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Abstract. We consider the initial-value problem for the one-dimensional, time-dependent

wave equation with positive, Lipschitz continuous coefficients, which are constant outside a
bounded region. Under the assumption of compact support of the initial data, we prove

that the local energy decays exponentially fast in time, and provide the explicit constant to

which the solution converges for large times. We give explicit estimates of the rate of this
exponential decay by two different techniques. The first one is based on the definition of a

modified, weighted local energy, with suitably constructed weights. The second one is based

on the integral formulation of the problem and, under a more restrictive assumption on the
variation of the coefficients, allows us to obtain improved decay rates.
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1. Introduction

The paper is dedicated to the investigation of the time-decay of the solution of the following
initial-value problem

(1)

{
β (x) ∂2

t u (x, t)− ∂x (α (x) ∂xu (x, t)) = 0, x ∈ R, t > 0,

u (x, 0) = u0 (x) , ∂tu (x, 0) = u1 (x) , x ∈ R,

where the coefficients α, β are positive, Lipschitz, and constant outside a bounded domain, and
the initial data u0, u1 are compactly supported. Studying such time-decay is important for
practical applications and it shall be used in our follow-up paper [2].

Most relevant works, such as the recent ones [10] and [3], are focussed on proving the decay
in time of the solution derivatives in L2-norm taken over bounded sets. Such local energy decay
is usually obtained in spatial dimensions d ≥ 2. Another recent paper [4] contains a time-decay
result in the one-dimensional case under certain restrictions on α, β and localisation of the initial
data u0, u1.

*A. Arnold, S. Geevers, and I. Perugia have been funded by the Austrian Science Fund (FWF) through the

project F 65 “Taming Complexity in Partial Differential Systems”. I. Perugia has also been funded by the FWF
through the project P 29197-N32. A. Arnold and D. Ponomarev were supported by the bi-national FWF-project
I3538-N32.
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2 EXPONENTIAL TIME-DECAY FOR THE WAVE EQUATION

It is the purpose of the present work to improve such L2-estimates of the solution derivatives
by showing that, in case of compactly supported initial data, the decay of the solution in time
is exponential rather than algebraic. We also prove that, in this case, an auxiliary condition
on α, β used in [4] can be avoided. Moreover, we generalise the result to prove the decay not
only of derivatives but also of the solution function itself. Namely, we conclude that the solution
converges exponentially fast in time to a constant, which is explicitly computable in terms of α,
β and u1.

Let us denote R+ := {x ∈ R : x ≥ 0} and start with a well-posedness result for problem (1).

Proposition 1.1. Let α ∈W 1,∞ (R) and β ∈ L∞ (R) with α (x) ≥ αmin > 0 and β (x) ≥ βmin >
0 for x ∈ R. Furthermore, let u0 ∈ H1 (R) and u1 ∈ L2 (R). Then, problem (1) has a unique
solution u ∈ C1

(
R+, L

2 (R)
)
∩ C

(
R+, H

1 (R)
)
, with the continuous dependence on the initial

data, according to the following estimate

(2) ‖u (·, t)‖H1(R) + ‖∂tu (·, t)‖L2(R) ≤ C
(
‖u0‖H1(R) + ‖u1‖L2(R)

)
, 0 ≤ t ≤ T,

valid for any T > 0, with some constant C = C (T, α, β) > 0.
Moreover, if u0 ∈ H2 (R) and u1 ∈ H1 (R), then we have u ∈ C2

(
R+, L

2 (R)
)
∩C1

(
R+, H

1 (R)
)
∩

C
(
R+, H

2 (R)
)
.

For the long-time analysis, we shall now make more restrictive assumptions.

Assumption 1.2. Let α, β ∈W 1,∞ (R) be real-valued functions such that α(x) ≥ αmin, β(x) ≥
βmin for x ∈ R, and α(x) ≡ α0, β(x) ≡ β0 for x ∈ R\Ωin, with some open bounded interval
Ωin ⊂ R and constants αmin, βmin, α0, β0 > 0.

Assumption 1.3. Suppose that u0 ∈ H1 (R), u1 ∈ L2 (R) are real-valued functions with the
supports suppu0, suppu1 ⊂ Ω0 for some open bounded interval Ω0 ⊂ R.

Our main results are given by the following two theorems.

Theorem 1.4. Assume that α, β, Ωin are as in Assumption 1.2, and u0, u1, Ω0 are as in
Assumption 1.3. Then, for any open bounded interval Ω ⊂ R, the solution of (1) obeys the decay
estimate

(3) ‖u (·, t)− u∞‖H1(Ω) + ‖∂tu (·, t)‖L2(Ω) ≤ Ce
−Λt, t ≥ 0,

for some constant C = C (u0, u1, α, β, |Ω0| , |Ωin|)> 0, with |Ω0|, |Ωin| denoting the Lebesgue
measure of the sets Ω0, Ωin, respectively, and

(4) u∞ :=
1

2 (α0β0)
1/2

∫
Ω0

u1 (x)β (x) dx, Λ :=
γ0

2t0
e−2γ0

(
1− 4γ0e

−4γ0
)1/2

,

(5) γ0 :=
t0
4

∥∥∥∥∥ α′

(αβ)
1/2

+

(
α

β3

)1/2

β′

∥∥∥∥∥
L∞(Ωin)

, t0 :=

∫
Ωin

(
β (x)

α (x)

)1/2

dx.

We remark that the steady state u∞ given in (4) generalises the one resulting from the
d’Alembert formula for constant α and β, and for u0, u1 with compact support:

u∞ =
1

2

√
β0

α0

∫
R
u1(x) dx.

Note that even though the decay (3) is exponential, the decay rate Λ might be be rather
small in case of significantly varying coefficients α, β or large Ωin. In particular, the estimate
for the decay rate given by the second equation of (4) is exponentially small for large values
of γ0. Therefore, an alternative estimate is provided by the following theorem, which employs
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a different idea and yields a better decay rate, but in return requires an assumption on the
variation of α and β.

Theorem 1.5. Assume that α, β, Ωin are as in Assumption 1.2, u0, u1, Ω0 are as in Assumption
1.3, and t0 is defined in (5). Moreover, suppose that

(6) b0 := ‖α‖3/2L∞(Ωin) ‖β‖
1/2
L∞(Ωin)

∥∥∥∥∥
(

1

(αβ)
1/2

)′∥∥∥∥∥
2

L2(Ωin)

<
1

t0
.

