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Exome sequencing identifies rare damaging 
variants in ATP8B4 and ABCA1 as risk factors 
for Alzheimer’s disease

Alzheimer’s disease (AD), the leading cause of dementia, has an estimated 
heritability of approximately 70%1. The genetic component of AD has 
been mainly assessed using genome-wide association studies, which do 
not capture the risk contributed by rare variants2. Here, we compared the 
gene-based burden of rare damaging variants in exome sequencing data 
from 32,558 individuals—16,036 AD cases and 16,522 controls. Next to 
variants in TREM2, SORL1 and ABCA7, we observed a significant association 
of rare, predicted damaging variants in ATP8B4 and ABCA1 with AD risk, 
and a suggestive signal in ADAM10. Additionally, the rare-variant burden in 
RIN3, CLU, ZCWPW1 and ACE highlighted these genes as potential drivers of 
respective AD-genome-wide association study loci. Variants associated with 
the strongest effect on AD risk, in particular loss-of-function variants, are 
enriched in early-onset AD cases. Our results provide additional evidence 
for a major role for amyloid-β precursor protein processing, amyloid-β 
aggregation, lipid metabolism and microglial function in AD.

Beyond autosomal-dominant early-onset AD (<1% of all AD cases, 
onset at ≤65 years), the common complex form of AD has an estimated 
heritability of approximately 70%1. Using genome-wide association 
studies (GWAS), 75 mostly common genetic risk factors/loci have been 
associated with AD risk in populations with European ancestry; how-
ever, individually these common variants have low effect sizes2. Using 
DNA sequencing strategies, rare (allele frequency <1%) damaging 
missense or loss-of-function (LOF) variants in the TREM2, SORL1 and 
ABCA7 genes were identified to also contribute to the heritability of 
AD, with substantially higher effect sizes than individual GWAS hits3–8. 
To detect additional genes for which rare variants are associated with 
AD risk, it is necessary to compare genetic sequencing data from 
thousands of AD cases and controls. In a large collaborative effort, 
we harmonized sequencing data of studies from Europe and the USA 
and applied a multistage gene burden analysis (Fig. 1a) (for sample 
descriptions, see Supplementary Table1 and Extended Data Figs. 1 
and 2). We observed site-specific technical biases, since data were 
generated at multiple centers, using heterogeneous methods (Sup-
plementary Table 2). To account for these batch effects, we designed 
and applied comprehensive quality control (QC) procedures (Meth-
ods and Supplementary Tables 3–5).

After sample QC, we first compared gene-based rare-variant bur-
dens between 12,652 AD cases, consisting of 4,060 early-onset AD cases 
(EOAD, age at onset ≤65 years) and 8,592 late-onset AD cases (LOAD, age 
at onset >65 years) and 8,693 controls (stage 1 analysis; Supplementary 
Table 3). We detected 7,543,193 variants after sample and variant QC 
and annotated LOF variants with LOFTEE and missense variants with the 
Rare Exome Variant Ensemble Learner (REVEL) score and selected vari-
ants with a minor allele frequency (MAF) < 1% (Supplementary Table 4).  
We defined 4 deleteriousness thresholds by incrementally including 
variants with lower levels of predicted deleteriousness: LOF (n = 57,543), 
LOF + REVEL ≥ 75 (n = 111,755), LOF + REVEL ≥ 50 (n = 211,665) and 
LOF + REVEL ≥ 25 (n = 409,733), respectively. Of the 19,822 autosomal 
protein-coding genes, we analyzed the 13,222 genes that had a cumula-
tive minor allele count (cMAC) ≥ 10 for the lowest deleterious threshold 
LOF + REVEL ≥ 25 (Methods); 9,168 genes for the LOF + REVEL ≥ 50 
threshold, 5,694 for the LOF + REVEL ≥ 75 threshold and 3,120 genes 
for the LOF-only threshold (Fig. 1b). For these different deleteriousness 
thresholds, this analysis has an estimated power of 41, 22, 11 and 4%, 
respectively to attain a signal with P  < 1 × 10−6 in stage 1, assuming that 
for a gene, the differential variant burden between cases and controls 
is associated with an odds ratio (OR) of 10.0 in EOAD and 3.33 in LOAD 
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all the burden tests performed, 13 tests, covering 6 genes, indicated a 
differential rare-variant burden between AD cases and controls (false 
discovery rate (FDR) < 0.1): SORL1, TREM2, ABCA7, ATP8B4, ADAM10 
and ABCA1 (Table 1)).

To confirm these signals, we applied an analysis model consistent 
with stage 1 to an independent stage 2 dataset, which after QC, con-
sisted of 3,384 cases and 7,829 controls (Supplementary Table 3–5) 

(Supplementary Table 6). Therefore, this analysis has only the power 
to discover genes for which either the differential variant burden is 
associated with a large effect size, and/or genes for which large num-
bers of damaging variant carriers are observed (Fig. 1b). Using ordinal 
logistic regression, 31,204 burden tests were performed across 13,222 
genes in stage 1 (single genes were tested with up to 4 thresholds). 
Statistical inflation of test results was negligible (𝝀 = 1.046; Fig. 1c). Of 
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Fig. 1 | Study setup and power. a, Schematic of the study setup. The AD 
association of genes identified in stage 1 was confirmed in stage 2 and 
significance was determined by meta-analysis. Variant characteristics were 
investigated in a merged mega-sample rather than the meta-sample, allowing 
more accurate variant effect size estimates for variant categories/age-at-onset 
bins. The mega-sample (without exome extracts) was also used for the GWAS 
gene burden analysis. MTC, multiple testing correction. b, Top, number of genes 
(y axis) with at least a certain cumulative carrier frequency of prioritized variants 
(x axis), prioritized according to different deleteriousness thresholds. White 
box, genes with a cMAC ≥ 10 (cumulative minor allele count of ≥10 prioritized 
alleles identified across the 12,652 cases and 8,693 controls in the stage 1 sample) 
were considered to have sufficient carrier frequency to allow burden analysis. 
The SORL1, TREM2 and ABCA7 genes are indicated, revealing that carriers of rare 
damaging variants in these genes are relatively common, allowing identification 
in smaller sample sizes3–7. Bottom, power analysis for stage 1, to attain a 
P < 1 × 10−6, at the same scale as the top figure. For comparison, we indicate 80% 
power thresholds for sample sizes of 1,000 and 5,000 individuals (subsampled 

from stage 1). Cumulative carrier frequency and estimated effect size ranges are 
indicated for common variants identified to associate with AD by GWAS (green), 
rare-variant burdens in SORL1, TREM2 and ABCA7 identified using sequencing 
studies3–7 (grey/blue), and for rare variants observed in autosomal dominant 
AD (magenta). Common variants with high effect sizes (red) are not expected to 
exist. Genes with cMAC < 10 were not analyzed (pink). Power calculations show 
that aggregating more cases and controls might allow for the identification of 
rare-variants that have a large effect on AD but for which only few carriers are 
observed, or for variants that have a modest/average effect on AD, for which 
many carriers are observed (power calculations shown in Supplementary  
Table 6). c, Quantile–quantile plot of P values determined in the stage 1 discovery 
analysis based on an ordinal logistic burden test. For each of 13,222 genes, 
we tested the burden of variants adhering to four variant deleteriousness 
thresholds, conditional on having a cMAC ≥ 10 (n = 31,204 tests). Threshold for 
multiple testing correction: FDR < 0.1, P value inflation, 1.046. Gene names in 
black indicate the deleteriousness threshold of the most significant burden test 
in that gene.
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and also with negligible P value inflation (𝝀 = 1.016; Extended Data  
Fig. 3). The effect was tested in the direction observed in stage 1 (one-sided 
test). All genes selected in stage 1 reached P < 0.05 (Table 1, stage 2). The 
stage 2 effect sizes of these genes correlated with those observed in  
stage 1 (Pearson’s r on log odds = 0.91). We then meta-analyzed stage 
1 + stage 2 across the 13 tests using a fixed-effect inverse variance method 
and corrected for the 31,204 tests performed in stage 1 (Holm–Bonfer-
roni) (Table 1). This confirmed the AD association of rare damaging 
variants in the SORL1, TREM2, ABCA7, ATP8B4 and ABCA1 genes. The 
association signal of the ADAM10 gene was not significant exome-wide, 

presumably because prioritized variants in this gene are extremely few 
and rare, such that the signal can be confirmed only in larger datasets.

