
HAL Id: hal-03900628
https://hal.science/hal-03900628

Submitted on 15 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new family of route formulations for split delivery
vehicle routing problems

Isaac Balster, Teobaldo Bulhões, Pedro Munari, Artur Alves Pessoa, Ruslan
Sadykov

To cite this version:
Isaac Balster, Teobaldo Bulhões, Pedro Munari, Artur Alves Pessoa, Ruslan Sadykov. A new family
of route formulations for split delivery vehicle routing problems. Inria Centre at the University of
Bordeaux. 2022. �hal-03900628�

https://hal.science/hal-03900628
https://hal.archives-ouvertes.fr

A new family of route formulations for split delivery vehicle

routing problems

Isaac Balster∗1, Teobaldo Bulhões†2, Pedro Munari‡3, Artur Alves Pessoa§4, and
Ruslan Sadykov¶1

1Inria Bordeaux Sud-Ouest, 200 Avenue de la Vieille Tour, Talence 33405, France
2Universidade Federal da Paràıba, Centro de Informática, Departamento de
Computação Cient́ıfica, Rua dos Escoteiros s/n, Mangabeira, 58055-000, João

Pessoa, Brazil
3Federal University of São Carlos, Production Engineering Department, Rod.

Washington Lúıs Km 235, 13565-905, São Carlos-SP, Brazil
4Universidade Federal Fluminense, Engenharia de Produção, Rua Passo da

Pátria 156, Niterói - RJ - Brasil - 24210-240

30 November 2022

Abstract

We propose a new family of formulations with route-based variables for the split delivery
vehicle routing problem with and without time windows. Each formulation in this family
is characterized by the maximum number of different quantities of demand that can be
delivered to a customer during a vehicle visit. As opposed to previous formulations in the
literature, the exact delivery quantities are not always explicitly known in this new family.
The validity of these formulations is ensured by an exponential set of non-robust constraints.
We also explore a property of optimal solutions that allows us to specify a minimum delivery
quantity based on customer demand and vehicle capacity, and this number is often greater
than one. We use this property to reduce the number of possible delivery quantities in our
formulations, improving the solution times of the computationally strongest formulation
in the family. In addition, we propose new variants of non-robust cutting planes that
strengthen the formulations, which are limited-memory subset-row covering inequalities
and limited-memory strong k-path inequalities. Finally, we develop a branch-cut-and-price
algorithm to solve our formulations enriched with the proposed valid inequalities, which
resorts to state-of-the-art algorithmic enhancements. We show how to effectively manage
the non-robust cuts when solving the pricing problem that dynamically generates route
variables. Numerical results indicate that our formulations and BCP algorithm establish
new state-of-the-art results for the variant with time windows since all benchmark instances
with 50 customers and many instances with 100 customers are solved to optimality for
the first time. Several instances of the variant without time windows are solved to proven
optimality for the first time.

∗isaac.balster@inria.fr
†tbulhoes@ci.ufpb.br
‡munari@dep.ufscar.br
§arturpessoa@id.uff.br
¶ruslan.sadykov@inria.fr

1

1 Introduction

The applications of the vehicle routing problem (VRP) are ubiquitous and play an important
role in promoting effective logistics operations that contribute to economic, environmental and
sustainable goals (Shapiro, 2007; Bektaş and Laporte, 2011). The success of these applications
rests on the results of intensive research developments obtained by the VRP community over more
than 60 years. Such efforts have involved the design of a number of mathematical formulations
and solution approaches for theoretical and applied variants, continuously pushing the boundaries
of the size and type of problems that one can expect to solve in practice (Toth and Vigo, 2014;
Braekers et al., 2016).

In the traditional variants of the capacitated VRP, one must design a set of least-cost routes
in a way to visit each customer exactly once using a homogeneous fleet of vehicles available in
a single depot such that the total demand delivered in each route does not exceed the vehicle
capacity. In certain variants, such as the VRP with time windows (VRPTW), customers might
only be available for service during a certain period of time throughout the day, known as a
time window, and service times might vary among customers. In this paper, we are mainly
interested in an extension of this latter variant, known in the literature as the split delivery
VRPTW (SDVRPTW), in which customers may be visited more than once, if beneficial, so that
their demands are split between two or more vehicles.

The SDVRPTW adds a degree of operational flexibility by relaxing the VRPTW and encom-
passing the decision of how much to deliver to each customer. Multiple visits allow us to include
customers with demands that are larger than the vehicle capacity. Additionally, multiple visits
can be beneficial even if a customer’s demand fits in a single vehicle since these split deliveries can
promote significant savings by increasing the utilization of the vehicles’ capacity. As pointed out
originally by Dror and Trudeau (1989, 1990) and Archetti et al. (2006) for the variant without
time windows (SDVRP), the savings can reach up to 50% of routing costs. However, the benefits
of multiple visits come in exchange for increased difficulty in modeling and solving these variants
with respect to their nonsplit counterparts, especially regarding exact approaches (Bianchessi
and Irnich, 2019; Munari and Savelsbergh, 2022; Gouveia et al., 2022).

1.1 Related literature

Despite its practical benefits and theoretical relevance, the SDVRPTW has received relatively
little attention in the literature. Mullaseril and Dror (1996) presented the first attempt to model
the SDVRPTW using a column generation scheme. Their formulation relies on the replication
of customers, followed by the definition of split configurations in advance so that the problem
becomes an instance of the VRPTW. A first standard branch-and-price scheme tailored for the
SDVRPTW and with no initial assumptions on the number of splits was presented by Feillet
et al. (2006), in which the decision on how much to deliver is addressed at the master prob-
lem level, whereas feasible routes are determined in the pricing subproblem, which consists of
an elementary shortest path problem with resource constraints (ESPPRC). Desaulniers (2010)
proposed an innovative branch-cut-and-price (BCP) algorithm based on extreme delivery pat-
terns, which are determined in the pricing subproblem together with their corresponding routes,
and the actual delivery quantities are determined through convex combinations of these extreme
patterns at the master problem level. Archetti et al. (2011a) enhanced this approach by imple-
menting acceleration techniques on the subproblem by means of a tabu search heuristic, as well
as presenting novel valid inequalities. Luo et al. (2017) presented a BCP algorithm that extends
the extreme delivery pattern concept to the SDVRPTW with linear weight-related costs and
takes advantage of acceleration techniques in their label-setting pricing algorithm.

More recently, tailored branch-and-cut (BC) algorithms have shown superior performance for
the SDVRPTW variant and have become the state-of-the-art exact approaches. Bianchessi and
Irnich (2019) proposed a tailored BC method for the SDVRPTW based on a relaxed commodity
flow formulation. The authors presented new types of valid inequalities, which, together with

2

other well-known cuts from the literature, are used in their BC to strengthen the linear relaxation
of the relaxed model, as well as cut off integer solutions that are infeasible for the SDVRPTW.
Munari and Savelsbergh (2022) introduced three novel compact formulations for the SDVRP
and SDVRPTW and proposed a BC algorithm based on a relaxation of their best-performing
formulation. Different from previous approaches, their BC algorithm locally extends the relaxed
model by inserting new variables and the so-called regularity property constraints every time
an infeasible integer solution is found in the BC tree. The same BC algorithm was used by
Munari and Savelsbergh (2020) to develop a column generation-based heuristic that consists of
adding to the relaxed formulation a set of time-feasible routes that are generated in advance.
Other heuristics have also been proposed specifically for the SDVRPTW and related variants,
but using different strategies. Frizzell and Giffin (1995) developed a construction heuristic given
by a look-ahead approach, in addition to improvement heuristics based on moving and exchange
customer between routes. Mullaseril et al. (1997) adapted the construction and improvement
heuristics of Dror and Trudeau (1990) to solve a variant applied to livestock feed distribution that
was modeled as a split-delivery capacitated rural postman problem with time windows on arcs.
Belfiore and Yoshizaki (2009) also addressed a real-life variant, modeled as a heterogeneous fleet
SDVRPTW, by proposing constructive heuristics and a scatter search algorithm. Finally, Ho and
Haugland (2004) developed a tabu search heuristic for the SDVRPTW, based on traditional move
operators (relocate, exchange and 2-opt*) and a new move operator called relocate split. The
authors considered modified Solomon’s instances in their computational experiments. Except
from Munari and Savelsbergh (2020), none of the mentioned heuristics have been tested on the
exact same benchmark instances considered in the experiments performed with the recent exact
approaches (Archetti et al., 2011a; Bianchessi and Irnich, 2019; Munari and Savelsbergh, 2022).

The aforementioned state-of-the-art exact approaches can effectively solve most benchmark
instances with up to 50 customers, but they often become ineffective if the number of customers
increases. For example, Bianchessi and Irnich (2019) reported proven optimal solutions for 104
of 168 instances with 50 customers, while this number decreased to 5 of 168 for instances with
100 customers. For the same instances, Munari and Savelsbergh (2020, 2022) presented proven
optimal solutions for 123 50-customer instances, whereas they reported relatively large integral-
ity gaps for most 100-customer instances. This behavior has not been observed in the results
reported in the literature for 100 customer instances of traditional VRP variants, such as the
VRPTW, when they are solved using a BCP method (see, e.g., Sadykov et al. (2021)), suggesting
that there could be room for improvement in the computational solution of the SDVRPTW.

All of the aforementioned algorithms can also be applied for the SDVRP, i.e., the variant
without time windows. However, only Munari and Savelsbergh (2022) presented results for both
the SDVRPTW and the SDVRP. Exact approaches proposed in the literature specifically for
the SDVRP include those by Jin et al. (2008); Moreno et al. (2010); Archetti et al. (2011b,
2014); Ozbaygin et al. (2018); Gouveia et al. (2022). These approaches were not extended
to include time windows or verified on SDVRPTW instances. Again, tailored branch-and-cut
algorithms dominate the state of the art for the SDVRP. The current best algorithms by Gouveia
et al. (2022) and by Munari and Savelsbergh (2022) are able to solve to optimality most of the
literature instances with 50 customers and a small proportion of instances having between 64
and 100 customers.

1.2 Contributions

The main contributions of this paper are summarized as follows.

• We explore a property that is satisfied by at least one optimal solution of the problem,
which is valid for both the SDVRP and the SDVRPTW. This property allows us to specify
a minimum delivery quantity when visiting a customer on a route. Efficiency of our solu-
tion approach depends on the ratio between the minimum delivery quantity and average
customer demand. The larger is this ratio, the faster is our algorithm.

• We present a new family of route-based formulations for the problem, as well as a BCP

3

algorithm for solving them. Compared to previous column generation-based approaches in
the literature, the exact delivery quantities are not always explicitly known, neither in the
pricing problem nor in the master problem. Covering of customer demand is guaranteed by
an exponential family of constraints separated dynamically using a maximum flow-based
algorithm. These constraints are supported by a flow graph representation of a solution,
which offers theoretical and practical advantages, as we show in this paper.

• We propose variants of non-robust valid inequalities designed to improve the strength of
our formulations, which are limited-memory subset-row covering inequalities and limited-
memory strong k-path inequalities. Additionally, we show how to effectively manage novel
non-robust valid inequalities when solving the pricing problem of the column generation
procedure.

• We numerically compare the strength and the solution time of the formulations in the
newly proposed family using instances of the SDVRPTW with different characteristics.

• Finally, we show that our BCP algorithm outperforms the state-of-the-art exact approaches
for the SDVRPTW. Numerous literature instances are solved to optimality for the first
time, including all instances with 50 customers and many instances with 100 customers.
Some SDVRP instances are also solved to optimality for the first time.

1.3 Organization of the paper

The remainder of this paper is organized as follows. In Section 2, we define the problem and state
its known properties of optimal solutions. A new property is introduced in Section 3. In Section
4, a new family of formulations is presented, as well as known and novel valid inequalities for this
family. Our BCP algorithm is described in Section 5. The results of computational experiments
are shown in Section 6, in which we numerically compare the formulations from the proposed
family and test our BCP algorithm on benchmark instances for both the SDVRPTW and the
SDVRP. Section 7 outlines the major contributions and future research directions.

2 Problem definition and known properties

We define the SDVRPTW over a directed graph G = (V,A), where V = {0, n + 1} ∪ C and
A = {(i, j) : i, j ∈ V, i ̸= n + 1, j ̸= 0, i ̸= j}. Nodes 0 and n + 1 are the source and sink
representations of the depot, respectively. Set C = {1, 2, . . . , n} represents customer nodes. For
each arc a ∈ A, a cost ca ≥ 0 and a travel time ta ≥ 0 is defined. For the sake of simplicity,
when a = (i, j), we may drop the parenthesis and the comma, and replace c(i,j) and t(i,j) with
cij and tij , respectively. We suppose that the triangle inequality holds for both costs and travel
times. In practice, triangle inequality always holds for travel times. Thus, in the case in which
arc costs are equal to arc travel times, this assumption comes without loss of generality. Each
customer i ∈ C has a rational positive demand di > 0 to be fulfilled by one or more vehicles,
and this customer is available for service within a nonempty interval [ei, li], where ei and li
stand for the earliest and latest times for starting service, respectively. The time window of
the depot [e0, l0] = [en+1, ln+1] defines the planning horizon. In the case of an early arrival at
a customer, waiting before starting the service is allowed. The service time for each customer
i ∈ C is assumed to be constant and is embedded into the travel times of all arcs (i, j) leaving i.
A homogeneous fleet of H vehicles with rational, positive capacity Q > 0 is available. A route
r = (vr0 = 0, vr1, . . . , v

r
nr

= n + 1) visiting nr nodes in graph G, starting at time tr0 = e0 and
delivering amount drk ≥ 0 of demand to every customer vrk, 1 ≤ k < nr, is feasible if the total

delivered demand
∑nr−1
k=1 drk does not exceed Q, and the start of service time trk at every node is

within its time window. We define as qri the total demand delivered via route r to customer i
(in possibly several visits). Times of the service start trk, 1 ≤ k ≤ nr, are determined recursively
as trk = max{trk−1+ tark , evrk}, where a

r
k is the arc (vrk−1, v

r
k). The cost c

r of route r is the total of
the costs of the arcs that it traverses: cr =

∑nr

k=1 cark . A feasible solution of the problem consists

4

of a set of at most H feasible routes in which the total delivered quantity to every customer
i ∈ C is at least equal to di. A split customer in a solution is a customer who is visited by two or
more vehicles. The aim of the SDVRPTW is to find a feasible solution that minimizes the total
route cost. A related variant, the (capacitated) split delivery vehicle routing problem (SDVRP),
is the most basic one, in which time windows, service times, and route timings are not defined.