Then, for the solution of (1), estimate (3) holds true, and the decay rate is given by

(7) Λ =
1

2t0
|log (b0t0)| .

Remark 1.6. Theorems 1.4 and 1.5 are valid also for complex-valued u0, u1 in Assumption 1.3.
Indeed, due to the linearity of problem (1) and the real-valuedness of α, β, both theorems could
be applied separately to the real and imaginary parts of the initial data.

Theorems 1.4 and 1.5 are to be compared with the following recent result from [4].

Proposition 1.7. [4, Thm. 1.2 (for d = 1)] Assume that α (x) ≡ α0 and that β satisfies
Assumption 1.2. Moreover, suppose that β is such that

(8) η := ‖β‖1/2L∞(Ωin)

∥∥∥∥∥
(

1

β1/2

)′∥∥∥∥∥
L∞(Ωin)

|Ωin| < 1.

Then, for any bounded Ω ⊂ R, the solution of (1) satisfies

(9) ‖∂xu (·, t)‖L2(Ω) + ‖∂tu (·, t)‖L2(Ω) ≤
C

t(1−η)/2
, t ≥ t1,

for some constant C > 0 and sufficiently large t1 > 0.

Note that, when the initial data are compactly supported, the algebraic decay in (9) appears
to be sub-optimal compared to both Theorem 1.4 and Theorem 1.5, which show the exponential
decay of the solution derivatives. As observed in [4, Rem. 1.2], the smallness assumption (8) on
η measuring the relative perturbation of the coefficients is essential in the proof there, but it is
not needed in our proof of Theorem 1.4.

For the wave equation (1) with constant coefficients and compactly supported initial data, the
solution converges on all bounded domains Ω to the constant u∞ in finite time. However, for
variable coefficients, convergence in finite time does not hold and exponential decay is the generic
scenario: as an example, consider (1) with α(x) ≡ α0 in R and β Lipschitz with β(x) = β1 on a
closed subinterval of some open set Ωin, and β(x) = β0 in R \ Ωin. A localised, travelling wave
packet starting within Ωin gets partly reflected and partly transmitted. Hence, its local norm
‖u (·, t)− u∞‖H1(Ωin) decays by a constant factor at each of these reflections, giving rise to an

exponential decay. On the other hand, we note that, for non-compactly supported initial data,
the decay of the derivatives of the solution in time is generally related to the decay of the initial
data at infinity. This can be easily seen already for the constant-coefficient case: the solution
furnished explicitly by the d’Alembert formula decays to some u∞ only algebraically fast if the
assumed decay at infinity of u0 or u1 is algebraic.

The following Sections 2, 3, and 4 are devoted to the proof of Proposition 1.1, Theorem 1.4,
and Theorem 1.5, respectively. Some conclusions are drawn in Section 5, and technical lemmas
used in the proof of Theorem 1.4 are deferred to the Appendix.
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2. Proof of Proposition 1.1

One standard approach to prove the well-posedness of problem (1) is to construct the solution
u, for coefficients α and β sufficiently regular, by a Galerkin approximation (e.g. see [5, Sect.
7.2], or [9, Par. 11.2]). Here, we shall, however, use semigroup theory tools, since they require
lower regularity assumptions on α and β. Although this approach is quite standard (e.g. see [8,
Par. 2], [11, Par. 3], or [9, Sect. 12.3.2]), we still outline it, adapting to our particular setting.

With the notation

φ (x, t) := (u (x, t) , v (x, t))
T
, v (x, t) := ∂tu (x, t) ,

A = A (x) := i

(
0 1

1
β(x)∂x (α (x) ∂x · )− 1

β(x) 0

)
, C = C (x) :=

(
0 0
1

β(x) 0

)
,

problem (1) is equivalent to the first order linear system

(10)

{
∂tφ (x, t) = (−iA (x) + C (x))φ (x, t) , x ∈ R, t > 0,

φ (x, 0) = φ0 (x) := (u0 (x) , u1 (x))
T
, x ∈ R.

We split the proof into 2 steps.

Step 1. Functional setting. We set L2
β (R) := L2 (R;β (x) dx). Due to the assumption β,

1/β ∈ L∞ (R), the space L2
β (R) actually consists of the same functions as L2 (R). We define

the operator B2 := − 1
β(x)∂x (α (x) ∂x · ) + 1

β(x) in L2
β (R). Since α, β are assumed to be positive

and bounded away from zero, the operator B2 is strictly positive. We claim that this operator
is self-adjoint with its (maximal) domain being DomB2 = H2 (R). Indeed, the symmetry of the
operator B2 is evident, and w ∈ H2 (R) implies B2w ∈ L2

β (R). By [12, Lem 2.3], it remains to

verify its surjectivity on L2
β (R) or, equivalently, on L2 (R). The latter follows from the fact that,

for α ∈ W 1,∞ (R), the operator B̃2 := −∂x (α (x) ∂x · ) + 1 from H2 (R) into L2 (R) is strictly
positive, and hence invertible.

Next, we define in L2
β (R) the positive square root B :=

√
B2, whose (maximal) domain is

DomB = H1 (R). In fact, for any w ∈ H1 (R), we have

‖Bw‖2L2
β(R) = 〈Bw,Bw〉L2

β(R) =

∫
R

(
B2w

)
(x)w (x)β (x) dx

=

∫
R

[
α (x) (w′ (x))

2
+ w2 (x)

]
dx,

which, due to positivity and boundedness of α, shows the equivalence between ‖B · ‖L2
β(R) and

‖ · ‖H1(R).

With this preparation, we can introduce the Hilbert space X := H1 (R) × L2 (R) equipped

with the inner product 〈φ, φ̃〉X := 〈Bu,Bũ〉L2
β(R) + 〈v, ṽ〉L2

β(R). Note that we have φ0 ∈ X.

Step 2. Evolution semigroup. Observe that the matrix operator A is symmetric in X, since

for any φ, φ̃ ∈ H2 (R)×H1 (R), we have〈
Aφ, φ̃

〉
X

= i 〈Bv,Bũ〉L2
β(R) + i

〈
−B2u, ṽ

〉
L2
β(R)

= i
〈
v,B2ũ

〉
L2
β(R)
− i 〈Bu,Bṽ〉L2

β(R) =
〈
φ,Aφ̃

〉
X
.