Strikingly, most of these genes also map to GWAS loci (SORL1, 
TREM2, ABCA7, ABCA1 and ADAM10). This led us to perform a focused 
analysis on GWAS loci, aiming to identify potential driver genes. To 
maximize statistical power, we merged the full exomes from the stage 1  
and stage 2 samples into one mega-sample, again with negligible  
P value inflation (𝝀 = 1.025; Extended Data Fig. 4). We interrogated 
genes that were previously prioritized to drive the AD association in 
the 75 loci identified in the most recent GWAS2 (Supplementary Table 7 

Table 2 | GWAS-targeted analysis in a mega-dataset without exome extracts

Burden test (variant MAF < 1%) Burden test (variant MAF < 0.1%)

Locus sentinel 
GWAS SNP

Gene Variant 
deleteriousness 
threshold

P FDR No. variants/
no. carriers

Case/control 
OR (95% CI)

P No. variants/
no. carriers

Fraction of 
very rare 
variants, %

Case/control  
OR (95% CI)

aSORL1, TREM2, ABCA7 (Table 1 and Supplementary Table 8)

SLC24A4/RIN3
rs7401792
rs12590654

RIN3 LOF + REVEL ≥ 25 1.6 × 10−5 0.0003 44/622 1.4 (1.2–1.6) 3.4 × 10−2 42/129 21 1.4 (1.0–2.1)

LOF + REVEL ≥ 50 1.0 × 10−5 0.0002 23/583 1.4 (1.2–1.7) 1.5 × 10−2 21/89 15 1.8 (1.2–2.8)

aADAM10, ABCA1 (Table 1 and Supplementary Table 8)

PTK2B/CLU
rs73223431
rs11787077

CLU LOF + REVEL ≥ 25 5.0 × 10−4 0.005 24/26 3.6 (1.6–8.3) 5.0 × 10−4 24/26 100 3.6 (1.6–8.3)

LOF + REVEL ≥ 50 1.1 × 10−3 0.001 14/15 5.4 (1.6–28.6) 1.1 × 10−3 14/15 100 5.3 (1.6–28.6)

LOF + REVEL ≥ 75 5.0 × 10−4 0.005 12/12 9.9 (1.6–44.0) 5.0 × 10−4 12/12 100 9.8 (1.6–44.0)

LOF 2.6 × 10−3 0.02 10/10 7.3 (1.9–27.2) 2.6 × 10−3 10/10 100 7.3 (1.9–27.2)

SPDYE3
rs7384878

ZCWPW1 LOF + REVEL ≥ 25 6.1 × 10−3 0.042 22/77 1.8 (1.2–2.9) 5.0 × 10−3 21/76 99 1.8 (1.2–2.9)

LOF + REVEL ≥ 50 3.1 × 10−3 0.022 16/70 1.9 (1.2–3.1) 3.1 × 10−3 16/70 100 1.9 (1.2–3.1)

LOF + REVEL ≥ 75 1.1 × 10−3 0.001 11/15 5.0 (1.9–13.5) 1.1 × 10−3 11/15 100 5.0 (1.9–13.5)

LOF 7.8 × 10−4 0.008 11/15 5.0 (1.9–13.5) 7.8 × 10−4 11/15 100 5.0 (1.9–13.5)

ACE
rs4277405

ACE LOF + REVEL ≥ 75 9.0 × 10−4 0.008 38/99 2.0 (1.3–2.9) 9.3 × 10−4 38/99 100 2.0 (1.3–2.9)

Genes in all GWAS loci were prioritized as described in the Methods (Supplementary Table 7). Listed are genes for which burden tests were significant in the mega-analysis after multiple 
testing correction using a Benjamini–Hochberg FDR < 0.05. P values for burden tests were determined using ordinal logistic regression (two-sided tests); a case/control OR was computed for 
reference. aThese genes also included the SORL1, TREM2, ABCA7, ADAM10 and ABCA1 genes, which were also identified in the rare-variant burden analysis shown in Table 1 and therefore are 
not shown (see Supplementary Table 8 for the full analysis). Bold text: result of burden test MAF < 0.1% unchanged compared to the burden test MAF < 1%.

Table 1 | Stages 1 and 2 and meta-analysis AD association statistics

Stage 1 (n = 21,345) Stage 2 (n = 11,213) Meta-analysis (n = 32,558)

Gene Variant 
deleteriousness 
threshold

P FDR No. variants/
no. carriers

Case/control 
OR (95% CI)

Pa No. variants/
no. carriers

Case/control 
OR (95% CI)

P Holm–
Bonferroni

Case/control 
OR (95% CI)

P hetero 
genous

SORL1 LOF + REVEL ≥ 25 4.8 × 10−6 0.017 242/917 1.3 (1.1–1.5) 1.3 × 10−6 122/478 1.5 (1.2–1.9) 1.5 × 10−10 4.7 × 10−6 1.4 (1.2–1.5) 1.6 × 10−1

LOF + REVEL ≥ 50 4.0 × 10−18 <0.0001 167/290 2.6 (2.0–3.2) 1.4 × 10−9 79/137 2.4 (1.7–3.5) 8.1 × 10−26 2.5 × 10−21 2.5 (2.1–3.1) 9.8 × 10−1

LOF + REVEL ≥ 75 1.1 × 10−14 <0.0001 96/164 3.3 (2.4–4.6) 5.2 × 10−10 45/82 3.9 (2.3–6.6) 1.1 × 10−22 3.4 × 10−18 3.5 (2.7–4.6) 4.3 × 10−1

LOF 4.7 × 10−15 <0.0001 37/48 15.6 (3.7–37.3) 1.6 × 10−6 16/20 16.3 (3.8–35.0) 3.3 × 10−18 1.0 × 10−13 16.0 (9.5–27.0) 9.4 × 10−1

TREM2 LOF + REVEL ≥ 25 2.6 × 10−16 <0.0001 17/291 3.6 (2.9–4.6) 1.6 × 10−7 12/155 2.4 (1.6–3.4) 5.2 × 10−22 1.6 × 10−17 3.2 (2.6–3.9) 6.5 × 10−1

ABCA7 LOF + REVEL ≥ 25 9.5 × 10−8 0.001 265/959 1.4 (1.2–1.6) 9.8 × 10−8 170/502 1.6 (1.3–2.0) 4.1 × 10−13 1.3 × 10−8 1.4 (1.3–1.6) 6.5 × 10−2

LOF + REVEL ≥ 75 4.6 × 10−6 0.017 93/297 1.6 (1.3–2.1) 4.8 × 10−4 54/167 1.8 (1.3–2.6) 7.3 × 10−9 2.3 × 10−4 1.7 (1.4–2.1) 9.1 × 10−1

ATP8B4 LOF + REVEL ≥ 25 7.2 × 10−6 0.02 72/575 1.5 (1.3–1.8) 3.3 × 10−3 40/286 1.4 (1.0–1.8) 9.6 × 10−9 3.0 × 10−4 1.5 (1.3–1.7) 9.7 × 10−1

LOF + REVEL ≥ 50 2.8 × 10−5 0.068 61/521 1.5 (1.3–1.9) 1.6 × 10−2 34/265 1.3 (1.0–1.7) 2.8 × 10−6 8.7 × 10−2 1.5 (1.3–1.7) 6.6 × 10−1

LOF + REVEL ≥ 75 3.2 × 10−6 0.014 38/490 1.7 (1.4–2.0) 2.4 × 10−2 22/243 1.3 (1.0–1.8) 5.7 × 10−7 1.8 × 10−2 1.5 (1.3–1.8) 4.2 × 10−1

ABCA1 LOF + REVEL ≥ 75 6.1 × 10−6 0.019 93/280 1.7 (1.3–2.2) 6.6 × 10−3 48/159 1.6 (1.1–2.3) 2.6 × 10−7 8.0 × 10−3 1.7 (1.4–2.1) 6.3 × 10−1

ADAM10 LOF + REVEL ≥ 50 2.0 × 10−5 0.051 15/17 3.2 (1.3–8.1) 4.0 × 10−2 4/4 8.1 (0.6–42.6) 2.8 × 10−5 8.7 × 10−1 3.6 (1.5–8.5) 5.5 × 10−1

LOF + REVEL ≥ 75 2.7 × 10−6 0.014 11/12 7.5 (1.4–46.8) 1.5 × 10−1 3/3 5.6 (0.3–41.8) 4.4 × 10−4 1.0 × 100 7.1 (2.6–19.3) 1.1 × 10−1

Listed in this table are the two-sided tests that were significant in stage 1, after multiple testing correction using a Benjamini–Hochberg FDR < 0.1 over 31,204 tests/variant categories. The P 
values for the burden tests were determined using ordinal logistic regression; a case/control OR was computed for reference. aIn stage 2, we considered only the direction of the AD association 
observed in stage 1 (that is, one-sided testing). The meta-analysis indicates the combined significance from stages 1 and 2 (data were combined using the fixed-effect inverse variance method); 
multiple testing correction for the meta-analysis was performed across all 31,204 tests using the Holm–Bonferroni correction (<0.05). Bold text indicates significant P values.
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and Methods). In 67 genes, we observed sufficient prioritized variants 
(cMAC ≥ 10) to test the burden signal in at least 1 deleteriousness cate-
gory (a total of 187 tests). In addition to the genes mentioned above, our 
analysis indicated a suggestive signal of increased AD risk in RIN3, CLU, 
ZCWPW1 and ACE (FDR < 0.05) (Table 2 and Supplementary Table 8);  
these signals will have to be confirmed in a larger dataset. Nevertheless, 

the AD associations in these genes persisted when focusing on the 
burden of only the very rare variants (MAF < 0.1%), suggesting that the 
rare-variant burden is not in linkage with, and thus independent from, 
the GWAS sentinel variant.

