, 17 instances with ρ = 0.5,
and 17 instances with ρ = 0.7. The different number of instances is explained by the fact that
sometimes the same instance is obtained by modification procedure from two different original
instances. Such duplicated instances are removed.

We test four variants of our algorithm: BCP0, BCPall, BCPall - RLKC, and BCPall - DCC to
access the impact of cut families DCC and RLKC on instances with different values ρ. We use
the value of the best solution we were able to obtain during the preliminary experiments as the
initial primal bound. For 51 instances out of 54, we were able to obtain the optimal solution
value. The time limit is set to 12 hours. Table 2 gives the performance of the variants of our
algorithm separately on modified instances PPW06 for different value ρ. The meaning of the
columns is the same as in Table 1.

Table 2: Comparison of variants of the BCP algorithm on modified instances PPW06 with different
value ρ.

Root Average Geomean
Variant ρ Gap Time (s) Nodes Time (s) Time (s) Solved
BCP0 0.3 2.14% 32.1 18.6 4290.3 344.7 19/20
BCPall−DCC 0.3 0.74% 41.0 12.7 4203.0 260.9 19/20
BCPall−RLKC 0.3 0.51% 48.2 6.1 3148.5 174.1 19/20
BCPall 0.3 0.46% 49.3 5.8 3057.3 162.9 19/20
BCP0 0.5 3.33% 42.9 76.7 15873.3 2513.6 13/17
BCPall−DCC 0.5 2.09% 108.4 35.0 12963.9 1979.7 13/17
BCPall−RLKC 0.5 1.73% 69.8 24.3 11155.1 1059.3 14/17
BCPall 0.5 1.26% 120.3 13.2 8248.7 813.6 15/17
BCP0 0.7 5.94% 51.6 255.3 28272.8 10511.0 6/17
BCPall−DCC 0.7 2.49% 247.7 58.1 16503.2 4531.6 12/17
BCPall−RLKC 0.7 3.91% 83.0 89.4 22259.4 5438.7 10/17
BCPall 0.7 1.53% 284.6 18.9 9491.4 1734.7 14/17

19

The results presented in Table 2 confirm our hypothesis. Impact on the BCP performance
of the family RLKC remains marginal for instances with ρ = 0.3, whereas it becomes noticeable
for instances with ρ = 0.5. For instances with ρ = 0.7, this impact is instrumental, as the
employment of RLKCs allows us to decrease the root gap by more than half, divide the number
of nodes by almost five, divide the solution time by three, and solve four more instances to
optimality.

In Table 3, we show the average number of generated cuts of each family (and the average
number of active cuts at the end of the root node in brackets). These statistics are shown both
for the original instances PPW06, as well as for the modified instances.

Table 3: Cut generation statistics for original and modified instances PPW06.

Original Modified instances
Cut family instances ρ = 0.3 ρ = 0.5 ρ = 0.7
RCC 492.5 (11.6) 349.5 (7.2) 366.8 (2.9) 254.9 (1.9)
lm-R1C 7044.0 (215.4) 22405.5 (153.0) 35692.0 (223.8) 35610.9 (236.2)
COV 30.8 (0.2) 28.1 (0.1) 40.1 (0.3) 30.7 (0.1)
FC 4.0 (0.7) 3.9 (0.6) 8.5 (0.6) 4.4 (0.5)
GUB 338.5 (78.4) 282.4 (30.0) 228.8 (20.9) 203.2 (12.9)
DCC (total) 488.4 (9.9) 1135.1 (10.1) 1341.9 (14.8) 1636.1 (11.4)
DCC1 419.1 (8.9) 1078.0 (9.2) 1320.3 (14.8) 1622.4 (11.4)
DCC2 69.3 (1.0) 57.1 (0.8) 21.6 (0.0) 13.7 (0.0)
RLKC (total) 53.4 (1.2) 325.1 (3.9) 11726.6 (17.9) 12785.2 (29.6)
RLKCround 26.8 (0.7) 296.1 (3.7) 1304.8 (4.1) 109.9 (0.8)
RLKC1/2 0.7 (0.0) 0.5 (0.0) 757.2 (1.8) 1401.8 (7.7)
RLKC1/3 0.7 (0.0) 0.8 (0.0) 395.6 (0.4) 675.7 (1.6)
RLKC1/4 1.2 (0.0) 1.4 (0.1) 362.7 (0.8) 418.2 (0.9)
RLKC1/5 1.8 (0.0) 1.5 (0.0) 1115.7 (0.9) 1738.4 (3.8)
RLKC1/6 2.6 (0.0) 3.2 (0.1) 780.2 (1.9) 843.4 (1.7)
RLKC1/8 5.7 (0.1) 5.0 (0.1) 2318.9 (3.3) 2611.1 (4.9)
RLKC1/10 13.8 (0.3) 16.6 (0.1) 4691.6 (4.9) 4986.7 (8.2)

In the next experiment, we compare our algorithm BCPbest with the algorithm by Contardo
et al. (2014) on instances TB99 and PPW06. For a fair comparison, we use here as initial primal
bounds the same values employed in Contardo et al. (2014). We set a time limit of 30 hours for
our algorithm. An aggregated comparison is presented in Table 4. For each algorithm, we give the
arithmetic and geometric mean times in seconds and the number of instances solved to optimality.
The solutions times of Contardo et al. (2014) are normalized using the CPU marks provided by
PassMark Single Thread Performance (https://www.cpubenchmark.net/singleThread.html),
so they are comparable to our times.

Table 4: Comparison of BCPbest with Contardo et al. (2014) on instances in the sets TB99 and
PPW06

BCPall Contardo et al. (2014)
Instance set Solved Av. Time Gm. Time Solved Av. Time Gm. Time
PPW06 24/26 14768 518 16/26 14235 836
TB99 9/9 4834 945 6/9 46290 5589

It can be seen from Table 4 that the new algorithm can solve 11 instances that could not be
solved in Contardo et al. (2014). We remark that one additional instance coord200-10-2 can
be solved by the new algorithm in less than six hours, if improved initial upper bounds (that
were not available to Contardo et al. (2014)) are used. The only open instance in set PPW06 is
now coord200-10-3b. We also evaluate the performance of our BCP algorithm when no initial

20

primal bound is passed to it. In this case, still, 24 out of 26 instances are solved to optimality
within the time limit of 30 hours. The geometric mean of the solution time is increased from
518 seconds to 935 seconds, and the geometric mean of the number of nodes is increased from
7.7 to 11.7. All detailed results for instances PPW06 and TB99 are reported in E-Companion B.

Finally, we evaluate the performance of our algorithm on recently introduced instances SL19.
This is the first exact algorithm applied for these instances. We use here as initial primal
bounds the best-known solutions found by Schneider and Löffler (2019). The time limit is set
to 30 hours. The instances are divided into groups depending on their size, i.e., the number of
potential depot locations |I| and the number of customers |J |. The results for each group of
instances are shown in Table 5. The columns give the size of instances, the number of instances
solved to optimality, the number of instances for which we could find improving solutions, and
the average improvement for these instances.

Table 5: Performance of BCPbest on instances in the set SL19

Instances
|I| |J | Solved Improved BKS Improvement
5 100 14/14 7/14 0.05%
10 100 14/14 5/14 0.11%
10 200 11/14 13/14 0.08%
15 200 15/20 18/20 0.12%
15 300 6/20 11/20 0.29%
20 300 4/20 8/20 0.91%

As it can be seen from Table 5, our algorithm could solve to optimality all instances with 100
customers, three quarters of instances with 200 customers, but only one quarter of the instances
with 300 customers. We could improve the best-known solutions for 62 instances. The average
improvement is small for instances with up to 15 depots, but it becomes very significant for
instances with 300 customers and 20 depots. For the instance 300-20-1e, the improvement
exceeds 5%. The results indicate that the heuristic of Schneider and Löffler (2019) obtains
solutions of excellent quality for instances with up to 15 depots. That quality decreases for
instances with 20 depots. The root gap (from the best-known solution) of our BCP algorithm
for the largest instances sometimes reaches 6–8%. Whereas for instances solved to optimality
a typical root gap is below 1% and never exceeds 2%. This suggests that some best-known
solutions for instances with 300 customers and 20 depots may be far away from the optimal
ones. Detailed results for instances SL19 are reported in E-Companion B.

6.2 VRP-CMD instances

In this section, we test our algorithm on VRP-CMD instances which arise when solving the cut
generation subproblem of the two-echelon stochastic multi-period capacitated location-routing
problem by a logic-based Benders decomposition approach (Ben Mohamed et al., 2020). We
have randomly selected 199 instances, which have 50 customers and from three to five depots.

Despite the fact the VRP-CMD is very similar to the standard multi-depot vehicle routing
problem (MDVRP), the introduction of tight depot capacities makes the problem much more
difficult. MDVRP instances from the literature with less than 80 customers are consistently
solved to optimality in seconds, often in the root node (Sadykov et al., 2021). On the other
hand, the VRP-CMD instances we consider here can take many minutes (or even hours) and
require the exploration of big branch-and-bound trees. Root gaps are very large and may reach
15% of the optimal value.

In this experiment, we computationally estimate the impact of valid inequalities on the
efficiency of the BCP algorithm. As in the VRP-CMD all depots are considered open, variables
y are fixed to one and valid inequalities FC, COV, and GUB are not useful. Thus, we test the

21

following BCP variants.

• BCP0 — the base variant obtained by adapting in a straightforward way, by only adding
the depot capacity constraints, the best MDVRP algorithm in the literature (Sadykov
et al., 2021) for the VRP-CMD. Again, only RCCs and lm-R1Cs are separated.

• BCP0+RLCK — the base variant with additional separation of RLKCs.

• BCP0+DCC — the base variant with additional separation of DCCs.

• BCPall — the variant with separation of all valid inequalities (RCC, lm-R1C, DCC, and
RLKC).

To exclude the randomness related to finding good primal solutions earlier or later during
the branch-and-bound, for this experiment we use only the 183 instances which we were able
to solve to optimality during preliminary tests. The initial upper bound is set to that optimal
solution value augmented by a small epsilon. The time limit is set to 3 hours. Table 6 presents
the results for each of the four BCP variants tested. The columns give the average relative root
gap from the optimal solution value, the geometric mean value for the root solution time, the
average number of branch-and-bound nodes, the geometric mean value for the total solution
time, and the number of instances solved. Detailed results on those 183 instances for variant
BCPall are reported in C.

Table 6: Comparison of variants of the BCP algorithm on VRP-CMD instances

Root Average Geomean
Variant gap time Nodes Time (s) Time (s) Solved
BCP0 6.56% 12.0 194.0 3422.4 1502.8 156/183
BCP0+RLKC 6.41% 14.8 59.3 1970.3 922.8 177/183
BCP0+DCC 3.67% 22.2 58.0 1847.9 672.4 177/183
BCPall 3.57% 26.5 25.7 1175.3 512.0 183/183

In addition to Table 6, we also give the performance profiles for the four tested BCP variants
in Figure 2. Each line corresponds to one variant of the algorithm and depicts the number of
instances solved within a given time expressed in minutes.

30m 1h 1h30m 2h 2h30m
0

50

100

150

200

solution time

n
u
m
b
er

of
so
lv
ed

in
st
an

ce
s

BCP0

BCP0+DCC

BCP0+RLKC

BCPall

Figure 2: Performance profile for BCP variants tested on 183 VRP-CMD instances with known
optimal solutions

22

Table 6 and Figure 2 show that both families DCC and RLKC have a very significant positive
impact on the efficiency of the BCP algorithm. DCCs decrease the most the root gap, the number
of nodes, and the average solution time. However, RLKCs have a larger impact on the number
of solved instances. Clearly, the best variant of the BCP algorithm is the one that uses both
families of cuts.

E-Companion C also reports results on the remaining 16 instances for BCPall, which are run
with the best-known solution values as initial upper bounds. Nine of these instances could be
solved to optimality within 30 hours, and seven instances remain open.

6.3 VRPTW with Shifts instances

In this section, we test our BCP algorithm on instances of the VRPTW with Shifts. These
instances were introduced by Dabia et al. (2019), who built them on top of the well-known
Solomon instances for the VRPTW. There are instances with three different sizes: 25, 50, and 100
customers. All instances have three shifts. For each original Solomon instance, three instances
were generated with three different shift capacities. For each size and each shift capacity, there
are 56 instances, divided into classes c1, c2, r1, r2, rc1, rc2. Thus, in total there are 504
instances.

Shifts in this problem are modeled as capacitated depots. Again, as in the case of the VRP-
CMD, there is no fixed cost to “open” a shift. Therefore, variables y are fixed to one and valid
inequalities FC, COV, and GUB inequalities are not useful.