In fact, A is self-adjoint in X with (maximal) domain DomA = H2 (R) × H1 (R). The latter
statement follows from the maximality of DomB2 = H2 (R).

By Stone’s theorem [7, Ch. 1 Thm. 10.8], the operator −iA generates a C0-semigroup of
unitary operators on X, and the operator C is a bounded perturbation. Therefore, using results
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on the perturbation of semigroups [7, Sect. 3.1 Thm. 1.1], the operator −iA+ C, which defines
problem (10), generates a C0-semigroup of bounded operators on X. Consequently, we have the
following two solution concepts for problem (10), and thus for problem (1), depending on the

regularity of φ0 = (u0, u1)
T

(see [7, p. 105] for this discussion):

i) For φ0 ∈ X, problem (10) has a unique mild solution, i.e. φ ∈ C (R+, X), and hence
u ∈ C

(
R+, H

1 (R)
)
∩ C1

(
R+, L

2 (R)
)
, v = ∂tu ∈ C

(
R+, L

2 (R)
)

ii) For φ0 ∈ Dom A, problem (10) has a unique classical solution (in the semigroup sense),
i.e. φ ∈ C1 (R+, X)∩C (R+,Dom A), and hence u ∈ C

(
R+, H

2 (R)
)
∩C1

(
R+, H

1 (R)
)
,

v = ∂tu ∈ C1
(
R+, L

2 (R)
)
.

Finally, estimate (2) is an automatic consequence of the semigroup approach due to [7, Sect. 1.2
Thm. 2.2]. �

3. Proof of Theorem 1.4

Without loss of generality, let us take Ω = Ωin = Ω0 = (0, x0) for some x0 > 0. This is
possible since the decay in the region of interest Ω can be deduced by enlarging it (if necessary)
to an interval containing both Ω0 and Ωin; moreover, as the problem is posed on the entire real
line, we can choose the origin at the left end of the resulting interval.

While the result of this theorem is stated for the mild solution

(11) u ∈ C1
(
R+, L

2 (R)
)
∩ C

(
R+, H

1 (R)
)
,

its proof requires the regularity of classical solutions established in Proposition 1.1. Hence
we approximate the initial data (u0, u1)T ∈ X:= H1 (R)× L2 (R) by a sequence of functions
(un0 , u

n
1 )Tn∈N ⊂ H2 (R) ×H1 (R) with support in Ω0 and converging in X to (u0, u1)T . Due to

Proposition 1.1, each approximate initial condition (un0 , u
n
1 ) gives rise to a classical solution

(12) un ∈ C2
(
R+, L

2 (R)
)
∩ C1

(
R+, H

1 (R)
)
∩ C

(
R+, H

2 (R)
)
.

By the linearity of problem (1) and bound (2), these classical solutions converge uniformly to
the mild solution u on any finite time interval [0, T ]:

(13) un
n→∞−→ u in C1([0, T ], L2(R)) ∩ C([0, T ], H1(R)).

We recall that the notions of classical and mild solutions are discussed in [7, p. 105].

The proof is performed in 3 steps. In Step 1, for any fixed n ∈ N, we consider problem (1)
for initial data (un0 , u

n
1 ) ∈ H2 (R) ×H1 (R) and classical solution un as in (12). We transform

(1) into an auxiliary problem, for which we construct a weighted, local energy functional that
would admit an exponential decay under certain conditions on weight functions. In Step 2, we
construct these weight functions such that the rate of decay of the energy functional can be
estimated explicitly. In Step 3, we use the local energy decay and the convergence in (13) to
prove that the mild solution u of (1), for large times, converges to a constant uniformly on [0, x0].
Moreover, we identify this constant as u∞ defined in (4).

Step 1. Auxiliary local energy functional. As anticipated, here and in Step 2, we establish
the exponential-in-time decay of any classical solution un, i.e. for fixed index n ∈ N.

Let us perform the change of variable

(14) x 7→ y (x) :=
1

t0

∫ x

0

√
β (ξ) /α (ξ)dξ, x (s) = y−1 (s) ,

(15) t 7→ τ (t) := t/t0, t (τ) = t0τ, t0 :=

∫ x0

0

√
β (ξ) /α (ξ)dξ,
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and denote v (y, τ) := un (x (y) , t0τ), v0 (y) := un0 (x (y)), v1 (y) := t0 u
n
1 (x (y)),

(16) ρ (y) :=
1√

α (x (y))β (x (y))
, γ (y) :=

ρ′ (y)

ρ (y)
, ρ0 := ρ (0) = ρ (1) =

1√
α0β0

.

Due to Assumption 1.2, the map x 7→ y (x) is W 2,∞ (R), and hence v inherits the regularity
of un given by (12):

(17) v ∈ C2
(
R+, L

2 (R)
)
∩ C1

(
R+, H

1 (R)
)
∩ C

(
R+, H

2 (R)
)
.

We thus arrive at a problem equivalent to (1):

(18)

{
∂2
τv (y, τ)− ∂2

yv (y, τ) + γ (y) ∂yv (y, τ) = 0, y ∈ R, τ > 0,

v (y, 0) = v0 (y) , ∂τv (y, 0) = v1 (y) , y ∈ R,

where γ (y) ≡ 0 for y ∈ R\ (0, 1) and supp v0, supp v1 ⊆ (0, 1).
Motivated by the form of the global energy introduced in [6] for the wave equation in (18),

we consider the local energy functional

Eloc (τ) :=
1

2

∫ 1

0

[
(∂τv (y, τ))

2
+ (∂yv (y, τ))

2
] dy

ρ (y)

=
1

4

∫ 1

0

[
(∂τv (y, τ) + ∂yv (y, τ))

2
+ (∂τv (y, τ)− ∂yv (y, τ))

2
] dy

ρ (y)
> 0.(19)

This quantity is decaying since, by direct calculations employing integration by parts, using (16)
and the wave equation in (18), we have

E ′loc (τ) =

∫ 1

0

[
∂τv (y, τ) ∂2

τv (y, τ) + ∂yv (y, τ) ∂y∂τv (y, τ)
] dy

ρ (y)

=

∫ 1

0

[
∂τv (y, τ)

(
∂2
τv (y, τ)− ∂2

yv (y, τ) +
ρ′ (y)

ρ (y)
∂yv (y, τ)

)]
dy

ρ (y)
(20)

+ [∂yv (1, τ) ∂τv (1, τ)− ∂yv (0, τ) ∂τv (0, τ)]
1

ρ0

= [∂yv (1, τ) ∂τv (1, τ)− ∂yv (0, τ) ∂τv (0, τ)]
1

ρ0
≤ 0.