Together, the newly associated genes provide additional evidence 
for a central role for APP processing, lipid metabolism, amyloid-β (Aβ) 
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Fig. 2 | Characterization of gene-specific variant features based on the 
mega-sample. For all variant features, we considered the deleteriousness 
threshold that provides the most evidence for AD association in the 
meta-analysis. Variant features were investigated in a merged mega-sample 
(n = 31,905) instead of the meta-sample because this allows for increased 
accuracy for estimations of variant effect sizes for each variant category/
age-at-onset bin (Table 3, refined burden). a, Carrier frequency according to age 
at onset. A carrier carries at least one damaging variant in the considered gene. 
b, ORs according to age at onset. The effect size significantly decreased with age 
at onset for SORL1, TREM2, ABCA7, ABCA1 and ADAM10 (after multiple testing 

correction; Supplementary Table 9). c, ORs according to variant frequency. 
The rareness of variants in SORL1 was significantly associated with the effect 
size (Supplementary Table 11). d, cMAC by variant frequency: the stacked total 
number of cases (dark) and controls (light) that carry gene variants with allele 
frequencies as observed in the mega-sample. The numbers above the bars 
indicate the number of contributing variants. Whiskers: 95% CI. Genes in black: 
genes identified to significantly associate with AD in the meta-analysis; gray: 
genes not significantly associated with AD in the meta-analysis; blue: genes 
identified by the targeted GWAS analysis, these were not significantly associated 
with AD in the meta-analysis.
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aggregation and neuroinflammatory processes in AD pathophysiol-
ogy. Like ABCA7, ATP8B4 encodes a phospholipid transporter. Rare 
variants in this gene have been associated with the risk of developing 
systemic sclerosis, an autoimmune disease9. In the brain, ATP8B4 is 
predominantly expressed in microglia. Interestingly, GWAS indicated 
a potential association of ATP8B4 with AD2, mainly through the rare 
missense variant that was most recurrent in our study (G395S). Of note, 
the OR point estimate for ATP8B4 LOF variants was close to 1, allowing 

for the possibility that the missense variants that drive the ATP8B4 
association do not depend on a LOF effect. ABCA1 also encodes a 
phospholipid transporter; it lipidates apolipoprotein E (APOE)10 and 
poor ABCA1-dependent lipidation of APOE-containing lipoprotein 
particles increases Aβ deposition and fibrillogenesis11. In line with 
this, the rare N1800H LOF variant in ABCA1 was previously associ-
ated with low plasma levels of APOE and evidence suggested an 
association with increased risk of AD and cerebrovascular disease12. 

Table 3 | Mega-analysis: carrier frequency, effect sizes, median age at onset and attributable fraction

Mega-analysis Carrier frequency OR (95% CI) Median 
age at 
onset  
(IQR)

Attributable 
fraction

Gene Group No. variant/
no. carriers

EOAD/LOAD/
controls, %

Case/control EOAD/control LOAD/control EOAD/ 
LOAD, %

Primary  
analysis

SORL1 LOF + REVEL ≥ 50 212/418 2.75/1.51/0.68 2.5 (2.0–3.0) 3.3 (2.6–4.1) 2.0 (1.6–2.5) 65 (59–73) 1.91/0.75

—Missense (REVEL 
50–100)

161/354 2.02/1.31/0.66 2.1 (1.7–2.5) 2.5 (2.0–3.2) 1.8 (1.4–2.3) 67 (59–74) 1.22/0.58

—LOF 51/68 0.78/0.21/0.02 19.8 (11.9–32.7) 40.7 (12.5–133) 11.3 (3.3–38.3) 62 (56–69) 0.76/0.19

TREM2 LOF + REVEL ≥ 25 26/441 2.27/1.90/0.75 2.8 (2.3–3.5) 3.3 (2.6–4.3) 2.6 (2.1–3.3) 69 (62–75) 1.58/1.17

LOF + REVEL ≥ 25 
(refined)

25/404 2.22/1.77/0.62 3.1 (2.6–3.8) 3.8 (2.9–4.9) 2.8 (2.2–3.6) 68 (62–75) 1.63/1.15

—Missense (REVEL 
25–100)

14/377 2.06/1.63/0.59 3.0 (2.5–3.8) 3.7 (2.8–4.9) 2.7 (2.1–3.6) 68 (62–75) 1.50/1.04

—LOF 12/66 0.21/0.29/0.16 2.1 (1.2–3.4) 1.7 (0.8–3.5) 2.2 (1.3–3.9) 71 (63–76) 0.09/0.16

—LOF (refined) 11/29 0.16/0.16/0.02 5.6 (2.6–12.1) 5.8 (1.7–19) 5.4 (1.8–16.8) 71 (63–74) 0.13/0.13

ABCA7 LOF + REVEL ≥ 25 351/1,489 6.18/5.04/3.90 1.4 (1.3–1.6) 1.6 (1.4–1.9) 1.3 (1.2–1.5) 69 (61–78) 2.40/1.29

—Missense (REVEL 
25–100)

302/1,372 5.58/4.65/3.63 1.4 (1.3–1.6) 1.6 (1.4–1.8) 1.3 (1.2–1.5) 69 (62–78) 2.06/1.18

—LOF 49/119 0.62/0.39/0.27 1.7 (1.1–2.4) 2.2 (1.4–3.5) 1.4 (0.9–2.1) 67 (57–74) 0.34/0.11

ATP8B4 LOF + REVEL ≥ 25 94/850 3.56/3.08/2.09 1.4 (1.2–1.6) 1.5 (1.3–1.8) 1.4 (1.2–1.6) 70 (61–78) 1.24/0.84

—Missense (REVEL 
25–100)

74/797 3.35/2.93/1.93 1.5 (1.3–1.7) 1.6 (1.3–1.9) 1.4 (1.2–1.7) 70 (62–78) 1.20/0.84

—LOF 20/54 0.21/0.16/0.16 1.1 (0.6–1.9) 1.2 (0.6–2.4) 1.0 (0.5–1.8) 70 (59–78) 0.03/−0.01

ABCA1 LOF + REVEL ≥ 75 122/442 1.91/1.50/1.13 1.6 (1.3–2.0) 1.9 (1.5–2.5) 1.5 (1.2–1.9) 70 (60–76) 0.91/0.48

LOF + REVEL ≥ 75 
(refined)

120/282 1.52/1.10/0.52 2.4 (1.9–3.1) 2.9 (2.2–4.0) 2.2 (1.6–2.9) 70 (59–76) 1.01/0.60

—Missense (REVEL 
75–100)

95/395 1.63/1.32/1.05 1.5 (1.2–1.8) 1.7 (1.3–2.2) 1.4 (1.1–1.8) 70 (61–76) 0.68/0.37

—Missense (REVEL 
75–100 (refined))

93/235 1.24/0.92/0.44 2.3 (1.7–3.0) 2.7 (1.9–3.8) 2.1 (1.5–2.8) 70 (59–76) 0.78/0.48

—LOF 27/47 0.28/0.18/0.08 3.5 (1.9–6.4) 4.7 (2.2–10.3) 2.8 (1.3–6.1) 67 (59–77) 0.22/0.11

ADAM10 LOF + REVEL ≥ 50 19/22 0.23/0.05/0.02 4.7 (2.0–10.8) 9.0 (2.9–28) 2.2 (0.5–8.2) 63 (60–68) 0.20/0.03

GWAS- 
targeted 
analysis

RIN3 LOF + REVEL ≥ 50 23/583 2.67/2.10/1.62 1.4 (1.2–1.7) 1.6 (1.3–2.0) 1.3 (1.1–1.6) 70 (59–79) 1.04/0.46

—Missense (REVEL 
50–100)