There always exists an optimal solution to the SDVRPTW that satisfies the following prop-
erties:

Property 1. (Dror and Trudeau, 1990; Feillet et al., 2006) Two routes in the solution share at
most one single split customer;

Property 2. (Feillet et al., 2006) Each route is elementary: it visits each customer at most
once;

Property 3. (Feillet et al., 2006) Each arc between customer nodes is traversed at most once;

Property 4. (Desaulniers, 2010) For each pair of arcs between two customers, at most one is
traversed; and

Property 5. (Archetti et al., 2011a) All delivery quantities are integers if demand and vehicle
capacity are integers.

In the next section, we present a new property that generalizes Property 5.

3 Flow graph solution representation and a useful prop-
erty

The flow graph solution representation introduced in this section can be used to verify the
feasibility of a set of routes with respect to the customer demand. This graph has theoretical
and practical importance since we rely on it to prove the validity of our formulations and to
separate some of our valid inequalities.

Let R̃ = {r1, r2, . . . , r|R̃|} be a set of time-feasible routes (i.e., satisfying time window con-

straints), in which delivery quantities are not defined. For ease of presentation, we consider that
routes ri and rj are different whenever i ̸= j, even if they follow the same sequence of arcs.

We now construct the following valued graph F(R̃) to check whether set R̃ defines a feasible
SDVRPTW solution. In the case of positive answer, delivery quantities are determined. The
values of arcs in F(R̃) correspond to their capacities.

The set of nodes in F(R̃) is {0} ∪ R̃ ∪ C ∪ {n + 1}. Nodes 0 and n + 1 are the source and
the sink, respectively. The first set of arcs A1(R̃) connects the source with each of the route
nodes in R̃. The capacity of these arcs is Q. The second set of arcs A2(R̃) connects the route
nodes in R̃ with customer nodes in C: arc (r, i) belongs to A2(R̃) if and only if route r ∈ R̃ visits
customer i ∈ C. The capacity of these arcs is ∞. Finally, the third set of arcs A3(R̃) connects
each customer node to the sink. The capacity of an arc (i, n+1) ∈ A3(R̃) is di. Figure 1 provides
an illustration of graph F(R̃), where R̃ = {r1 = {0, 1, 2, 3, 6}, r2 = {0, 2, 3, 6}, r3 = {0, 4, 5, 6}}
is a set of routes serving customers C = {1, 2, 3, 4, 5} with demands d = {10, 20, 30, 40, 10},
respectively. The capacity of the vehicle is Q = 30. From the construction of the graph, we
deduce the following observation.

Observation 1. A set R̃ of time-feasible routes forms a feasible SDVRPTW solution if and
only if the maximum flow f in graph F(R̃) has a value of

∑
i∈C di. In such a case, values fa,

a ∈ A2, correspond to the delivery quantities for every route in R̃ to each customer in C.

The maximum flow f in the example flow graph in Figure 1 has value 90, which is smaller
than

∑
i∈C di = 110. Thus, this set of routes does not form a feasible solution.

Let now q̄ = gcd(Q, d1, d2, . . . , dn) be the greatest common divisor of the capacity and all
customer demands. Since all these values are rational and positive, value q̄ exists (Weil, 1983).

5

30

30

30

10

20

30

40

10

∞

∞

∞

∞

∞

∞

∞

0

route nodes

r1

r2

r3

customer nodes

1

2

3

4

5

6

Figure 1: An example of the flow graph F(R̃).

Property 6. There exists an optimal solution in which all delivery quantities in all routes are
multiples of q̄.

Proof. Let I be a problem instance. Define a new instance I ′ derived from I by dividing all
demands and capacity by q̄. In this case, any solution s′ of I ′ is feasible if, and only if, there
is an equivalent feasible solution s of I with the same cost, and the same delivery quantities
multiplied by q̄. Since, by Property 5, there exists an optimal solution s′ of I ′ in which all the
delivery quantities are integer, the corresponding solution s of I is also optimal and satisfies
Property 6.

4 Mathematical formulations

In this section, we introduce a new family of formulations based on route variables. Let R be
the set of all feasible SDVRPTW routes satisfying Property 6. We define Di = {q̄, 2q̄, . . . , di} as
the set of all possible delivery quantities to customer i ∈ C via any route in R. Zero delivery is
not included in Di due to the triangle inequalities.

Imposing elementarity for routes may make the route generation subproblem difficult. Thus,
Property 2 is not imposed for routes in R. Given a route r ∈ R, customer i ∈ C and delivery
quantity q ∈ Di, we define as briq the number of times r makes a visit to i in which the delivery
quantity equals q.

4.1 Base formulation

Let hrS be a binary value that is equal to 1 if and only if route r enters subset S ⊆ C. For every
route r ∈ R, we define a nonnegative integer variable θr, which represents the number of vehicles

6

that follow route r. We now state our first formulation, which we denote as (F0).

(F0): Min
∑
r∈R

crθr, (1)

s.t.
∑
r∈R

hrSθr ≥

⌈∑
i∈S

di/Q

⌉
, ∀S ⊆ C, (2)

θr ∈ Z+, ∀r ∈ R. (3)

Objective Function (1) minimizes the sum of routing costs. Constraints (2) correspond to
the strong k-path inequalities introduced by Baldacci et al. (2008) and used for the SDVRPTW
in Archetti et al. (2011a). They are a strengthened version of well-known rounded capacity cuts,
which have the same right-hand-side. The difference is that the coefficient hrS is equal to one
even if route r quits and enters subset S several times. Finally, the integrality of the θr variables
is ensured by (3).

We now show that these inequalities suffice to define the set of feasible solutions to our
problem. We first denote by R̃(θ̄) = {r1, r2, . . . , r|R̃(θ̄)|} the set of routes corresponding to an

integer solution θ̄: every route r ∈ R is added θ̄r times to R̃(θ̄), and the information about the
delivered quantities is removed from r. Again, we consider that ri ̸= rj are different whenever

i ̸= j, although there may be multiple routes in R̃(θ̄) representing the same route r ∈ R in case
θ̄r > 1.

Theorem 1. If an integer solution θ̄ satisfies Constraints (2), then set R̃(θ̄) of routes forms a
feasible SDVRPTW solution.

Proof. Suppose that set R̃(θ̄) does not form a feasible SDVRPTW solution. By Observation 1,
it follows that, in the flow graph F(R̃(θ̄)), the maximum flow value is strictly less than

∑
i∈C di.

By the min-cut-max-flow theorem, the value of a minimum cut C in this graph is strictly smaller
than

∑
i∈C di. We denote by R(C) the set of route nodes r ∈ R̃(θ̄) in graph F(R̃(θ̄)) such that

arc (0, r) is included in cut C. Set R(C) is not empty since the cut cannot contain all arcs in
A3(R̃(θ̄)) and cannot contain any arc in A2(R̃(θ̄)). We also denote by C(C) the set of customer
nodes i ∈ C in graph F(R̃(θ̄)) such that arc (i, n + 1) is not included in cut C. No arc in
A2(R̃(θ̄)) crosses cut C in the direction of the sink since otherwise the value of the cut would be
∞. Therefore, no route in R̃(θ̄) \ R(C) enters subset C(C) of customers. Conversely, all routes
in R(C) enter C(C); otherwise, C would not be a minimum cut. We therefore have∑

r∈R

Qhr,C(C)θ̄r = |R(C)| ·Q <
∑

i∈C(C)

di. (4)

The last inequality in (4) is true because the value of cut C is
∑
i∈C\C(C) di + |R(C)| · Q,

which should be smaller than
∑
i∈C di =

∑
i∈C\C(C) di +

∑
i∈C(C) di. Canceling the term∑

i∈C\C(C) di in both expressions, we obtain the result. By dividing Inequality (4) by Q, we

obtain
∑
r∈R hr,C(C)θ̄r <

∑
i∈C(C) di/Q, and Constraint (2) for set C(C) of customers is vio-

lated by solution θ̄. Thus, our assumption is wrong, and set R̃(θ̄) forms a feasible SDVRPTW
solution.

Corollary 1. Constraints (2) can be exactly separated for integer solutions θ̄ of Formulation
(F0) in polynomial time by defining graph F(R̃(θ̄)) and finding a minimum cut in it.

The minimum cut in the example flow graph in Figure 1 has customer nodes 4 and 5 at the
sink side of the cut. The subset formed by these two customers induces a violated inequality
(2). Only one route in R̃ enters this subset, whereas at least two routes are required.

Observation 2. Formulation (F0) is correct even without any information about delivery quan-
tities in routes r ∈ R.

7

Although this observation denotes a nice theoretical property, it is not always possible to use
Formulation (F0) in practice. We denote as R0 the set of routes without specification of delivery
quantities. Obviously, R0 is smaller than R. Set R0 is not finite: i) for the standard SDVRP; and
ii) for the SDVRPTW if there exists a cycle with zero total travel time. This happens because
routes in R0 are not necessarily elementary and are not constrained by the vehicle capacity.
Thus, the length of routes is not restricted in the SDVRP case. This is also the case for the the
SDVRPTW with zero travel times, as a route may indefinitely circulate along the cycle with
zero travel time. Even for the SDVRPTW with only positive travel times, Formulation (F0) is
weak, as shown in the computational experiments.

4.2 A family of partially discretized formulations

Formulation (F0) can be strengthened in the following way. As the triangle inequalities are
satisfied, there exists an optimal solution with no zero deliveries. Thus, we can reduce the
number of variables in Formulation (F0) by retaining only variables θr that correspond to routes
delivering at least q̄ at every visit. The minimum delivery of one unit was already imposed by
Archetti et al. (2011b). We denote this strengthened formulation as (F1). Moreover, there exists
an optimal solution θ̄ to the linear relaxation of (F1) in which every route r such that θ̄r > 0
delivers exactly q̄ at every visit; i.e., r has length of at most Q/q̄. We denote the set of all such
routes as R1 ⊆ R.

There are further ways to strengthen (F0) if we consider the information about full and
partial deliveries along routes. Recall that briq is the number of times that a route r ∈ R includes
a visit to i with delivery quantity equal to q. We denote as briF = bridi the number of times that
route r ∈ R delivers full demand to customer i ∈ C. Additionally, let briP =

∑
q∈Di\{0,di} b

r
iq be

the number of times that route r ∈ R delivers partial demand to customer i ∈ C. The following
constraints are valid for the SDVRPTW:∑

r∈R

(2briF + briP)θr ≥ 2, ∀i ∈ C. (5)

These constraints are a special case of the strong minimum number of vehicles (SVM) inequalities
used by Archetti et al. (2011a).

We denote as (F2) the formulation with Objective Function (1) and Constraints (2), (3) and
(5). Let R2 = {r ∈ R : briq = 0, ∀i ∈ C, ∀q ∈ Di \ {q̄, di}} be the set of routes in which the
delivery quantity in every visit to customer i ∈ C is equal either to q̄ or to di.

Observation 3. There exists an optimal solution θ̄ to the linear relaxation of Formulation (F2)
such that θ̄r = 0 for all r ̸∈ R2.

This observation follows from the coefficients of variables in Formulation (F2) depending
only on the information whether a delivery is full or partial and not depending on exact delivery
quantities. Then, any route r′ /∈ R2 is dominated, i.e., can be replaced by a route r ∈ R2 in
any optimal solution of the relaxation without losing feasibility and optimality of this solution.
Thus, we can restrict the set of routes in Formulation (F2) to R2 without compromising the
validity of the dual bound provided by its linear relaxation.