Note that we have used here the regularity of a classical solution. Moreover, in order to deduce
the sign in the last line, we have used the exact outflow boundary conditions (well-defined for
any τ ≥ 0 due to (17)):

(21) (∂y − ∂τ ) v (y, τ)|y=0 = 0 = (∂y + ∂τ ) v (y, τ)|y=1 ,

which are due to the support properties of the functions v0, v1 and γ.
We note, in passing, that the global energy, defined in the same way as (19) but with the

integration range replaced by R, is conserved.
Even though the conventional local energy functional (19) can (and, in the proof of Theorem

1.5, will) be used to show the exponential decay of the solution derivatives under some quan-
titative restriction on the coefficients α and β, here, we proceed with an alternative strategy
that does not require such a restriction. To this effect, we consider now a modified local energy
functional in the spirit of [1, Sec. 3]:

(22) Eloc (τ) :=
1

2

∫ 1

0

[
φ1 (y) (∂τv (y, τ) + ∂yv (y, τ))

2
+ φ2 (y) (∂τv (y, τ)− ∂yv (y, τ))

2
] dy

ρ (y)
,

where φ1 (y), φ2 (y) are some strictly positive weight functions on [0, 1], which are yet to be
chosen.
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Similarly to (20), we differentiate under the integral sign to obtain (suppressing the arguments
of all functions for the sake of brevity)

E′loc (τ) =

∫ 1

0

[
φ1 (∂τv + ∂yv)

(
∂2
τv + ∂y∂τv

)
+ φ2 (∂τv − ∂yv)

(
∂2
τv − ∂y∂τv

)] dy
ρ

(23)

=

∫ 1

0

[
φ1 (∂τv + ∂yv)

(
∂2
yv − γ∂yv + ∂y∂τv

)
+ φ2 (∂τv − ∂yv)

(
∂2
yv − γ∂yv − ∂y∂τv

)] dy
ρ

=
1

2

∫ 1

0

[
φ1∂y

(∂τv + ∂yv)
2

ρ
− φ2∂y

(∂τv − ∂yv)
2

ρ
+ (φ1 − φ2) γ

(∂τv)
2 − (∂yv)

2

ρ

]
dy,

where we used the wave equation in (18) to eliminate second-order time derivatives, and the
definition of γ in (16). Integrating (23) by parts and employing boundary conditions (21), we
obtain

E′loc (τ) =
1

2

∫ 1

0

[
−φ′1 (y) (∂τv (y, τ) + ∂yv (y, τ))

2
+ φ′2 (y) (∂τv (y, τ)− ∂yv (y, τ))

2

+ (φ1 (y)− φ2 (y)) γ (y)
(

(∂τv (y, τ))
2 − (∂yv (y, τ))

2
)] dy

ρ (y)

−
[
φ2 (1) (∂yv (1, τ))

2
+ φ1 (0) (∂yv (0, τ))

2
] 2

ρ0
.

We estimate

(φ1 − φ2) γ
(

(∂τv)
2 − (∂yv)

2
)

= (φ1 − φ2) γ (∂τv + ∂yv) (∂τv − ∂yv)

≤ 1

2
|φ1 − φ2| |γ|

(
(∂τv + ∂yv)

2
+ (∂τv − ∂yv)

2
)
,

and therefore, since ρ > 0, we arrive at

E′loc (τ) ≤− 1

2

∫ 1

0

[(
φ′1 (y)− |γ (y)|

2
|φ1 (y)− φ2 (y)|

)
(∂τv (y, τ) + ∂yv (y, τ))

2

+

(
−φ′2 (y)− |γ (y)|

2
|φ1 (y)− φ2 (y)|

)
(∂τv (y, τ)− ∂yv (y, τ))

2

]
dy

ρ (y)
.(24)

We aim to obtain an estimate of the form E′loc (τ) ≤ −λ0Eloc (τ) with some λ0 > 0, and
explore the possibility of choosing the weight functions φ1 (y), φ2 (y) that would lead to such an
estimate. In [1] it is shown in a more general setting that such weights do exist theoretically.
Here, we present an explicit construction of φ1, φ2, which will permit us to obtain an explicit
estimate of the decay rate of the solution.

Step 2. Construction of the weights φ1, φ2. Motivated by (24), we shall now construct
functions φ1 (y), φ2 (y) > 0 in (22) that satisfy, on [0, 1], the following differential inequalities

(25)


φ′1 (y)− |γ(y)|

2 |φ1 (y)− φ2 (y)| ≥ λφ1 (y) , y ∈ (0, 1) ,

−φ′2 (y)− |γ(y)|
2 |φ1 (y)− φ2 (y)| ≥ λφ2 (y) , y ∈ (0, 1) ,

φ1 (0) = φ2 (0) = 1,
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for some constant λ > 0 to be chosen. To this end, we consider functions ϕ1 (y), ϕ2 (y) > 0
solving the linear ODE system

(26)


ϕ′1 (y)− γ0 (ϕ1 (y)− ϕ2 (y)) = λϕ1 (y) , y ∈ (0, 1) ,

−ϕ′2 (y)− γ0 (ϕ1 (y)− ϕ2 (y)) = λϕ2 (y) , y ∈ (0, 1) ,

ϕ1 (0) = ϕ2 (0) = 1,

where γ0 := 1
2 ‖γ‖L∞(0,1).

It is easy to see that any solution of (26) automatically satisfies (25), provided that ϕ1 (y),
ϕ2 (y) > 0 for all y ∈ [0, 1]. Indeed, it suffices to verify that

(27) 0 ≤ ϕ1 (y)− ϕ2 (y) = |ϕ1 (y)− ϕ2 (y)| , y ∈ [0, 1] .

Summing both ODEs of (26), multiplying by e−2γ0y, and integrating on (0, y), we obtain

ϕ1 (y)− ϕ2 (y) = λ

∫ y

0

e2γ0(y−ξ) [ϕ1 (ξ) + ϕ2 (ξ)] dξ, y ∈ [0, 1] ,

and hence positivity of the integrand directly implies (27).
Note that it is possible to consider more general versions of (25) (and hence (26)), with

equations involving different parameters λ1, λ2 on the right-hand sides, and initial conditions
given by a positive constant different from 1. However, it can be shown that no advantage could
be gained from such generalisations.