17/577 2.62/2.08/1.61 1.4 (1.2–1.7) 1.6 (1.3–2.0) 1.3 (1.1–1.6) 70 (59–79) 1.01/0.45

—LOF 6/8 0.06/0.03/0.01 2.1 (0.5–9.3) 2.9 (0.5–18.0) 1.7 (0.3–10.3) 69 (57–86) 0.04/0.01

CLU LOF + REVEL ≥ 25 24/26 0.23/0.09/0.03 3.6 (1.6–8.3) 5.8 (2.0–17.1) 2.5 (0.8–7.6) 63 (58–73) 0.19/0.05

—Missense (REVEL 
25–100)

14/16 0.12/0.06/0.03 2.6 (0.9–7.5) 3.6 (0.9–13.6) 2.1 (0.6–8.0) 68 (58–76) 0.08/0.03

—LOF 10/10 0.12/0.03/0.01 7.3 (1.9–27.2) 14.2 (2.9–470.4) 3.8 (0.6–122.4) 63 (59–68) 0.11/0.02

ZCWPW1 LOF 11/15 0.15/0.05/0.01 5.0 (1.9–13.5) 9.1 (2.0–42.0) 2.9 (0.8–14.7) 63 (58–81) 0.14/0.03

ACE LOF + REVEL ≥ 75 38/99 0.60/0.39/0.20 2.0 (1.3–2.9) 2.4 (1.5–4.1) 1.7 (1.0–2.7) 67 (60–75) 0.35/0.16

—Missense (REVEL 
75–100)

10/49 0.33/0.22/0.07 3.2 (1.7–5.7) 3.9 (1.8–8.8) 2.7 (1.3–5.9) 66 (61–72) 0.24/0.14

—LOF 28/50 0.27/0.16/0.14 1.4 (0.8–2.4) 1.7 (0.9–3.4) 1.2 (0.6–2.2) 70 (55–76) 0.11/0.02

For each gene, the AD association statistics are shown for the variant deleteriousness threshold with the most evidence for AD association in the meta-analysis (bold). For genes with sufficient 
carriers, signals are shown for LOF and missense variants separately (regular text). Individual variants contributing to the burden were validated in a multistage analysis (Supplementary Table 
16 and Methods), which resulted in the construction of a refined burden for TREM2 (one variant removed) and ABCA1 (two variants removed). The attributable fraction of a gene is an estimate 
of the fraction of EOAD and LOAD cases in this sample that have become part of this dataset due to carrying a rare damaging variant in the respective gene (Methods). Note that several 
variants were excluded from this analysis (that is, due to differential missingness) that would otherwise have been included in the burden. See section 2 of the Supplementary Note for a 
gene-specific discussion of the variants that contribute to the association with AD and Supplementary Data for the list of variants considered in the burden analysis. Genes shown in bold: the 
variant burden was significantly associated with AD in the meta-analysis (Holm–Bonferroni <0.05; Table 1). P values for the mega-analysis are shown in Supplementary Table 15.
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The α-secretase ADAM10 plays a major role in non-amyloidogenic 
APP metabolism13. Evidence for the AD association of rare variants in 
ADAM10 has remained suggestive until now: two rare missense variants 
in ADAM10 were reported before to incompletely segregate with LOAD 
in a few families14 (these variants did not associate with AD in our study; 
Supplementary Data) and a nonsense variant in the ADAM10 gene 
segregated with AD but in a small pedigree15. RIN3 has been associated 
with endosomal dysfunction and APP trafficking/metabolism16,17. CLU 
(also known as APOJ) affects Aβ aggregation and clearance18 and ACE 
is suggested to have a role in Aβ degradation19. Thus far, the role of the 
histone methylation reader ZCWPW1 is unclear.

To better comprehend how these genes associate with AD, we ana-
lyzed the characteristics of rare damaging variants that contributed to 
the burden using the mega-sample (Fig. 2 and Table 3). For damaging 
variants in most genes, we observed increased carrier frequencies in 
younger cases and larger effect sizes were associated with an earlier 
age at onset (P = 0.0001) (Supplementary Table 9 and Extended Data 
Fig. 5). Yet the variants also contributed to an increased risk of LOAD 
(Fig. 2a,b and Table 3). The largest effect sizes were measured for LOF 
variants in SORL1, ADAM10, CLU and ZCWPW1; carriers of such variants 
had the lowest median age at onset, implying a key role for these genes 
in AD etiology (Table 3 and Extended Data Fig. 6). Moderate variant 
effect sizes were observed for LOF variants in TREM2, ABCA1 and RIN3, 
while the smallest variant effects were observed in ABCA7, ATP8B4 and 
ACE (Fig. 3 and Table 3).

Extremely rare variants contributed more to large effect sizes 
than less rare variants (P = 0.03; Supplementary Table 10). Indeed,  

for SORL1, the variants with the lowest variant frequencies had the 
largest effect sizes (Fig. 2c and Supplementary Table 11) and damaging 
variants in ADAM10, CLU and ZCWPW1 were all extremely rare (Fig. 2d). 
Conversely, we observed that rare but recurrent variants contributed 
to the AD association of TREM2, ABCA7, ATP8B4 and RIN3 (Fig. 2d). The 
effect sizes of rare coding variant burdens were large compared to the 
effect sizes of the GWAS sentinel SNPs (Supplementary Tables 7 and 8). 
Up to 18% EOAD and 14% LOAD cases carried at least 1 predicted damag-
ing variant in 1 of the 10 genes, compared to 9% of the controls (Sup-
plementary Table 12). The fractions of EOAD cases in our sample that 
could be attributed to a rare variant in a specific gene ranged between 
0.1 and 2.4% (approximately 2%: SORL1, TREM2, ABCA7; approximately 
1%: ATP8B4, ABCA1, RIN3; and <0.5% for the remaining genes); for LOAD 
cases, this ranged between 0 and 1.3% (Table 3 and Extended Data Fig. 7).

We performed an age-matched sensitivity analysis to investigate 
possible effects from other age-related conditions, which supported a 
role in AD for all ten identified genes (Extended Data Fig. 8). Since APOE 
status was used as the selection criterion in several contributing data-
sets, burden tests were not adjusted for APOE-ε4 dosage; in a separate 
analysis we observed no interaction effects between the rare-variant 
AD association and APOE-ε4 dosage (Supplementary Table 13  
and Methods). Also, the rare-variant burden association was not con-
founded by somatic mutations due to age-related clonal hematopoiesis 
(Supplementary Table 14).

Together, we report ATP8B4 and ABCA1 as new AD risk factors 
with exome-wide significance and we report suggestive evidence 
for the association of rare variants in the ADAM10 gene with AD risk. 

SORL1 TREM2 ABCA7 ATP8B4 ABCA1 ADAM10 RIN3 CLU ZCWPW1 ACE
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AD OR (+95% CI)
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Fig. 3 | ORs according to age at onset and variant pathogenicity. ORs for LOF 
(red) and missense (yellow) variants as observed in the mega-sample (n = 31,905). 
Case/control OR (square, 95% CI), EOAD OR (triangle pointing upward), LOAD 
OR (triangle pointing downward). Missense variants in the considered gene 
appertained to the variant deleteriousness threshold that provides the most 
evidence for its AD association (Table 3, refined). The LOF burden effect size was 

significantly larger than the missense burden effect size in the SORL1 and we 
observed similar trends in ABCA7 and ABCA1 (Supplementary Table11). Of note, 
for ZCWPW1 only the burden of the LOF variants was significantly associated with 
AD; missense variants are shown for reference purposes (REVEL > 25).Grey: gene 
was not significantly associated with AD in the meta-analysis.
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Furthermore, we identified RIN3, CLU, ZCWPW1 and ACE as potential 
drivers in GWAS loci, illustrating how analyses of rare protein-modifying 
variants can solve this drawback of GWAS studies20. Larger datasets will 
be required to further confirm these signals. Given the association of 
LOF variants with increased AD risk, we suggest that the GWAS risk 
alleles in the respective loci might also be associated with reduced 
activity of the gene, which will have to be evaluated in further experi-
ments. We observed an increased burden of rare damaging genetic vari-
ants in individuals with an earlier age at onset. Nevertheless, damaging 
variants (including APOE-ε4/ε4) were observed in only 30% of the EOAD 
cases (Supplementary Table 12), suggesting that additional damaging 
variants are yet to be discovered (Fig. 1b). Further, the effect of struc-
tural variants such as copy number variants and repetitive sequences 
will need to be investigated in future analyses. The associated genes 
strengthen our current understanding of AD pathophysiology. When 
treatment options become available in the future, identification of 
damaging variants in these genes will be of interest to clinical practice.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-022-01208-7.