Restricting the number of different delivery quantities to a customer is useful to speed up the
dynamic generation of route variables, as will be shown in Section 5. We now extend the case
with at most two different delivery quantities per customer to any integer K ≥ 2. As will be
shown by computational experiments, increasing the value ofK renders the formulation stronger,
possibly at the expense of slower generation of route variables. We start with the observation
that the following constraints are valid for the SDVRPTW:∑

r∈R

∑
q∈Di

qbriqθr ≥ di, ∀i ∈ C. (6)

For some customers i ∈ C, we derive new inequalities as follows. Let us define C(K) = {i ∈
C : Kq̄ < di} as the set containing each customer i ∈ C to which K deliveries of size q̄ are

8

not enough to satisfy demand di. For a given customer i ∈ C(K), we multiply Inequality (6)
by (K − 1)/(di − ϵ), where ϵ > 0 is a constant significantly smaller than q̄. Next, we apply
Chvátal-Gomory rounding on both sides of the resulting inequality and obtain∑

r∈R

∑
q∈Di

⌈
(K − 1)qbriq

di − ϵ

⌉
θr ≥

⌈
(K − 1)di
di − ϵ

⌉
. (7)

Since di/(di− ϵ) is slightly greater than 1, the right-hand side of (7) is equal to K. Additionally,
given that briq is integer, the following holds for the coefficient in the left-hand side of these
inequalities:

briq

⌈
(K − 1)q

di − ϵ

⌉
≥

⌈
(K − 1)qbriq

di − ϵ

⌉
. (8)

Hence, we can rewrite (7) as ∑
r∈R

∑
q∈Di

briq

⌈
(K − 1)q

di − ϵ

⌉
θr ≥ K. (9)

For a given K and delivery quantity q ∈ Di of a route r, the rounded-up coefficient in the
left-hand side of these inequalities is a step function that assumes integer values k from 1 to K,
depending on the value of q. For example, for K = 2, the possible values of ⌈q/(di − ε)⌉ with
q ∈ Di are 1, if q < di; and 2, if q = di. Note that in this case, Inequalities (9) are the same as
(5). For K = 3, ⌈2q/(di − ε)⌉ results in 1, if q < di/2; in 2, if di/2 ≤ q < di; and in 3, if q = di.
The first two cases correspond to partial deliveries, while the last is a full delivery. Extending

this analysis to an arbitrary K, we have that for given a delivery quantity q ∈ Di,
⌈
(K−1)q
(di−ε)

⌉
is

equal to k, if (k−1)di
K−1 ≤ q < kdi

K−1 , for k = 1, . . . ,K. Using this observation, we define the binary

value gkiq that assumes the value of 1 if and only if (k−1)di
K−1 ≤ q < kdi

K−1 , and use it to rewrite
Inequality (9) as follows: ∑

r∈R

∑
q∈Di

K∑
k=1

briqg
k
iqkθr ≥ K. (10)

We denote as (FK) the formulation with Objective Function (1), Constraints (2) and (3),
Constraints (10) for i ∈ C(K), and Constraints (6) for i ∈ C\C(K). We define set RK of routes in
which the delivery quantity of every visit to a customer i ∈ C(K) is the minimum nonzero value

in
[
(k−1)di
K−1 , kdi

K−1

)
that is a multiple of q̄, for some k ∈ {1, . . . ,K}; and the delivery quantity of

every visit to a customer i ∈ C \ C(K) is a nonzero multiple of q̄. Let Di(K) be the set of such
delivery quantities, defined as follows:

Di(K) =

K⋃
k=1

{
min{lq̄} : lq̄ ∈

[
(k − 1)di
K − 1

,
kdi

K − 1

]
, l ∈ N

}
if i ∈ C(K), (11)

Di(K) = {lq̄ : ∀l = 1, . . . , di/q̄} if i ∈ C \ C(K). (12)

Then, RK =
{
r ∈ R : briq = 0, ∀i ∈ C, ∀q ̸∈ Di(K)

}
. Note that for customers in C \ C(K), set

Di(K) includes all nonzero multiples of q̄, from q̄ to di. For this reason, we call it a full
discretization of di. Conversely, for customers in C(K), at least one multiple of q̄ is not included
in Di(K), and hence we have a partial discretization.

Figure 2 illustrates the set of delivery quantities Di(K) for different values of K, considering
q̄ = 5 and a customer i with demand di = 40. Since di/q̄ = 8, we observe partial discretizations
for K = 2 to 7, and a full discretization for K = 8. For instance, in the partial discretization with
K = 4, the possible delivery quantities are 5, 15, 30 and 40, which are the minimum multiples
of q̄ inside the ranges [0, 13.33), [13.33, 26.67), [26.67, 40) and [40, 53.33), obtained from the

expression
[
(k−1)di
K−1 , kdi

K−1

]
for each k = 1, 2, 3 and 4. As indicated in the figure, each of these

intervals have size 13.33 (= di/(K − 1)).

9

Example: di = 40, q̄ = 5, di/q̄ = 8.

Full discretization

Partial discretization

2 ≤ K < di/q̄

Di(K) =
⋃K

k=1

{
min{lq̄} : lq̄

∈
[
(k−1)di
K−1

, kdi
K−1

)
, l ∈ N

}

Di(K) = {lq̄ : ∀l = 1,

. . . , di/q̄}

0

di

K − 1

di/(K − 1)

k = {1, 2, . . . ,K}

[
(k−1)di
K−1 , kdi

K−1

)

0

di

K

q̄

l = {1, . . . , di/q̄}

[
(l − 1)q̄, lq̄

)

K = 2

Di = {5, 40}

0

40

40

K = 3

Di = {5, 20, 40}

0

20

40

20

K = 4

Di = {5, 15,
30, 40}

0

13.33

26.67

40

13.33

K = 5

Di = {5, 10,
20, 30, 40}

0

10

20

30

40

10

K = 6

Di = {5, 10, 20,
25, 35, 40}

0

8

16

24

32

40

8

K = 7

Di = {5, 10, 15,
20, 30, 35, 40}

0

6.67

13.33

20

26.67

33.34

40

6.67

K = di/q̄ = 8

Di = {5, 10, 15, 20,
25, 30, 35, 40}

0

5

10

15

20

25

30

35

40
5

K ≥ di/q̄

40

35

30

25

20

15

10

5

40

35

30

25

20

15

10

5

40

35

30

25

20

15

10

5

40

35

30

25

20

15

10

5

40

35

30

25

20

15

10

5

40

35

30

25

20

15

10

5

40

35

30

25

20

15

10

5

Figure 2: From partial to full discretization – a numerical example.

Observation 4. There exists an optimal solution θ̄ to the linear relaxation of Formulation (FK)
such that θ̄r = 0 for all r ̸∈ RK .

Let Kmax = maxi∈C di/q̄. We call Formulation (FKmax) the fully discretized formulation
since all possible delivery quantities according to Property 6 are considered and RK = R. Strong
k-path inequalities (2) are redundant for this formulation but still useful as cutting planes.
Formulations (FK) with K > Kmax are equivalent to (FKmax). Formulations (FK) with K <
Kmax are partially discretized. For such formulations, the exact separation of strong k-path
inequalities (2) is necessary to ensure the feasibility of integer solutions.

10

4.3 Valid inequalities

To further strengthen the proposed formulations, we present well-known valid inequalities that
are adapted to the split delivery variants and propose novel families of limited-memory subset-
row inequalities and limited-memory strong k-path inequalities.

4.3.1 Rounded capacity inequalities.

Let xrij be the number of times route r ∈ R traverses arc (i, j) ∈ A. Constraints

∑
r∈R

∑
(i,j)∈A:

|{i,j}∩S|=1

xrijθr ≥ 2

⌈∑
i∈S

di/Q

⌉
, ∀S ⊆ C, (13)

are known in the literature as rounded capacity inequalities (RCIs) or weak k-path inequali-
ties (Desaulniers, 2010; Archetti et al., 2011a). They were introduced by Laporte and Nobert
(1983) for the CVRP. RCIs have been separated in virtually all branch-and-cut and branch-
cut-and-price algorithms in the literature for the SDVRP and the SDVRPTW due to their
importance for obtaining strong lower bounds.

4.3.2 Limited-memory subset-row packing inequalities.

Cuts of the next family are adapted from the subset-row inequalities introduced by Jepsen et al.
(2008) for the CVRP. They can be obtained by Chvátal-Gomory rounding of the set packing
constraints, stating that every customer can be visited at most once. However, since the split
delivery variants do not include this requirement, we modify these constraints to consider only
the visits in which the delivery quantity is strictly greater than half of its demand. Hence, for
each customer i, the number of such visits must be at most one, i.e.:∑

r∈R

∑
q∈Di:

q>di/2

briqθr ≤ 1, ∀i ∈ C. (14)

By considering subsets S ⊆ C of size three and applying Chvátal-Gomory rounding of Con-
straints (14) for customers in S with multiplier 1/2, we obtain the following subset-row packing
inequalities (SRPIs) that are valid for Formulation (FK) with K ≥ 1:

∑
r∈R

∑
i∈S

∑
q∈Di:

q>di/2

1

2
briq

 θr ≤ 1, ∀S ⊆ C, |S| = 3. (15)

A weaker version of the SRPIs was used for the SDVRPTW by Archetti et al. (2011a). In
their cuts, condition q > di/2 is restricted to q = di. Note that any formulation (FK) withK ≥ 1
still involves only variables θr, r ∈ RK . Of course, inequalities (15) are just an example of SRPIs
that can be derived from (14). In general, one can define a rational multiplier µi/η ∈ [0, 1), η > 0,
for each customer i ∈ C and obtain inequality (16) by means of Chvátal-Gomory rounding. The
reader is referred to Appendix A for further details on the definition of general SRPIs.

∑
r∈R

∑
i∈C

∑
q∈Di:

q>di/2

µi
η
briq

 θr ≤

⌊∑
i∈C

µi
η

⌋
(16)

11

We also use elementarity cuts to impose Property 2 in any integer solution. This cuts state
that every customer can be visited at most once in any route:

∑
r∈R

∑
q∈Di

1

2
briq

 θr ≤ 0, ∀i ∈ C. (17)

Constraints (17) can be obtained from inequalities (16) by considering a larger set of values q,
and by setting η = 2, µi = 1, µi′ = 0 for all i′ ∈ C \{i}. Thus, these constraints are also included
in the family of subset-row packing inequalities.

It is known in the literature that a large number of active subset-row cuts can render the
dynamic generation of route variables very expensive (Jepsen et al., 2008; Pecin et al., 2017a).
Thus, we adopt the following limited memory technique introduced by Pecin et al. (2017a).

Each limited-memory SRPI (lm-SRPI)
∑
r∈R α(r,µ, η,M)θr ≤

⌊∑
i∈C

µi

η

⌋
is associated with an

arc memory M ⊆ A. Algorithm 1 shows the computation of function α(r,µ, η,M). From its
definition, it follows that

α(r,µ, η,M) ≤

∑
i∈C

∑
q∈Di:

q>di/2

µi
η
briq

 (18)

for any M ⊆ A. Therefore, lm-SRPIs are valid for the problem.

Algorithm 1: Function α(r, µ, η, M)

α← 0, ϕ← 0
for k = 1 to nr − 1 do

if ark = (i, j) /∈M then ϕ← 0
if drk > dj/2 then

ϕ← ϕ+ µj

if ϕ ≥ η then α← α+ 1, ϕ← ϕ− η

return α

4.3.3 Limited-memory subset-row covering inequalities.

Novel subset-row covering inequalities (SRCIs) can be obtained by Chvátal-Gomory rounding
of constraints stating that, for every customer, there should be at least one nonzero delivery.
Again, let µi/η ∈ [0, 1), η > 0, be a rational multiplier defined for customer i ∈ C. Then, the cut
is as follows: ∑

r∈R

∑
i∈C

∑
q∈Di:
q>0

µi
η
briq

 θr ≥

⌈∑
i∈C

µi
η

⌉
(19)

We developed a computational approach in the spirit of the work by Pecin et al. (2017b) to
determine which multipliers to consider (see Appendix A) and, again, we rely on the limited-
memory technique to reduce the impact of SRCIs on the solution time. Each limited-memory

SRCI (lm-SRCI)
∑
r∈R β(r,µ, η,M)θr ≥

⌈∑
i∈C

µi

η

⌉
is associated with an arc memory M ⊆ A.

Algorithm 2 shows the computation of function β(r,µ, η,M). From its definition, it follows that

β(r,µ, η,M) ≥

∑
i∈C

∑
q∈Di:
q>0

µi
η
briq

 (20)

for any M ⊆ A. Therefore, lm-SRCIs are valid for the problem.

12

Algorithm 2: Function β(r, µ, η, M)

β ← 0, ψ ← 0
for k = 1 to nr − 1 do

if ark = (i, j) /∈M then ψ ← 0
if drk > 0 then

ψ ← ψ − µj

if ψ < 0 then β ← β + 1, ψ ← ψ + η

return β

4.3.4 Limited-memory strong k-path inequalities.

Finally, we adapt the limited-memory technique to inequalities (2). Each limited-memory strong
k-path inequality (lm-SKPI)

∑
r∈R γ(r, S,M)θr ≥

⌈∑
i∈S di/Q

⌉
is associated with a set S of

customers and an arc memory M ⊆ A \ {(i, j)}{i,j}⊆S . The memory can only include arcs with
at least one node outside set S. Algorithm 3 shows the pseudocode to compute γ(r, S,M). From
its definition, it follows that γ(r, S,M) ≥ hrS for any M ⊆ A. Thus, lm-SKPIs are valid for the
problem. In Algorithm 3, value σ is used to “remember” visits to set S. If σ = 0, set S has not
yet been visited or a visit has been already “forgotten” as the memory has been left. If σ = 1/2,
set S has been visited already as one still “remembers” it. Particular values 0 and 1/2 have been
chosen, as they are used later in (24).

Algorithm 3: Function γ(r, S, M)

γ ← 0, σ ← 0
for k = 1 to nr − 1 do

if vrk−1 ∈ S and vrk ̸∈ S then σ ← 1/2
if ark /∈M then σ ← 0
if vrk−1 ̸∈ S and vrk ∈ S then

σ ← σ − 1/2
if σ = −1/2 then γ ← γ + 1, σ ← 0

return γ

5 Branch-cut-and-price algorithm

In this section, we describe the branch-cut-and-price (BCP) algorithm to solve Formulation (FK)
for a fixed K ∈ {0, 1, 2, . . . ,Kmax}, together with the valid inequalities presented in Section
4.3. The linear relaxation of (FK), or the master problem, is solved by the column generation
procedure. On every iteration of this procedure, the restricted master problem (RMP) is solved
considering a restricted subset of variables θ, others being fixed to zero. Let (π̄, ρ̄, ζ̄, ξ̄, τ̄) be
an optimal dual solution of the RMP. The dual value π̄i ≥ 0 corresponds to Constraint (9) if
i ∈ C(K) and to Constraint (6) if i ∈ C \ C(K). If K ≤ 1 then Constraints (6) and (9) are not
defined, and we assume π̄i = 0 for all i ∈ C. Let O be the set of active RCIs, and let So ⊆ C

define rounded capacity inequality o ∈ O with dual value ρ̄o > 0. Let δ(So) also be the set of
arcs in A which have exactly one node in So. Let P be the set of active lm-SRPIs, and tuple
(µp, ηp,Mp) defines limited-memory subset-row packing inequality p ∈ P with dual value ζ̄p < 0.
Let U be the set of active lm-SRCIs, and tuple (µu, ηu,Mu) defines limited-memory subset-row
covering inequality u ∈ U with dual value ξ̄u > 0. Let W be the set of active lm-SKPIs, and
pair (Sw,Mw) defines limited-memory strong k-path inequality w ∈ W with dual value τ̄w > 0.