We shall now estimate the largest possible value λ > 0 (or, more precisely, its supremum) such
that ϕ1, ϕ2 > 0 in [0, 1]. According to the first equation in (26) and (27), ϕ1 (y) is a monotonically
increasing function of y for y ∈ (0, 1) and thus ϕ1 (0) = 1 implies ϕ1 (y) > 1 for y ∈ (0, 1].
Similarly, it follows from the second equation of (26) that ϕ2 (y) decreases monotonically in [0, 1]
starting from the value ϕ2 (0) = 1. Therefore, to guarantee the positivity of ϕ2 (y) in [0, 1], it
suffices to require that ϕ2 (1) > 0. We can write the solution of (26) explicitly:

(28) ϕ1 (y) =
eγ0y√
λ2 + γ2

0

[√
λ2 + γ2

0 cosh

(√
λ2 + γ2

0y

)
+ (λ− γ0) sinh

(√
λ2 + γ2

0y

)]
,

(29) ϕ2 (y) =
eγ0y√
λ2 + γ2

0

[√
λ2 + γ2

0 cosh

(√
λ2 + γ2

0y

)
− (λ+ γ0) sinh

(√
λ2 + γ2

0y

)]
,

Then, the above requirement ϕ2 (1) > 0 is equivalent to

(30) tanh

(√
γ2

0 + λ2

)
<

√
γ2

0 + λ2

γ0 + λ
.

To determine the interval of admissible values of λ satisfying (30), we consider the corresponding
equality

(31) tanh

(√
γ2

0 + λ2
∗

)
=

√
γ2

0 + λ2
∗

γ0 + λ∗
,

which implicitly defines a function λ∗(γ0) on R+. The proof of the unique solvability of (31) for
λ∗, as well as the fact that (30) then holds for all λ ∈ (0, λ∗), is deferred to Lemma A.1 in the
Appendix (inequality (30) is trivially satisfied for λ = 0). The function λ∗(γ0) is illustrated in
Figure 1. We see that λ∗(γ0) is monotonically decreasing with λ∗ → 0 as γ0 →∞ (this can also
be verified analytically by implicit differentiation of (31)).

While the parameter choice λ = λ∗ is not admissible for the construction of the weight
functions (since ϕ2 (1) = 0 if λ = λ∗), any value λ ∈ (0, λ∗) is admissible, and therefore guarantees
positivity of ϕ1, ϕ2.
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Figure 1. Blue: function λ∗(γ0), implicitly defined by (31). Red: function
λ0(γ0), defined in (32).

Since the function λ∗(γ0) is not defined explicitly, we give an example of an explicit lower
bound that eventually yields the explicit (but suboptimal) decay rate stated in (4). The function

(32) λ0(γ0) := γ0e
−2γ0

√
1− 4γ0e−4γ0

satisfies (30) and λ0(γ0) < λ∗(γ0) for any γ0 > 0, and it is depicted in Figure 1. The proof of
the inequality λ0(γ0) < λ∗(γ0) is given in Lemma A.3 in the Appendix.

Therefore, we can take λ = λ0 := λ0(γ0), which satisfies inequality (30). Hence the weights
φ1 (y) := ϕ1 (y) > 0, φ2 (y) := ϕ2 (y) > 0 satisfy (25). Consequently, we obtain from (24)
and (22)

(33) E′loc (τ) ≤ −λ0Eloc (τ) , τ > 0 =⇒ Eloc (τ) ≤ Eloc (0) e−λ0τ , τ ≥ 0.

Step 3. Convergence of the solution and identification of the constant u∞. The local
energy functional (22) can be rewritten in the original variables (x, t), and we emphasise here
that it is a functional of the approximate classical solution un:

Ẽloc[u
n] (t) := Eloc

(
t

t0

)
=
t0
2

∫ x0

0

ϕ̃1 (x)

(
∂tu

n (x, t) +

√
α (x)

β (x)
∂xu

n (x, t)

)2

+ϕ̃2 (x)

(
∂tu

n (x, t)−

√
α (x)

β (x)
∂xu

n (x, t)

)2
β (x) dx,



10 EXPONENTIAL TIME-DECAY FOR THE WAVE EQUATION

where ϕ̃1 (x) := ϕ1 (y (x)), ϕ̃1 (x) := ϕ2 (y (x)) are given by (28)–(29), with λ = λ0 and the
mapping x 7→ y (x) given by (14). Then, from (33), we obtain

Ẽloc[u
n] (t) ≤ Ẽloc[un] (0) e−

λ0
t0
t, t ≥ 0,

where the decay rate λ0/t0 is independent of the index n. Due to the convergence (13), we can
pass to the limit n→∞ and obtain the same inequality for the mild solution u:

(34) Ẽloc[u] (t) ≤ Ẽloc[u] (0) e−
λ0
t0
t, t ≥ 0,

and, due to the regularity of u in (11), we have Ẽloc[u] ∈ C (R+).
Setting

C0 := min

{
inf

y∈(0,1)
ϕ1 (y) , inf

y∈(0,1)
ϕ2 (y)

}
= min {ϕ1 (0) , ϕ2 (1)} = ϕ2 (1) > 0,

we have

Ẽloc[u] (t) ≥ C0t0

∫ x0

0

[
β (x) (∂tu (x, t))

2
+ α (x) (∂xu (x, t))

2
]
dx,

and thus deduce that
(35)

‖∂tu (·, t)‖2L2(0,x0) ≤
‖1/β‖L∞(0,x0)

C0t0
Ẽloc[u] (t) , ‖∂xu (·, t)‖2L2(0,x0) ≤

‖1/α‖L∞(0,x0)

C0t0
Ẽloc[u] (t) .

This, together with (34), yields the exponential decay of ‖∂tu‖L2(0,x0) and ‖∂xu‖L2(0,x0) claimed

in (3). In order to complete the proof, it remains to identify u∞, and prove that, for all t ≥ 0,
u(·, t) converges in H1(0, x0) to u∞.