References
1.	 Gatz, M. et al. Role of genes and environments for explaining 

Alzheimer disease. Arch. Gen. Psychiatry 63, 168–174 (2006).
2.	 Bellenguez, C. et al. New insights on the genetic etiology of 

Alzheimer’s and related dementias. Nat. Genet. 54, 412–436 (2022).
3.	 Holstege, H. et al. Characterization of pathogenic SORL1 genetic 

variants for association with Alzheimer’s disease: a clinical 
interpretation strategy. Eur. J. Hum. Genet. 25, 973–981 (2017).

4.	 Nicolas, G. et al. SORL1 rare variants: a major risk factor for  
familial early-onset Alzheimer’s disease. Mol. Psychiatry 21, 
831–836 (2016).

5.	 Cuyvers, E. et al. Mutations in ABCA7 in a Belgian cohort of 
Alzheimer’s disease patients: a targeted resequencing study. 
Lancet Neurol. 14, 814–822 (2015).

6.	 Jonsson, T. et al. Variant of TREM2 associated with the risk of 
Alzheimer’s disease. N. Engl. J. Med. 368, 107–116 (2013).

7.	 Guerreiro, R. et al. TREM2 variants in Alzheimer’s disease. N. Engl. 
J. Med. 368, 117–127 (2013).

8.	 Bellenguez, C. et al. Contribution to Alzheimer’s disease risk of 
rare variants in TREM2, SORL1, and ABCA7 in 1779 cases and 1273 
controls. Neurobiol. Aging 59, 220 e1-220.e9 (2017).

9.	 Gao, L. et al. Identification of rare variants in ATP8B4 as a risk 
factor for systemic sclerosis by whole-exome sequencing. 
Arthritis Rheumatol. 68, 191–200 (2016).

10.	 Wahrle, S. E. et al. Overexpression of ABCA1 reduces amyloid 
deposition in the PDAPP mouse model of Alzheimer disease.  
J. Clin. Invest. 118, 671–682 (2008).

11.	 Koldamova, R., Staufenbiel, M. & Lefterov, I. Lack of ABCA1 
considerably decreases brain ApoE level and increases amyloid 
deposition in APP23 Mice. J. Biol. Chem. 280, 43224–43235 
(2005).

12.	 Nordestgaard, L. T., Tybjaerg-Hansen, A., Nordestgaard, B. G. & 
Frikke-Schmidt, R. Loss-of-function mutation in ABCA1 and risk 
of Alzheimer’s disease and cerebrovascular disease. Alzheimers 
Dement. 11, 1430–1438 (2015).

13.	 Saftig, P. & Lichtenthaler, S. F. The alpha secretase ADAM10: 
a metalloprotease with multiple functions in the brain. Prog. 
Neurobiol. 135, 1–20 (2015).

14.	 Kim, M. et al. Potential late-onset Alzheimer’s disease-associated 
mutations in the ADAM10 gene attenuate α-secretase activity. 
Hum. Mol. Genet. 18, 3987–3996 (2009).

15.	 Agüero, P. et al. α-Secretase nonsense mutation (ADAM10 Tyr167*) 
in familial Alzheimer’s disease. Alzheimers Res. Ther. 12, 139 
(2020).

16.	 Shen, R. et al. Upregulation of RIN3 induces endosomal 
dysfunction in Alzheimer’s disease. Transl. Neurodegener. 9, 26 
(2020).

17.	 Shen, R. & Wu, C. RIN3 binds to BIN1 and CD2AP to increase 
APP‐CTFS in early endosomes. Alzheimers Dement. 16, e047161 
(2020).

18.	 Foster, E. M., Dangla-Valls, A., Lovestone, S., Ribe, E. M. & Buckley, 
N. J. Clusterin in Alzheimer’s disease: mechanisms, genetics, and 
lessons from other pathologies. Front. Neurosci. 13, 164 (2019).

19.	 Hu, J., Igarashi, A., Kamata, M. & Nakagawa, H. 
Angiotensin-converting enzyme degrades Alzheimer amyloid 
β-peptide (Aβ); retards Aβ aggregation, deposition, fibril 
formation; and inhibits cytotoxicity. J. Biol. Chem. 276, 47863–
47868 (2001).

20.	 Backman, J. D. et al. Exome sequencing and analysis of 454,787 
UK Biobank participants. Nature 599, 628–634 (2021).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons license and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

http://www.nature.com/naturegenetics
https://doi.org/10.1038/s41588-022-01208-7
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Nature Genetics | Volume 54 | December 2022 | 1786–1794 1793

Letter https://doi.org/10.1038/s41588-022-01208-7

1Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the 
Netherlands. 2Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands. 
3Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands. 4Delft Bioinformatics Lab, Delft University of Technology, Delft, the 
Netherlands. 5Université Rouen Normandie, INSERM U1245 and CHU Rouen, Department of Genetics and CNRMAJ, Rouen, France. 6Université Lille, 
INSERM, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1167-RID-AGE facteurs de risque et déterminants moléculaires des maladies liées 
au vieillissement, Lille, France. 7Medical Research Council Centre for Neuropsychiatric Genetics and Genomics,, Division of Psychological Medicine and 
Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, UK. 8Department of Neurology, Erasmus Medical Centre, Rotterdam, the 
Netherlands. 9Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands. 10Department of Epidemiology, Erasmus Medical 
Centre, Rotterdam, the Netherlands. 11Leiden Academic Centre for Drug Research, Leiden, the Netherlands. 12Nuffield Department of Population Health 
Oxford University, Oxford, UK. 13Medical Research Council Prion Unit at University College London, University College London Institute of Prion Diseases, 
London, UK. 14Department of Neurology, II B Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain. 
15Biomedical Research Networking Center on Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain. 16Division of 
Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of 
Cologne, Cologne, Germany. 17The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA. 18Université Montpellier, INSERM, 
Institute for Neurosciences of Montpellier, Montpellier, France. 19Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 
Seattle, WA, USA. 20Université Paris-Saclay, Commissariat à l’Énergie Atomique et aux Énergies Alternatives, Centre National de Recherche en Génomique 
Humaine Evry, Gif-sur-Yvette, France. 21Experimental Neuro-psychobiology Laboratory, Department of Clinical and Behavioral Neurology, Istituto di 
Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome, Italy. 22Department of Neurodegenerative Science, Van Andel Institute, Grand 
Rapids, MI, USA. 23Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA. 
24HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA. 25Department of Neuroscience, Catholic University of Sacred Heart, Fondazione Policlinico 
Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy. 26Université Bordeaux, INSERM, Bordeaux Population Health 
Research Center, Bordeaux, France. 27Department of Neurology,  Bordeaux University Hospital, Bordeaux, France. 28UKDRI Cardiff, School of Medicine, 
Cardiff University, Cardiff, UK. 29Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA. 30Framingham Heart Study, 
Framingham, MA, USA. 31Department of Neurology, Boston University School of Medicine, Boston, MA, USA. 32Department of Epidemiology, Boston 
University, Boston, MA, USA. 33Department of Medicine (Biomedical Genetics), Boston University, Boston, MA, USA. 34Neurogenomics and Informatics 
Center, Washington University School of Medicine, St Louis, MO, USA. 35Psychiatry Department, Washington University School of Medicine, St Louis, MO, 
USA. 36Hope Center for Neurological Disorders, Washington University School of Medicine, St Louis, MO, USA. 37Dementia Research Centre, University 
College London Queen Square Institute of Neurology, London, UK. 38Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca’ Granda, Ospedale 
Policlinico, Milan, Italy. 39University of Milan, Milan, Italy. 40Université Brest, INSERM, Etablissement Français du Sang, Centre Hospitalier Universitaire Brest, 
Unité Mixte de Recherche 1078, GGB, Brest, France. 41Genome Diagnostics, Department of Human Genetics, VU University, AmsterdamUMC (location 
VUmc), Amsterdam, the Netherlands. 42Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA. 43Department of 
Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA. 44Clinical and Experimental Science, Faculty of Medicine, 
University of Southampton, Southampton, UK. 45Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam 
Neuroscience, Vrije University, Amsterdam, the Netherlands. 46McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada. 
47Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam Reproduction and Development Research Institute, 
Amsterdam, the Netherlands. 48Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA. 49Institute of 