13

5.1 Pricing problem

To determine whether the current solution to the RMP is optimal for the master problem, we
must find the minimum reduced cost among all variables θr, r ∈ RK . We represent set RK of
routes as resource-constrained paths in multi-graph G′(K) = (V,A′(K)). Every arc (i, j) in the
original graph G is replaced by multiple arcs (i, j, q), q ∈ Dj(K), between nodes i and j in G′(K).
Sets Dj(K) are defined in (11)-(12) for K ≥ 2. We set Dj(0) = {0} and Dj(1) = {q̄} for all
j ∈ C, and Dn+1(K) = {0} for all K ≥ 0. We define disposable time and capacity resources with
accumulated resource consumption bounds [ei, li] and [0, Q], respectively, for every node i ∈ V.
The time resource consumption of every arc (i, j, q) ∈ A′ equals tij , and the capacity resource
consumption of this arc equals q. Thus, the set of resource-feasible paths in multigraph G′(K)
corresponds to the set of routes in RK . The capacity resource is redundant for K = 0 and may
be skipped.

The reduced cost c̄(i,j,q) of every arc (i, j, q) ∈ A′(K) equals

c̄(i,j,q) = cij −
∑
o∈O:

(i,j)∈δ(So)

ρ̄o −

0, if K < 2,

k̄(j, q,K) · π̄j , if K ≥ 2 and j ∈ C(K),

qπ̄j , if K ≥ 2 and j ∈ C \ C(K),

(21)

where k̄(j, q,K) is equal to the value k that satisfies
(k−1)dj
K−1 ≤ q <

kdj
K−1 .

Let A′
r(K) be the set of arcs traversed by the resource-constrained path in G′(K), corre-

sponding to a route r ∈ RK . Then, the reduced cost c̄r of the resource-constrained path r and
its related variable θr is equal to

c̄r =
∑

(i,j,q)∈A′
r(K)

c̄(i,j,q)−
∑
p∈P

α(r,µp, ηp,Mp)ζ̄p−
∑
u∈U

β(r,µu, ηu,Mu)ξ̄u−
∑
w∈W

γ(r, Sw,Mw)τ̄w.

(22)

To find the resource-constrained path r in G′(K) corresponding to the best reduced cost,
we use the bucket-graph based bidirectional labeling algorithm proposed by Sadykov et al.
(2021). Every label L represents a partial path G′(K), which is either forward (starting from
node 0) or backward (starting from node n + 1). Every label L is characterized by a vector
(c̄L, vL, tL, qL,ϕL,ψL,σL), where c̄L is the reduced cost of the partial path, vL is the ter-
minating node, and tL and qL are the accumulated time and capacity resource consumption,
respectively. Finally, ϕL, ψL, and σL are vectors of states corresponding to active limited-
memory cuts. The lengths of these vectors are |P |, |U |, and |W |. These states are computed in
the same way as in Functions α, β, and γ presented in Section 4.3. To adapt the bucket-graph
labeling algorithm to our problem, we must define label initialization, extension, domination,
and concatenation functions.

The initial forward label is defined as (0, 0, e0, 0,0,0,0), and the initial backward label is
defined as (0, 0, ln+1, Q,0,0,0). In the backward labeling algorithm, the direction of arcs is
reversed. The function that extends a label L′ in the forward or the backward direction along
an arc a = (i, j, q), such that i = vL

′
to obtain label L, is presented in Algorithm 4. It returns

true if extension is feasible. For ease of presentation, we define µp0 = µpn+1 = 0 for every p ∈ P
and µu0 = µun+1 = 0 for every u ∈ U .

A label L dominates label L′ if vL = vL
′
, qL ≤ qL

′
, tL ≤ tL

′
(qL ≥ qL

′
and tL ≥ tL

′
for

backward labels), and

c̄L −
∑
p∈P :

ϕL
p>ϕ

L′
p

ζ̄p +
∑
u∈U :

ψL
u>ψ

L′
u

ξ̄u +
∑
w∈W :

σL
w>σ

L′
w

τ̄w ≤ c̄L
′
. (23)

For a set of labels L and a label L′, the bucket-graph labeling algorithm uses inequality c̄L
′
<

minL∈L c̄L as a sufficient condition for nondomination of label L′ by any label in L. This sufficient

14

Algorithm 4: Extension of label L′ along arc a = (i, j, q) ∈ A′ to obtain label L

c̄L ← c̄L
′
+ c̄a, v

L ← j, ϕL ← ϕL′
, ψL ← ψL′

, σL ← σL′

if forward direction then

qL ← qL
′
+ q, tL ← max{tL + tij , ej}

if qL > Q or tL > lj then return false

if L is a backward label then

qL ← qL
′
− q, tL ← min{tL − tji, lj}

if qL < 0 or tL < ej then return false

for p ∈ P do
if (i, j) ̸∈Mp then ϕL

p ← 0
if q > dj/2 then

ϕL
p ← ϕL

p + µp
j

if ϕL
p ≥ ηp then ϕL

p ← ϕL
p − ηp, c̄L ← c̄L − ζ̄p

for u ∈ U do
if (i, j) ̸∈Mu then ψL

u ← 0
if q > 0 then

ψL
u ← ψL

u − µu
j

if ψL
u < 0 then ψL

u ← ψL
u + ηu, c̄L ← c̄L − ξ̄u

for w ∈W do
if i ∈ Sw and j ̸∈ Sw then σL

w ← 1/2

if (i, j) ̸∈Mw then σL
w ← 0

if i ̸∈ Sw and j ∈ Sw then
σL
w ← σL

w − 1/2

if σL
w = −1/2 then σL

u ← 0, c̄L ← c̄L − τ̄w

return true

condition remains valid in our case since ζ̄p ≤ 0 for all p ∈ P , ξ̄u ≥ 0 for all u ∈ U , and τ̄w ≥ 0
for all w ∈ W .

The partial paths represented by a forward label L⃗ and a backward label ⃗L can be concate-

nated along an arc (i, j, q) ∈ A′ if i = vL⃗, j = v
⃗L, qL⃗ + q ≤ q

⃗L, tL⃗ + tij ≤ t
⃗L. The reduced cost

c̄(L⃗, ⃗L, i, j, q) of the path obtained by such concatenation can be computed as

c̄(L⃗, ⃗L, i, j, q) = c̄L⃗ + c̄(i,j,q) + c̄
⃗L −

∑
p∈P :

(i,j)∈Mp,

ϕL⃗
p +ϕ ⃗L

p≥ηp

ζ̄p +
∑
u∈U :

(i,j)∈Mu,

ψL⃗
u+ψ ⃗L

u≥ηu

ξ̄u +
∑
w∈W :

(i,j)∈Mw,

σL⃗
p +σ ⃗L

p =1

τ̄w +
∑
w∈W :

{i,j}⊆Sw

τ̄w. (24)

The bucket-graph labeling algorithm uses a lower bound on the reduced cost of any path
obtained by concatenation along an arc a = (i, j, q) of a forward label L⃗ and any backward label

in a given set ⃗L. We use the following lower bound in our case:

min
⃗L∈ ⃗L

c̄(L⃗, ⃗L, i, j, q) = c̄L⃗ + c̄(i,j,q) +min
⃗L∈ ⃗L

c̄
⃗L +

∑
w∈W :

{i,j}⊆Sw

τ̄w. (25)

Bound (25) is valid since the part related to limited-memory cuts in (24) is nonnegative.

5.2 Cut separation

To separate the RCIs, we use four algorithms presented in Lysgaard et al. (2004): i) the connected
component heuristic; ii) the max-flow-based algorithm, which separates fractional capacity in-
equalities; iii) the greedy construction heuristics; and iv) the heuristic which inspects the pool
of previously generated inequalities and performs a fast local search for each of them.

15

Our approach for separating the strong k-path inequalities is as follows. First, we use a
greedy construction heuristic similar to that for the separation of RCIs. Then, the separation of
fractional strong k-path inequalities is performed by finding the minimum cut in the flow graph,
similar to that described in Section 3. This graph is based on the current fractional solution
θ̄ and the set of routes R̄ = {r ∈ RK : θ̄r > 0}. The capacity of each arc (0, r) connecting
the source to route node r is set to Qθ̄r. After finding the minimum cut in the flow graph,
the candidate set S ⊆ C of customers is constructed according to the proof of Theorem 1. As
shown by the theorem, this separation algorithm is exact for integer solutions θ̄. Finally, we use
a variant of the connected component heuristic called the route-based algorithm proposed by
Archetti et al. (2011a).

We separate only 3-row subset-row packing and covering cuts. Preliminary experiments
showed that cuts with more rows do not significantly improve the quality of the linear relaxation
on average but take a noticeable time. The 3-row cuts are separated by the enumeration of all
triples of customers. Elementarity cuts (17) are also separated by enumeration.

The limited memory for strong k-path inequalities and subset-row cuts is obtained in the
same way as proposed by Pecin et al. (2017b). For each violated cut, a minimal memory is
generated such that the coefficients of the route variables θ̄r > 0 in the limited-memory cut are
equal to coefficients of these variables in the full-memory cut.

5.3 Other algorithmic components

Our BCP algorithm resorts to the following algorithmic enhancements.

• In the labelling algorithm, the labels are stored in buckets according to their consumption
of the capacity resource (SDVRP) or the time resource (SDVRPTW). Bucket-graph based
labeling algorithm (Sadykov et al., 2021) is used to reduce the number of dominance checks.
Before using the exact labeling algorithm, the labeling heuristic is used, in which only the
best label (according to the reduced cost) is kept in every bucket.

• As stated before, elementarity constrains are not imposed in the labeling algorithm. In-
stead, we impose partial elementarity by using the ng-path relaxation introduced by Bal-
dacci et al. (2011). For a customer i ∈ C, its ng-neighborhood includes eight closest
customers including i itself.

• To improve the convergence of column generation, we use automatic dual price smooth-
ing stabilization technique. The dual solution passed to the pricing problem is a convex
combination of the optimal dual solution of the current RMP and the dual solution that
gave the best Lagrangian bound so far. The convex combination multiplier is adjusted
dynamically according to the approach proposed by Pessoa et al. (2018).

• After each convergence of column generation, the bucket graph used in the labeling algo-
rithm is filtered using a reduced cost argument. A bucket arc defined by a bucket and an
outgoing arc is eliminated if it is proved that there does not exist an improving solution
containing any route passing by this bucket arc.

• After bucket arc elimination, we run the elementary route enumeration procedure. This
procedure was initially developed by Baldacci et al. (2008) for classic VRPs. It consists in
enumeration of all elementary routes with reduced cost smaller than the current primal-
dual gap, i.e. all routes which may participate in an improving solution. After successful
enumeration, the pricing problem is solved by inspection instead of the labeling algorithm.
If the number of enumerated routes is smaller than 3’000, the node is finished by solving
the master problem as a MIP.

The procedure is a dynamic-programming-based algorithm that keeps the best partial
route with each customer visit pattern (and each endpoint) as a state. Since the number of
possible patterns may grow exponentially on n, it uses a reduced cost argument to prune a

16

large number of states. For SDVRPs, the maintained states do not only depend on which
customers are visited but also on the corresponding delivery quantities, since partial routes
visiting the same set of customers but with different delivery quantities cannot dominate
each other. While at most 2n visit patterns are possible in classic VRPs, this number
increases to (K + 1)n in SDVRPs, when using the proposed formulations. Therefore,
the route enumeration procedure becomes impractical for K > 2, an we use it only for
formulations (F0), (F1), and (F2).

Details of these enhancements are presented in (Sadykov et al., 2021).

In addition, we use the ILS-based matheuristic proposed by Alvarez and Munari (2022) to
generate initial upper bounds of the optimal values of the instances. Before launching our BCP
algorithm, we run the matheuristic with the time limit equal to t = 8⌈4log2(n/16)⌉ seconds. For
example, the time limit is 24, 80, and 320 seconds for instances with 25, 50, and 100 customers,
respectively. The value of the best solution (plus a small epsilon) is then used as the initial
upper bound in the BCP algorithm. A good upper bound is extremely useful for the bucket arc
elimination and for the elemenary route enumeration.

5.4 Branching

If no violated cutting planes are found for the current fractional solution, or the tailing off
condition is attained, we branch. The tailing off condition is satisfied 1) either when the primal-
dual gap decreases by less than 1.5% in three rounds of cut separation, which are not necessarily
consecutive, 2) or when the average exact pricing time exceeds 10 seconds.

We use two branching strategies, described as follows. Let x̄ij =
∑
r∈RK xrij θ̄r. First, we

branch on expressions x̄ij + x̄ji for all {i, j} ⊂ C (i.e., edges between customers), x̄0,i + x̄i,n+1

for all i ∈ C (i.e., edges between the depot and customers), and
∑
i∈C

1
2 (x̄0,i + x̄i,n+1) (i.e., the

number of used vehicles). The best branching expression is determined using the multiphase
strong branching scheme described by Sadykov et al. (2021).

If none of the above expressions is fractional for the current solution θ̄, we perform the
following Ryan&Foster (Ryan and Foster, 1981; Desrochers and Soumis, 1989) branching. We
find a pair {i, j} ⊂ C such that

∑
r∈RK : hri+hrj=2 θ̄r is fractional and impose the constraint

that customers i and j should be on the same route in one branch and on different routes in
another branch. These constraints are imposed in the pricing problem by introducing additional
binary resources. Desaulniers (2010) showed that the combination of branching on edges and
Ryan&Foster branching is sufficient to fulfill the integrality requirements for route variables
θ. Again, the best Ryan&Foster branching pair is determined using the multiphase strong
branching.