We run the variant BCPall without initial upper bounds with the time limit of 30 hours. 474
out of 504 instances were solved to optimality, including all instances with 25 customers, and all
but one instance with 50 customers. The detailed results are given in E-Companion D.

To compare the efficiency of our algorithm with the one proposed by Dabia et al. (2019),
we need to calculate the number of solved instances within 30 minutes to take into account the
difference in the computers used. Our algorithm solved 421 instances to optimality in 30 minutes
including all instances with 25 customers. Considering that the algorithm by Dabia et al. (2019)
solved 280 instances to optimality, we can say that our approach is considerably better. The
best-known solutions are improved for 238 out of 504 instances.

Now, as in the previous section, we test four BCP variants: BCP0, BCP0+RLCK, BCP0+DCC,
and BCPall. Again, to exclude the randomness related to finding good primal solutions earlier or
later during the branch-and-bound, for this experiment we use only the 474 instances for which
we know the optimal solutions. The time limit is set to three hours.

Table 7 presents the results separately for every instance size. The columns give the average
relative root gap, geometric mean root solution time in seconds, the average number of branch-
and-bound nodes, the geometric mean total solution time in seconds, and the number of instances
solved.

In Figure 3, we also give the performance profiles for the four tested BCP variants applied to
instances with 100 customers. Each line corresponds to one variant of the algorithm and depicts
the number of instances solved within a given time expressed in minutes.

The results show a very significant positive impact of RLKCs, as their separation improves
the solution time, the number of branch-and-bound nodes, and the number of solved instances.
The separation of DCCs has also more modest, but still positive impact. This can be clearly
seen in the performance profile in Figure 3.

23

Table 7: Comparison of variants of the BCP algorithm on VRPTW with Shifts instances

Root Average Geomean
Variant |J | Gap Time (s) Nodes Time (s) Time (s) Solved
BCP0 25 1.40% 1.1 1.2 3.5 1.2 168/168
BCP0+DCC 25 0.25% 1.1 1.0 2.2 1.1 168/168
BCP0+RLKC 25 0.02% 1.3 1.0 3.3 1.2 168/168
BCPall 25 0.00% 1.1 1.0 2.0 1.0 168/168
BCP0 50 1.96% 17.7 3.1 588.3 36.2 163/167
BCP0+DCC 50 1.21% 15.5 2.0 354.0 23.8 166/167
BCP0+RLKC 50 0.75% 24.7 1.4 384.6 28.8 164/167
BCPall 50 0.50% 18.0 1.2 192.6 19.4 167/167
BCP0 100 1.15% 90.7 7.0 2158.5 304.8 123/139
BCP0+DCC 100 0.84% 112.2 4.3 1631.9 268.1 130/139
BCP0+RLKC 100 0.56% 114.8 2.5 953.1 175.1 136/139
BCPall 100 0.51% 124.9 2.3 885.2 175.4 137/139

30m 1h 1h30m 2h 2h30m
0

50

100

150

solution time

n
u
m
b
er

o
f
so
lv
ed

in
st
an

ce
s

BCP0

BCP0+DCC

BCP0+RLKC

BCPall

Figure 3: Performance profile for BCP variants tested on 100 customer instances with known
optimal solutions of the VRPTW with Shifts

7 Conclusion

In this work we propose a BCP algorithm for the CLRP and for two other related problems with
the nested knapsack structure, VRP-CMD and VRPTW-S.

The proposed algorithm for CLRP is clearly superior to the other exact algorithms in the
literature. An important observation is that this is the first BCP algorithm that handles CLRP
directly, instead of reducing it to the solution of a set of VRP-CMD subproblems obtained by
fixing the opened depots. We believe that this direct approach has more potential for solving
instances with many depot locations. In fact, instances with 15 and 20 depot locations could
be solved. Results on VRPTW-S are also clearly better than those from the exact algorithms
found in the literature.

The most original methodological contribution of this work is the introduction of RLKCs,
a family of non-robust cuts derived from the “outer” knapsack constraints, the ones that are
defined directly over the route variables. Those cuts are strong in the sense that they contain
all the facets of the master knapsack polytope, dominating the cover cuts proposed in Dabia
et al. (2019). Some theoretical properties of those facets, monotonicity and superadditivity,
are explored when adapting the labeling algorithm (used in the pricing) for handling RLKCs,

24

keeping it efficient. In fact, the adaptation was so successful that the BCP does not need any
mechanism for limiting or controlling the RLKCs, they are treated like robust cuts. The overall
positive impact of RLKCs in the BCP performance varied, depending on the tested problem and
even on the characteristics of the instances. For the CLRP, the RLKCs proved to be effective on
instances with tight depot capacities. As those instances are harder, the RLKCs make the final
BCP algorithm significantly more robust.

In future works, the BCP algorithm proposed in this work could be applied to other problems
with the nested knapsack structure, like the capacity and distance-constrained plant location
problem (Albareda-Sambola et al., 2009) or the last-mile vehicle routing problem with delivery
options (Tilk et al., 2021), mentioned in the literature review. Other variants of the LRP, like
the LRP with time windows (Ponboon et al., 2016) or the two-echelon LRP (Contardo et al.,
2012) could also be approached.

Acknowledgements

Author EU was partially supported by the following grants: CNPq 313601/2018-6, Faperj E-
26/202.887/2017, and CAPES PrInt UFF no 88881.

A Proof of Theorem 3

Proof. If ξt ≤ 1 defines facet of PMKP(Wi) there are Wi affinely independent points pj , j =
1, . . . , |Wi|, satisfying ξpj = 1. Then (pj , 1), j = 1, . . . , |Wi|, and (0, 0) are Wi + 1 affinely
independent points satisfying ξθ = yi.

If ξθ ≤ yi defines a facet of conv{(θi, yi) ∈ ZWi
+ ×{0, 1} :

∑Wi

q=1 q θq ≤Wiyi} there are Wi+1
affinely independent integer points satisfying ξθ = yi. One of those points is certainly (0, 0),
the remaining points have the format (pj , 1), j = 1, . . . , |Wi|. Then, pj , j = 1, . . . , |Wi|, are Wi

affinely independent points satisfying ξθ = 1.

B Detailed results for LRP

In the following tables, BKS stands for the best-known solution, IPB for the initial primal bound,
RDB for the root dual bound, Rg for the root gap, Rt for the time spent in the root node, Nodes
for the number of nodes explored in the branch-and-bound tree, Fg for the final gap, BPB for
the best primal bound, and t for the total time. New best solutions are in bold.

In Table 8, the IPB values that were already proven to be optimal are labeled with ∗. Nine
instances were solved to optimality for the first time. In two cases the optimal solutions improve
upon the previous best-known solutions. Table 9 are similar experiments, but without using
IPBs. The results show that one less instance is solved. For the 24 instances solved in both
ways, the geometric mean of the running times increases from 238 seconds to 628 seconds, a
factor of 2.6. It is clear that external bounds do help the BCP algorithm, but they are not
essential for overall performance. Table 10 and Table 11 are comparisons with Contardo et al.
(2014), using the same IPBs. Finally, Table 12 are results on the new Schneider and Löffler
(2019) instances, using the best-known solutions in the literature as IPBs.

Table 8: Detailed results for algorithm BCPall initialized with the best known primal bounds in
the literature on instances PPW06

Instance IPB Rg (%) Rt (s) Nodes Fg (%) BPB t (s)
coord50-5-1 90111∗ 0.00% 8 1 0.00% 90111 7
coord50-5-1b 63242 0.00% 84 1 0.00% 63242 83

25

Instance IPB Rg (%) Rt (s) Nodes Fg (%) BPB t (s)
coord50-5-2 88298∗ 2.22% 10 3 0.00% 88298 14
coord50-5-2BIS 84055∗ 0.00% 5 1 0.00% 84055 5
coord50-5-2b 67308∗ 2.37% 74 3 0.00% 67308 174
coord50-5-2bBIS 51822∗ 0.00% 8 1 0.00% 51822 7
coord50-5-3 86203∗ 0.00% 19 1 0.00% 86203 18
coord50-5-3b 61830∗ 0.00% 38 1 0.00% 61830 37
coord100-10-1 287661 1.04% 161 55 0.00% 287661 2683
coord100-10-1b 230989 0.43% 360 13 0.00% 230989 2025
coord100-10-2 243590∗ 1.07% 153 9 0.00% 243590 660
coord100-10-2b 203988∗ 0.35% 457 3 0.00% 203988 936
coord100-10-3 250882 2.24% 137 33 0.00% 250882 1591
coord100-10-3b 203114 1.56% 214 31 0.00% 203114 11173
coord100-5-1 274814∗ 0.00% 32 1 0.00% 274814 31
coord100-5-1b 213568∗ 0.16% 272 3 0.00% 213568 393
coord100-5-2 193671∗ 0.00% 19 1 0.00% 193671 18
coord100-5-2b 157095∗ 0.00% 157 1 0.00% 157095 156
coord100-5-3 200079∗ 0.00% 64 1 0.00% 200079 63
coord100-5-3b 152441∗ 0.00% 90 1 0.00% 152441 90
coord200-10-1 474850 0.25% 481 21 0.00% 474702 1949
coord200-10-1b 375177 0.09% 2842 5 0.00% 375177 4354
coord200-10-2 448077 0.27% 586 213 0.00% 448005 20961
coord200-10-2b 373696 0.12% 1907 9 0.00% 373696 6633
coord200-10-3 469433∗ 0.07% 472 3 0.00% 469433 578
coord200-10-3b 362320 0.39% 1755 135 0.21% 362320 107998

Table 9: Detailed results for algorithm BCPall executed on instances PPW06 without initial upper
bound

Instance BKS RDB Rt (s) Nodes Fg (%) BPB t (s)
coord50-5-1 90111 89853 15 3 0.00% 90111 38
coord50-5-1b 63242 62604 53 5 0.00% 63242 284
coord50-5-2 88298 86315 15 5 0.00% 88298 82
coord50-5-2BIS 84055 83875 17 3 0.00% 84055 74
coord50-5-2b 67308 65397 34 5 0.00% 67308 274
coord50-5-2bBIS 51822 51763 20 3 0.00% 51822 41
coord50-5-3 86203 85360 17 3 0.00% 86203 60
coord50-5-3b 61830 61329 38 3 0.00% 61830 99
coord100-10-1 287661 284453 93 79 0.00% 287661 4258
coord100-10-1b 230989 229802 177 15 0.00% 230989 3760
coord100-10-2 243590 240915 97 11 0.00% 243590 795
coord100-10-2b 203988 202990 198 7 0.00% 203988 1393
coord100-10-3 250882 245041 96 129 0.00% 250882 5630
coord100-10-3b 203114 199867 161 39 0.00% 203114 11517
coord100-5-1 274814 273995 29 3 0.00% 274814 79
coord100-5-1b 213568 212635 72 15 0.00% 213568 1620
coord100-5-2 193671 193506 37 3 0.00% 193671 63
coord100-5-2b 157095 156758 123 5 0.00% 157095 400
coord100-5-3 200079 199503 55 7 0.00% 200079 248
coord100-5-3b 152441 152344 191 3 0.00% 152441 355
coord200-10-1 474702 473451 290 57 0.00% 474702 7732
coord200-10-1b 375177 373958 956 31 0.00% 375177 19457
coord200-10-2 448077 446558 330 901 0.30% 448475 107995
coord200-10-2b 373696 372523 715 51 0.00% 373696 29804
coord200-10-3 469433 468846 389 9 0.00% 469433 2274
coord200-10-3b 362320 360656 996 43 − − 108148

26

Table 10: Detailed comparison between algorithm BCPall and the approach by Contardo et al.
(2014) on instances PPW06