Henne Holstege    1,2,3,4,74  , Marc Hulsman    1,2,3,4,74  , Camille Charbonnier5,74, Benjamin Grenier-Boley6, 
Olivier Quenez    5, Detelina Grozeva    7, Jeroen G. J. van Rooij8,9, Rebecca Sims    7, Shahzad Ahmad    10,11, 
Najaf Amin    10,12, Penny J. Norsworthy    13, Oriol Dols-Icardo    14,15, Holger Hummerich13, Amit Kawalia16, 
Philippe Amouyel    6, Gary W. Beecham17, Claudine Berr    18, Joshua C. Bis    19, Anne Boland20, Paola Bossù    21, 
Femke Bouwman2,3, Jose Bras22,23, Dominique Campion5, J. Nicholas Cochran    24, Antonio Daniele25, 
Jean-François Dartigues26, Stéphanie Debette    26,27, Jean-François Deleuze20, Nicola Denning28, Anita L. DeStefano29,30,31, 
Lindsay A. Farrer    29,31,32,33, Maria Victoria Fernández    34,35,36, Nick C. Fox    37, Daniela Galimberti    38,39, 
Emmanuelle Genin    40, Johan J. P. Gille41, Yann Le Guen    42, Rita Guerreiro22,23, Jonathan L. Haines    43, Clive Holmes44, 
M. Arfan Ikram    10, M. Kamran Ikram10, Iris E. Jansen2,3,45, Robert Kraaij    9, Marc Lathrop46, Afina W. Lemstra2,3, 
Alberto Lleó14,15, Lauren Luckcuck7, Marcel M. A. M. Mannens47, Rachel Marshall7, Eden R. Martin17,48, Carlo Masullo49, 
Richard Mayeux50,51, Patrizia Mecocci52, Alun Meggy28, Merel O. Mol    8, Kevin Morgan    53, Richard M. Myers24, 
Benedetta Nacmias    54,55, Adam C. Naj    56,57, Valerio Napolioni    42,58, Florence Pasquier    59, Pau Pastor    60,61, 
Margaret A. Pericak-Vance    17,48, Rachel Raybould    28, Richard Redon    62, Marcel J. T. Reinders    4, 
Anne-Claire Richard5, Steffi G. Riedel-Heller    63, Fernando Rivadeneira    9, Stéphane Rousseau5, Natalie S. Ryan37, 
Salha Saad7, Pascual Sanchez-Juan    15,64, Gerard D. Schellenberg57, Philip Scheltens2,3, Jonathan M. Schott    37, 
Davide Seripa65, Sudha Seshadri    30,31,66, Daoud Sie41, Erik A. Sistermans41, Sandro Sorbi54,55, Resie van Spaendonk    41, 
Gianfranco Spalletta    67, Niccolo’ Tesi    1,2,3,4, Betty Tijms2, André G. Uitterlinden    9, Sven J. van der Lee    1,2,3,4, 
Pieter Jelle Visser2, Michael Wagner68,69, David Wallon70, Li-San Wang57, Aline Zarea70, Jordi Clarimon14,15, 
John C. van Swieten8, Michael D. Greicius42, Jennifer S. Yokoyama    71, Carlos Cruchaga34,35,36, John Hardy72, 
Alfredo Ramirez    16,66,68,69,73, Simon Mead    13, Wiesje M. van der Flier    2,3, Cornelia M. van Duijn    10,12, Julie Williams    7, 
Gaël Nicolas    5,74  , Céline Bellenguez    6,74 & Jean-Charles Lambert    6,74 

http://www.nature.com/naturegenetics
http://orcid.org/0000-0002-7688-3087
http://orcid.org/0000-0002-9889-3606
http://orcid.org/0000-0002-8273-8505
http://orcid.org/0000-0003-3239-8415
http://orcid.org/0000-0002-3885-1199
http://orcid.org/0000-0002-8658-3790
http://orcid.org/0000-0002-8944-1771
http://orcid.org/0000-0002-5572-8491
http://orcid.org/0000-0003-2656-8748
http://orcid.org/0000-0001-9088-234X
http://orcid.org/0000-0001-5254-7655
http://orcid.org/0000-0002-3409-1110
http://orcid.org/0000-0002-1432-0078
http://orcid.org/0000-0002-9852-5504
http://orcid.org/0000-0001-8675-7968
http://orcid.org/0000-0001-5533-4225
http://orcid.org/0000-0002-9669-5147
http://orcid.org/0000-0002-6660-657X
http://orcid.org/0000-0002-9284-5953
http://orcid.org/0000-0003-4117-2813
http://orcid.org/0000-0001-6649-8364
http://orcid.org/0000-0002-4351-4728
http://orcid.org/0000-0003-0372-8585
http://orcid.org/0000-0003-0416-999X
http://orcid.org/0000-0003-2533-2530
http://orcid.org/0000-0002-8217-2396
http://orcid.org/0000-0001-9338-9040
http://orcid.org/0000-0002-9621-2942
http://orcid.org/0000-0002-4378-6838
http://orcid.org/0000-0001-9880-9788
http://orcid.org/0000-0002-7493-8777
http://orcid.org/0000-0001-7283-8804
http://orcid.org/0000-0003-4673-2381
http://orcid.org/0000-0001-7751-2280
http://orcid.org/0000-0002-1148-1562
http://orcid.org/0000-0003-4321-6090
http://orcid.org/0000-0001-9435-9441
http://orcid.org/0000-0002-6081-8037
http://orcid.org/0000-0003-2059-024X
http://orcid.org/0000-0001-6135-2622
http://orcid.org/0000-0002-6077-8725
http://orcid.org/0000-0002-7432-4249
http://orcid.org/0000-0002-1413-5091
http://orcid.org/0000-0002-7276-3387
http://orcid.org/0000-0003-1606-8643
http://orcid.org/0000-0001-7274-2634
http://orcid.org/0000-0003-4991-763X
http://orcid.org/0000-0002-4326-1468
http://orcid.org/0000-0001-8766-6224
http://orcid.org/0000-0002-2374-9204
http://orcid.org/0000-0002-4069-0259
http://orcid.org/0000-0001-9391-7800
http://orcid.org/0000-0002-1240-7874
http://orcid.org/0000-0003-0829-7817


Nature Genetics | Volume 54 | December 2022 | 1786–1794 1794

Letter https://doi.org/10.1038/s41588-022-01208-7

Neurology, Catholic University of the Sacred Heart, Rome, Italy. 50Taub Institute on Alzheimer’s Disease and the Aging Brain, Department of Neurology, 
Columbia University, New York, NY, USA. 51Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA. 52Institute of Gerontology and 
Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy. 53Human Genetics, School of Life Sciences, University of Nottingham, 
Nottingham, UK. 54Department of Neuroscience, Psychology, Drug Research and Child Health University of Florence, Florence, Italy. 55IRCCS Fondazione 
Don Carlo Gnocchi, Florence, Italy. 56Penn Neurodegeneration Genomics Center, Department of Biostatistics, Epidemiology, and Informatics, University of 
Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. 57Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory 
Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. 58Genomic and Molecular Epidemiology Laboratory, School of 
Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy. 59Université Lille, INSERM, Centre Hospitalier Universitaire Lille, UMR1172, 
Resources and Research Memory Center (MRRC) of Distalz, Licend, Lille, France. 60Fundació Docència i Recerca MútuaTerrassa and Movement Disorders 
Unit, Department of Neurology, University Hospital MútuaTerrassa, Barcelona, Spain. 61Memory Disorders Unit, Department of Neurology, Hospital 
Universitari Mutua de Terrassa, Barcelona, Spain. 62Université de Nantes, Centre Hospitalier Universitaire Nantes, Centre National de la Recherche 
Scientifique, INSERM, l’institut du Thorax, Nantes, France. 63Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, 
Leipzig, Germany. 64Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain. 65Laboratory for 
Advanced Hematological Diagnostics, Department of Hematology and Stem Cell Transplant, Lecce, Italy. 66Department of Psychiatry and Glenn Biggs 
Institute for Alzheimer’s and Neurodegenerative Diseases, San Antonio, TX, USA. 67Laboratory of Neuropsychiatry, Department of Clinical and Behavioral 
Neurology, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia Foundation, Rome, Italy. 68Department of Neurodegenerative Diseases and 
Geriatric Psychiatry, University Hospital Bonn, Medical Faculty, Bonn, Germany. 69German Center for Neurodegenerative Diseases, Bonn, Germany. 
70Université Rouen Normandie, INSERM U1245 and CHU Rouen, Department of Neurology and CNRMAJ, Rouen, France. 71Memory and Aging Center, 
Department of Neurology, University of California, San Francisco, CA, USA. 72Reta Lila Weston Research Laboratories, Department of Molecular 
Neuroscience, University College London Institute of Neurology, London, UK. 73Cluster of Excellence Cellular Stress Responses in Aging-Associated 
Diseases, University of Cologne, Cologne, Germany. 74These authors contributed equally: Henne Holstege, Marc Hulsman, Camille Charbonnier,  
Gaël Nicolas, Céline Bellenguez, Jean-Charles Lambert.  e-mail: h.holstege@amsterdamumc.nl; m.hulsman1@amsterdamumc.nl;  
gaelnicolas@hotmail.com; jean-charles.lambert@pasteur-lille.fr

http://www.nature.com/naturegenetics
mailto:h.holstege@amsterdamumc.nl
mailto:m.hulsman1@amsterdamumc.nl
mailto:
gaelnicolas@hotmail.com
mailto:
gaelnicolas@hotmail.com
mailto:jean-charles.lambert@pasteur-lille.fr


Nature Genetics

Letter https://doi.org/10.1038/s41588-022-01208-7

Methods
In-depth descriptions of all methods are described in Methods section 
of the Supplementary Note.

