Individual variation, network heterogeneity and linguistic complexity: which way does the relationship go?

Sébastien Lerique, Dan Dediu, Mátó Karsai, Jean-Philippe Magué

To cite this version:

Sébastien Lerique, Dan Dediu, Mátó Karsai, Jean-Philippe Magué. Individual variation, network heterogeneity and linguistic complexity: which way does the relationship go?. Interaction and the Evolution of Linguistic Complexity, Jun 2019, Edinburgh, United Kingdom. hal-03900506

HAL Id: hal-03900506
https://hal.science/hal-03900506
Submitted on 16 Dec 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Individual variation, network heterogeneity
and linguistic complexity:
which way does the relationship go?

Sébastien Lerique, Dan Dediu, Márton Karsai,
& Jean-Philippe Magué
The problem

Language must adapt to many

- landscapes
- situations
- sub-communities
- material conditions
- idiosyncracies

... in a complex network
Possible mechanisms

Lowest common denominator

“Train window” communication → rudimentary signs
Advertisements → pre-filtered interpretations
Administrative language → “syntax of abridgement”
Marcuse 1964
Portable partial acts
Di Paolo et al. 2018
Possible mechanisms

Super redundant-robust-complex

- Repairing breakdowns
- Articulating something
- Meaning something
- Negotiating turns & interaction

+

Redundancy turns into complexity when not needed
Mechanisms
dant-robust-plex
can each be done in many ways

+ complexity when not needed

Hypothesis

Standing variation in all aspects of language \(\rightarrow\) **fuel for redundancy**

Network heterogeneity \(\rightarrow\) **pressure for adaptation**

Interactional disorder

Di Paolo *et al.* 2018

Are core factors generating redundancy, robustness & complexity

Chronic *otitis media* in Australian Aboriginal populations

Butcher 2013

More diversity than expected

Evans

Japanese business-card exchange

Evans
Examples

(a) !Xóõ speaker (b) Author

Vocal tract anatomy and articulation
Moisik & Dediu 2017

Chronic otitis media in Australian Aboriginal populations Butcher 2013

More diversity than expected Evans & Levinson 2009

Japanese business-card exchange rules Cuffari et al. 2015
Evolutionary biology

- Niche construction → speakers construct their environment
- Developmental plasticity → learners adapt to their context
- Evolution of development → more constraints and opportunities

Adaptation to different environments is dealt with dynamic, recursive and complex processes.

Minor changes in a population

Granovetter 1978
Population structure & variation

Minor changes in a population can have macroscopic effects

Granovetter 1978 Bikhchandani et al. 1992
Inspirations

Population structure & variation

Minor changes in a population can have macroscopic effects
Granovetter 1978 Bikhchandani et al. 1992
Inspirations

Population structure & variation

Minor changes in a population can have macroscopic effects

Granovetter 1978 Bikhchandani et al. 1992

<table>
<thead>
<tr>
<th>0</th>
<th>2</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

→

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Network spreaders

Watts
Minor changes in a population can have macroscopic effects

Granovetter 1978 Bikhchandani et al. 1992
Population structure & variation

Minor changes in a population can have macroscopic effects

Granovetter 1978 Bikhchandani et al. 1992
Inspirations

Network spreading processes

Watts 2002

Structure & variation

Bikhchandani ations

n = 25
p = 0.12
\langle z \rangle = 3
Seed 0

Thresholds

Dirac Normal
loc = 0.18

Seed 0
When competing, how many nodes/edges are necessary for global adoption?

What are the effects of:
- node diversity
- network topology
- placement of seed nodes or constrained edges
Projects

Experiments

One-way communication
- Iterated Learning

Interactive communication
- Experimental Semiotics
- Minimal interactive coupling
- Perceptual crossing

Network topology
- Edge constraints
- Individual sensitivities

Possibly Twitter
- 25% GMT+0/1 tweets in French

De Jaegher et al. 2010 [CC-BY] Icons by Font Awesome [CC-BY]

How many nodes/edges of seed nodes or constrained edges?

How many nodes will provide global adoption?
Individual variation, network heterogeneity, and linguistic complexity: which way does the relationship go?

Sébastien Lerique, Dan Dediu, Márton Karsai, & Jean-Philippe Magué

The problem

Language must adapt to many landscapes, situations, sub-communities, material conditions, idiosyncracies, ... in a complex network.

Possible mechanisms

- Lowest common denominator
- Super redundant-robust-complex
- Repairing breakdowns
- Articulating something
- Negotiating turns & interaction
can each be done in many ways

Redundancy turns into complexity when not needed

Hypothesis

Standing variation in all aspects of language → fuel for redundancy
Network heterogeneity → pressure for adaptation
Interactional disorder
Are core factors generating redundancy, robustness & complexity? Di Paolo et al. 2018

Examples

- Vocal tract anatomy and articulation
 - Chronic otitis media in Australian Aboriginal populations
 - More diversity than expected

- Japanese business-card exchange rules
 - Moisik & Dediu 2017
 - Butcher 2013
 - Evans & Levinson 2009
 - Cuffari et al. 2015

Inspirations

- Evolutionary biology
 - Population structure & variation
 - Minor changes in a population can have macroscopic effects
 - Granovetter 1978
 - Bikhchandani et al. 1992

- Network spreading processes
 - Watts 2002
 - Generate Structure
 - n = 25
 - p = 0.12
 - <z> = 3
 - Seed
 - Thresholds
 - Dirac Normal
 - loc = 0.18
 - 0
 - 0.5
 - 1
 - 0.2
 - 0.8
 - 0.7
 - 3

Projects

- Simulations
 - When competing, how many nodes/edges are necessary for global adoption?

- Experiments
 - One-way communication ~ Iterated Learning
 - Interactive communication ~ Experimental Semiotics
 - Minimal interactive coupling ~ Perceptual crossing

De Jaegher et al. 2010

Possibly Twitter
25% GMT+0/1 tweets in French

Thank you!