Using the regularity of u given by (11), we have, for x ∈ (0, x0), t > 0,

u (x, t) = u (0, t) +

∫ x

0

∂xu (s, t) ds = u (x0, t)−
∫ x0

x

∂xu (s, t) ds,

which implies

(36) ‖u (·, t)− u (0, t)‖2L2(0,x0) , ‖u (·, t)− u (x0, t)‖2L2(0,x0) ≤ x
2
0 ‖∂xu (·, t)‖2L2(0,x0) .

Let us now integrate the wave equation in (1) over the rectangle (0, x0)× (0, t), t > 0. Using
the outflow boundary conditions (11)(

∂x −
√
β0

α0
∂t

)
u (x, t)

∣∣∣∣∣
x=0

= 0,

(
∂x +

√
β0

α0
∂t

)
u (x, t)

∣∣∣∣∣
x=x0

= 0,

and the compact support of u0, u1, we obtain

(37)

∫ x0

0

β (s) ∂tu (s, t) ds−
∫ x0

0

β (s)u1 (s) ds = −
√
α0β0 (u (0, t) + u (x0, t)) .

Due to the weak regularity of the mild solution u, the same identity actually first needs to be
derived for the classical solutions un from (12), and then (37) follows by passing to the limit
n→∞. From (37), we deduce

u (x, t)− 1

2
√
α0β0

∫ x0

0

β (s)u1 (s) ds =
1

2
[u (x, t)− u (0, t)] +

1

2
[u (x, t)− u (x0, t)]

− 1

2
√
α0β0

∫ x0

0

β (s) ∂tu (s, t) ds(38)

for all x ∈ (0, x0) and all t ≥ 0. For the first two terms on the right-hand side of (38), we have

‖u (x, t)− u (0, t)‖2H1(0,x0) = ‖u (x, t)− u (0, t)‖2L2(0,x0) + ‖∂xu (x, t)‖2L2(0,x0) ,
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‖u (x, t)− u (x0, t)‖2H1(0,x0) = ‖u (x, t)− u (x0, t)‖2L2(0,x0) + ‖∂xu (x, t)‖2L2(0,x0) .

Moreover, since the integral term on the right-hand side of (38) is independent of x, we also
have ∥∥∥∥ 1

2
√
α0β0

∫ x0

0

β (s) ∂tu (s, t) ds

∥∥∥∥
H1(0,x0)

=

∥∥∥∥ 1

2
√
α0β0

∫ x0

0

β (s) ∂tu (s, t) ds

∥∥∥∥
L2(0,x0)

≤ 1

2

√
x0

α0β0
‖β‖L2(0,x0) ‖∂tu‖L2(0,x0) .

Therefore, taking the H1 (0, x0) norm of the identity in (38), with u∞ defined as in (4), we
deduce from (36) that

‖u (·, t)− u∞‖H1(0,x0) ≤
1

2
‖u (x, t)− u (0, t)‖H1(0,x0) +

1

2
‖u (x, t)− u (x0, t)‖H1(0,x0)

+
1

2

√
x0

α0β0
‖β‖L2(0,x0) ‖∂tu‖L2(0,x0)

≤
√

1 + x2
0 ‖∂xu‖L2(0,x0) +

1

2

√
x0

α0β0
‖β‖L2(0,x0) ‖∂tu‖L2(0,x0) .

Finally, employing (35), we obtain

‖u (·, t)− u∞‖H1(0,x0) ≤
1

2 (C0t0)
1/2

[
2
((

1 + x2
0

)
‖1/α‖L∞(0,x0)

)1/2

+

(
x0

α0β0
‖1/β‖L∞(0,x0)

)1/2

‖β‖L2(0,x0)

]
Ẽloc[u]1/2 (t)

which, together with (34), leads to the bound of ‖u (·, t)− u∞‖H1(0,x0) in (3). From (32) and (34),

we find the claimed decay rate Λ = γ0
2 t0

e−2γ0
(
1− 4γ0e

−4γ0
)1/2

.

Since ‖u (·, t)− u∞‖H1(0,x0) decays to zero, u∞ is uniquely defined as in (4). This concludes

the proof. �
In the proof of Theorem 1.4, modified weight functions could also have been obtained by

imposing the initial condition for (25) at an internal point y0 in (0, 1) instead of at y0 = 0, and
then solving the two corresponding linear ODEs forward and backward. Potentially, this may
lead to an increased maximal decay rate, as compared to that we have deduced from (31).

We also remark that the decay rate given by λ0(γ0) is exponentially small for large γ0. This is
not an artefact of the approximation of λ∗(γ0) by λ0(γ0) (see Figure 1), but is rather characteristic
to the weight function approach in the modified local energy.

4. Proof of Theorem 1.5

As in the proof of Theorem 1.4 in Section 3, we assume, without loss of generality, that
Ω = Ωin = Ω0 = (0, x0) for some x0 > 0.

To prove the claim, we shall modify Step 1 of the proof of Theorem 1.4. Namely, instead
of working with the modified local energy functional (22), we shall focus on its conventional
counterpart (19) and estimate the quantities that enter it. Since we shall not differentiate the
energy functional in time, we work here directly with the mild solution u. We consider again
equation (18) in the variables (y, τ) given by (14)–(15). By treating the third term on the left-
hand side as a (known) source term, it results in a wave equation with constant coefficients, to
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which we apply the d’Alembert formula:
(39)

v (y, τ) =
1

2
[v0 (y + τ) + v0 (y − τ)] +

1

2

∫ y+τ

y−τ
v1 (z) dz − 1

2

∫ τ

0

∫ y+s

y−s
γ (z) ∂yv (z, τ − s) dzds.

Therefore, we obtain

∂yv (y, τ) =
1

2
[v′0 (y + τ) + v′0 (y − τ)] +

1

2
[v1 (y + τ)− v1 (y − τ)]

+
1

2

∫ τ

0

[γ (y − s) ∂yv (y − s, τ − s)− γ (y + s) ∂yv (y + s, τ − s)] ds,(40)

∂τv (y, τ) =
1

2
[v′0 (y + τ)− v′0 (y − τ)] +

1

2
[v1 (y + τ) + v1 (y − τ)]

− 1

2

∫ τ

0

[γ (y − s) ∂yv (y − s, τ − s) + γ (y + s) ∂yv (y + s, τ − s)] ds.(41)

Identity (41) becomes evident by making a change of variable s 7→ τ − s in the double-integral
term in (39) before and after the differentiation with respect to τ :

∂τ

∫ τ

0

∫ y+s

y−s
γ (z) ∂yv (z, τ − s) dzds = ∂τ

∫ τ

0

∫ y+τ−s

y−τ+s

γ (z) ∂yv (z, s) dzds

=

∫ τ

0

[γ (y + τ − s) ∂yv (y + τ − s, s) + γ (y − τ + s) ∂yv (y − τ + s, s)] ds

=

∫ τ

0

[γ (y + s) ∂yv (y + s, τ − s) + γ (y − s) ∂yv (y − s, τ − s)] ds.