BCPbest Contardo et al. (2014)
Instance IPB Rg (%) Rt (s) Nodes Fg (%) BPB t (s) BPB t (s)
coord50-5-1 90111 0.00% 8 1 0.00% 90111 7 90111∗ 9
coord50-5-1b 63242 0.00% 83 1 0.00% 63242 83 63242∗ 243
coord50-5-2 88298 2.22% 10 3 0.00% 88298 14 88298∗ 7
coord50-5-2BIS 84055 0.00% 5 1 0.00% 84055 5 84055∗ 15
coord50-5-2b 67340 2.42% 74 3 0.00% 67308 179 67308∗ 226
coord50-5-2bBIS 51822 0.00% 8 1 0.00% 51822 8 51822∗ 4
coord50-5-3 86203 0.00% 19 1 0.00% 86203 19 86203∗ 48
coord50-5-3b 61830 0.00% 37 1 0.00% 61830 37 61830∗ 3
coord100-10-1 289017 1.52% 140 117 0.00% 287661 5259 289017 23543
coord100-10-1b 234641 2.01% 259 15 0.00% 230989 4092 234641 19351
coord100-10-2 243590 1.07% 149 7 0.00% 243590 516 243590∗ 1144
coord100-10-2b 203988 0.35% 454 3 0.00% 203988 931 203988∗ 165
coord100-10-3 252421 2.85% 134 123 0.00% 250882 5255 252421 12656
coord100-10-3b 204597 2.28% 200 285 0.00% 203114 71156 204597 40740
coord100-5-1 274814 0.00% 31 1 0.00% 274814 31 274814∗ 227
coord100-5-1b 214392 0.65% 188 7 0.00% 213568 814 213568 24306
coord100-5-2 193671 0.00% 19 1 0.00% 193671 18 193671∗ 29
coord100-5-2b 157173 0.15% 163 3 0.00% 157095 229 157095∗ 6389
coord100-5-3 200079 0.00% 65 1 0.00% 200079 64 200079∗ 63
coord100-5-3b 152441 0.00% 89 1 0.00% 152441 89 152441∗ 239
coord200-10-1 479425 1.22% 364 101 0.00% 474702 13293 479425 25298
coord200-10-1b 378773 1.17% 1529 37 0.00% 375177 20533 378773 120447
coord200-10-2 450468 0.82% 423 1049 0.28% 448409 107997 450468 15871
coord200-10-2b 374435 0.35% 1369 81 0.00% 373696 41884 374435 46988
coord200-10-3 472898 0.84% 488 17 0.00% 469433 3341 469433∗ 9519
coord200-10-3b 364178 0.95% 1162 91 0.71% 364178 108107 364178 22867

Table 11: Detailed comparison between algorithm BCPbest and the approach by Contardo et al.
(2014) on instances TB99

BCPbest Contardo et al. (2014)
Instance IPB Rg (%) Rt (s) Nodes Fg (%) BPB t (s) BPB t (s)
coordP111112 1467.68 0.00% 136 1 0.00% 1467.68 134 1467.68∗ 2269
coordP111212 1394.80 0.36% 315 3 0.00% 1394.80 521 1394.80∗ 10947
coordP112112 1167.16 0.00% 257 1 0.00% 1167.16 256 1167.16∗ 158
coordP112212 791.66 0.00% 398 1 0.00% 791.66 397 791.66∗ 934
coordP113112 1245.45 1.92% 2442 19 0.00% 1238.24 28648 1238.24 87225
coordP113212 902.26 0.00% 130 1 0.00% 902.26 129 902.26∗ 78
coordP131112 1900.70 0.57% 1500 5 0.00% 1892.17 3628 1896.98 177697
coordP131212 1965.12 0.77% 698 19 0.00% 1960.02 9097 1965.12 128169
coordP132112 1443.33 0.00% 696 1 0.00% 1443.32 693 1443.32∗ 9451

Table 12: Detailed results for algorithm BCPall initialized with best known primal bounds in
the literature on instances SL19

Instance IPB Rg (%) Rt (s) Nodes Fg (%) BPB t (s)
100-5-1c 134516 0.00% 20 1 0.00% 134516 19
100-5-1d 275749 0.32% 48 5 0.00% 275749 121
100-5-1e 292311 0.00% 41 1 0.00% 292301 40
100-5-2c 83989 0.16% 9 1 0.00% 83855 9
100-5-2d 242266 0.88% 67 3 0.00% 242105 134
100-5-2e 253888 0.30% 84 9 0.00% 253888 253
100-5-3c 87555 0.00% 12 1 0.00% 87555 11

27

Instance IPB Rg (%) Rt (s) Nodes Fg (%) BPB t (s)
100-5-3d 226783 0.07% 56 1 0.00% 226634 55
100-5-3e 252603 0.00% 50 1 0.00% 252603 50
100-5-4a 255853 0.00% 30 1 0.00% 255853 29
100-5-4b 214425 0.00% 94 1 0.00% 214425 94
100-5-4c 98129 0.53% 59 5 0.00% 98104 124
100-5-4d 250315 0.16% 61 5 0.00% 250301 99
100-5-4e 211159 0.85% 116 479 0.00% 211113 15045
100-10-1c 92629 0.00% 17 1 0.00% 92629 16
100-10-1d 363930 0.50% 90 31 0.00% 363930 1176
100-10-1e 344322 0.54% 191 11 0.00% 344322 536
100-10-2c 84717 0.00% 17 1 0.00% 84717 16
100-10-2d 343252 1.14% 88 53 0.00% 343252 2404
100-10-2e 332900 0.20% 186 3 0.00% 332900 275
100-10-3c 85618 0.29% 41 1 0.00% 85369 40
100-10-3d 329990 1.28% 78 443 0.00% 329990 13177
100-10-3e 318156 0.88% 167 29 0.00% 318109 1508
100-10-4a 253892 0.69% 262 9 0.00% 253471 607
100-10-4b 211354 0.65% 743 5 0.00% 211354 2154
100-10-4c 86215 0.00% 31 1 0.00% 86215 30
100-10-4d 328251 1.35% 117 2267 0.00% 328181 74215
100-10-4e 308866 0.55% 196 455 0.00% 308757 19460
200-10-1c 156087 0.34% 325 5 0.00% 156029 564
200-10-1d 638452 0.40% 398 111 0.00% 638068 10811
200-10-1e 599463 0.86% 694 141 0.00% 599069 14871
200-10-2c 144337 0.51% 379 83 0.00% 144046 8427
200-10-2d 663814 0.46% 586 823 0.23% 663154 107995
200-10-2e 619037 0.25% 1381 467 0.00% 618858 53043
200-10-3c 184885 0.06% 458 1 0.00% 184783 452
200-10-3d 640357 0.06% 451 3 0.00% 640289 587
200-10-3e 604617 0.13% 1019 95 0.00% 604480 9448
200-10-4a 452870 0.99% 868 835 0.00% 452430 85744
200-10-4b 369951 0.78% 2284 135 0.43% 369871 107997
200-10-4c 144407 0.46% 400 125 0.00% 144013 10930
200-10-4d 618590 0.34% 499 297 0.00% 617932 37803
200-10-4e 562854 0.36% 1114 893 0.25% 562854 107995
200-15-1a 461203 0.38% 748 153 0.00% 460430 18752
200-15-1b 367397 0.54% 1872 113 0.00% 366359 67910
200-15-1c 148218 0.05% 134 1 0.00% 148141 127
200-15-1d 813941 0.24% 424 25 0.00% 813576 2225
200-15-1e 708837 2.15% 686 1181 0.26% 708585 107993
200-15-2a 513893 1.97% 608 211 0.00% 513512 21920
200-15-2b 406843 0.50% 2187 137 0.18% 406839 107992
200-15-2c 135051 0.30% 316 3 0.00% 134779 336
200-15-2d 811722 0.29% 776 41 0.00% 811361 4805
200-15-2e 712524 0.56% 877 649 0.34% 712524 107993
200-15-3a 455676 0.53% 1249 151 0.00% 455351 20594
200-15-3b 357086 0.55% 2668 65 0.00% 356887 71800
200-15-3c 141129 0.56% 475 11 0.00% 140765 1216
200-15-3d 877638 0.31% 574 111 0.00% 877543 13590
200-15-3e 816377 2.73% 828 809 2.23% 816129 107994
200-15-4a 433268 0.44% 668 513 0.00% 432672 51175
200-15-4b 349269 0.91% 1896 137 0.50% 349269 107994
200-15-4c 143772 0.81% 570 27 0.00% 143052 3196
200-15-4d 828144 0.22% 473 179 0.00% 826829 33505
200-15-4e 700202 1.53% 1649 79 0.00% 700013 13447
300-15-1a 856267 0.66% 3135 389 0.25% 854503 107989
300-15-1b 622412 0.91% 9755 5 0.62% 622412 108004
300-15-1c 366770 0.70% 1124 35 0.00% 364979 6341
300-15-1d 1339010 0.47% 1582 409 0.33% 1338255 107987
300-15-1e 1217690 1.34% 2645 275 0.63% 1217690 107989
300-15-2a 759999 1.02% 3283 331 0.21% 757931 107990
300-15-2b 557912 0.60% 16604 13 0.44% 557912 107996
300-15-2c 311558 0.79% 1001 437 0.00% 310061 69751
300-15-2d 1301863 0.38% 1748 469 0.15% 1301210 107984
300-15-2e 1272700 0.70% 3191 371 0.62% 1272700 107983
300-15-3a 778023 0.36% 3311 39 0.00% 776531 20139
300-15-3b 594073 0.32% 23608 3 0.30% 594073 115651
300-15-3c 341712 0.64% 1931 23 0.00% 340155 5450
300-15-3d 1358223 0.83% 2162 261 0.66% 1358223 108036

28

Instance IPB Rg (%) Rt (s) Nodes Fg (%) BPB t (s)
300-15-3e 1286877 0.55% 4233 289 0.46% 1286877 108007
300-15-4a 747730 0.24% 3488 109 0.00% 746407 22202
300-15-4b 559877 0.54% 6247 45 0.47% 559877 107982
300-15-4c 304254 0.89% 1842 55 0.00% 302390 15149
300-15-4d 1288091 0.44% 2045 305 0.19% 1285714 107990
300-15-4e 1173516 1.92% 2362 221 0.58% 1173516 107989
300-20-1a 1009840 6.86% 3018 107 6.76% 1009840 108004
300-20-1b 739604 0.81% 12842 45 0.63% 739604 108023
300-20-1c 364096 0.92% 1502 21 0.00% 361735 6084
300-20-1d 1575390 0.50% 2601 353 0.23% 1572968 107978
300-20-1e 1391567 7.97% 1769 137 1.61% 1320811 107990
300-20-2a 909306 1.14% 4364 287 0.65% 909306 107979
300-20-2b 695524 0.86% 9876 23 0.46% 695524 108011
300-20-2c 299425 0.58% 1735 33 0.00% 298522 8333
300-20-2d 1569139 0.54% 2623 257 0.45% 1569042 107982
300-20-2e 1386386 7.88% 2043 107 7.75% 1386386 108070
300-20-3a 929901 0.80% 3786 149 0.00% 927452 62525
300-20-3b 751307 0.75% 11312 3 0.75% 751307 108014
300-20-3c 305771 0.88% 1846 71 0.00% 304269 23007
300-20-3d 1539008 0.65% 3376 215 0.54% 1539008 107977
300-20-3e 1289734 3.46% 3968 93 3.20% 1289734 107992
300-20-4a 859474 2.24% 3061 135 1.45% 859474 107979
300-20-4b 687930 1.09% 7554 25 0.91% 687930 108003
300-20-4c 300285 1.04% 1606 391 0.59% 299206 107981
300-20-4d 1540194 0.59% 2868 115 0.47% 1540194 108021
300-20-4e 1344056 3.17% 2578 103 2.72% 1344056 107983

C Detailed results for VRP-CMD

In the following tables, IPB stands for the initial primal bound, Rg for the root gap, Rt for the
time spent in the root node, Nodes for the number of nodes explored in the branch-and-bound
tree, Fg for the final gap, BPB for the best primal bound, and t for the total time.

Table 13 contains instances for which the initial primal bound is the optimal solution.

