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Abstract

This paper investigates the robust semi-global output regulation of uncertain linear two time scales systems with input
saturation. In this setup, one cannot apply off-the-shelf techniques to reject structural uncertainties due to numerical issues
caused by the two time scales but also due to technical issues generated by the input saturation. To solve this problem we
combine internal model principle with low gain technique and singular perturbation theory. Explicitly, the output regulation
controller design is based on the computation of the solutions of a Sylvester equation which are hard to get in the two time
scales settings. To overcome this, we propose an easily solvable equation and the existence and uniqueness of its solution are
guaranteed under some standard assumptions. Accordingly, an internal model based controller is designed such that the semi-
global robust output regulation problem can be solved. In order to cope with the input saturation we impose that the ultimate
upper bound of the infinity-norm of the exosystem state is limited and satisfies certain constrains. Finally, a numerical example
is provided to illustrate the effectiveness of the results.
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1 Introduction

Systems involving processes that evolve on both fast and
slow time scales appear in many practical applications
such as robotics [1], biology [2] and electric power man-
agement [3,4]. A small positive parameter commonly is
introduced to mathematically describe the time-scale
separation between the fast and slow dynamics. Thus,
numerical issues often appear and hamper the applica-
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tion of the traditional control design techniques. Tai-
lored methodological tools for two-time-scale systems
(TTSSs) are therefore needed, see e.g., [5–8].

In this context, we focus on the robust regulation prob-
lem for uncertain linear time-invariant TTSSs. This
problem has been a fundamental control problem since
1970s [9–11] and is relevant in many applications such as
the control of unmanned aerial vehicles [12], spacecrafts
[13] or power systems [14]. By achieving robust output
regulation, we mean that the system’s output asymp-
totically tracks some reference input regardless the
external disturbance and some structural uncertainty,
while the internal stability is ensured. It is noteworthy
that the reference input and external disturbance are
generated by an exosystem. Over the last decade, the
problem received an increasing attention and the in-
ternal model principle has been widely utilized for the
robust output regulation of linear uncertain systems
[15,16] and nonlinear uncertain systems [17–20]. How-
ever, to the best of our knowledge, only few results focus
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on systems exhibiting two time scales. Ignoring the
structural uncertainty, the output regulation problem
for linear Takagi-Sugeno fuzzy TTSSs has been handled
in [21]. For specific classes of nonlinear TTSSs in which
only the slow subsystem is subject to the disturbance
generated by the exosystem and the output regulation
error is independent of the fast subsystem the problem
has been addressed in [22]. It is important to note that
the control designs in [21,22] are not robust against the
structural uncertainty since they require the exosys-
tem’s states. In other words, the output tracking error
of the system cannot asymptotically converge to the
origin even if the structural uncertainty is very small.

Moreover, most works on robust output regulation prob-
lem ignore the input saturation, which often appears in
practice due to the limitations of physical devices. If the
input saturation is not carefully handled it may either
damage the installation or lead to poor control perfor-
mances. The small gain design technique is an effective
method for input saturation problem of asymptotically
null-controllable linear system [23–25], and has been uti-
lized for the output regulation of linear systems [26] and
singular linear systems [27] with input saturation. Fur-
thermore, for linear systems [28,29] and discrete-time
singular linear systems [30] with anti-stable eigenvalues
and subject to input saturation, the output regulation
problem is achieved within the specific initial region, and
the nonlinear design technique is used as in [31,32] to en-
large corresponding initial region. However the proposed
controllers are not robust against structured uncertainty
which is an important property in the output regulation
setting as pointed out in [15,16,33]. Moreover, the afore-
mentioned results are for single time scale systems. As
far as we know, no results are available for robust output
regulation of TTSSs with input saturation.

In this context, we consider the plant modeled by uncer-
tain linear TTSSs subject to external disturbance and
input saturation. Our objective is to design a controller,
which handle the robust semi-global output regulation
problem. To avoid the continuous monitoring of exosys-
tem, an internal model is introduced as in [9,10,34]. We
first investigate the semi-global stabilization of the aug-
mented system consisting of the internal model system
and the original uncertain TTSS without the external
disturbance. Due to the numerical issues caused by the
two time-scale evolution and the input saturation non-
linearity, the traditional control design techniques for
single time scale linear systems in [10,15] cannot be di-
rectly applied here. Thus, the low gain feedback tech-
nique is combined with singular perturbation theory to
design the stabilizing controller. It is also noted that,
different from [22,21], a more general case is considered,
i.e., both the slow and fast subsystems are subject to ex-
ternal disturbance, and the output tracking error relies
on both the fast and slow states. In this case, solving
the corresponding Sylvester equation as constructed in
[10,15] would suffer from numerical issues. Thus, an eas-

ily solvable Sylvester equation is proposed and the exis-
tence and uniqueness of its solution are guaranteed un-
der some standard assumptions. Accordingly, the stabi-
lizing controller is redesigned to ensure that the origin of
the augmented system is asymptotically stable regard-
less some small structural uncertainty. Then, an internal
model based tracking controller is further designed such
that the robust semi-global output regulation problem
can be handled. The main contributions of this paper is
threefold.