To improve the quality of branching candidates, we use the multiphase strong branching
procedure. During phase zero, we select up to 100 candidates from most fractional pairs {i, j} and
from branching history. Then in phase one, for each candidate and each branch, we only resolve
the restricted master without any column generation. Up to five best candidates (according
to the product rule) are chosen for the phase two. In it, only heuristic column generation is
performed. Finally, the best candidate is chosen also according to the product rule. Further
details of the multiphase strong branching are given by Pecin et al. (2017b); Sadykov et al.
(2021).

6 Computational results

In this section, we numerically investigate the strength of the proposed family of formulations and
verify the performance of our BPC algorithm using benchmark instances with and without time
windows. The algorithm is coded in the C++ programming language on top of the generic BCP
library BaPCod (Sadykov and Vanderbeck, 2021) with its VRPSolver extension (Pessoa et al.,

17

2020), containing the implementation of the labeling algorithm for the SPPRC. We use IBM
CPLEX version 20.1, as the general-purpose LP and MIP solver. We performed the numerical
evaluation of our BCP algorithm on a server with nodes having the 2.6GHz Cascade Lake Intel
Xeon Skylake Gold 6240 processor with 36 cores and 196 GB of RAM. Up to 36 instances were
run in parallel on each node, each run using a single core.

6.1 Instances

We benchmark our algorithm on standard literature test instances of the SDVRPTW and SD-
VRP. For the SDVRPTW, we use the same instances tested in (Desaulniers, 2010; Archetti et al.,
2011a; Bianchessi et al., 2019; Munari and Savelsbergh, 2022). These instances are derived from
the classic Solomon’s VRPTW instances with 50 and 100 customers (56 instances of each size).
The SDVRPTW instances are obtained from original instances by allowing for split deliveries
and limiting the vehicle capacity to 30, 50, and 100. Therefore, there are 168 instances for each
size.

We also use modified SDVRPTW instances. First, we generate instances with 75 customers
by removing the last 25 customers from the instances with 100 customers. There are 168 such
instances. Secondly, we create new instances by modification of instances with q̄ = 10 (these are
all instances in class C, and instances in class RC with 50 customers). For this, we add a random
integer value in [−3, 3] to the demand of every customer i ∈ C such that di ∈ [1.2dmin, 0.8dmax].
Then we verify that q̄ = 1 and that the value ⌈

∑
i∈C di/30⌉ stays the same as in the original

instance. We regenerated each instance until these two condition are verified. We denote these
new instances as 50P, 75P, and 100P, depending on the instance size. There are 201 such
instances. Thus, the total number of instances is 705.

As in Bianchessi and Irnich (2019), we preprocess instances in the following way. First, we
round arc travel times to one decimal precision. Then, the travel time for each arc is replaced
by the shortest path between its tail and head nodes. Finally, the travel time of each arc is
completed with the service time of its tail node.

For the SDVRP, we use the same four classes of instances tested in (Archetti et al., 2014;
Ozbaygin et al., 2018; Gouveia et al., 2022; Munari and Savelsbergh, 2022). First class SD
contains 21 instances, having from 8 to 288 customers. Second class S contains 14 instances,
having from 50 to 100 customers. The third class p contains 42 instances, having from 50 to
199 customers. Finally, fourth class eil contains 11 instances having from 21 to 100 customers.
Each instance has four variations depending on whether distances (and travel costs) are rounded
and whether the number of vehicles is fixed to the minimum possible number. Instances with
unlimited and limited fleet are referred to as UF and LF, respectively, if distances are considered
to be Euclidean distances. Similarly, we use UF-r and LF-r to refer to instances with rounded
Euclidean distances.

6.2 Strength of formulations (FK) for different values K

First, we numerically investigate the dependency of the quality of the lower bound and the
solution time of the master problem on value K. As a reminder, the master problem is the linear
relaxation of Formulation (FK) enriched by cutting planes. The master problem is solved by
applying the column and cut generation procedure. It terminates either when no violated cutting
planes are found or when the tailing-off criterion is satisfied. In this experiment, we set the initial
upper bound equal to the optimal value of the instance. We do so to exclude the random impact
of improving the primal solution during the column and cut generation procedure.

This investigation is performed using the SDVRPTW test instances from the literature with
50 customers. All of the optimal solutions for these instances were obtained by us during
preliminary experiments. The set of instances is divided into two groups depending on the
value Kmax. The first group contains instances in classes C and RC, for which Kmax = 4. We
tested Formulations (F0), (F1), (F2), and (F4) for these instances. The second group contains

18

instances in class R for which Kmax = 36. We tested Formulations (F0), (F1), (F2), (F4), (F8),
(F16), and (F36) for these instances.

In Figure 3, we show the plots for different instance groups and different values of the vehicle
capacity. In these plots, Gap is the average difference between the optimal value and the master
problem lower bound as a percentage of the former (right scale), and Time is the average solution
time in seconds of the column and cut generation procedure (left scale).

0 1 2 4

20

40

60

80

100

120

K

T
im

e(
s)

C, RC. Q = 30

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 4

20

40

60

80

100

120

K

C, RC. Q = 50

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 4

20

40

60

80

100

120

K

C, RC. Q = 100

0.1

0.2

0.3

0.4

0.5

0.6

G
a
p
(%

)

Gap(%)

Time(s)

0 1 2 4 8 16 36

200

400

600

800

K

T
im

e(
s)

R. Q = 30

0.7

1.4

2.1

2.8

0 1 2 4 8 16 36

200

400

600

800

K

R. Q = 50

0.7

1.4

2.1

2.8

0 1 2 4 8 16 36

200

400

600

800

K

R. Q = 100

0.7

1.4

2.1

2.8

G
a
p
(%

)

Figure 3: Dependency of the optimality gap and the solution time of master problem on value
K

As expected, the strength of the master problem increases (the optimality gap decreases) with
increasing value K. However, this decrease in the gap is steeper for instances with a smaller
vehicle capacity (Q = 30 and Q = 50) and less steep for instances with longer routes (Q = 100).
The optimality gap is almost nullified forK = Kmax for instances with smallKmax. For instances
in class R, the gap remains significant even for K = Kmax.

The decrease of the solution time with the increase of value K for instances in the first group
is less intuitive. This outcome occurs because the linear relaxation of (FKmax) becomes stronger
with the increase in value K and thus a smaller number of cut generation rounds is necessary to
attain convergence. In addition, the size of graph G′(K) remains reasonable since Kmax is still
small. Thus, Formulation (FKmax) is a clear choice for instances in the first group.

The choice of the best formulation for instances in the second group is not as obvious. It
is only clear that Formulations (F0) and (F1) are dominated by (F2), both in terms of the
optimality gap and the solution time. However, when K increases beyond the value of 2, the
solution time increases due to a larger size of graph G′(K), and the optimality gap decreases. A
slight increase of the gap between (F16) and (F36) for Q = 100 is caused by the root termination
criterion which depends on the route generation subproblem time.

It is clear that there is a trade-off between the root primal-dual gap and the root solution time.
The slope gradient is, however, different for different vehicle capacities, i.e., for instances with

19

different average route lengths. When routes are short on average, the optimality gap decrease
is steep when value K is increasing, whereas the increase in the solution time does not have this
result. The opposite outcome occurs for instances with relatively long routes (Q = 100): the
gain in terms of the optimality gap is small for large values of K in comparison with K = 2,
whereas the loss in terms of the solution time is very large and reaches one order of magnitude
for large values of K. This observation may indicate that Formulation (FKmax) should be chosen
for instances with smaller vehicle capacity and Formulation (F2) for instances with larger vehicle
capacity. This intuition is confirmed by the next round of experiments, in which we solve the
benchmark and novel SDVRPTW instances using our BCP algorithm on Formulations (F2) and
(FKmax).

6.3 BCP performance for the SDVRPTW instances

We first test the impact of new families of cutting planes on the BCP performance for the
SDVRPTW instances. In all tested BCP variants, we use rounded capacity cuts and limited-
memory subset-row cuts with three rows, as these cuts are shown to be useful in the literature.
Thus, we compare the following variants of the BCP algorithm.

• BCPmaxall — BCP over formulation (FKmax) with all cutting planes.

• BCPmaxall−SKPI — BCP over formulation (FKmax) with all cutting planes except limited-
memory strong k-path inequalities.

• BCPmaxall−SRCI — BCP over formulation (FKmax) with all cutting planes except limited-
memory subset-row covering inequalities.

• BCPmaxall−SKPI−SRCI — BCP over formulation (FKmax) with all cutting planes except
limited-memory subset-row covering inequalities and strong k-path inequalities.

• BCP2all — BCP over formulation (F2) with all cutting planes.

• BCP2all−SRCI — BCP over formulation (F2) with all cutting planes except limited-memory
subset-row covering inequalities.

We do not consider variants of BCP2 without strong k-path inequalities as the latter are
necessary for the validity of formulation (F2).

We would like to note that variant BCPmaxall−SKPI−SRCI can be equivalently obtained by
defining an appropriate VRPSolver model (Pessoa et al., 2020). In this model, two vertices are
defined for each customer, one node for more-than-a-half delivery, and another one for smaller
deliveries. For each customer, its packing set includes only the first vertex, but its elementarity
set includes the both vertices. Multiple arcs are defined between pairs of vertices, one arc for every
possible delivery quantity, corresponding to the head vertex of the arc. Ryan&Foster branching
is defined on elementarity sets, and not on packing sets as usual. Definition of resources is
the same as for the CVRP and VRPTW. Enumeration should be turned off as the sufficient
condition defined in (Pessoa et al., 2020) is not satisfied.

In Table 1, we present the results for different BCP variants aggregated for all SDVRPTW
instances. We use the standard time limit of one hour for the combined matheuristic and
BCP time. In the columns, we show the BCP variant, the total number of instances solved to
optimality, the geometric mean BCP time (which excludes the matheuristic time), the average
primal-dual gap in the root node and the average final primal-dual gap.

We can see from the table that the both new families of cuts contribute to reducing the
average root and final gaps. Strong k-path inequalities also contribute to the increased number
of optimally solved instances. However, subset-row covering inequalities does not allow us to
solve more instances to optimality. Thus, we do not use these cuts in the subsequent experiments.

Concerning formulations (F2) and (FKmax), it is clear that the latter is more efficient. How-
ever, it does not dominate the former, as there are instances and even instance classes which

20

Table 1: Aggregated results for different BCP variants for all 705 SDVRPTW instances (one-
hour time limit)

BCP variant Opt Time(s) Root gap(%) Final gap(%)

BCPmaxall−SKPI−SRCI 361 360.40 0.87 0.72
BCPmaxall−SKPI 358 362.56 0.86 0.72
BCPmaxall−SRCI 368 354.53 0.84 0.70
BCPmaxall 363 349.39 0.82 0.69
BCP2all−SRCI 273 734.92 2.42 2.00
BCP2all 273 730.12 2.39 1.93

are better solved by (F2). Thus, in the Table 2, we show detailed comparison between variants
BCPmaxall−SRCI and BCP2all−SRCI.

The results in Table 2 are aggregated by instance class, instance size and vehicle capacity.
The columns in the table show the instance class, the number of customers (n), the vehicle
capacity (Q), and the number of instances in the group (#). The instances in groups “P” are
the modified ones. Then, for the both BCP variants, the table shows the average number of
nodes in the BCP tree, the average final optimality gap, the geometric mean pure BCP time
in seconds, and the number of instances solved to optimality. The last two columns show (for
the literature instances) the number of instances for which the best literature lower bounds are
improved, and the number of instances solved to optimality for the first time. The last two lines
in Table 2 aggregate statistics for all instances and for a subset of instances which we denote as
“Challenging”. These instances have Q = 100 and Kmax > 10, i.e., instances 50P, 75P and 100P
in class C, instances 50P, 75 and 100 in class RC, and all instances in class R. These instances
are particularly hard for the fully discretized formulation (FKmax), as the size of multi-graph
G′(Kmax) is large and routes are long.

Although variant BCPmaxall−SRCI is significantly more efficient than variant BCP2all−SRCI,
the latter is more performant for instances in the “Challenging” subset. Variant BCP2all−SRCI

solves to optimality 16 more instances in this subset, and on average two times faster for it.

If we compare our results with the literature, our best configuration solves 214 instances
within one hour against 127 instances solved by Munari and Savelsbergh (2022), 109 instances
solved by Bianchessi et al. (2019), and 94 instances solved by Archetti et al. (2011a). In total,
84 instances are solved to optimality for the first time by at least one of the configurations.

We emphasize the exceptional results for instances in class C with 100 customers by config-
uration K = Kmax. All 51 instances are solved to optimality in a relatively short time, whereas
only seven of them were previously solved in the literature within a one-hour time limit and all
of them for Q = 100. These results allow us to suggest that instances with small Kmax are easier
to solve than instances with large Kmax, such as instances in class R with 50 and 100 customers
and in class RC with 100 customers. Note that the difficulty of instances in class RC depends
on their size: Kmax = 40 for instances with 100 customers and Kmax = 4 for instances with 50
customers. The detailed results are presented in the supplementary materials.

If one wishes to know how the size of parameter K impacts the number of split customers
in the solutions and, how many visits, on average, each split customers receives, Appendix C
presents some aggregated results in a similar format to Table 2. In synthesis, the percentage
of split customers is below 30%, even with small capacities, for all the instances tested. The
number of splits per split customer is rarely greater than one, i.e. split customers generally
receive at most 2 visits. In addition, information about how much of each inequalities are added
to the master problem is also presented.