Note that, for τ ≥ 1, the terms in (40) and (41) that do not contain the integral vanish for all
y in (0, 1). To estimate Eloc for τ ≥ 1, we insert (40) and (41) in the definition of Eloc (τ) in (19)
and use that supp γ ⊂ (0, 1):

Eloc (τ) =
1

4

∫ 1

0

[(∫ 1

y

γ (r) ∂yv (r, τ + y − r) dr
)2

(42)

+

(∫ y

0

γ (r) ∂yv (r, τ − y + r) dr

)2
]

dy

ρ (y)

≤1

4

∫ 1

0

[∫ 1

y

ρ (r̃) γ2 (r̃) dr̃

∫ 1

y

(∂yv (r, τ + y − r))2 dr

ρ (r)

+

∫ y

0

ρ (r̃) γ2 (r̃) dr̃

∫ y

0

(∂yv (r, τ − y + r))
2 dr

ρ (r)

]
dy

ρ (y)
.

Denoting

b0 := ‖α‖3/2L∞(0,x0) ‖β‖
1/2
L∞(0,x0)

∥∥∥∥(1/ (αβ)
1/2
)′∥∥∥∥2

L2(0,x0)

,

as in (6), we have

max

{
sup

y∈(0,1)

1

ρ (y)

∫ y

0

ρ (s) γ2 (s) ds, sup
y∈(0,1)

1

ρ (y)

∫ 1

y

ρ (s) γ2 (s) ds

}
≤ b0t0.
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Therefore, we continue with (42), and estimate

Eloc (τ) ≤ b0t0
4

[∫ 1

0

∫ y

0

(∂yv (r, τ − y + r))
2 1

ρ (r)
drdy(43)

+

∫ 1

0

∫ 1

y

(∂yv (r, τ + y − r))2 1

ρ (r)
drdy

]
.

In the two terms on the right-hand side of (43), the integration involves the values of ∂yv on
two right-angled triangles with vertices {(0, τ − 1) , (0, τ) , (1, τ)} and {(1, τ − 1) , (0, τ) , (1, τ)}.
These triangles are parametrised by the sets of lines parallel to their hypotenuses, which are the
two characteristic families of the wave equation in (18). We now change the integration variables
to have parametrisation of these triangles by the sets of horizontal lines. Consequently, for the
first integral, denoting σ := τ−y+r, we have that σ ∈ (τ−1, τ) and r ∈ (0, σ−τ+1). Similarly,
for the second integral, denoting σ := τ + y − r, we have that σ ∈ (τ − 1, τ) and r ∈ (τ − σ, 1).
Therefore, rewriting the integrals in (43) as integrals in the variables σ and r, we obtain∫ 1

0

∫ y

0

(∂yv (r, τ − y + r))
2 1

ρ (r)
drdy +

∫ 1

0

∫ 1

y

(∂yv (r, τ + y − r))2 1

ρ (r)
drdy

=

∫ τ

τ−1

∫ σ−τ+1

0

(∂yv (r, σ))
2 1

ρ (r)
drdσ +

∫ τ

τ−1

∫ 1

τ−σ
(∂yv (r, σ))

2 1

ρ (r)
drdσ.

With this identity, taking into account the positivity of the integrands, we obtain from (43) that

Eloc (τ) ≤ b0t0
2

∫ τ

τ−1

∫ 1

0

(∂yv (r, σ))
2 1

ρ (r)
drdσ ≤ b0t0

∫ τ

τ−1

Eloc (σ) dσ.(44)

Since Eloc (τ) is a positive non-increasing function (recall (20)), it follows from (44) that

Eloc (τ) ≤ b0t0 Eloc (τ − 1) , τ ≥ 1.

Iterating this inequality bτc times (where bXc denotes the integer part of X), and using the
assumption b0t0 < 1, we obtain, for τ ≥ 1,

Eloc (τ) ≤ Eloc (bτc) ≤ (b0t0)2Eloc (bτc − 2) ≤ . . . ≤ (b0t0)bτcEloc (0)

= Eloc (0) ebτc log(b0t0) ≤ Eloc (0) e(τ−1) log(b0t0) = Eloc (0)
eτ log(b0t0)

b0t0
,

which, due to log(b0t0) < 0, shows an exponential decay in τ .
When scaling back to the original variables (x, t) we obtain

Ẽloc (t) := Eloc
(
t

t0

)
≤ Ẽloc (0)

e
t
t0

log(b0t0)

b0t0
, t ≥ t0.

Step 3 of the proof of Theorem 1.4 can then be repeated (with a slight modification of the
multiplicative constants), yielding the exponential convergence (with rate (7)) of the solution to
the constant u∞.

We note that, even though the last bound was proved for t ≥ t0, it can be extended to
t ≥ 0 merely at the expense of enlarging the constant in front of the time-decaying exponential
factor. This is due to the well-posedness result for the wave equation on a finite time-interval,
see Proposition 1.1 and, in particular, (2). �
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5. Conclusion

For the homogeneous wave equation in R with compactly supported initial data, in the case
of constant coefficients, the solution converges to the steady state in finite time. However,
exponential convergence is the generic scenario in the case of variable coefficients.

We proved two different results for this convergence in local energy. The first one employs a
multiplier technique, constructing appropriate weight functions to define a modified local energy
that satisfies a first order differential inequality. This allowed us to prove the exponential decay.
Using the solution balance over space-time rectangles, we were able to identify the constant
steady state. The second result improves the first one, under an additional assumption on the
variation of the coefficients. After rescaling the equation, its integral form allowed us to estimate
the local energy by iterating in time, leading to an exponential decay with improved rates.

Our results complement those of algebraic time-decay presented in [4], where the initial data
were assumed to be sufficiently localised but not compactly supported. In that case, exponential
decay is generally not expected.

Appendix .