1) The robust semi-global output regulation problem is
handled for uncertain linear systems exhibiting two
time scales and input saturation.

2) An internal model based controller is designed by
combining the low gain technique and singular per-
turbation theory. As a result, the monitoring of the
exosystem’s states can be avoided and the output
regulation error can converge to the origin asymptot-
ically regardless some small structural uncertainty.

3) To avoid the numerical issues, an easily solvable equa-
tion is proposed to provide the solution of corre-
sponding Sylvester function needed for control de-
sign. Besides, the existence and uniqueness of its so-
lution are guaranteed under some standard assump-
tions.

The rest of the paper is organized as follows. The prob-
lem formulation is stated in Section II. The robust semi-
global output regulation of uncertain linear TTSS with
input saturation is investigated in Section III. An illus-
trative example is presented in Section IV. Conclusions
are drawn in Section V.

Notation. Rm×n denotes the set ofm×n real matrices.
The notation In stands for the n-dimensional unit ma-
trix. For a given real symmetric matrix P , P > 0 means
that P is a positive definite matrix. The notation ‖ · ‖
denotes the Euclidean norm for vectors or the induced
2-norm for matrices depending on the context. For a
matrix A, V ec(A) denotes the vectorization of A. For
a piecewise continuous bounded function v : [0,∞) →
R

m, and T ≥ 0, ‖v(t)‖∞,T , supt≥T ‖v(t)‖∞. The func-

tion f : [0,∞)2 → R
m×n is said to be O(ε) if there exist

positive constants k and ε∗ strictly positive such that
‖f(t, ε)‖ ≤ kε, for all t ∈ [0,∞) and ε ∈ [0, ε∗].

2 Problem Statement

In this work, we address the problem of robust output
regulation for the class of TTSSs described below. No-
tice that, for convenience, we often neglect the time ar-
gument of the variables.







ẋ =A11(w)x+A12(w)z+B1(w)σ(u)+F1(w)v,

εż =A21(w)x+A22(w)z+B2(w)σ(u)+F2(w)v,

e =C1(w)x+C2(w)z+Q(w)v,

(1)
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where x ∈ R
nx and z ∈ R

nz are the slow and the fast
states, respectively, ε is a small positive parameter de-
scribing the time-scale separation between the slow and
the fast dynamics, u ∈ R

p is the control input, e ∈ R
q is

the output regulation error, v ∈ R
nv is the state of the

exosystem, representing both external disturbances and
time-varying references input and it is generated by an
autonomous exosystem of the form

v̇ = Sv, (2)

where S is a constant matrix with appropriate di-
mensions. The matrices Q(w), Aij(w), Bi(w), Fi(w),
Ci(w), i, j = 1, 2, are all continuous matrix functions
of w ∈ W with appropriate dimensions, where W is an
open neighborhood of the origin. For the sake of con-
venience, (Q(0), Aij(0), Bi(0), Fi(0), Ci(0)) is denoted
by (Q,Aij , Bi, Fi, Ci), i, j = 1, 2, which are all known
constant matrices. σ(·) is a vector-valued saturation
function with

σ(u) = (σ̄(u1), σ̄(u2), . . . , σ̄(up)), (3)

where

σ̄(ui) =







ui, if |ui| ≤ Υ

−Υ, if ui < −Υ

Υ, if ui > Υ,

where Υ is the saturation level. The goal of this paper
is to design a state-feedback controller

η̇ = Φη + Γe,

u = K1x+K2z +G(x, z, η), (4)

where η ∈ R
nη , such that the semi-global output regula-

tion problem of TTSS (1) can be handled, as formalized
next. It is noted that the design of controller (4) does
not require the information of the state of the exosystem
and is independent of parameter ε.