We also run our BCP algorithm with a twelve-hour time limit passing the best-known
solution value as initial upper bound for configurations BCP2all−SRCI, BCPmaxall−SRCI and
BCP10all−SRCI. The latter variant is an “intermediate” one between the first two, it uses formu-
lation (FK) in which K = min{10,Kmax}. The most important outcome from these experiments

21

Table 2: Aggregated results for two BCP variants for SDVRPTW instances (one-hour time limit)

Class n Q #
BCP2all−SRCI BCPmaxall−SRCI Improvement

Nodes Gap(%) Time(s) Opt Nodes Gap(%) Time(s) Opt LB* Opt*

C

50
30 17 7.9 0.03 69.37 16 1.0 0.00 1.58 17 0 0
50 17 18.8 0.00 23.23 17 1.0 0.00 1.26 17 0 0

100 17 3.5 0.00 12.95 17 1.9 0.00 5.28 17 0 0

50P
30 17 138.8 0.15 1749.04 10 121.0 0.10 990.05 12 - -
50 17 145.6 0.59 849.51 9 21.1 0.00 416.22 17 - -

100 17 70.5 0.04 448.51 16 32.9 0.21 1096.61 13 - -

75
30 17 235.8 0.60 3391.29 3 5.1 0.00 13.32 17 - -
50 17 159.6 0.44 608.84 9 3.7 0.00 11.82 17 - -

100 17 104.4 0.32 413.02 11 8.5 0.00 46.52 17 - -

75P
30 17 52.3 1.29 3425.55 0 100.2 0.53 3424.89 0 - -
50 17 58.1 1.89 3424.65 0 37.0 0.98 3328.79 1 - -

100 17 48.5 1.52 3359.07 2 7.0 1.57 3428.91 1 - -

100
30 17 131.5 0.62 3281.85 0 3.6 0.00 22.20 17 15 15
50 17 168.9 0.69 3280.58 0 10.1 0.00 46.75 17 17 17

100 17 32.9 0.02 196.78 16 2.5 0.00 31.08 17 14 14

100P
30 17 36.5 5.18 3282.42 0 29.1 1.32 3284.37 0 - -
50 17 31.5 2.68 3282.01 0 8.3 1.50 3290.48 0 - -

100 17 24.1 1.47 2718.41 5 2.9 1.90 3361.35 0 - -

R

50
30 23 311.8 2.25 3520.69 0 157.5 0.23 1722.90 18 11 7
50 23 350.5 1.47 1626.10 8 51.5 0.00 491.01 23 12 12

100 23 51.1 0.00 69.48 23 27.5 0.10 380.11 20 17 17

75
30 23 61.4 5.50 3425.53 0 43.8 2.05 3427.79 0 - -
50 23 94.7 4.20 3425.25 0 30.5 1.63 3345.96 1 - -

100 23 96.0 1.39 1033.95 9 11.3 1.04 1611.50 6 - -

100
30 23 45.1 8.34 3282.81 0 22.5 2.39 3285.66 0 23 0
50 23 44.0 6.04 3281.88 0 8.2 2.40 3310.83 0 23 0

100 23 40.0 2.58 1856.39 3 3.5 2.08 2439.90 3 22 2

RC

50
30 16 1.3 0.00 246.52 16 1.0 0.00 2.00 16 0 0
50 16 1.0 0.00 3.16 16 1.0 0.00 1.04 16 0 0

100 16 1.0 0.00 1.31 16 1.0 0.00 1.24 16 0 0

50P
30 16 2.5 0.00 60.28 16 247.8 0.01 210.41 13 - -
50 16 6.5 0.00 52.59 16 8.9 0.00 206.12 16 - -

100 16 4.8 0.00 22.30 16 5.3 0.03 450.84 15 - -

75
30 16 64.4 1.31 3426.25 0 78.5 0.33 2999.38 3 - -
50 16 119.4 1.33 3424.76 0 41.5 0.46 3236.50 2 - -

100 16 166.6 1.09 2560.25 3 6.9 1.51 2916.94 3 - -

100
30 16 29.6 7.29 3283.99 0 17.1 0.52 3285.49 0 16 0
50 16 27.9 6.35 3283.94 0 7.1 0.77 3293.42 0 16 0

100 16 59.0 6.35 3311.52 0 2.5 1.81 3385.98 0 14 0

Total 705 734.92 273 354.53 368 200 84

Challenging 168 746.92 77 1574.53 61 92 19

22

Table 3: Results for three BCP variants for the SDVRP instances (two-hour time limit)

Configuration Class #
BCP2all−SRCI BCP10all−SRCI BCPmaxall−SRCI

Nodes Gap(%) Time(s) Opt Nodes Gap(%) Time(s) Opt Nodes Gap(%) Time(s) Opt CG limit

LF-r

eil 11 49.9 0.90 370.52 6 31.7 0.29 630.42 8 9.5 0.15 1308.12 4 5
p 42 33.1 51.27 5758.62 1 39.6 13.71 5864.04 3 11.0 2.98 5686.13 3 2
S 14 64.6 3.96 3661.46 3 90.6 1.97 4233.85 3 35.1 1.94 4157.07 3 0
SD 21 28.1 4.28 403.94 9 111.6 0.66 108.60 12 111.8 0.66 102.42 12 0

LF

eil 11 53.5 0.99 367.21 5 37.7 0.34 630.46 7 4.5 0.73 1388.51 3 4
p 42 35.5 45.80 5745.34 1 33.0 12.34 5755.23 2 11.6 3.09 6145.36 3 0
S 14 78.7 4.18 3417.39 3 98.7 2.03 4102.42 4 49.9 2.05 4332.25 5 0
SD 21 34.2 6.17 423.61 9 27.0 0.68 63.18 13 28.8 0.68 63.28 13 0

UF-r

eil 11 62.3 1.10 402.46 5 42.6 0.26 656.58 9 25.5 0.62 1438.83 5 3
p 42 33.4 53.48 5781.69 1 37.1 12.97 5813.81 2 12.5 2.71 5814.34 3 1
S 14 67.4 3.54 3804.23 2 102.3 1.79 4037.46 3 23.0 1.19 4134.06 3 1
SD 21 30.2 4.85 562.00 8 41.3 0.51 109.20 12 45.4 0.51 120.57 12 0

UF

eil 11 70.5 1.12 366.88 5 42.3 0.38 618.08 7 29.5 0.73 1236.54 4 4
p 42 37.2 45.70 5730.41 1 38.8 12.16 5916.83 2 10.3 2.78 5981.23 3 0
S 14 81.1 3.71 3446.15 3 113.6 1.73 4050.14 4 36.3 1.36 4174.28 4 2
SD 21 31.5 6.04 515.68 8 127.6 0.62 153.23 11 144.2 0.62 155.19 11 0

Total 352 43.0 25.49 2089.02 70 57.0 6.59 1597.51 102 33.0 1.92 1776.10 91 22

is that formulation BCPmaxall−SRCI manages to prove optimality for all remaining instances with
50 customers. In addition, another 13 optimal solutions for instances with 100 customers are
found. All additional optimal solutions found in these experiments are listed in the supplemen-
tary materials.

6.4 BCP performance for the SDVRP instances

We test three variants of our BCP algorithm on the the full test set of SDVRP instances.
These variants are BCPmaxall−SRCI, BCP2all−SRCI, and BCP10all−SRCI. As is common in the
literature, the time limit of two hours is imposed for these instances, and it includes the initial
matheuristic time.

Table 3 summarizes the results obtained by the three tested BCP variants. Recall that we
consider four versions of the original test set of 88 SDVRP instances, obtained by the combination
of unlimited- and limited-fleet and Euclidean and rounded Euclidean distances (as described in
Section 6.1). Results are aggregated for each combination, instance class and BCP variant. In
the table, we give, the average number of nodes processed in the branch-and-bound tree, the
average final primal-dual gap, the geometric mean pure BCP time and the number of instances
solved to optimality (Opt). For variant BCPmaxall−SRCI, one additional column indicate the
number of instances for which the first convergence of column generation could not terminate
within the time limit. For other variants, column generation could always terminate.

Results show that the best performing BCP variant for the SDVRP instances is clearly
BCP10all−SRCI. The detailed results obtained with this variant are presented in Appendix ??.
Variant BCPmaxall−SRCI is on the second place overall. However it is not robust, as even a
lower bound cannot be obtained for some instances with a very large value of Kmax. Vari-
ant BCP10all−SRCI solved to optimality 102 instances, and fourteen of them for the first time.
We compare these numbers with the state-of-the-art branch-and-cut algorithms of Munari and
Savelsbergh (2022) and Gouveia et al. (2022). The latter solves 106 instances to optimality from
the total 352 instances. Our algorithm improved best known lower bounds for 116 instances
or almost 50% of open instances. If we consider only the smaller test set of 224 instances,
considered by Munari and Savelsbergh (2022), we solve 96 instances to optimality, which is 11
instances more than in the latter paper. Our algorithm improved best known lower bounds for
51 instances in the reduced set among 108 previously open ones. The detailed results are also
presented in the supplementary materials.

In table 4 we present aggregated results for variant BCP10all−SRCI. For each class of instances,
we show the number of instances solved to optimality, the number of improved lower bounds in
comparison to the literature, and the number of instances solved to optimality for the first time.

23

Table 4: Aggregated results of variant BCP10all−SRCI for the SDVRP instances (two-hour time
limit)

Class #
LF-r LF UF-r UF

Opt LB∗ Opt∗ Opt LB∗ Opt∗ Opt LB∗ Opt∗ Opt LB∗ Opt∗

eil 11 8 5 2 7 6 2 9 5 3 7 6 2
p 42 3 16 1 2 9 0 2 16 0 2 7 0
S 14 3 2 0 4 1 0 3 5 0 4 2 0
SD 21 12 9 1 13 9 1 12 9 1 11 9 1

Total 88 26 32 4 26 25 3 26 35 4 24 24 3

We also performed an additional test with the time limit of twelve hours and starting with
the best upper bound between the matheuristic, best known solution value in the literature and
upper bounds obtained in our benchmark runs. The additional optimal solutions obtained in
this test are presented in the supplementary materials. Aggregated statistics on the solutions
(percentage of split customers etc) and on the number of cuts added to the master problem, can
be found in Appendix B.

7 Conclusions

We have proposed a new family of partially discretized route-based formulations (FK) for split
delivery vehicle routing problems, where K is the maximum number of different delivery quan-
tities allowed when visiting a customer. We have shown experimentally that, with the increase
in K, the formulation becomes stronger but might become more challenging to solve. In the
strongest fully discretized formulation (FKmax), all possible delivery quantities are considered.

The proposed formulations are based on a new property that holds for at least one optimal
solution of the problem. This property provides a minimum delivery quantity based on cus-
tomer demand and vehicle capacity, and it allows us to reduce Kmax for some instances, in turn
improving the solution times observed for the strongest formulation. This property is likely to
benefit other formulations, as well as other exact and heuristic approaches in the literature.

To effectively solve the formulations, we have designed a BCP algorithm that resorts to new
and state-of-the-art algorithmic improvements. We have developed the limited-memory variant
of subset-row covering inequalities and strong k-path inequalities, reducing the impact of non-
robust valid inequalities. Moreover, we have shown how to consider them while solving the
pricing problem that dynamically generates the route variables.

Experimental results on benchmark instances of the SDVRPTW indicate the excellent per-
formance of our BCP algorithm. In total, 101 instances are solved to optimality for the first
time, including all instances with 50 customers and all instances with 100 customers and small
value Kmax. Formulation (FKmax) has the best average performance. However, formulation
(F2) is more efficient for instances with long routes and large value Kmax. Formulation (FK)
with K = max{10,Kmax} is the best one for the SDVRP instances (i.e., instances without time
windows). Several SDVRP instances were solved to optimality for the first time, and the best
known lower bounds were improved for many or them. In comparison with the literature, our
BCP algorithm is especially efficient for instances with longer routes. Based on these results, the
proposed formulations and BCP algorithm establish a new state-of-the-art for the SDVRPTW,
and are highly competitive with the best approach in the literature for the SDVRP. This indicates
that column generation-based approaches can have better-or-equal performance in comparison
to pure branch-and-cut approaches.

We believe there are interesting future research topics related to improving and extending
our solution approach. For example, the master problem of our strongest formulation (FKmax)

24

may take a long time to be solved, especially for instances with long routes. One possible way to
make it faster is to avoid the discretization of delivery quantities since it reduces the size of the
graph in the pricing problem. This can be done, e.g., by inserting load flow variables into the
master problem, as proposed by Munari and Savelsbergh (2020), or by defining extreme delivery
patterns together with the generation of routes, as introduced by Desaulniers (2010). Another
possible improvement to our BCP algorithm concerns the insufficient strength of Formulation
(FKmax) for instances with a relatively large value of Kmax. Root optimality gaps may still be
high for such instances, even after adding non-robust cuts. One should search for other families
of valid inequalities. Separation of cuts based on Chvátal-Gomory rounding of demand covering
constraints with different multipliers might be useful to reduce optimality gaps. Thus, developing
efficient separation algorithms for such cuts is a promising research direction.

The proposed solution approach could be extended to other variants with additional at-
tributes, such as multiple depots (Gouveia et al., 2022), heterogeneous fleet (Belfiore and Yoshizaki,
2009), pickup and delivery (Casazza et al., 2021), and others. Such extensions could be made fol-
lowing the generic modeling approach by Pessoa et al. (2020). Of course, the numerical efficiency
of these extensions remains to be seen for each variant separately. Another important extension
concerns the case in which the service time for a customer depends on delivery quantity. This
dependence might come from non-negligible loading or unloading times (Li et al., 2020).

Acknowledgements

The experiments presented in this paper were performed using the PlaFRIM experimental
testbed, supported by Inria, CNRS (LABRI and IMB), Université de Bordeaux, Bordeaux INP
and Conseil Régional d’Aquitaine (see https://www.plafrim.fr/).

Pedro Munari is supported by the São Paulo Research Foundation (FAPESP) [grant numbers
19/23596-2, 16/01860-1, 13/07375-0]; and the National Council for Scientific and Technological
Development (CNPq-Brazil) [grant number 313220/2020-4].