Lemma A.1. For any fixed γ0 > 0, the equation

(45) tanh

(√
γ2

0 + λ2

)
=

√
γ2

0 + λ2

γ0 + λ
, λ > 0,

has a unique solution λ = λ∗. Moreover, for λ > 0, the strict inequality (30) is satisfied if and
only if λ ∈ (0, λ∗).

Proof. Since the right-hand side of (45), for λ > 0, is smaller than 1, equation (45) is equivalent
to

(46) fγ0(λ̃) := γ0

√
1 + λ̃2 − artanh

(√
1 + λ̃2

1 + λ̃

)
= 0,

where λ̃ := λ/γ0. We have

f ′γ0(λ̃) =
2γ0λ̃

2 − λ̃+ 1

2λ̃
√

1 + λ̃2
, lim

λ̃→+∞
f ′γ0(λ̃) = γ0 > 0.

Hence limλ̃→+∞ fγ0(λ̃) = +∞ and, moreover, limλ̃→0+ fγ0(λ̃) = −∞.

Case 1: For γ0 ≥ 1/8, we have f ′γ0(λ̃) ≥ 0 for any λ̃ > 0. Hence, fγ0 is strictly increasing and

fγ0 has a unique zero at some λ̃∗ > 0 and fγ0(λ̃) < 0 for λ̃ ∈ (0, λ̃∗).

Case 2: For γ0 ∈ (0, 1/8), we consider fγ0(λ̃1), where λ̃1 := 1−
√

1−8γ0
4γ0

is the first zero of f ′γ0 .

Define g(γ0) := 1−
√

1−8γ0
4γ0

. From g′(γ0) > 0 for all γ0 ∈ (0, 1/8), limγ0→0+ g(γ0) = 1, and

g(1/8) = 2, we deduce that g is strictly increasing and λ̃1 = g(γ0) ∈ (1, 2) for all γ0 ∈ (0, 1/8).

Since artanh

(√
1+λ̃2

1+λ̃

)
is an increasing function of λ̃ in (1, 2), we obtain from (46) that fγ0(λ̃1) ≤

√
1+4
8 − artanh

(√
2

2

)
' −0.6019. This shows that fγ0(λ̃1) < 0 for γ0 ∈ (0, 1/8). Hence, fγ0 also

has a unique zero λ̃∗> λ̃2 > 0 in this case, where λ̃2 := 1+
√

1−8γ0
4γ0

is the second zero of f ′γ0 .

This proves unique solvability of equation (45). Moreover, the reasoning above also shows
that, for any γ0 > 0, there is a unique λ∗ = λ∗ (γ0) > 0 such that, for λ > 0, the following
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equivalences hold true:

λ ∈ (0, λ∗) ⇐⇒ fγ0 (λ/γ0) < 0 ⇐⇒
√
γ2

0 + λ2 − artanh

(√
γ2

0 + λ2

γ2
0 + λ

)
< 0

⇐⇒ tanh

(√
γ2

0 + λ2

)
<

√
γ2

0 + λ2

γ0 + λ
.

Here, the last equivalence is due to the strict monotonicity of the tanh function. The second
part of the statement thus follows. �

Lemma A.2. For any a > 0 and

(47) 1 < q <

√
1 +

e4a + 4a− e2a
√
e4a + 8a

8a2
,

we have

(48)
q

tanh (aq)
> 1 +

√
q2 − 1.

Proof. The proof is split into two steps.
Step 1. We shall first analyse for which values q0 ≥ 1 the following auxiliary inequality holds:

(49) (1 + 2a) e−2a − 2ae−2aq2
0 ≥

√
q2
0 − 1.

Using Q := q2
0 ≥ 1 we rewrite (49) as

(50) 1 + 2a− 2aQ ≥ e2a
√
Q− 1.

This is equivalent to

(51) 4a2Q2 −
(
4a (1 + 2a) + e4a

)
Q+ (1 + 2a)

2
+ e4a ≥ 0,

as long as both sides of (50) are nonnegative, i.e. for Q ∈
[
1, 1+2a

2a

]
.

The left-hand side of (51) is a quadratic expression in Q which is positive for Q ∈ R\ [Q1, Q2],
with

Q1 := Q0 −
e2a
√
e4a + 8a

8a2
, Q2 := Q0 +

e2a
√
e4a + 8a

8a2
,

Q0 := 1 +
e4a + 4a

8a2
.

It can be checked easily that Q1 ∈
(
1, 1+2a

2a

)
, and therefore any Q ∈ [1, Q1] satisfies (50). Con-

sequently, (49) is satisfied if and only if q0 ∈
[
1,
√
Q1

]
.

Step 2. We observe that since e−bx ≥ e−b (1 + b− bx) for any b, x ∈ R (by convexity of e−bx),
we have (with b := 2a > 0, x := q0 > 1)

q0

tanh (aq0)
=
q0 (eaq0 + e−aq0)

eaq0 − e−aq0
> q0

(
1 + e−2aq0

)
≥q0

[
1 + e−2a (1 + 2a− 2aq0)

]
(52)

≥1 + (1 + 2a) e−2a − 2ae−2aq2
0 .

By assumption (47), we have q ∈
(
1,
√
Q1

)
. Therefore, (52) can be combined with (49), to yield

(48). �
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Lemma A.3. The function

(53) λ0(γ0) := γ0e
−2γ0

√
1− 4γ0e−4γ0 , γ0 > 0

satisfies λ0(γ0) < λ∗(γ0), where λ∗(γ0) is defined via (31). Moreover, each λ = λ0(γ0) satisfies
inequality (30).

Proof. To show that λ:=λ0(γ0) satisfies (30) we first derive the following auxiliary inequality:√
1 + (λ/γ0)

2
=
√

1 + e−4γ0 (1− 4γ0e−4γ0)

<

√
1 +

e4γ0 + 4γ0 − e2γ0
√
e4γ0 + 8γ0

8γ2
0

,

where we employed definition (53) and used the estimate
√

1 + x < 1 +x/2−x2/8 +x3/16, with
x = 8γ0e

−4γ0 > 0, which follows from the Taylor expansion of the square root.

The above inequality forms exactly the assumption (47) with q :=

√
1 + (λ/γ0)

2
> 1 and

a := γ0. The assertion of Lemma A.2 is equivalent to the validity of (30).
Finally, Lemma A.1 yields λ0(γ0) < λ∗(γ0), which completes the present proof. �
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