Sample processing, genotype calling and QC
We collected the exome, whole genome sequencing (WGS) or exome 
extract sequencing data of a total of 52,361 individuals, brought 
together by the Alzheimer Disease European Sequencing (ADES) con-
sortium, the Alzheimer’s Disease Sequencing Project (ADSP)21 and 
several independent study cohorts (Supplementary Table 1). Exome 
extract samples only contained the raw reads that cover the ten genes 
identified in stage 1. Across all cohorts, AD cases were defined accord-
ing to National Institute on Aging-Alzheimer’s Association criteria22 for 
possible or probable AD or according to National Institute of Neuro-
logical and Communicative Disorders and Stroke-Alzheimer’s Disease 
and Related Disorders Association criteria23 depending on the date of 
diagnosis. When possible, supportive evidence for an AD pathophysi-
ological process was sought (including cerebrospinal fluid biomarkers) 
or the diagnosis was confirmed by neuropathological examination 
(Supplementary Table 1). AD cases were annotated with the age at onset 
or age at diagnosis (2,014 samples); otherwise, samples were classified 
as late-onset AD (366 samples). Controls were not diagnosed with AD. 
All contributing datasets were sequenced using a paired-end Illumina 
platform; different exome capture kits were used and a subset of the 
sample was sequenced using WGS (Supplementary Table 2).

A uniform pipeline was used to process both the stage 1 and stage 
2 datasets. Raw sequencing data from all studies were processed rela-
tive to the GRCh37 reference genome, the read alignments of possible 
chimeric origin were filtered and a GATK-based pipeline was used to 
call variants, while correcting for estimated sample contamination 
percentages. Samples were included in the datasets after they passed 
a stringent QC pipeline: samples were removed when they had high 
missingness, high contamination, a discordant genetic sex annotation, 
non-European ancestry, high numbers of new variants (with reference 
to dbSNP v.150), deviating heterozygous/homozygous or transition/
transversion ratios. Further, we removed family members up to the 
third degree and individuals who carried a pathogenic variant in PSEN1, 
PSEN2, APP or in other genes causative for Mendelian dementia dis-
eases (stage 1-only) or when there was clinical information suggestive 
of non-AD dementia. Variants considered in the analysis also passed 
a stringent QC pipeline: multiallelic variants were split into biallelic 
variants; variants that were in complete linkage and near each other 
were merged. Further, we removed variants that had indications of an 
oxo-G artifact, were located in short tandem repeat and/or low copy 
repeat regions, had a discordant balance between reads covering the 
reference and alternate allele, had a low depth for alternate alleles, devi-
ated significantly from Hardy–Weinberg equilibrium, were considered 
false positives based on GATK variant quality score recalibration or 
were estimated to have a batch effect. Variants with >20% genotype 
missingness (read depth < 6) and differential missingness between 
the EOAD, LOAD and control groups were removed. To account for 
uncertainties resulting from variable read coverage between samples, 
we analyzed variants according to genotype posterior likelihoods, that 
is, the likelihood of being homozygous for the reference allele and 
heterozygous or homozygous for the alternate allele. To account for 
genotype uncertainty, the burden test was performed multiple times 
with independently sampled genotypes and the average P value across 
these tests is reported.

Variant prioritization and thresholds
We selected variants in autosomal protein-coding genes that were 
part of the Ensembl basic set of protein-coding transcripts (Gencode 
v.19/v.29 (ref. 24); Supplementary Note) and that were annotated by the 
Variant Effect Predictor v.94.542 (ref. 25). Only protein-coding missense 
and LOF variants were considered (LOF: nonsense, splice acceptor/

donor or frameshifts). Missense and LOF variants were required to have 
a ‘moderate’ and ‘high’ variant effect predictor impact classification, 
respectively. Then, missense variants were prioritized using REVEL26, 
annotation obtained from dbNSFP4.1a27 and LOF variants were pri-
oritized using LOFTEE v.1.0.2 (ref. 28). For the analysis, we considered 
only missense variants with a REVEL score ≥ 25 (score range 0–100) 
and LOF variants were annotated as ‘high confidence’ by LOFTEE. Vari-
ants were required to have at least 1 carrier (that is, at least 1 sample 
with a posterior dosage >0.5) and an MAF < 1%, both in the considered 
dataset and the Genome Aggregation Database v.2.1 populations (non-
neurological set).

Gene burden testing
The burden analysis was based on four deleteriousness thresholds 
by incrementally including variants from categories with lower 
levels of predicted variant deleteriousness: LOF; LOF + REVEL ≥ 75; 
LOF + REVEL ≥ 50; and LOF + REVEL ≥ 25, respectively. This allowed 
us to identify the variant threshold providing maximum evidence 
for a differential burden signal. To infer any dependable signal for 
a specific deleterious threshold, a minimum of 10 damaging alleles 
appertaining to this deleteriousness threshold was required, that 
is, a cMAC ≥ 10. Multiple testing correction was performed across 
all performed tests (up to four per gene). Burden testing was imple-
mented using ordinal logistic regression. This enabled burden testing 
to particularly weight EOAD cases since previous findings indicated 
that high-impact variants are enriched in early-onset (EOAD) cases 
relative to late-onset (LOAD) cases8. This implies that the burden of 
high-impact deleterious genetic variants is ordered according to 
burdenEOAD > burdenLOAD > burdencontrol. Ordinal logistic regression 
enabled optimal identification of such signals, while also allowing the 
detection of EOAD-specific burdens (burdenEOAD > burdenLOAD ~ bur-
dencontrol) and regular case-control signals (burdenEOAD ~ burden-
LOAD > burdencontrol). For protective burden signals, the order of the 
signals is reversed, that is, burdenEOAD < burdenLOAD < burdencontrol. 
We considered an additive model while correcting for six population 
covariates, estimated after removal of population outliers. P values 
were estimated using a likelihood-ratio test. Genes were selected 
for confirmation in stage 2 if the FDR for AD association was <0.1 in 
stage 1 (Benjamini–Hochberg procedure29). For the GWAS-targeted 
analysis, a more stringent threshold was used (FDR < 0.05) due to the 
absence of a separate confirmation stage. For the meta-analysis, genes 
were considered significantly associated with AD when the corrected  
P was <0.05 after family-wise correction using the Holm–Bonferroni 
procedure30. Effect sizes (ORs) of the ordinal logistic regression 
can be interpreted as weighted averages of the OR being an AD case 
versus control and the OR being an early-onset AD case or not. To aid 
interpretation, we additionally estimated ‘standard’ case/control 
ORs across all samples per age category (EOAD versus controls and 
LOAD versus controls) and for age-at-onset categories ≤65 (EOAD), 
65–70, 70–80 and >80 using multinomial logistic regression, while 
correcting for 6 PCA covariates.

GWAS driver gene identification
For the 75 loci identified in the most recent GWAS2, genes were 
selected for burden testing based on earlier published gene prioritiza-
tions. First, gene prioritizations were obtained from Schwarzentruber 
et al.31 for 33 known loci. For 28 remaining loci, we obtained the tier 
1 prioritization from Bellenguez et al.2; for loci without prioritiza-
tion candidates (14 loci), we selected the nearest gene. In total, 81 
protein-coding genes were selected (Supplementary Table 7), of 
which 67 genes had sufficient damaging allele carriers to be tested 
for at least 1 variant selection threshold. Gene burden testing was 
performed as described above and multiple testing correction to 
identify potential driver genes was performed using the Benjamini–
Hochberg procedure, with a cutoff of 5%.
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Validation of variant selection
We validated the REVEL variant impact prediction for missense and 
the LOFTEE impact prediction for LOF variants for all variants with 
an MAF < 1%, for which there were at least 15 damaging allele carriers. 
For protein-modifying variants that were not in the most significant 
burden selection of a gene due to a low predicted impact, we investi-
gated whether they, nevertheless, showed a significant AD associa-
tion (based on a case/control analysis using logistic regression). Vice 
versa, for variants that were in the burden selection, we investigated 
whether their effect size was significantly reduced or oppositely 
directed from other missense or LOF variants in the burden selec-
tion (Fisher’s exact test). Individual variant effects were analyzed in 
the stage 1 dataset, followed by a confirmation analysis in the stage 
2 dataset. Multiple testing correction was performed per gene, with 
an FDR < 0.1 used as the threshold for stage 1 and Holm–Bonferroni 
(P < 0.05) for stage 2.