Table 13: Detailed results for algorithm BCPall for 183 instances of the VRP-CMD with known
optimal solutions

Instance Rg (%) Rt (s) Nodes OPT t (s)
MDCVRP-10 4.91% 21 67 12173.31 556
MDCVRP-34 0.40% 40 237 8926.51 3434
MDCVRP-60 9.87% 20 105 10372.76 763
MDCVRP-62 4.50% 27 5 9106.99 44
MDCVRP-74 5.60% 13 17 11038.03 291
MDCVRP-96 5.88% 15 39 10986.37 1293
MDCVRP-97 8.02% 17 99 11581.48 1521
MDCVRP-99 9.61% 17 25 12139.98 413
MDCVRP-103 0.17% 31 21 9121.74 1276
MDCVRP-126 3.32% 27 61 11113.19 2545
MDCVRP-130 3.17% 35 9 10426.02 137
MDCVRP-157 5.74% 15 23 11070.27 870
MDCVRP-169 5.35% 23 241 11562.64 3057
MDCVRP-171 5.38% 19 13 11534.90 176
MDCVRP-174 6.13% 19 231 10373.74 2786
MDCVRP-236 4.86% 12 13 8501.00 173
MDCVRP-250 0.19% 13 3 9796.07 15
MDCVRP-302 3.36% 25 13 9771.93 604
MDCVRP-326 0.12% 45 5 18741.80 68
MDCVRP-327 5.98% 16 91 21225.95 4246
MDCVRP-339 8.92% 19 45 22367.17 466

29

Instance Rg (%) Rt (s) Nodes OPT t (s)
MDCVRP-387 3.23% 37 41 19946.78 606
MDCVRP-390 3.39% 31 19 19986.70 242
MDCVRP-395 3.14% 24 43 21249.03 1298
MDCVRP-421 5.79% 13 29 21224.26 257
MDCVRP-423 5.78% 14 21 21245.60 401
MDCVRP-425 4.60% 28 49 18710.86 1371
MDCVRP-439 5.86% 16 29 21190.06 602
MDCVRP-464 5.86% 15 53 21199.69 1042
MDCVRP-470 0.11% 45 3 18730.92 66
MDCVRP-488 0.80% 21 13 20116.83 917
MDCVRP-502 0.52% 24 27 20104.00 1116
MDCVRP-587 5.87% 12 29 21238.92 934
MDCVRP-613 3.05% 24 19 21311.24 1960
MDCVRP-622 7.59% 29 139 11037.13 2514
MDCVRP-632 3.59% 11 9 9146.32 400
MDCVRP-639 8.95% 33 111 10380.29 849
MDCVRP-641 2.52% 38 25 10480.34 2146
MDCVRP-658 8.70% 14 15 7171.93 386
MDCVRP-685 4.98% 25 69 11024.04 1086
MDCVRP-707 6.46% 18 19 9730.32 282
MDCVRP-734 3.26% 32 9 9755.94 472
MDCVRP-737 5.88% 13 63 7224.22 1342
MDCVRP-738 0.48% 24 357 7225.52 6935
MDCVRP-739 0.10% 68 7 7213.34 126
MDCVRP-750 5.30% 26 53 11050.04 1062
MDCVRP-756 7.79% 34 199 10360.89 1766
MDCVRP-803 0.11% 33 5 17427.52 303
MDCVRP-822 0.56% 53 17 6514.35 619
MDCVRP-1000 0.37% 41 9 9039.34 175
MDCVRP-1002 8.44% 35 273 10943.38 2968
MDCVRP-1025 6.69% 29 113 11452.94 1338
MDCVRP-1041 7.29% 21 61 11565.85 826
MDCVRP-1165 8.03% 36 187 10846.28 4080
MDCVRP-1172 0.23% 43 17 8401.45 1185
MDCVRP-1238 0.36% 37 453 9021.62 7184
MDCVRP-1253 7.94% 38 187 21046.28 3273
MDCVRP-1262 0.24% 44 53 17418.74 787
MDCVRP-1268 3.45% 50 3 17335.24 57
MDCVRP-1279 0.62% 48 37 18770.68 642
MDCVRP-1284 8.66% 34 373 21010.83 3452
MDCVRP-1286 4.14% 52 3 17335.31 71
MDCVRP-1293 0.17% 50 19 18638.32 221
MDCVRP-1299 1.88% 23 75 18548.08 1352
MDCVRP-1300 3.02% 32 79 19840.65 4078
MDCVRP-1305 2.54% 18 81 17356.16 1835
MDCVRP-1318 3.25% 31 3 18526.70 45
MDCVRP-1359 3.85% 29 9 21081.58 174
MDCVRP-1364 5.37% 19 7 20990.38 85
MDCVRP-1368 3.47% 34 3 17407.77 41
MDCVRP-1370 3.14% 35 3 18664.96 42
MDCVRP-1411 2.22% 36 9 19790.23 176
MDCVRP-1465 7.66% 31 29 20987.81 1380
MDCVRP-1489 5.09% 23 25 21047.19 328
MDCVRP-1582 0.56% 40 29 7087.31 1007
MDCVRP-1612 5.66% 14 3 7034.78 40
MDCVRP-1614 0.25% 70 25 6451.33 536
MDCVRP-1617 4.26% 21 23 7085.51 343
MDCVRP-1663 4.26% 11 9 9661.81 425
MDCVRP-1687 0.42% 39 101 7833.00 2030
MDCVRP-1738 3.97% 12 3 14966.96 21
MDCVRP-1739 2.57% 13 15 16164.03 267
MDCVRP-1765 0.22% 22 51 18555.84 937
MDCVRP-1799 2.72% 27 75 13597.45 1282
MDCVRP-1832 1.88% 36 79 9069.13 885
MDCVRP-1850 0.17% 37 67 11711.82 640
MDCVRP-1908 3.28% 11 7 18673.75 62
MDCVRP-1910 0.16% 44 77 17543.72 994
MDCVRP-1933 2.22% 13 3 17343.24 24
MDCVRP-1963 7.95% 31 27 11507.00 393

30

Instance Rg (%) Rt (s) Nodes OPT t (s)
MDCVRP-2014 1.03% 32 21 11015.82 242
MDCVRP-2035 2.90% 16 185 11039.82 1333
MDCVRP-2055 3.26% 37 15 9580.49 776
MDCVRP-2084 0.40% 43 21 9135.65 338
MDCVRP-2095 0.68% 51 21 8987.88 261
MDCVRP-2136 0.98% 23 81 9109.73 2897
MDCVRP-2253 6.47% 10 7 18608.38 82
MDCVRP-2315 5.32% 13 9 11000.87 122
MDCVRP-2317 0.50% 65 5 10443.01 145
MDCVRP-2336 0.40% 68 37 10434.83 790
MDCVRP-2347 6.88% 18 89 12266.93 1361
MDCVRP-2355 0.17% 78 5 11181.37 172
MDCVRP-2423 7.26% 19 727 12134.41 5752
MDCVRP-2436 2.90% 23 161 10898.42 4983
MDCVRP-2448 2.45% 20 53 10947.31 1836
MDCVRP-2456 3.39% 49 7 8911.51 294
MDCVRP-2459 4.24% 25 189 10815.62 2751
MDCVRP-2460 7.54% 30 111 11394.43 3076
MDCVRP-2463 3.62% 34 19 11443.10 188
MDCVRP-2485 4.35% 21 13 10914.65 691
MDCVRP-2490 4.47% 30 5 10900.54 86
MDCVRP-2538 3.30% 33 251 11528.30 4971
MDCVRP-2543 0.51% 40 181 7860.02 4444
MDCVRP-2556 2.22% 25 81 10936.53 2353
MDCVRP-2565 2.57% 25 17 10978.89 189
MDCVRP-2594 2.11% 20 27 10560.02 764
MDCVRP-2608 2.78% 27 13 10894.13 364
MDCVRP-2621 2.32% 22 247 21173.52 8729
MDCVRP-2636 5.43% 27 37 19835.73 430
MDCVRP-2641 1.87% 28 3 21073.55 35
MDCVRP-2651 3.52% 30 9 17369.17 153
MDCVRP-2687 0.20% 31 281 21133.94 6823
MDCVRP-2726 0.31% 61 7 13837.23 195
MDCVRP-2767 5.96% 31 17 10222.75 334
MDCVRP-2769 0.16% 71 5 6488.16 204
MDCVRP-2771 3.21% 16 23 12821.29 425
MDCVRP-2784 1.32% 35 41 10446.79 892
MDCVRP-2805 6.10% 11 17 9661.41 255
MDCVRP-2814 1.40% 31 87 10506.75 3394
MDCVRP-2880 6.93% 29 37 12210.07 537
MDCVRP-2898 2.79% 33 9 10977.58 200
MDCVRP-2946 0.08% 87 5 14977.40 178
MDCVRP-2957 7.97% 27 13 22349.56 470
MDCVRP-2970 3.45% 40 3 17419.64 68
MDCVRP-2984 0.09% 27 3 17459.90 338
MDCVRP-3006 0.09% 21 11 15067.69 211
MDCVRP-3025 4.50% 11 39 18645.81 964
MDCVRP-3035 0.19% 32 63 20058.83 737
MDCVRP-3040 4.12% 12 9 14953.18 187
MDCVRP-3076 4.38% 22 5 10950.35 49
MDCVRP-3080 4.97% 39 45 10319.53 379
MDCVRP-3089 5.81% 18 19 7113.93 379
MDCVRP-3093 1.92% 38 33 12450.04 637
MDCVRP-3109 2.68% 12 239 9717.28 2477
MDCVRP-3128 8.03% 12 25 7711.85 272
MDCVRP-3141 7.84% 18 9 7782.68 188
MDCVRP-3147 8.21% 15 11 7175.18 159
MDCVRP-3151 5.60% 16 21 7171.69 365
MDCVRP-3160 0.18% 72 5 6538.21 193
MDCVRP-3162 0.55% 38 265 7167.42 6171
MDCVRP-3174 4.68% 17 59 7166.31 1448
MDCVRP-3185 0.78% 60 199 9799.32 2507
MDCVRP-3196 8.14% 17 177 7698.86 3700
MDCVRP-3237 6.16% 42 37 10195.02 885
MDCVRP-3240 3.29% 36 121 11507.56 2298
MDCVRP-3274 4.50% 27 25 11536.16 1548
MDCVRP-3275 1.94% 42 19 10956.41 1189
MDCVRP-3324 0.32% 20 19 7832.43 709
MDCVRP-3326 0.35% 49 13 9722.02 171

31

Instance Rg (%) Rt (s) Nodes OPT t (s)
MDCVRP-3350 6.10% 28 49 19920.29 482
MDCVRP-3354 7.16% 24 13 22365.66 281
MDCVRP-3357 0.28% 34 55 21226.58 761
MDCVRP-3360 2.75% 33 143 18772.84 8454
MDCVRP-3367 7.24% 14 85 16161.18 1558
MDCVRP-3385 7.30% 13 7 16154.08 74
MDCVRP-3397 4.37% 25 23 21227.42 391
MDCVRP-3403 2.90% 35 27 21109.44 876
MDCVRP-3413 7.57% 23 29 23426.59 409
MDCVRP-3422 0.14% 28 19 20051.45 209
MDCVRP-3430 0.14% 29 73 17329.23 936
MDCVRP-3431 0.26% 67 149 17454.82 2463
MDCVRP-3437 5.03% 12 7 16118.20 87
MDCVRP-3448 2.95% 28 85 22292.76 1687
MDCVRP-3453 3.53% 12 5 17386.94 55
MDCVRP-3508 0.98% 20 23 10377.62 1179
MDCVRP-3518 0.00% 40 1 7088.59 39
MDCVRP-3526 2.95% 19 5 10260.44 178
MDCVRP-3534 0.23% 113 7 6530.05 203
MDCVRP-3537 0.26% 67 3 6495.48 96
MDCVRP-3544 2.89% 28 3 10238.41 42
MDCVRP-3608 4.35% 16 7 7202.53 108
MDCVRP-3643 4.47% 18 9 7182.04 184
MDCVRP-3660 0.22% 26 3 7109.64 64

Table 14 contains instances for which the initial primal bound has not been proven optimal
before these experiments.

Table 14: Detailed results for algorithm BCPbest for 16 instances of the VRP-CMD with unknown
optimal solutions

Instance IPB Rg (%) Rt (s) Nodes Fg (%) BPB t (s)
MDCVRP-87 10521.07 10.48% 28 2563 0.87% 10410.72 108000
MDCVRP-235 11144.42 4.44% 22 473 0.00% 11112.75 34508
MDCVRP-453 21285.26 3.36% 23 1749 0.28% 21279.71 108000
MDCVRP-487 21352.94 3.62% 24 203 0.00% 21255.48 12772
MDCVRP-528 18679.39 4.46% 19 629 0.00% 18679.39 14241
MDCVRP-582 23660.82 8.59% 18 575 0.00% 23660.82 17636
MDCVRP-599 23579.35 8.53% 25 2639 0.25% 23578.14 108000
MDCVRP-612 23708.73 8.65% 20 3591 0.17% 23708.73 108000
MDCVRP-653 9200.66 3.02% 60 491 0.00% 9200.59 37617
MDCVRP-1280 23567.65 10.47% 23 5913 0.36% 23520.74 108000
MDCVRP-1541 10231.13 6.42% 47 1075 0.00% 10231.13 12851
MDCVRP-2313 11069.50 2.16% 16 1267 0.00% 11069.50 13915
MDCVRP-2431 11551.42 4.10% 35 837 0.00% 11470.91 49199
MDCVRP-2444 10288.95 8.57% 13 2381 4.19% 10288.95 108000
MDCVRP-2734 22379.58 3.74% 20 5899 0.00% 22372.04 96868
MDCVRP-2745 19920.04 5.41% 26 6587 0.39% 19920.04 108000

D Detailed results for VRPTW with Shifts

In the following tables, BKS stands for the best-known solution value in the literature, RDB
for the root dual bound, Rt for the time spent in the root node, Nodes for the number of
nodes explored in the branch-and-bound tree, BDB for the best found dual bound, BPB for the
best primal bound, and t for the total time. Improved solution values in comparison with the

32

literature are in bold. If the best bounds are equal then the instances are solved to optimality.
Sometimes the total solution time is smaller than the time limit of 30 hours, but the best dual
and primal bounds are not equal. In this case, the algorithm was interrupted due to a very large
solution time of the labeling algorithm.