Definition 1 The robust semi-global output regulation
problem of TTSS (1) is solved under the controller in
the form of (4), if for any priori given compact subsets
X ⊂ R

nx , Z ⊂ R
nz , and V̄ ⊂ R

nvq all containing the
origin, there exists ε̄ > 0 such that for any ε ∈ (0, ε̄],

(1) (Internal Stability) When v = 0 and w = 0, the
equilibrium point (x, z, η) = (0, 0, 0) of the corre-
sponding closed-loop system composed of (1) and
(4) is asymptotically stable with X × Z × V̄ being
contained in its basin of attraction.

(2) (Robust Output Regulation) There exists a com-
pact subsetV ⊂ R

nv containing the origin and some
open neighborhood W of the origin, such that, for
any w ∈ W, any (x(0), z(0), v(0), η(0)) ∈ X × Z ×
V×V̄, the trajectories of the closed-loop system com-
posed of (1), (2) and (4) are bounded for all t ≥ 0,
and satisfies lim

t→∞
‖e(t)‖ = 0.

We remark that the compact set V, i.e. the size of the
admissible exosignals, cannot be arbitrarily large due to
the presence of the input saturation. On the other hand,
the size of the compact set of initial conditions X ⊂ R

nx ,
Z ⊂ R

nz , and V̄ ⊂ R
nvq can be arbitrarily chosen, i.e.

we are in a semi-global context. Furthermore, note that
to handle the robust semi-global output regulation prob-
lem in above, controller (4) should be applicable for any
ε ∈ (0, ε̄] and w ∈ W to ensure both disturbance re-
jection and asymptotic tracking, i.e., the proposed con-
troller should be robust to parameters ε and w. Due to
the numerical issues caused by the small positive param-
eter ε, the eigenvalues of the control matrix and the exact
solution of the corresponding Sylvester equation would
be hard to obtained. The control design techniques for
the single time scale system subject to input satura-
tion in [26,29] are no longer applicable. The nonlinearity
caused by input saturation would be harder to handle
and the stability analysis would be more complicated.

To achieve the goal, the next four assumptions and one
Lemma are presented.

Assumption 1 The eigenvalues of matrix S are semi-
simple with zero real parts.

Assumption 1 is common and standard for ensuring the
neutrally stability of the exosystem.

Assumption 2 The matrix A22 is invertible.

Assumption 2 is essential to decouple the slow and fast
dynamics, which is standard in the singularly perturbed
literature, see, e.g., [5].

Assumption 3 The pairs (A0, B0) and (A22, B2) are
asymptotically null controllable with bounded controls
(ANCBC), i.e.

(1) The pairs (A0, B0) and (A22, B2) are stabilizable
(2) All eigenvalues of A0, A22 are in the closed left half

s-plane,

where A0 := A11 −A12A
−1
22 A21, B0 := B1 −A12A

−1
22 B2.

Assumption 3 (also being used in [23–25]) is common
and instrumental for the design of semi-global asymp-
totically stabilizing feedback gains for the reduced order
and boundary layer subsystems. We recall now the fol-
lowing Lemma from [25], which is a direct consequence
of precious assumption.

Lemma 1 ([25]) Under Assumption 3, for any γ ∈
(0, 1], there exist unique real symmetric matrices P1 > 0,
P2 > 0, which solve the following algebraic Riccati equa-
tions:

A⊤
0 P1 + P1A0 − 2P1B0B

⊤
0 P1 + γInx

= 0, (5)
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A⊤
22P2 + P2A22 − 2P2B2B

⊤
2 P2 + γInz

= 0. (6)

Moreover, lim
γ→0

P1(γ) = 0nx×nx
, lim
γ→0

P2(γ) = 0nz×nz
.

Finally, we introduce the following non-resonance con-
dition, necessary in the context output regulation (see,
e.g. [9]).

Assumption 4 The matrix

(

Aε − λI Bε

C 0

)

has inde-

pendent rows for each λ being an eigenvalues of S, where

Aε =

(

A11 A12

A21

ε
A22

ε

)

, Bε =

(

B1

B2

ε

)

, C =
(

C1 C2

)

.

Assumption 4 is standard and instrumental for the out-
put regulation of TTSSs (1), which has also been used
in [9].

3 Main result

In this section, the semi-global stabilization and output
regulation problem of TTSSs are investigated.

3.1 Semi-global stabilization of TTSSs

In this subsection, the semi-global stabilization problem
of TTSSs is studied. The goal is to design a controller

u = K1x+K2z +G(x, z, η), (7)

such that the semi-global stabilization problem defined
next can be solved for the following augmented TTSSs







η̇ = Φη + Γ(C1x+ C2z),

ẋ = A11x+A12z +B1σ(u),

εż = A21x+A22z +B2σ(u),

(8)

where the internal model unit of η ∈ R
nvq is designed as

in [9,10] with

Φ =















0 Iq 0 . . . 0

0 0 I . . . 0
...