Descriptive measures
A variant carrier was defined as an individual for whom the summed 
dosage of all the variants in the considered variant deleteriousness 
category is ≥0.5 (see Methods section in the Supplementary Note). 
Carrier frequencies (CFs) were determined as the number of carriers/
number of total samples. Attributable fraction for cases in an age group 
was estimated as the probability of a case with an age at onset in the 
age window i being exposed to a specific gene burden(CFcase,gene, i), 
multiplied by an estimate of the attributable fraction among the 

exposed for these cases: (ORgene,i−1
ORgene,i

) (with the OR being an approximation 

of the relative risk)32,33. For large effect sizes, this estimate approaches 
the difference in carrier frequency between cases and controls: 
(CFcase,gene,i) − (CFcontrol,gene).

Sensitivity analyses
We determined if the observed effects could be explained by age 
differences between cases and controls. We constructed an 
age-matched sample, dividing samples into strata based on age/age 
at onset, with each stratum covering 2.5 years. Case/control ratios 
in all strata were kept between 0.1 and 10 by downsampling controls 
or cases, respectively. Subsequently, samples were weighted using 
the ‘propensity weighting within strata method’ (Supplementary 
Note). Finally, a case-control logistic regression was performed both 
on the unweighted and weighted case-control labels and estimated 
ORs and confidence intervals (CIs) were compared (Extended Data 
Fig. 8) Also, we determined if somatic mutations due to age-related 
clonal hematopoiesis could have confounded the results. We cal-
culated for all heterozygous calls in the burden selection the balance 
between reference and alternate reads and compared these to refer-
ence values (Supplementary Table 14). While APOE was not included 
as a confounder, we performed a separate APOE interaction analysis 
(Supplementary Table 13) through a likelihood-ratio test between 
a model label ∼ gene_burden_score + APOE_e4_dosage and an interaction 
model label ∼ gene_burden_score + APOE_e4_dosage + APOE_e4_dosage  
×gene_burden_score . This test was performed on a reduced dataset, 
from which datasets in which APOE status was used as the selection 
criterion were removed.

Power analysis
Power calculations were performed for ordinal and Firth logistic regres-
sion (case-control and EOAD versus rest; Fig. 1b and Supplementary 
Table 6). Given the ORs for the EOAD and LOAD cases, and the cMAC per 
gene, we sampled the number of alleles in the EOAD cases, LOAD cases 
and controls according to a multinomial distribution. We randomized 
these allele carriers across the dataset and performed the burden test 
as described above. The power for genes with a cMAC < 10 was set to 0 
since these genes were not analyzed.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
The genetic variants analyzed in this study are listed in the Supple-
mentary Data attached to this article. Summary statistics of the stage 
1 analysis are publicly available at Zenodo (https://doi.org/10.5281/
zenodo.6818051)34 and they can also be downloaded from https://hol-
stegelab.eu/data/. For all tests with a cMAC ≥10, this includes Ensembl 
gene ID, gene name, variant category, cMAC, P value, beta and s.e.m. 
The ADSP dataset, which includes the ADNI dataset used in this analysis, 
is publicly available on request from https://dss.niagads.org/datasets/. 
The accession numbers of the data used in this analysis are: ADSP 
DBGap: phs000572.v7.p4 (stage 1); ADSP NIAGADS: https://dss.niagads.
org/datasets/ng00067-v2/ (stage 2). Source data to Figs. 2 and 3 are 
published alongside this paper.

Code availability
The software and algorithms used in the analysis are described in 
the Supplementary Note attached to this Letter. Self-contained 
code v.0.1.0 can be accessed at https://github.com/holstegelab/
shortread_seq_analysis and Zenodo (https://doi.org/10.5281/
zenodo.6827458)35.
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Extended Data Fig. 1 | Age, gender, APOE genotype distribution. Age, gender and APOE genotype distribution of all samples, stratified by case/control status.
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Extended Data Fig. 2 | PCA: Sample population compared to 1,000 G 
population samples. Sample population compared to 1,000 G population 
samples. First two PCA components of the study samples used for the Stage 
1 and Stage 2 analysis, shown in context of the 1000 Genomes samples for 

reference (see Supplementary Note section 1.3.4). Samples in red are considered 
population outliers. Samples with only exome-extracts were not included in this 
analysis.
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Extended Data Fig. 3 | P value inflation in Stage-2 analysis. P value inflation 
in Stage-2 analysis: Quantile-quantile plot for Stage-2 (without exome-extract 
samples), based on a ordinal logistic burden test (see Methods). Results are 
shown for all burden tests (n = 20,681) for which at least 10 damaging alleles were 
present in this dataset (based on 4 different variant deleteriousness thresholds 

per gene). While not used in this analysis, the threshold for multiple testing 
correction based on FDR < 0.1 is shown for reference. The genomic p-value 
inflation was 1.016. Note that causative mutations were not separately removed in 
Stage-2, as we focused on a specific set of genes.
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Extended Data Fig. 4 | P value inflation in the mega-analysis dataset.  
P value inflation in the mega-analysis dataset: Quantile-quantile plot for the 
mega-analysis dataset (without exome-extract samples) based on a ordinal 
logistic burden test (see Methods). Results are shown for all burden tests 
(n = 37,710) for which at least 10 damaging alleles were present in this dataset 

(based on 4 different variant deleteriousness thresholds per gene). For reference, 
the threshold for multiple testing correction based on a false discovery 
rate threshold of 0.1 is shown. P values for the mega-analysis are shown in 
Supplementary Table 15. The genomic p-value inflation was 1.025.
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Extended Data Fig. 5 | Variant carrier frequency in controls by age last seen. 
Variant carrier frequency in controls by age last seen: Carrier frequency in 
controls by age last seen for the variant selection threshold with the strongest 
association, as observed in the mega-analysis (n = 31,905 unique individuals); 

RIN3, CLU, ZCWPW1, ACE (n = 29,727 unique individuals; that is without 
exome-extracts) (Table 3, refined). Black: genes significant in the meta-analysis. 
Grey: genes not significant in meta-analysis. Blue: genes detected in the GWAS 
targeted analysis.
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Extended Data Fig. 6 | Age-at-onset by variant deleteriousness category. 
Age-at-onset by variant deleteriousness category: Age-at-onset (median and 
IQR) in the mega-analysis (n = 31,905 unique individuals); RIN3, CLU, ZCWPW1, 
ACE (n = 29,727 unique individuals; that is without exome-extracts). Samples in 

variant deleteriousness categories with <10 samples are shown individually. The 
median age at onset and IQR for the complete mega-analysis dataset is shown on 
the right. Black: genes significant in the meta-analysis. Grey: genes not significant 
in meta-analysis. Blue: genes detected in the GWAS targeted analysis.
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Extended Data Fig. 7 | Attributable fraction per gene and age-at-onset 
category. Attributable fraction per gene and age-at-onset category: 
Attributable fractions as derived based on the mega-analysis in the mega-analysis 
(n = 31,905 unique individuals); RIN3, CLU, ZCWPW1, ACE (n = 29,727 unique 
individuals; that is without exome-extracts). The attributable fraction of a gene 

is an estimate of the fraction of AD cases in a specific age group that have become 
part of this dataset due to carrying a rare damaging variant in the respective gene 
(Methods). This estimate accounts only for variants in the burden selection. 
Black: genes significant in the meta-analysis. Grey: genes not significant in 
meta-analysis. Blue: genes detected in the GWAS targeted analysis.
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Extended Data Fig. 8 | Sensitivity Analysis: AD vs Age association. AD vs 
Age association: Sensitivity analysis of the gene burden tests (for the most 
significant deleteriousness thresholds, Table 2) for the mega-analysis dataset 
(RIN3, CLU, ZCWPW1, ACE: without exome-extracts) (respectively n = 31,905 and 
n = 29,727 unique individuals). Comparison of the case/control odds ratio of an 

age-matched and a non-age-matched analysis. Age-matching was performed as 
described in the methods. Based on the confidence intervals, we cannot exclude 
that the signals in ACE, ADAM10 and ZCWPW1 are affected by other age-related 
conditions. Note however, that the signals in ADAM10 and ZCWPW1 are based on 
very few variants, such that confidence intervals are expected to be wide.
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