Table 15: Detailed results for algorithm BCPall without initial upper bounds on instances of the
VRPTW-S with small shift capacities (ρ = 1.05)

Instance BKS RDB Rt (s) Nodes BDB BPB t (s)
A-25-c101 287.2 283.2 11 3 287.2 287.2 16
A-25-c102 263.8 263.8 9 1 263.8 263.8 9
A-25-c103 251.8 251.8 6 1 251.8 251.8 5
A-25-c104 249.2 249.2 22 1 249.2 249.2 22
A-25-c105 265.0 263.5 4 3 265.0 265.0 7
A-25-c106 287.2 282.8 12 3 287.2 287.2 18
A-25-c107 265.0 263.2 9 3 265.0 265.0 14
A-25-c108 263.2 261.5 9 3 263.2 263.2 19
A-25-c109 256.5 256.5 11 1 256.5 256.5 11
A-25-c201 288.9 288.9 6 1 288.9 288.9 6
A-25-c202 281.7 281.7 3 1 281.7 281.7 3
A-25-c203 279.3 279.3 3 1 279.3 279.3 3
A-25-c204 279.3 279.3 5 1 279.3 279.3 5
A-25-c205 288.9 288.9 3 1 288.9 288.9 3
A-25-c206 286.7 286.7 2 1 286.7 286.7 1
A-25-c207 284.0 284.0 3 1 284.0 284.0 3
A-25-c208 285.9 285.9 4 1 285.9 285.9 4
A-25-r101 710.9 710.9 0 1 710.9 710.9 0
A-25-r102 580.7 577.1 3 3 580.7 580.7 5
A-25-r103 504.7 496.5 5 3 504.7 504.7 29
A-25-r104 483.6 475.9 4 3 483.6 483.6 10
A-25-r105 596.8 596.8 2 1 596.8 596.8 2
A-25-r106 490.4 490.4 5 1 490.4 490.4 5
A-25-r107 457.2 454.0 6 3 457.2 457.2 11
A-25-r108 437.7 437.7 7 1 437.7 437.7 7
A-25-r109 497.3 492.7 4 3 497.3 497.3 6
A-25-r110 467.1 458.7 7 3 467.1 467.1 11
A-25-r111 471.7 467.0 6 3 471.7 471.7 11
A-25-r112 427.9 420.8 9 3 427.9 427.9 19
A-25-r201 502.1 502.1 6 1 502.1 502.1 6
A-25-r202 437.8 435.8 7 3 437.8 437.8 17
A-25-r203 404.0 404.0 3 1 404.0 404.0 3
A-25-r204 375.4 375.4 2 1 375.4 375.4 2
A-25-r205 421.2 417.4 9 3 421.2 421.2 17
A-25-r206 384.2 384.2 2 1 384.2 384.2 2
A-25-r207 375.4 375.4 2 1 375.4 375.4 2
A-25-r208 367.4 367.4 4 1 367.4 367.4 4
A-25-r209 383.7 383.7 2 1 383.7 383.7 2
A-25-r210 421.5 421.5 3 1 421.5 421.5 3
A-25-r211 364.9 364.9 2 1 364.9 364.9 2
A-25-rc101 608.7 600.4 1 1 600.4 600.4 1
A-25-rc102 470.4 454.8 11 3 470.4 470.4 17
A-25-rc103 427.8 427.8 15 1 427.8 427.8 15
A-25-rc104 410.3 397.7 32 1 397.7 397.7 32
A-25-rc105 535.6 534.7 4 3 535.6 535.6 6
A-25-rc106 472.9 472.9 2 1 472.9 472.9 2
A-25-rc107 434.8 434.8 4 1 434.8 434.8 4
A-25-rc108 ∞ 383.7 41 3 397.0 397.0 81
A-25-rc201 496.4 478.5 11 1 478.5 478.5 11
A-25-rc202 381.0 381.0 13 1 381.0 381.0 13
A-25-rc203 367.1 361.9 18 1 361.9 361.9 18
A-25-rc204 ∞ 334.7 85 1 334.7 334.7 84
A-25-rc205 376.3 376.3 9 1 376.3 376.3 9
A-25-rc206 369.5 369.5 8 1 369.5 369.5 7
A-25-rc207 337.2 337.2 83 1 337.2 337.2 83
A-25-rc208 ∞ 329.5 254 1 329.5 329.5 254
A-50-c101 499.5 487.4 12 3 499.5 499.5 20
A-50-c102 467.5 464.0 9 3 467.5 467.5 19

33

Instance BKS RDB Rt (s) Nodes BDB BPB t (s)
A-50-c103 ∞ 457.5 12 3 461.4 461.4 39
A-50-c104 ∞ 419.0 113 1 419.0 419.0 112
A-50-c105 466.6 462.3 7 3 466.6 466.6 14
A-50-c106 499.5 476.4 9 3 499.5 499.5 34
A-50-c107 464.8 458.9 6 3 464.8 464.8 15
A-50-c108 500.3 456.9 11 3 462.4 462.4 21
A-50-c109 ∞ 445.3 17 5 454.7 454.7 57
A-50-c201 429.8 429.8 6 1 429.8 429.8 6
A-50-c202 421.5 421.5 59 1 421.5 421.5 59
A-50-c203 ∞ 414.1 79 1 414.1 414.1 79
A-50-c204 ∞ 402.5 484 3 403.2 403.2 1544
A-50-c205 427.8 427.8 12 1 427.8 427.8 12
A-50-c206 427.8 427.8 15 1 427.8 427.8 15
A-50-c207 ∞ 425.7 55 3 426.1 426.1 101
A-50-c208 424.2 422.5 35 3 422.7 422.7 65
A-50-r101 1217.3 1209.8 4 3 1217.3 1217.3 6
A-50-r102 980.6 975.8 4 3 980.6 980.6 10
A-50-r103 820.3 812.3 10 3 820.3 820.3 49
A-50-r104 664.6 662.2 16 3 664.6 664.6 43
A-50-r105 1037.9 1036.2 5 3 1037.9 1037.9 11
A-50-r106 875.6 870.5 6 3 875.6 875.6 16
A-50-r107 777.0 763.1 8 7 773.8 773.8 104
A-50-r108 644.8 638.1 55 3 644.8 644.8 140
A-50-r109 891.3 838.8 8 3 852.3 852.3 58
A-50-r110 749.0 741.4 14 3 749.0 749.0 38
A-50-r111 752.4 749.4 14 3 752.4 752.4 28
A-50-r112 665.1 659.2 48 3 665.1 665.1 123
A-50-r201 ∞ 834.2 10 7 844.1 844.1 95
A-50-r202 732.7 729.6 37 3 732.7 732.7 80
A-50-r203 632.3 627.6 92 3 632.3 632.3 258
A-50-r204 ∞ 528.3 356 3 530.0 530.0 1208
A-50-r205 716.4 713.4 44 3 716.4 716.4 86
A-50-r206 649.6 648.6 104 3 649.6 649.6 334
A-50-r207 587.8 587.5 337 3 587.8 587.8 1059
A-50-r208 ∞ 502.4 53 1 502.4 502.4 53
A-50-r209 619.1 616.2 94 3 619.1 619.1 182
A-50-r210 657.0 657.0 193 1 657.0 657.0 193
A-50-r211 541.5 541.5 125 1 541.5 541.5 124
A-50-rc101 1174.1 1131.1 7 3 1136.8 1136.8 8
A-50-rc102 975.8 951.7 23 3 973.6 973.6 39
A-50-rc103 ∞ 824.8 38 3 836.5 836.5 91
A-50-rc104 ∞ 669.7 110 3 697.4 697.4 520
A-50-rc105 ∞ 1043.6 40 1 1043.6 1043.6 45
A-50-rc106 ∞ 939.5 50 3 956.1 956.1 90
A-50-rc107 ∞ 766.2 501 1 766.2 766.2 501
A-50-rc108 ∞ 664.1 272 21 724.3 724.3 4640
A-50-rc201 ∞ 809.6 51 3 828.6 828.6 122
A-50-rc202 ∞ 711.2 242 1 711.2 711.2 242
A-50-rc203 ∞ 645.2 346 3 654.4 654.4 883
A-50-rc204 ∞ 497.7 377 13 533.3 533.3 4390
A-50-rc205 717.7 717.7 53 1 717.7 717.7 53
A-50-rc206 ∞ 662.9 135 3 669.1 669.1 205
A-50-rc207 ∞ 588.1 306 21 617.0 617.0 6180
A-50-rc208 ∞ 482.3 336 17 510.4 510.4 6503
A-100-c101 1114.5 1109.1 23 3 1114.5 1114.5 40
A-100-c102 1036.3 1033.3 41 3 1036.3 1036.3 77
A-100-c103 ∞ 1010.0 104 1 1010.0 1010.0 104
A-100-c104 ∞ 935.4 552 5 943.6 943.6 4518
A-100-c105 1071.6 1063.8 18 3 1071.6 1071.6 43
A-100-c106 ∞ 1072.5 27 3 1078.9 1078.9 61
A-100-c107 1030.6 1030.6 14 1 1030.6 1030.6 13
A-100-c108 1029.3 1029.3 25 1 1029.3 1029.3 32
A-100-c109 ∞ 977.3 49 7 995.1 995.1 287
A-100-c201 ∞ 675.2 113 3 683.6 683.6 341
A-100-c202 ∞ 672.9 348 3 678.5 678.5 737
A-100-c203 ∞ 663.0 710 3 669.1 669.1 1383
A-100-c204 ∞ 630.8 864 1 630.8 ∞ 6578
A-100-c205 ∞ 660.8 125 5 674.1 674.1 479
A-100-c206 ∞ 656.6 171 3 664.1 664.1 349

34

Instance BKS RDB Rt (s) Nodes BDB BPB t (s)
A-100-c207 ∞ 653.1 255 3 663.9 663.9 743
A-100-c208 ∞ 649.8 488 3 660.9 660.9 967
A-100-r101 1840.6 1832.4 11 3 1840.6 1840.6 38
A-100-r102 1535.4 1534.2 17 3 1535.4 1535.4 40
A-100-r103 ∞ 1222.9 29 3 1223.7 1223.7 86
A-100-r104 ∞ 1001.2 197 27 1009.0 1009.0 5793
A-100-r105 1465.2 1459.4 20 3 1465.2 1465.2 72
A-100-r106 1294.9 1286.5 41 27 1294.9 1294.9 855
A-100-r107 ∞ 1097.7 66 31 1106.1 1106.1 3544
A-100-r108 ∞ 955.2 241 421 968.5 968.5 66955
A-100-r109 ∞ 1225.9 54 17 1237.8 1237.8 1002
A-100-r110 ∞ 1120.8 141 7 1126.8 1126.8 597
A-100-r111 ∞ 1093.0 90 13 1100.6 1100.6 996
A-100-r112 ∞ 982.9 400 11 987.2 987.2 3741
A-100-r201 1188.5 1184.4 163 7 1188.5 1188.5 694
A-100-r202 ∞ 1039.6 386 21 1044.2 1044.2 7738
A-100-r203 ∞ 882.3 1282 35 889.9 889.9 19393
A-100-r204 ∞ 724.5 970 173 728.4 775.5 108002
A-100-r205 ∞ 962.3 435 33 973.0 973.0 11826
A-100-r206 ∞ 876.3 638 217 879.1 933.5 108004
A-100-r207 ∞ 793.1 690 1 793.1 ∞ 2640
A-100-r208 ∞ 690.6 1041 1 690.6 ∞ 3303
A-100-r209 ∞ 855.3 534 83 871.5 871.5 34124
A-100-r210 ∞ 896.8 548 137 904.5 904.5 63478
A-100-r211 ∞ 735.7 618 39 738.1 ∞ 26075
A-100-rc101 1877.3 1847.1 29 3 1853.0 1853.0 83
A-100-rc102 1598.6 1581.6 84 11 1596.0 1596.0 453
A-100-rc103 ∞ 1349.4 142 11 1362.7 1362.7 1290
A-100-rc104 ∞ 1181.8 262 9 1205.4 1205.4 2640
A-100-rc105 1720.7 1705.8 63 3 1712.5 1712.5 139
A-100-rc106 ∞ 1513.3 81 9 1518.8 1518.8 334
A-100-rc107 ∞ 1310.7 93 11 1321.9 1321.9 712
A-100-rc108 ∞ 1186.8 280 305 1209.5 1209.5 78481
A-100-rc201 ∞ 1290.6 79 9 1298.7 1298.7 641
A-100-rc202 ∞ 1111.7 205 9 1116.4 1116.4 1791
A-100-rc203 ∞ 939.6 952 3 944.7 944.7 1873
A-100-rc204 ∞ 776.9 1583 3 778.7 ∞ 5049
A-100-rc205 ∞ 1167.1 225 19 1176.4 1176.4 3132
A-100-rc206 ∞ 1062.4 309 15 1072.7 1072.7 3349
A-100-rc207 ∞ 956.6 798 95 970.9 970.9 35039
A-100-rc208 ∞ 766.2 2496 211 769.4 812.3 108014