...
...

. . .
...

−s0Iq −s1Iq −s2Iq . . . −snv−1Iq















,

Γ =
(

Iq 0q . . . 0q

)⊤

, (9)

and the real numbers s0, . . . , snv−1 denote the coeffi-
cients of the minimal polynomial of the matrix S.

Definition 2 The semi-global stabilization problem of
system (8) is solved under the controller in the form
of (7), if for any priori given compact subsets X ⊂

R
nx , Z ⊂ R

nz , and V̄ ⊂ R
nvq all containing the ori-

gin, there exists ε̄ > 0 such that for any ε ∈ (0, ε̄] and
all (x(0), z(0), η(0)) ∈ X × Z × V̄, lim

t→∞
‖x(t)‖ = 0,

lim
t→∞

‖z(t)‖ = 0, lim
t→∞

‖η(t)‖ = 0.

Before the controller design, next lemma is introduced.

Lemma 2 ([5]) Suppose Assumption 2 holds. There ex-
ists ε̄ > 0 such that for any ε ∈ (0, ε̄], the origin of the
system (10) is exponentially stable,

(

ẋ

εż

)

=

(

Λ11 Λ12

Λ21 Λ22

)(

x

z

)

(10)

where Λij := Aij + BiKj(γ), for i, j = 1, 2, K1(γ) :=

(1 − K2(γ)A
−1
22 B2)K0(γ) + K2(γ)A

−1
22 A21, K0(γ) :=

B⊤
0 P1(γ), K2(γ) := B⊤

2 P2(γ), P1(γ), P2(γ) are the
solutions of (5) and (6) with γ > 0.

The design of the controller (7) is based on a two-step
procedure. Firstly, the control gains K1 and K2 are de-
sign based on Lemma 2 for the stabilization of two-time-
scale system of (x, z). Then the so-called forwarding ap-
proach inspired by [20] is applied as follows to design
G(x, z, η) for the stabilization of the system of η.

Based on Lemma 2, there exists ε̄1 > 0 such that for
any ε ∈ (0, ε̄1], the intersection of the spectrum of Λε :=
(

Λ11 Λ12

Λ21

ε
Λ22

ε

)

(which is Hurwitz) and Φ (which is neu-

trally stable) is empty. Thus, the matrix M is uniquely
defined as the solution of the following Sylvester function

MΛε = ΦM + ΓC. (11)

Since Φ is neutrally stable, there exists a real symmetric
matrix P3 > 0, which solves the following inequality:

Φ⊤P3 + P3Φ ≤ 0. (12)

With assuming that the exact solution of (11) is ob-
tained, the next Theorem is firstly proposed , whose
proof is given in the appendix.

Theorem 1 Suppose Assumptions 1-4 hold. For any
priori given compact subsets X ⊂ R

nx , Z ⊂ R
nz , and

V̄ ⊂ R
nvq all containing the origin, there exists ε̄ > 0

such that ∀ε ∈ (0, ε̄], the semi-global stabilization prob-
lem is solvable for system (8) with controller (7) when

• K1, K2 are defined as in Lemma 2,
• G(x, z, η) = −B⊤

ε (T−1
c )⊤Pε(γ)T

−1
c ξ+γB⊤

ε M⊤P3(η−
Mξ) with ξ := (x, z), Pε(γ) := diag{P1(γ), εP2(γ)},
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P1(γ) and P2(γ) as defined in Lemma 2, M and Φ as
defined (11) and (12), respectively.

Remark 1 Due to the two-time-scale feature, the tra-
ditional control design techniques for input saturation
are not applicable. Thus, the singular perturbed theory is
combined with low gain feedback technique to design the
stabilizing controller (7). It is noted that ‖γB⊤

ε M⊤P3‖∞
and ‖B⊤

ε (T−1
c )⊤Pε(γ)T

−1
c ‖∞ will not go to infinity when

ε tends to be zero from (35) and (36) as shown in the
proof of Theorem 1 in Appendix.

However, since ε is very small, it is hard to get exact
solutions M for (11) due to the numerical issues. The
controller designed in Theorem 1 would be hard to apply,
which is also one of the challenges in this context. To
handle it, an easily solved equation is proposed to replace
(11) in the next lemma.