Teobaldo Bulhões is supported by the National Council for Scientific and Technological De-
velopment (CNPq-Brazil) [grant number 314088/2021-0].

Artur Pessoa is supported by the National Council for Scientific and Technological Develop-
ment (CNPq-Brazil) [grant number 306033/2019-4]

Isaac Balster is supported by the French region Nouvelle Aquitaine [project AAPR2020A-
2020-8601810].

We thank Eduardo Uchoa for fruitful discussions, which helped us to start this work.

We would like to thank the associated editor and referees who helped us to improve the
quality of the manuscript.

A Subset-row inequalities

In this appendix we provide further details on the subset-row cuts defined in Section 4.

A.1 Subset-row packing inequalities

Inequalities (15) can be referred to as 3SRPIs since they were derived from exactly three packing
inequalities in (14), i.e., from a set of multipliers in which there are exactly three nonzero
numerators µi. To find strong SRPIs, Pecin et al. (2017b) performed a computational study
of the complete set partitioning polytope CSPP=(p), defined below together with the related

25

complete set packing polytope CSPP≤(p) and complete set covering polytope CSPP≥(p).

CSPP=(p) = Conv
{
Bpx = 1, x ∈ {0, 1}2

p−1
}
. (26)

CSPP≤(p) = Conv
{
Bpx ≤ 1, x ∈ {0, 1}2

p−1
}
. (27)

CSPP≥(p) = Conv
{
Bpx ≥ 1, x ∈ {0, 1}2

p−1
}
. (28)

In the definition of these polytopes, Bp is a binary matrix with p rows and all distinct 2p − 1
nonzero columns, and 1 represents the p-dimensional all-ones vector. Due to the combinatorial
explosion of their approach, the authors managed to study the CSPP=(p) only for p ≤ 5, and
they concluded that the SRPIs associated with the following set of multipliers are facet inducing:

• 3 rows:
(1
2
,
1

2
,
1

2

)
;

• 4 rows:
(2
3
,
1

3
,
1

3
,
1

3

)
;

• 5 rows:
(2
4
,
2

4
,
1

4
,
1

4
,
1

4

)
,
(3
4
,
1

4
,
1

4
,
1

4
,
1

4

)
,
(3
5
,
2

5
,
2

5
,
1

5
,
1

5

)
,
(2
3
,
2

3
,
1

3
,
1

3
,
1

3

)
,
(3
4
,
3

4
,
2

4
,
2

4
,
1

4

)
,(1

2
,
1

2
,
1

2
,
1

2
,
1

2

)
,
(1
3
,
1

3
,
1

3
,
1

3
,
1

3

)
.

Later, Bulhões et al. (2018) determined new families of multipliers that induce facets of
CSPP=(p) for arbitrarily large values of p, and they showed that, with very few exceptions,
every facet-inducing inequality for CSPP≤(p) is also facet inducing for CSPP=(p), and vice
versa.

Observation 5. The existence of routes r ∈ R with nonbinary coefficients in (14) has no impact
on the strength of the multipliers found by Pecin et al. (2017b) and Bulhões et al. (2018).

This follows from such routes not being part of an integer solution.

A.2 Subset-row covering inequalities

We developed a computational approach to analyze the complete set covering polytope CSPP≥(p)
(see (28)) in the spirit of the work by Pecin et al. (2017b). Despite the inferior scalability of
this approach for CSPP≥(p) due to a larger number of extreme points, we managed to find the
following multipliers, the associated SRCIs of which are facet-inducing:

• 3 rows:
(1
2
,
1

2
,
1

2

)
;

• 4 rows:
(2
3
,
2

3
,
2

3
,
1

3

)
,
(1
3
,
1

3
,
1

3
,
1

3

)
;

• 5 rows:
(1
2
,
1

2
,
1

2
,
1

2
,
1

2

)
,
(1
3
,
1

3
,
1

3
,
2

3
,
2

3

)
,
(2
3
,
2

3
,
2

3
,
2

3
,
2

3

)
,
(1
4
,
1

4
,
1

4
,
1

4
,
1

4

)
,
(1
4
,
1

4
,
2

4
,
2

4
,
3

4

)
,(1

4
,
3

4
,
3

4
,
3

4
,
3

4

)
,
(2
4
,
2

4
,
3

4
,
3

4
,
3

4

)
,
(1
5
,
1

5
,
3

5
,
3

5
,
3

5

)
,
(1
5
,
2

5
,
2

5
,
2

5
,
4

5

)
,
(2
5
,
3

5
,
3

5
,
4

5
,
4

5

)
.

Observation 6. In contrast to the packing case, one might find stronger SRCIs by analyzing a
generalization of CSPP≥(p) in which the extreme points are not necessarily binary.

Preliminary experiments showed that the larger number of extreme points of this generalized
polytope renders our computational approach impractical.

26

B Aggregated statistics for benchmark SDVRP tests

Table 5 aggregates statistics on the benchmark tests with formulation BCP10all−SRCI. For each
test configuration and instance class, we list the percentage of partially discretized customers in
column “Part. Disc.(%)”, the percentage of customers with splits in the column “Split cust.(%)”,
the average number of splits per split customer in the column “Splits”, the total of cuts added
to the master in the column “# Cuts”, as well as for each inequality, the specific quantity of
cuts added in columns “# R1C”, “# CAP” and “# SKP”. At last, column “Opt” counts the
number of optimal solutions found.

Table 5: Aggregated statistics on the number of partially discretized customers, splits per split
customer and cuts for the SDVRP (two-hours time limit)

Configuration Class #
BCP10all−SRCI

Part. Disc.(%) Split cust.(%) # Splits # Cuts # R1C # CAP # SKP Opt

LF-r

eil 11 73.4 3.3 1.2 9664 4369 1945 3349 8
p 42 91.9 28.2 1.2 7969 850 4238 2880 3
S 14 85.7 18.3 1.2 15419 1564 7971 5884 3
SD 21 0.0 53.6 1.1 6062 309 3425 2329 12

LF

eil 11 73.4 3.1 1.0 10085 4799 1775 3512 7
p 42 91.9 27.4 1.1 7623 576 4467 2580 2
S 14 85.7 17.0 1.2 17206 1557 10057 5592 4
SD 21 0.0 53.8 1.0 5037 116 3159 1761 13

UF-r

eil 11 73.4 2.5 1.1 9941 5039 1955 2947 9
p 42 91.9 24.8 1.3 7814 748 4227 2839 2
S 14 85.7 15.0 1.3 15362 1573 8831 4958 3
SD 21 0.0 51.4 1.1 7618 262 4516 2840 12

UF

eil 11 73.4 2.2 1.0 8160 4161 1636 2363 7
p 42 91.9 23.9 1.2 7677 607 4527 2543 2
S 14 85.7 16.1 1.2 17399 1666 10677 5056 4
SD 21 0.0 50.3 1.1 26057 298 18958 6801 11

C Aggregated statistics for benchmark SDVRPTW tests

Table 6 aggregates statistics on the benchmark tests and the results obtained with formulations
BCP2all−SRCI and BCPmaxall−SRCI. For each class of instances, we list q̄, the percentage of
partially discretized customers in column “Part. Disc.(%)” (only for variant BCP2all−SRCI), the
percentage of customers with splits in the column “Split cust.(%)”, the average number of splits
per split customer in the column “Splits”, the total of cuts added to the master in the column
“# Cuts”, as well as for each inequality, the specific quantity of cuts added in columns “# R1C”,
“# CAP” and “# SKP”. At last, column “Opt” counts the number of optimal solutions found.

27

T
a
b
le

6
:

A
g
g
r
e
g
a
t
e
d

s
t
a
t
is
t
ic

s
o
n

t
h
e

n
u
m

b
e
r

o
f
p
a
r
t
ia

ll
y

d
is
c
r
e
t
iz

e
d

c
u
s
t
o
m

e
r
s
,
s
p
li
t
s

p
e
r

s
p
li
t

c
u
s
t
o
m

e
r

a
n
d

c
u
t
s

fo
r

t
h
e

S
D
V
R
P
T
W

(
o
n
e
-h

o
u
r

t
im

e
li
m

it
)

C
la

s
s

n
Q

q̄
#

B
C
P
2
a
ll
−

S
R
C
I

B
C
P
m

a
x
a
ll
−

S
R
C
I

P
a
r
t
.