Table 16: Detailed results for algorithm BCPall without initial upper bounds on instances of the
VRPTW-S with medium shift capacities (ρ = 1.2)

Instance BKS RDB Rt (s) Nodes BDB BPB t (s)
B-25-c101 265.2 265.2 10 1 265.2 265.2 10
B-25-c102 251.6 251.6 10 1 251.6 251.6 10
B-25-c103 247.4 244.4 24 3 247.4 247.4 38
B-25-c104 ∞ 241.9 56 1 241.9 241.9 56
B-25-c105 258.8 258.8 8 1 258.8 258.8 8
B-25-c106 265.2 265.2 12 1 265.2 265.2 12
B-25-c107 256.6 256.6 6 1 256.6 256.6 6
B-25-c108 256.6 256.6 26 3 256.6 256.6 43
B-25-c109 ∞ 252.8 75 3 254.8 254.8 137
B-25-c201 279.6 279.6 2 1 279.6 279.6 2
B-25-c202 272.9 272.9 3 1 272.9 272.9 3
B-25-c203 269.9 269.9 3 1 269.9 269.9 3
B-25-c204 269.9 269.9 6 1 269.9 269.9 6
B-25-c205 279.6 279.6 3 1 279.6 279.6 3
B-25-c206 277.4 277.4 2 1 277.4 277.4 2
B-25-c207 274.5 274.5 4 1 274.5 274.5 4
B-25-c208 276.6 276.6 3 1 276.6 276.6 3
B-25-r101 671.9 671.9 0 1 671.9 671.9 0

35

Instance BKS RDB Rt (s) Nodes BDB BPB t (s)
B-25-r102 557.4 556.1 3 3 557.4 557.4 5
B-25-r103 478.2 476.5 3 3 478.2 478.2 7
B-25-r104 451.8 451.8 4 1 451.8 451.8 4
B-25-r105 566.4 565.6 1 1 565.6 565.6 1
B-25-r106 483.2 474.4 6 3 483.2 483.2 9
B-25-r107 443.3 443.3 3 1 443.3 443.3 3
B-25-r108 426.9 426.9 4 1 426.9 426.9 4
B-25-r109 481.7 472.6 4 3 481.7 481.7 6
B-25-r110 451.9 448.1 5 3 451.9 451.9 9
B-25-r111 461.3 455.5 4 3 461.3 461.3 9
B-25-r112 405.9 405.9 5 1 405.9 405.9 5
B-25-r201 496.4 491.3 6 3 496.4 496.4 12
B-25-r202 429.4 423.4 4 3 429.4 429.4 10
B-25-r203 395.9 395.9 3 1 395.9 395.9 3
B-25-r204 368.3 368.3 4 1 368.3 368.3 4
B-25-r205 402.6 402.6 1 1 402.6 402.6 1
B-25-r206 382.0 382.0 4 1 382.0 382.0 3
B-25-r207 363.1 363.1 1 1 363.1 363.1 1
B-25-r208 356.5 356.5 1 1 356.5 356.5 1
B-25-r209 376.4 376.4 1 1 376.4 376.4 1
B-25-r210 413.1 413.1 3 1 413.1 413.1 3
B-25-r211 361.6 361.6 3 1 361.6 361.6 3
B-25-rc101 534.9 534.9 1 1 534.9 534.9 1
B-25-rc102 417.7 417.7 3 1 417.7 417.7 3
B-25-rc103 398.7 398.7 6 1 398.7 398.7 6
B-25-rc104 368.3 368.3 11 1 368.3 368.3 11
B-25-rc105 483.7 479.1 2 3 483.7 483.7 4
B-25-rc106 467.8 456.4 5 3 460.7 460.7 7
B-25-rc107 ∞ 409.5 24 3 430.0 430.0 37
B-25-rc108 369.8 363.4 27 1 363.4 363.4 27
B-25-rc201 446.6 429.2 6 1 429.2 429.2 6
B-25-rc202 338.0 338.0 1 1 338.0 338.0 1
B-25-rc203 326.9 326.9 2 1 326.9 326.9 2
B-25-rc204 299.7 299.7 2 1 299.7 299.7 2
B-25-rc205 338.0 338.0 1 1 338.0 338.0 1
B-25-rc206 334.4 334.4 1 1 334.4 334.4 1
B-25-rc207 298.3 298.3 1 1 298.3 298.3 1
B-25-rc208 294.5 294.5 3 1 294.5 294.5 3
B-50-c101 455.1 431.3 5 1 431.3 431.3 5
B-50-c102 442.1 425.8 11 3 428.3 428.3 25
B-50-c103 424.3 422.9 13 3 424.3 424.3 34
B-50-c104 ∞ 395.0 260 9 409.0 409.0 3362
B-50-c105 428.9 424.4 7 3 428.9 428.9 16
B-50-c106 431.3 431.3 6 1 431.3 431.3 6
B-50-c107 425.7 423.7 10 3 425.7 425.7 22
B-50-c108 424.5 421.3 8 3 424.5 424.5 20
B-50-c109 ∞ 416.7 25 3 421.8 421.8 49
B-50-c201 412.3 412.3 4 1 412.3 412.3 4
B-50-c202 407.2 406.7 59 3 407.2 407.2 95
B-50-c203 400.0 396.7 49 1 396.7 396.7 49
B-50-c204 ∞ 390.3 144 1 390.3 390.3 144
B-50-c205 411.9 411.9 5 1 411.9 411.9 5
B-50-c206 411.9 411.9 12 1 411.9 411.9 12
B-50-c207 ∞ 408.3 72 3 411.7 411.7 131
B-50-c208 402.6 402.6 8 1 402.6 402.6 8
B-50-r101 1136.4 1131.6 4 3 1136.4 1136.4 5
B-50-r102 933.7 930.7 4 3 933.7 933.7 9
B-50-r103 792.9 787.0 10 3 792.9 792.9 24
B-50-r104 650.0 642.0 39 3 650.0 650.0 123
B-50-r105 982.0 973.2 4 3 979.1 979.1 10
B-50-r106 841.0 836.7 7 3 841.0 841.0 17
B-50-r107 741.7 737.0 16 3 741.7 741.7 38
B-50-r108 ∞ 620.7 101 3 628.2 628.2 321
B-50-r109 817.9 813.5 10 3 817.9 817.9 19
B-50-r110 733.9 725.7 13 3 733.9 733.9 32
B-50-r111 733.1 730.5 20 3 733.1 733.1 41
B-50-r112 649.4 646.7 45 3 649.4 649.4 86
B-50-r201 819.7 815.6 12 3 819.7 819.7 25
B-50-r202 730.6 717.5 40 3 720.6 720.6 76

36

Instance BKS RDB Rt (s) Nodes BDB BPB t (s)
B-50-r203 619.3 616.9 79 3 619.3 619.3 177
B-50-r204 ∞ 520.9 220 3 521.1 521.1 445
B-50-r205 705.0 698.8 42 5 705.0 705.0 173
B-50-r206 663.4 643.2 135 3 647.3 647.3 337
B-50-r207 582.7 582.7 322 1 582.7 582.7 322
B-50-r208 ∞ 498.5 60 1 498.5 498.5 60
B-50-r209 611.3 609.0 55 3 611.3 611.3 126
B-50-r210 656.6 653.4 176 3 656.6 656.6 435
B-50-r211 536.9 536.9 139 1 536.9 536.9 139
B-50-rc101 1098.6 1034.4 6 3 1051.1 1051.1 15
B-50-rc102 912.1 909.0 31 3 910.0 910.0 49
B-50-rc103 ∞ 768.7 54 3 783.3 783.3 96
B-50-rc104 ∞ 628.0 124 3 631.8 631.8 361
B-50-rc105 ∞ 964.6 45 3 965.8 965.8 62
B-50-rc106 ∞ 866.7 45 3 886.7 886.7 87
B-50-rc107 ∞ 718.8 359 3 726.7 726.7 824
B-50-rc108 ∞ 624.5 170 11 700.7 700.7 2351
B-50-rc201 809.8 764.4 42 3 782.2 782.2 76
B-50-rc202 690.7 669.4 40 3 672.3 672.3 73
B-50-rc203 ∞ 610.4 72 1 610.4 610.4 72
B-50-rc204 ∞ 476.1 411 17 504.7 504.7 5281
B-50-rc205 680.3 680.3 15 1 680.3 680.3 15
B-50-rc206 636.0 614.5 34 5 636.0 636.0 227
B-50-rc207 ∞ 561.8 146 37 582.5 582.5 5441
B-50-rc208 ∞ 469.2 383 157 496.7 496.7 48087
B-100-c101 991.8 984.9 27 3 991.8 991.8 67
B-100-c102 ∞ 954.2 42 3 955.2 955.2 97
B-100-c103 ∞ 942.9 149 9 949.2 949.2 506
B-100-c104 ∞ 897.1 359 5 904.7 904.7 4432
B-100-c105 964.6 961.4 21 3 964.6 964.6 44
B-100-c106 972.4 967.1 36 3 972.4 972.4 70
B-100-c107 954.6 949.6 20 3 954.6 954.6 40
B-100-c108 ∞ 948.6 32 3 954.5 954.5 62
B-100-c109 ∞ 909.6 46 9 911.2 911.2 277
B-100-c201 ∞ 662.9 278 3 671.7 671.7 462
B-100-c202 ∞ 656.4 461 5 667.6 667.6 1188
B-100-c203 ∞ 645.2 900 9 655.6 655.6 4088
B-100-c204 ∞ 624.4 1573 1 624.4 681.3 3443
B-100-c205 ∞ 653.8 233 9 668.6 668.6 1088
B-100-c206 ∞ 643.8 256 11 664.1 664.1 1339
B-100-c207 ∞ 639.6 308 3 647.2 647.2 616
B-100-c208 ∞ 633.8 388 13 647.9 647.9 2632
B-100-r101 1721.6 1708.3 14 3 1715.7 1715.7 33
B-100-r102 1499.5 1498.6 18 3 1499.5 1499.5 45
B-100-r103 ∞ 1199.4 42 3 1201.5 1201.5 108
B-100-r104 1391.3 978.0 229 33 985.8 985.8 6548
B-100-r105 ∞ 1390.2 22 3 1391.3 1391.3 42
B-100-r106 ∞ 1260.3 43 9 1266.1 1266.1 415
B-100-r107 ∞ 1071.5 96 11 1077.6 1077.6 1348
B-100-r108 ∞ 931.6 282 9 942.0 942.0 2686
B-100-r109 ∞ 1188.0 64 37 1199.1 1199.1 2054
B-100-r110 ∞ 1091.7 153 7 1095.3 1095.3 675
B-100-r111 ∞ 1065.1 75 3 1065.5 1065.5 136
B-100-r112 ∞ 964.4 398 57 975.7 975.7 16094
B-100-r201 1167.7 1164.2 98 5 1167.7 1167.7 269
B-100-r202 ∞ 1031.9 460 5 1035.6 1035.6 2381
B-100-r203 ∞ 869.5 632 63 879.2 879.2 32406
B-100-r204 ∞ 723.5 1099 137 727.4 796.8 108022
B-100-r205 ∞ 954.4 530 59 965.0 965.0 21217
B-100-r206 ∞ 868.3 655 265 874.2 892.7 108004
B-100-r207 ∞ 790.7 1023 3 790.7 ∞ 5294
B-100-r208 ∞ 689.5 1306 7 691.5 ∞ 8418
B-100-r209 ∞ 851.2 718 183 853.4 ∞ 108012
B-100-r210 ∞ 893.1 583 13 900.5 900.5 6977
B-100-r211 ∞ 735.0 834 1 735.0 ∞ 2701
B-100-rc101 1759.4 1730.1 31 3 1738.2 1738.2 87
B-100-rc102 1532.9 1513.5 112 5 1520.8 1520.8 295
B-100-rc103 ∞ 1294.8 171 3 1302.1 1302.1 395
B-100-rc104 ∞ 1143.4 262 21 1158.2 1158.2 3695

37

Instance BKS RDB Rt (s) Nodes BDB BPB t (s)
B-100-rc105 1662.1 1614.0 61 3 1617.8 1617.8 131
B-100-rc106 ∞ 1435.7 79 7 1442.9 1442.9 268
B-100-rc107 ∞ 1263.7 97 9 1274.7 1274.7 717
B-100-rc108 ∞ 1152.9 285 15 1166.3 1166.3 3922
B-100-rc201 1279.8 1275.8 82 3 1279.8 1279.8 149
B-100-rc202 1116.5 1101.1 238 13 1110.4 1110.4 1863
B-100-rc203 ∞ 926.7 707 1 926.7 974.9 1947
B-100-rc204 ∞ 771.8 2407 3 773.3 ∞ 6659
B-100-rc205 ∞ 1156.8 268 3 1157.6 1157.6 405
B-100-rc206 ∞ 1050.9 287 3 1059.1 1059.1 590
B-100-rc207 ∞ 953.4 700 59 968.6 968.6 25852
B-100-rc208 ∞ 763.5 2547 9 766.8 ∞ 13638

Table 17: Detailed results for algorithm BCPall without initial upper bounds on instances of the
VRPTW-S with large shift capacities (ρ = 1.5)

Instance BKS RDB Rt (s) Nodes BDB BPB t (s)
C-25-c101 213.4 208.0 8 3 213.4 213.4 13
C-25-c102 212.4 207.0 15 3 212.4 212.4 27
C-25-c103 207.5 206.5 15 3 207.5 207.5 25
C-25-c104 204.4 200.9 11 3 204.4 204.4 24
C-25-c105 213.4 206.9 3 3 213.4 213.4 8
C-25-c106 213.4 208.0 11 3 213.4 213.4 17
C-25-c107 213.4 206.9 4 3 213.4 213.4 8
C-25-c108 213.4 206.9 4 3 213.4 213.4 8
C-25-c109 229.5 206.5 8 3 213.4 213.4 14
C-25-c201 252.1 252.1 5 1 252.1 252.1 5
C-25-c202 247.1 247.1 5 1 247.1 247.1 5
C-25-c203 244.5 244.5 6 1 244.5 244.5 6
C-25-c204 243.0 243.0 11 1 243.0 243.0 11
C-25-c205 251.3 251.3 5 1 251.3 251.3 5
C-25-c206 248.7 248.7 3 1 248.7 248.7 2
C-25-c207 245.5 245.5 7 1 245.5 245.5 7
C-25-c208 247.2 247.2 4 1 247.2 247.2 3
C-25-r101 617.1 617.1 0 1 617.1 617.1 0
C-25-r102 547.1 547.1 2 1 547.1 547.1 2
C-25-r103 454.6 454.6 1 1 454.6 454.6 1
C-25-r104 420.8 418.5 3 3 420.8 420.8 8
C-25-r105 551.9 530.7 1 1 530.7 530.7 1
C-25-r106 465.4 465.4 2 1 465.4 465.4 2
C-25-r107 425.8 425.8 1 1 425.8 425.8 0
C-25-r108 404.3 404.3 4 3 404.3 404.3 8
C-25-r109 447.8 445.7 2 3 447.8 447.8 5
C-25-r110 444.1 444.1 4 3 444.1 444.1 7
C-25-r111 428.8 428.8 1 1 428.8 428.8 1
C-25-r112 393.0 393.0 3 1 393.0 393.0 3
C-25-r201 467.7 465.7 4 3 467.7 467.7 9
C-25-r202 410.5 410.5 1 1 410.5 410.5 1
C-25-r203 391.4 391.4 2 1 391.4 391.4 2
C-25-r204 366.8 365.6 28 3 366.8 366.8 59
C-25-r205 402.6 400.2 6 3 402.6 402.6 14
C-25-r206 375.9 375.9 3 1 375.9 375.9 3
C-25-r207 361.6 361.6 3 1 361.6 361.6 3
C-25-r208 340.4 340.4 1 1 340.4 340.4 1
C-25-r209 376.4 375.2 8 3 376.4 376.4 22
C-25-r210 404.6 404.6 1 1 404.6 404.6 1
C-25-r211 352.0 352.0 2 1 352.0 352.0 2
C-25-rc101 462.7 462.7 1 1 462.7 462.7 1
C-25-rc102 400.8 400.8 6 1 400.8 400.8 6
C-25-rc103 389.7 388.6 28 1 388.6 388.6 28
C-25-rc104 361.0 361.0 30 1 361.0 361.0 30
C-25-rc105 411.3 411.3 1 1 411.3 411.3 1
C-25-rc106 396.9 396.9 2 1 396.9 396.9 2
C-25-rc107 365.2 362.1 12 3 363.8 363.8 19

38

Instance BKS RDB Rt (s) Nodes BDB BPB t (s)
C-25-rc108 ∞ 352.1 28 3 360.0 360.0 56
C-25-rc201 426.0 397.3 4 1 397.3 397.3 3
C-25-rc202 338.0 338.0 1 1 338.0 338.0 1
C-25-rc203 326.9 326.9 1 1 326.9 326.9 1
C-25-rc204 299.7 299.7 3 1 299.7 299.7 3
C-25-rc205 338.0 338.0 1 1 338.0 338.0 1
C-25-rc206 334.4 334.4 2 1 334.4 334.4 1
C-25-rc207 298.3 298.3 2 1 298.3 298.3 2
C-25-rc208 293.1 292.7 14 3 293.1 293.1 25
C-50-c101 400.3 377.9 10 3 384.5 384.5 18
C-50-c102 399.3 376.0 19 3 383.5 383.5 37
C-50-c103 395.0 375.6 17 3 383.5 383.5 36
C-50-c104 ∞ 369.5 27 3 378.7 378.7 70
C-50-c105 384.5 376.8 8 3 384.5 384.5 18
C-50-c106 384.5 376.8 9 3 384.5 384.5 18
C-50-c107 384.5 376.8 8 3 384.5 384.5 21
C-50-c108 389.3 376.7 10 3 384.5 384.5 26
C-50-c109 389.3 375.9 10 3 384.5 384.5 23
C-50-c201 395.9 392.9 45 3 395.9 395.9 104
C-50-c202 383.2 383.2 6 1 383.2 383.2 6
C-50-c203 376.9 376.9 14 1 376.9 376.9 23
C-50-c204 374.1 369.7 203 3 372.2 372.2 894
C-50-c205 389.4 389.4 12 1 389.4 389.4 12
C-50-c206 389.4 389.4 41 1 389.4 389.4 48
C-50-c207 377.1 377.1 13 1 377.1 377.1 13
C-50-c208 386.2 385.4 150 3 386.2 386.2 239
C-50-r101 1049.0 1049.0 3 1 1049.0 1049.0 3
C-50-r102 902.8 902.8 3 1 902.8 902.8 5
C-50-r103 760.6 757.5 7 3 760.6 760.6 17
C-50-r104 636.9 628.2 24 3 629.4 629.4 53
C-50-r105 926.1 906.1 5 3 906.3 906.3 10
C-50-r106 791.6 791.6 6 3 791.6 791.6 17
C-50-r107 720.0 705.4 16 3 708.3 708.3 35
C-50-r108 ∞ 608.5 95 3 611.1 611.1 303
C-50-r109 791.9 788.3 6 3 791.9 791.9 14
C-50-r110 717.3 705.2 7 1 705.2 705.2 11
C-50-r111 714.0 713.8 15 3 714.0 714.0 27
C-50-r112 657.2 634.7 26 3 637.1 637.1 52
C-50-r201 803.3 800.2 9 3 800.6 800.6 21
C-50-r202 765.4 708.2 26 3 713.8 713.8 53
C-50-r203 617.8 613.8 67 3 615.2 615.2 114
C-50-r204 ∞ 516.7 302 3 518.4 518.4 627
C-50-r205 690.9 690.9 13 1 690.9 690.9 13
C-50-r206 669.3 634.8 72 3 637.7 637.7 186
C-50-r207 ∞ 580.3 354 3 581.5 581.5 836
C-50-r208 ∞ 495.6 231 3 498.5 498.5 542
C-50-r209 600.6 600.6 10 1 600.6 600.6 10
C-50-r210 ∞ 648.2 118 3 651.2 651.2 227
C-50-r211 535.5 535.5 72 1 535.5 535.5 72
C-50-rc101 1066.7 945.6 5 3 954.9 954.9 17
C-50-rc102 854.6 794.5 42 3 833.4 833.4 80
C-50-rc103 716.0 665.4 32 3 714.1 714.1 77
C-50-rc104 ∞ 573.7 326 3 599.2 599.2 3054
C-50-rc105 913.6 860.2 16 3 894.7 894.7 43
C-50-rc106 768.0 734.2 60 3 767.8 767.8 111
C-50-rc107 712.8 662.0 139 3 672.4 672.4 214
C-50-rc108 ∞ 580.0 151 3 632.6 632.6 355
C-50-rc201 730.5 716.6 33 1 716.6 716.6 32
C-50-rc202 636.3 631.7 267 3 636.3 636.3 443
C-50-rc203 ∞ 572.4 722 7 579.1 579.1 2629
C-50-rc204 ∞ 449.2 565 509 464.3 523.3 108014
C-50-rc205 671.1 652.3 219 3 657.5 657.5 315
C-50-rc206 610.0 610.0 14 1 610.0 610.0 14
C-50-rc207 560.2 560.2 153 1 560.2 560.2 152
C-50-rc208 476.7 459.4 676 53 476.7 476.7 14230
C-100-c101 862.5 830.4 21 3 847.5 847.5 52
C-100-c102 862.5 829.9 33 3 847.5 847.5 83
C-100-c103 ∞ 828.9 59 3 846.3 846.3 153
C-100-c104 ∞ 824.2 72 3 842.2 842.2 240

39

Instance BKS RDB Rt (s) Nodes BDB BPB t (s)
C-100-c105 857.2 829.9 21 3 847.5 847.5 62
C-100-c106 851.5 830.4 25 3 847.5 847.5 79
C-100-c107 857.2 829.9 20 3 847.5 847.5 79
C-100-c108 ∞ 829.9 30 3 847.5 847.5 85
C-100-c109 ∞ 828.8 32 3 847.1 847.1 74
C-100-c201 ∞ 627.0 181 1 627.0 627.0 181
C-100-c202 ∞ 626.0 628 3 626.8 626.8 16349
C-100-c203 ∞ 617.8 1321 1 617.8 617.8 1320
C-100-c204 ∞ 591.1 1874 3 617.2 617.2 3730
C-100-c205 ∞ 623.8 354 3 624.1 624.1 1272
C-100-c206 ∞ 622.6 509 3 623.7 623.7 3335
C-100-c207 ∞ 622.1 678 3 622.1 623.5 6739
C-100-c208 ∞ 616.2 426 1 616.2 616.2 426
C-100-r101 1679.4 1632.0 10 3 1634.8 1634.8 27
C-100-r102 1470.0 1460.4 14 1 1460.4 1460.4 21
C-100-r103 1185.7 1184.8 23 3 1185.0 1185.0 50
C-100-r104 ∞ 947.3 214 115 955.4 955.4 8530
C-100-r105 1361.4 1355.0 19 3 1355.3 1355.3 65
C-100-r106 1228.0 1227.8 41 15 1228.0 1228.0 211
C-100-r107 1047.1 1045.1 104 5 1047.1 1047.1 577
C-100-r108 ∞ 911.1 306 3 913.6 913.6 687
C-100-r109 1146.9 1144.3 55 3 1146.9 1146.9 225
C-100-r110 1068.0 1068.0 157 3 1068.0 1068.0 266
C-100-r111 ∞ 1045.1 136 5 1048.0 1048.0 590
C-100-r112 ∞ 945.1 446 7 948.6 948.6 3244
C-100-r201 1144.3 1143.2 78 5 1143.6 1143.6 313
C-100-r202 1029.8 1026.1 323 9 1029.8 1029.8 3064
C-100-r203 ∞ 868.0 1514 5 870.8 870.8 4330
C-100-r204 ∞ 720.2 1313 97 721.6 747.1 79596
C-100-r205 ∞ 944.8 519 7 949.8 949.8 3305
C-100-r206 ∞ 866.5 688 29 870.5 995.5 34344
C-100-r207 ∞ 783.0 853 85 787.6 827.7 90306
C-100-r208 ∞ 686.0 2244 25 687.5 ∞ 32906
C-100-r209 ∞ 847.6 768 161 850.6 877.6 75146
C-100-r210 ∞ 893.2 1019 149 895.9 913.1 83470
C-100-r211 ∞ 736.3 1184 203 738.1 801.4 108000
C-100-rc101 1685.3 1619.8 22 1 1619.8 1619.8 28
C-100-rc102 1471.9 1442.3 84 1 1442.3 1442.3 97
C-100-rc103 ∞ 1229.2 114 7 1235.9 1235.9 1085
C-100-rc104 ∞ 1097.6 252 3 1100.7 1100.7 570
C-100-rc105 1615.5 1513.7 57 1 1513.7 1513.7 68
C-100-rc106 ∞ 1366.8 171 3 1372.7 1372.7 312
C-100-rc107 1207.8 1205.4 95 1 1205.4 1205.4 117
C-100-rc108 1114.2 1108.5 242 3 1114.2 1114.2 541
C-100-rc201 1261.8 1261.5 97 3 1261.8 1261.8 147
C-100-rc202 1092.3 1092.3 282 1 1092.3 1092.3 314
C-100-rc203 ∞ 922.7 904 11 925.2 1007.9 9702
C-100-rc204 ∞ 770.7 9956 29 774.5 880.1 68778
C-100-rc205 1154.0 1152.4 228 3 1154.0 1154.0 419
C-100-rc206 ∞ 1044.3 298 11 1052.2 1052.2 1955
C-100-rc207 ∞ 955.2 1061 15 963.2 963.2 6421
C-100-rc208 ∞ 763.9 2848 77 767.0 800.7 83268

References

Z. Akca, R. T. Berger, and T. K. Ralphs. A branch-and-price algorithm for combined location
and routing problems under capacity restrictions. In John W. Chinneck, Bjarni Kristjansson,
and Matthew J. Saltzman, editors, Operations Research and Cyber-Infrastructure, pages 309–
330, Boston, MA, 2009. Springer. ISBN 978-0-387-88843-9.