D
is
c
.(
%

)
S
p
li
t

c
u
s
t
.(
%

)
#

S
p
li
t
s

#
C
u
t
s

#
R
1
C

#
C
A
P

#
S
K

P
O

p
t

S
p
li
t

c
u
s
t
.(
%

)
#

S
p
li
t
s

#
C
u
t
s

#
R
1
C

#
C
A
P

#
S
K

P
O

p
t

C

5
0

3
0

1
0

1
7

1
8
.0

9
.9

1
.0

3
9
2
2

6
3
2
7
7

6
4
0

1
6

9
.9

1
.0

5
4
5

0
5
4
5

0
1
7

5
0

1
0

1
7

1
8
.0

5
.8

1
.0

3
0
0
3

7
6

2
3
4
8

5
7
9

1
7

5
.8

1
.0

2
6
7

0
2
6
7

0
1
7

1
0
0

1
0

1
7

1
8
.0

0
.5

1
.0

6
9
3

1
4
7

3
8
4

1
6
2

1
7

0
.5

1
.0

5
1
2

1
7
0

2
2
4

1
1
7

1
7

5
0
P

3
0

1
1
7

1
0
0
.0

2
6
.5

1
.1

5
6
9
3
8

5
0
7

3
3
0
8
0

2
3
3
5
1

1
0

2
6
.1

1
.1

1
7
0
7
1

1
6
5

1
1
3
1
7

5
5
8
8

1
2

5
0

1
1
7

1
0
0
.0

1
1
.5

1
.1

2
7
0
8
7

5
4
1

1
8
1
7
9

8
3
6
7

9
1
5
.8

1
.0

2
2
8
2

2
2
3

1
1
9
1

8
6
8

1
7

1
0
0

1
1
7

1
0
0
.0

4
.0

1
.0

8
3
3
6

2
8
0
6

2
3
0
0

3
2
3
0

1
6

4
.0

1
.0

4
0
2
5

2
1
1
2

7
5
2

1
1
6
1

1
3

7
5

3
0

1
0

1
7

2
1
.3

1
1
.8

1
.0

9
0
3
9
6

6
2
4

5
3
3
2
2

3
6
4
5
0

3
1
1
.9

1
.0

1
8
5
0

5
1
7
3
3

1
1
2

1
7

5
0

1
0

1
7

2
1
.3

2
.3

1
.0

4
4
7
8
8

1
4
0
5

3
4
7
9
3

8
5
9
0

9
2
.9

1
.0

1
0
4
4

4
4

8
8
7

1
1
3

1
7

1
0
0

1
0

1
7

2
1
.3

0
.7

1
.0

1
4
6
9
6

4
2
2
8

5
7
0
4

4
7
6
4

1
1

1
.2

1
.0

1
8
0
6

7
0
5

6
3
8

4
6
3

1
7

7
5
P

3
0

1
1
7

1
0
0
.0

2
4
.2

1
.1

5
1
9
2
9

6
5
0

2
9
1
5
2

2
2
1
2
8

0
2
5
.1

1
.1

2
3
3
2
9

4
6
4

1
5
9
2
0

6
9
4
6

0
5
0

1
1
7

1
0
0
.0

8
.8

1
.1

3
4
9
8
5

8
6
7

2
2
2
6
7

1
1
8
5
1

0
9
.6

1
.1

8
1
8
3

8
1
7

4
9
2
6

2
4
4
0

1
1
0
0

1
1
7

1
0
0
.0

4
.2

1
.1

1
6
4
7
2

3
1
9
7

6
0
3
1

7
2
4
3

2
3
.1

1
.1

2
2
2
0

8
3
1

6
6
4

7
2
5

1

1
0
0

3
0

1
0

1
7

2
2
.0

1
0
.0

1
.0

8
3
3
6
2

7
8
5

4
6
8
2
2

3
5
7
5
5

0
1
0
.4

1
.0

1
7
9
0

2
1
6
8
1

1
0
8

1
7

5
0

1
0

1
7

2
2
.0

2
.8

1
.0

5
5
3
1
3

1
6
3
5

4
2
4
9
2

1
1
1
8
6

0
4
.1

1
.0

2
5
2
6

7
4

1
9
9
1

4
6
1

1
7

1
0
0

1
0

1
7

2
2
.0

1
.1

1
.0

7
1
5
5

1
3
7
9

4
3
5
5

1
4
2
0

1
6

1
.1

1
.0

8
3
8

1
1
2

5
8
2

1
4
5

1
7

1
0
0
P

3
0

1
1
7

1
0
0
.0

2
5
.9

1
.2

3
8
9
5
7

1
3
0
0

2
0
1
3
6

1
7
5
2
1

0
2
5
.9

1
.2

1
0
6
9
5

2
2
3

7
5
1
0

2
9
6
2

0
5
0

1
1
7

1
0
0
.0

1
2
.6

1
.1

2
7
8
4
8

9
6
5

1
5
7
3
1

1
1
1
5
2

0
1
2
.6

1
.1

2
9
8
6

3
0
4

1
8
3
0

8
5
3

0
1
0
0

1
1
7

1
0
0
.0

6
.8

1
.0

1
1
2
6
7

1
5
2
0

6
5
4
3

3
2
0
4

5
5
.4

1
.0

1
0
9
2

3
1
3

4
8
3

2
9
7

0

R

5
0

3
0

1
2
3

9
6
.0

2
3
.3

1
.0

9
6
9
1
2

1
2
3
0

6
4
3
8
8

3
1
2
9
4

0
2
5
.0

1
.0

2
3
1
1
5

7
0
6

1
5
4
0
8

7
0
0
1

1
8

5
0

1
2
3

9
6
.0

9
.2

1
.2

4
7
8
8
6

2
4
1
2

2
7
1
3
7

1
8
3
3
7

8
1
0
.4

1
.2

5
5
9
9

6
2
0

2
6
5
4

2
3
2
5

2
3

1
0
0

1
2
3

9
6
.0

4
.1

1
.0

5
8
7
2

2
3
0
6

1
9
0
8

1
6
5
9

2
3

3
.7

1
.0

3
5
8
6

2
0
5
9

4
9
8

1
0
2
8

2
0

7
5

3
0

1
2
3

9
6
.0

2
4
.6

1
.2

4
7
3
0
6

9
4
2

2
5
6
8
6

2
0
6
7
8

0
2
4
.6

1
.2

1
0
5
6
4

3
8
7

6
3
5
9

3
8
1
8

0
5
0

1
2
3

9
6
.0

9
.2

1
.1

3
4
1
0
0

1
2
5
4

2
1
6
8
3

1
1
1
6
4

0
9
.4

1
.1

4
6
6
4

7
3
5

2
1
3
2

1
7
9
8

1
1
0
0

1
2
3

9
6
.0

3
.3

1
.1

1
6
1
5
5

5
6
3
6

5
9
1
2

4
6
0
6

9
3
.2

1
.1

2
6
2
1

1
4
6
5

5
0
9

6
4
6

6

1
0
0

3
0

1
2
3

9
5
.0

2
6
.2

1
.2

3
3
3
0
4

1
2
2
9

1
6
9
0
4

1
5
1
7
0

0
2
6
.2

1
.2

4
6
4
9

2
2
0

2
8
3
3

1
5
9
5

0
5
0

1
2
3

9
5
.0

1
0
.6

1
.1

2
4
9
6
0

1
0
1
8

1
4
8
3
6

9
1
0
6

0
1
0
.6

1
.1

1
6
7
1

2
5
7

8
1
4

6
0
0

0
1
0
0

1
2
3

9
5
.0

2
.1

1
.0

1
1
3
5
3

3
7
2
9

3
9
0
9

3
7
1
5

3
2
.1

1
.0

7
8
7

4
2
2

1
8
1

1
8
3

3

R
C

5
0

3
0

1
0

1
6

2
6
.0

1
3
.1

1
.0

1
3
8
6

2
1
2
8
8

9
7

1
6

1
3
.0

1
.0

6
6
2

0
6
6
2

0
1
6

5
0

1
0

1
6

2
6
.0

5
.5

1
.0

3
8
1

0
3
8
1

0
1
6

5
.0

1
.0

1
9
7

0
1
9
7

0
1
6

1
0
0

1
0

1
6

2
6
.0

1
.3

1
.0

8
6

1
8
5

0
1
6

1
.3

1
.0

8
1

2
0

5
9

2
1
6

5
0
P

3
0

1
1
6

1
0
0
.0

2
7
.4

1
.1

4
6
4
4

3
6

3
4
0
4

1
2
0
4

1
6

2
7
.5

1
.1

2
4
3
3

2
6

1
7
8
7

6
2
0

1
3

5
0

1
1
6

1
0
0
.0

1
2
.8

1
.0

2
9
6
9

2
6

2
6
1
2

3
3
1

1
6

1
2
.5

1
.0

1
5
7
2

7
2

1
0
9
6

4
0
4

1
6

1
0
0

1
1
6

1
0
0
.0

6
.5

1
.2

7
8
5

1
2
7

4
5
3

2
0
5

1
6

6
.8

1
.1

9
7
3

2
9
6

3
0
6

3
7
2

1
5

7
5

3
0

1
1
6

1
0
0
.0

1
5
.5

1
.0

6
6
1
8
7

1
3
5
5

3
6
4
4
0

2
8
3
9
1

0
1
5
.8

1
.0

3
4
3
6
6

3
8
0

2
4
4
7
4

9
5
1
2

3
5
0

1
1
6

1
0
0
.0

4
.3

1
.0

3
8
6
4
3

1
1
4
5

2
3
3
9
6

1
4
1
0
2

0
4
.9

1
.0

6
6
8
4

4
7
9

3
8
4
2

2
3
6
3

2
1
0
0

1
1
6

1
0
0
.0

2
.3

1
.0

2
0
1
1
3

5
8
1
5

7
4
3
5

6
8
6
3

3
2
.1

1
.0

1
2
3
8

6
8
9

2
4
2

3
0
8

3

1
0
0

3
0

1
1
6

9
9
.0

1
7
.7

1
.1

3
3
5
7
1

1
7
0
3

1
6
9
3
1

1
4
9
3
7

0
1
7
.7

1
.1

1
1
5
7
9

1
8
2

7
5
3
4

3
8
6
3

0
5
0

1
1
6

9
9
.0

6
.7

1
.1

2
3
1
6
4

8
1
2

1
3
6
6
5

8
6
8
7

0
6
.7

1
.1

2
3
3
0

1
5
8

1
5
0
1

6
7
1

0
1
0
0

1
1
6

9
9
.0

1
.7

1
.1

1
3
6
3
2

3
1
8
7

6
4
7
8

3
9
6
7

0
1
.5

1
.1

7
3
7

3
7
1

1
7
9

1
8
8

0

28

References

Aldair Alvarez and Pedro Munari. Heuristic approaches for split delivery vehicle routing prob-
lems. Technical report, number 8790, Operations Research Group, Production Engineering
Department, Federal University of Sao Carlos - Brazil, 2022.

C Archetti, M Bouchard, and G Desaulniers. Enhanced branch and price and cut for vehicle
routing with split deliveries and time windows. Transportation Science, 45:285–298, 2011a.

Claudia Archetti, Martin W. P. Savelsbergh, and M. Grazia Speranza. Worst-case analysis for
split delivery vehicle routing problems. Transportation Science, 40:226–234, 5 2006. ISSN
0041-1655.

Claudia Archetti, Nicola Bianchessi, and Maria Grazia Speranza. A column generation approach
for the split delivery vehicle routing problem. Networks, 58(4):241–254, 2011b.

Claudia Archetti, Nicola Bianchessi, and M Grazia Speranza. Branch-and-cut algorithms for
the split delivery vehicle routing problem. European Journal of Operational Research, 238(3):
685–698, 2014.

Roberto Baldacci, Nicos Christofides, and Aristide Mingozzi. An exact algorithm for the vehicle
routing problem based on the set partitioning formulation with additional cuts. Mathematical
Programming, 115:351–385, 2008.

Roberto Baldacci, Aristide Mingozzi, and Roberto Roberti. New route relaxation and pricing
strategies for the vehicle routing problem. Operations Research, 59(5):1269–1283, 2011.

Tolga Bektaş and Gilbert Laporte. The pollution-routing problem. Transportation Research
Part B: Methodological, 45:1232–1250, 9 2011. ISSN 01912615.

Patŕıcia Belfiore and Hugo Tsugunobu Yoshida Yoshizaki. Scatter search for a real-life heteroge-
neous fleet vehicle routing problem with time windows and split deliveries in brazil. European
Journal of Operational Research, 199(3):750–758, 2009.

Nicola Bianchessi and Stefan Irnich. Branch-and-cut for the split delivery vehicle routing problem
with time windows. Transportation Science, 53:442–462, 2019.

Nicola Bianchessi, Michael Drexl, and Stefan Irnich. The split delivery vehicle routing problem
with time windows and customer inconvenience constraints. Transportation Science, 53:1067–
1084, 2019.

Kris Braekers, Katrien Ramaekers, and Inneke Van Nieuwenhuyse. The vehicle routing problem:
State of the art classification and review. Computers & Industrial Engineering, 99:300–313,
2016. ISSN 0360-8352.

Teobaldo Bulhões, Artur Pessoa, Fábio Protti, and Eduardo Uchoa. On the complete set packing
and set partitioning polytopes: Properties and rank 1 facets. Operations Research Letters, 46
(4):389–392, 2018.

Marco Casazza, Alberto Ceselli, and Roberto Wolfler Calvo. A route decomposition approach
for the single commodity split pickup and split delivery vehicle routing problem. European
Journal of Operational Research, 289(3):897–911, 2021.

Guy Desaulniers. Branch-and-price-and-cut for the split-delivery vehicle routing problem with
time windows. Operations Research, 58:179–192, 2010. ISSN 0030364X.

Martin Desrochers and François Soumis. A column generation approach to the urban transit
crew scheduling problem. Transportation Science, 23:1–13, 2 1989. ISSN 0041-1655.

Moshe Dror and Pierre Trudeau. Savings by split delivery routing. Transportation Science, 23:
141–145, 5 1989. ISSN 0041-1655.

29

Moshe Dror and Pierre Trudeau. Split delivery routing. Naval Research Logistics (NRL), 37:
383–402, 6 1990. ISSN 0894069X.

Dominique Feillet, Pierre Dejax, Michel Gendreau, and Cyrille Gueguen. Vehicle routing with
time windows and split deliveries. Technical report, Laboratoire d’Informatique d’Avignon,
2006.

Peter W Frizzell and John W Giffin. The split delivery vehicle scheduling problem with time
windows and grid network distances. Computers & Operations Research, 22(6):655–667, 1995.

Luis Gouveia, Markus Leitner, and Mario Ruthmair. Multi-depot routing with split deliveries:
Models and a branch-and-cut algorithm. Transportation Science, Ahead of Print, 10 2022.
ISSN 0041-1655.

Sin C Ho and Dag Haugland. A tabu search heuristic for the vehicle routing problem with time
windows and split deliveries. Computers & Operations Research, 31(12):1947–1964, 2004.

Mads Jepsen, Bjorn Petersen, Simon Spoorendonk, and David Pisinger. Subset-row inequalities
applied to the vehicle-routing problem with time windows. Operations Research, 56(2):497–
511, 2008.

Mingzhou Jin, Kai Liu, and Burak Eksioglu. A column generation approach for the split delivery
vehicle routing problem. Operations Research Letters, 36(2):265–270, 2008. ISSN 0167-6377.

G. Laporte and Y. Nobert. A branch and bound algorithm for the capacitated vehicle routing
problem. Operations-Research-Spektrum, 5(2):77–85, Jun 1983.

Jiliu Li, Hu Qin, Roberto Baldacci, and Wenbin Zhu. Branch-and-price-and-cut for the synchro-
nized vehicle routing problem with split delivery, proportional service time and multiple time
windows. Transportation Research Part E: Logistics and Transportation Review, 140:101955,
2020. ISSN 1366-5545.

Zhixing Luo, Hu Qin, Wenbin Zhu, and Andrew Lim. Branch and price and cut for the
split-delivery vehicle routing problem with time windows and linear weight-related cost.
Transportation Science, 51:668–687, 5 2017. ISSN 0041-1655.

Jens Lysgaard, Adam N. Letchford, and Richard W. Eglese. A new branch-and-cut algorithm for
the capacitated vehicle routing problem. Mathematical Programming, 100:423–445, 6 2004.
ISSN 0025-5610.

Lorenza Moreno, Marcus Poggi De Aragao, and Eduardo Uchoa. Improved lower bounds for the
split delivery vehicle routing problem. Operations Research Letters, 38(4):302–306, 2010.

PA Mullaseril and M Dror. A set covering approach for directed node and arc routing problems
with split deliveries and time windows. Technical report, MIS department, University of
Arizona, Tucson, Arizona., 1996.

Paul A Mullaseril, Moshe Dror, and Janny Leung. Split-delivery routeing heuristics in livestock
feed distribution. Journal of the Operational Research Society, 48(2):107–116, 1997.

Pedro Munari and Martin Savelsbergh. A column generation-based heuristic for the split delivery
vehicle routing problem with time windows. SN Operations Research Forum, 1(4):1–24, 2020.

Pedro Munari and Martin Savelsbergh. Compact formulations for split delivery routing problems.
Transportation Science, 56:1022–1043, 7 2022. ISSN 0041-1655.

Gizem Ozbaygin, Oya Karasan, and Hande Yaman. New exact solution approaches for the split
delivery vehicle routing problem. EURO Journal on Computational Optimization, 6:85–115,
3 2018. ISSN 21924406.

Diego Pecin, Artur Pessoa, Marcus Poggi, and Eduardo Uchoa. Improved branch-cut-and-price
for capacitated vehicle routing. Mathematical Programming Computation, 9(1):61–100, 2017a.

30

Diego Pecin, Artur Pessoa, Marcus Poggi, Eduardo Uchoa, and Haroldo Santos. Limited memory
rank-1 cuts for vehicle routing problems. Operations Research Letters, 45(3):206–209, 2017b.

Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, and François Vanderbeck. Automation and
combination of linear-programming based stabilization techniques in column generation.
INFORMS Journal on Computing, 30(2):339–360, 2018.

Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, and François Vanderbeck. A generic exact solver
for vehicle routing and related problems. Mathematical Programming, 183:483–523, 2020.

David M Ryan and Brian A Foster. An integer programming approach to scheduling. Computer
scheduling of public transport: Urban passenger vehicle and crew scheduling, pages 269–280,
1981.

Ruslan Sadykov and François Vanderbeck. BaPCod — a generic Branch-And-Price Code. Tech-
nical report HAL-03340548, Inria Bordeaux — Sud-Ouest, September 2021.

Ruslan Sadykov, Eduardo Uchoa, and Artur Pessoa. A bucket graph–based labeling algorithm
with application to vehicle routing. Transportation Science, 55(1):4–28, 2021.

Jeremy F Shapiro. Modeling the supply chain, volume 2. Thomson Brooks/Cole, 2007.

Paolo Toth and Daniele Vigo. Vehicle Routing: Problems, Methods and Applications. Society
for Industrial and Applied Mathematics, second edition, 2014.

André Weil. Number Theory: an approach through history. From Hammurapi to Legendre.
Boston/Basel/Stuttgart: Birkhäuser, 1983.

31