Maria Albareda-Sambola, Elena Fernández, and Gilbert Laporte. The capacity and distance
constrained plant location problem. Computers & Operations Research, 36(2):597–611, 2009.

40

J. Aráoz. Polyhedral neopolarities. PhD thesis, University of Waterloo, Department of Computer
Science, 1974.

Julián Aráoz, Lisa Evans, Ralph E Gomory, and Ellis L Johnson. Cyclic group and knapsack
facets. Mathematical Programming, 96(2):377–408, 2003.

Roberto Baldacci and Aristide Mingozzi. A unified exact method for solving different classes of
vehicle routing problems. Mathematical Programming, 120(2):347–380, 2009.

Roberto Baldacci, Nicos Christofides, and Aristide Mingozzi. An exact algorithm for the vehicle
routing problem based on the set partitioning formulation with additional cuts. Mathematical
Programming, 115(2):351–385, Oct 2008. ISSN 1436-4646. doi: 10.1007/s10107-007-0178-5.
URL https://doi.org/10.1007/s10107-007-0178-5.

Roberto Baldacci, Aristide Mingozzi, and Roberto Roberti. New route relaxation and pricing
strategies for the vehicle routing problem. Operations Research, 59(5):1269–1283, 2011a. doi:
10.1287/opre.1110.0975.

Roberto Baldacci, Aristide Mingozzi, and Roberto Wolfler Calvo. An exact method for the
capacitated location-routing problem. Operations Research, 59(5):1284–1296, 2011b. doi:
10.1287/opre.1110.0989.

José-Manuel Belenguer, Enrique Benavent, Christian Prins, Caroline Prodhon,
and Roberto Wolfler Calvo. A branch-and-cut method for the capacitated
location-routing problem. Computers & Operations Research, 38(6):931 – 941,
2011. ISSN 0305-0548. doi: https://doi.org/10.1016/j.cor.2010.09.019. URL
http://www.sciencedirect.com/science/article/pii/S0305054810002145.

Imen Ben Mohamed, Walid Klibi, Ruslan Sadykov, Halil Şen, and François Vanderbeck. The
two-echelon stochastic multi-period capacitated location-routing problem. HAL 02987266,
Inria, 2020.

Rosemary T. Berger, Collette R. Coullard, and Mark S. Daskin. Location-routing problems with
distance constraints. Transportation Science, 41(1):29–43, 2007. doi: 10.1287/trsc.1060.0156.

Maurizio Boccia, Antonio Sforza, Claudio Sterle, and Igor Vasilyev. A cut and branch approach
for the capacitated p-median problem based on fenchel cutting planes. Journal of mathematical
modelling and algorithms, 7(1):43–58, 2008.

E Andrew Boyd. Generating fenchel cutting planes for knapsack polyhedra. SIAM Journal on
Optimization, 3(4):734–750, 1993.

E Andrew Boyd. Fenchel cutting planes for integer programs. Operations Research, 42(1):53–64,
1994.

Sunil Chopra, Sangho Shim, and Daniel E. Steffy. A few strong knapsack facets. In Boris
Defourny and Tamás Terlaky, editors, Modeling and Optimization: Theory and Applications,
pages 77–94, Cham, 2015. Springer International Publishing. ISBN 978-3-319-23699-5.

Claudio Contardo and Rafael Martinelli. A new exact algorithm for the multi-depot vehicle
routing problem under capacity and route length constraints. Discrete Optimization, 12:129
– 146, 2014.

Claudio Contardo, Vera Hemmelmayr, and Teodor Gabriel Crainic. Lower and upper bounds
for the two-echelon capacitated location-routing problem. Computers & Operations Research,
39(12):3185 – 3199, 2012.

Claudio Contardo, Jean-François Cordeau, and Bernard Gendron. A computational comparison
of flow formulations for the capacitated location-routing problem. Discrete Optimization, 10
(4):263 – 295, 2013. ISSN 1572-5286. doi: https://doi.org/10.1016/j.disopt.2013.07.005. URL
http://www.sciencedirect.com/science/article/pii/S1572528613000339.

41

Claudio Contardo, Jean-François Cordeau, and Bernard Gendron. An exact algorithm
based on cut-and-column generation for the capacitated location-routing problem. IN-
FORMS Journal on Computing, 26(1):88–102, 2014. doi: 10.1287/ijoc.2013.0549. URL
https://doi.org/10.1287/ijoc.2013.0549.

Luciano Costa, Claudio Contardo, and Guy Desaulniers. Exact branch-price-and-cut algorithms
for vehicle routing. Transportation Science, 53(4):946–985, 2019.

Said Dabia, Stefan Ropke, and Tom Van Woensel. Cover inequalities for a vehicle routing
problem with time windows and shifts. Transportation Science, 53(5):1354–1371, 2019.

Mohammad M. Fazel-Zarandi and J. Christopher Beck. Using logic-based benders decomposition
to solve the capacity- and distance-constrained plant location problem. INFORMS Journal
on Computing, 24(3):387–398, 2012.

Ricardo Fukasawa, Humberto Longo, Jens Lysgaard, Marcus Poggi de Aragão, Marcelo
Reis, Eduardo Uchoa, and Renato F. Werneck. Robust branch-and-cut-and-price
for the capacitated vehicle routing problem. Mathematical Programming, 106(3):
491–511, May 2006. ISSN 1436-4646. doi: 10.1007/s10107-005-0644-x. URL
https://doi.org/10.1007/s10107-005-0644-x.

Mads Jepsen, Bjørn Petersen, Simon Spoorendonk, and David Pisinger. Subset-row inequalities
applied to the vehicle-routing problem with time windows. Operations Research, 56(2):497–
511, 2008.

G. Laporte and Y. Nobert. A branch and bound algorithm for the capacitated vehicle routing
problem. Operations-Research-Spektrum, 5(2):77–85, Jun 1983.

Gilbert Laporte and Yves Nobert. An exact algorithm for minimizing routing and op-
erating costs in depot location. European Journal of Operational Research, 6(2):224 –
226, 1981. ISSN 0377-2217. doi: https://doi.org/10.1016/0377-2217(81)90212-5. URL
http://www.sciencedirect.com/science/article/pii/0377221781902125.

Gilbert Laporte, Yves Nobert, and D. Arpin. An exact algorithm for solving a capacitated
location-routing problem. Annals of Operations Research, 6(9):291–310, Sep 1986. ISSN 1572-
9338. doi: 10.1007/BF02023807. URL https://doi.org/10.1007/BF02023807.

Gilbert Laporte, Yves Nobert, and Serge Taillefer. Solving a family of multi-depot vehicle routing
and location-routing problems. Transportation Science, 22(3):161–172, 1988. ISSN 00411655,
15265447. URL http://www.jstor.org/stable/25768316.

Jens Lysgaard, Adam N. Letchford, and Richard W. Eglese. A new branch-and-cut algorithm
for the capacitated vehicle routing problem. Mathematical Programming, 100(2):423–445, Jun
2004.

D. Pecin, A. Pessoa, M. Poggi, and E. Uchoa. Improved branch-cut-and-price for capacitated
vehicle routing. In Proceedings of the 17th IPCO, pages 393–403. Springer, 2014.

Diego Pecin, Artur Pessoa, Marcus Poggi, and Eduardo Uchoa. Improved branch-cut-and-price
for capacitated vehicle routing. Mathematical Programming Computation, 9(1):61–100, 2017a.

Diego Pecin, Artur Pessoa, Marcus Poggi, Eduardo Uchoa, and Haroldo Santos. Limited memory
rank-1 cuts for vehicle routing problems. Operations Research Letters, 45(3):206 – 209, 2017b.

Artur Pessoa, Eduardo Uchoa, and Marcus Poggi de Aragão. A robust branch-cut-and-price
algorithm for the heterogeneous fleet vehicle routing problem. Networks, 54(4):167–177, 2009.

Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, and François Vanderbeck. A generic exact solver
for vehicle routing and related problems. Mathematical Programming, 183:483–523, 2020.

42

Bjørn Petersen, David Pisinger, and Simon Spoorendonk. Chvátal-Gomory Rank-1 Cuts Used
in a Dantzig-Wolfe Decomposition of the Vehicle Routing Problem with Time Windows, pages
397–419. Springer US, Boston, MA, 2008.

U Pferschy, H Kellerer, and D Pisinger. Knapsack Problems. Springer, 2004.

Marcus Poggi and Eduardo Uchoa. Integer program reformulation for robust branch-and-cut-
and-price algorithms. In Laurence Wolsey, editor, Mathematical Programming in Rio, pages
56–61, 2003.

Marcus Poggi and Eduardo Uchoa. New Exact Algorithms for the Capacitated Ve-
hicle Routing Problem, chapter 3, pages 59–86. Society for Industrial and Ap-
plied Mathematics, Philadelphia, PA, 2014. doi: 10.1137/1.9781611973594.ch3. URL
https://epubs.siam.org/doi/abs/10.1137/1.9781611973594.ch3.

Sattrawut Ponboon, Ali Gul Qureshi, and Eiichi Taniguchi. Branch-and-price algorithm for the
location-routing problem with time windows. Transportation Research Part E: Logistics and
Transportation Review, 86:1 – 19, 2016.

Christian Prins, Caroline Prodhon, and Roberto Wolfler Calvo. Solving the capacitated location-
routing problem by a grasp complemented by a learning process and a path relinking.
4OR, 4(3):221–238, Sep 2006. ISSN 1614-2411. doi: 10.1007/s10288-006-0001-9. URL
https://doi.org/10.1007/s10288-006-0001-9.

Edward Rothberg. An evolutionary algorithm for polishing mixed integer programming solutions.
INFORMS Journal on Computing, 19(4):534–541, 2007.

Ruslan Sadykov and François Vanderbeck. BaPCod — a generic Branch-And-Price Code. Tech-
nical report HAL-03340548, Inria Bordeaux — Sud-Ouest, September 2021.

Ruslan Sadykov, Eduardo Uchoa, and Artur Pessoa. A bucket graph–based labeling algorithm
with application to vehicle routing. Transportation Science, 55(1):4–28, 2021.

Said Salhi and Graham K. Rand. The effect of ignoring routes when locat-
ing depots. European Journal of Operational Research, 39(2):150 – 156, 1989.
ISSN 0377-2217. doi: https://doi.org/10.1016/0377-2217(89)90188-4. URL
http://www.sciencedirect.com/science/article/pii/0377221789901884.

Michael Schneider and Michael Drexl. A survey of the standard location-routing problem. Annals
of Operations Research, 259(1):389–414, Dec 2017. ISSN 1572-9338. doi: 10.1007/s10479-017-
2509-0. URL https://doi.org/10.1007/s10479-017-2509-0.

Michael Schneider and Maximilian Löffler. Large composite neighborhoods for the ca-
pacitated location-routing problem. Transportation Science, 53(1):301–318, 2019. doi:
10.1287/trsc.2017.0770. URL https://doi.org/10.1287/trsc.2017.0770.

Christian Tilk, Katharina Olkis, and Stefan Irnich. The last-mile vehicle routing problem with
delivery options. OR Spectrum, 43(4):877–904, 2021.

Dilek Tuzun and Laura I. Burke. A two-phase tabu search approach to the location routing
problem. European Journal of Operational Research, 116(1):87 – 99, 1999.

Laurence A. Wolsey. Integer Programming. John Wiley & Sons, 1998.

43