Lemma 3 Suppose Assumption 1-3 hold. There exists
ε̄ > 0 such that for any ε ∈ (0, ε̄], the equation (13) has
an unique solution M̄ ,

M̄Λ = ΦM̄Ē + ΓC, (13)

where Ē = diag{Inx
, 0}, Λ :=

(

Λ11 Λ12

Λ21 Λ22

)

has the same

definition as in (10). Besides, it satisfies ME−1 = M̄ +
O(ε) with E = diag{Inx

, εInz
}.

Proof 1 From Lemma 2, there exists ε̄1 > 0 such that
for any ε ∈ (0, ε̄1], Λε is Hurwitz. Then, Λ = EΛε and
Λ−1 = Λ−1

ε E−1. In this way, solving the equation (13)
is equal to solving

M̄ = ΦM̄ĒΛ−1 + ΓCΛ−1, (14)

which is also equal to solving

(Invq×(nx+nz)−Φ⊗ĒΛ−1)Vec(M̄)=Vec(ΓCΛ−1). (15)

From (27), we have Λ−1
ε = TcA

−1
D T−1

c , where A−1
D =

(

Λ−1
s 0

0 εΛ−1
f

)

, Λs = As +BsKs and Λf = Af +BfK2.

Thus,

ĒΛ−1=ĒTcA
−1
D T−1

c E−1

=

(

Inx
εH

0 0

)

ADT−1
c E−1

=

(

Λ−1
s ε2HΛ−1

f

0 0

)

T−1
c E−1

=

(

Λ−1s (Inx
−εHL)+ε2HΛ−1f L −Λ−1s H+ε2HΛ−1f

0 0

)

.

Obviously, there exists 0 < ε̄3 ≤ ε̄1 such that for any
ε ∈ (0, ε̄3], Λ

−1
s (Inx

− εHL) + ε2HΛ−1
f L is always Hur-

witz. Thus, matrix Invq×(nx+nz) − Φ ⊗ ĒΛ−1 has no
zero eigenvalues, which means that equation (13) has an
unique solution M̄ .

From (11) and (13), we have

(M − M̄E)Λε = Φ(M − M̄E) + ΦM̄(E − Ē). (16)

Since Λε is Hurwitz, it can be obtained that,

(ME−1−M̄)=Φ(ME−1−M̄)Λ−1+εΦM̄(Inx+nz
−Ē)Λ−1.

Thus, we have

(Invq×(nx+nz) − Φ⊗ Λ−1)Vec(ME−1 − M̄)

=εVec(ΦM̄(Inx+nz
−Ē)Λ−1).

Since the intersection of the spectrum of Λε and Φ is
empty, Invq×(nx+nz) − Φ⊗ Λ−1 is invertible. Thus

‖Vec(ME−1 − M̄)‖
=ε‖(Invq×(nx+nz)−Φ⊗ Λ−1)−1Vec(ΦM̄(Inx+nz

−Ē)Λ−1)‖
=O(ε),

which also means that ME−1 = M̄ +O(ε). The proof is
complete.

From Lemma 3, the solution M̄ of (13) can always be
exactly obtained. Besides, when ε is very small, M̄ can
be regarded as an approximated solution of (11).

Accordingly, the controller can be designed as follows,

u = K1x+K2z −Gcξ + γB⊤M̄⊤P3(η − M̄Ēξ), (17)

where B = (B⊤
1 , B⊤

2 )⊤, K1, K2, M̄ , Pi, i = 1, 2, 3,
have the same definition as in above, Gc =(B⊤

1 P1(γ)−
B⊤

2 (Λ12Λ
−1
22)

⊤P1(γ)+B⊤
2 P2(γ)Λ

−1
22Λ21, B

⊤
2 P2(γ)).

Then, the next theorem is obtained, whose proof is given
in the appendix.

Theorem 2 Suppose Assumptions 1-4 hold. For any
priori given compact subsets X ⊂ R

nx , Z ⊂ R
nz , and

V̄ ⊂ R
nvq all containing the origin, there exists ε̄ > 0

such that for any ε ∈ (0, ε̄], the semi-global stabilization
problem is solvable for system (8) with controller (17).

Remark 2 It is noted that, controller (17) is in-
dependent of ε and is the approximation of the de-
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signed controller in Theorem 1 with G(x, z, η) =
−Gcξ+γB⊤M̄⊤P3(η−M̄Ēξ)+O(ε)η+O(ε)η. Besides,
due to the robustness of the closed-loops systems and the
continuity of its solution to the controller parameters,
with small enough ε, the controller (17) can still remain
unsaturated, and the stabilization of systems (8) can be
ensured under controller (17).

3.2 Semi-global Output Regulation of TTSSs

In this subsection, the semi-global output regulation
problem of TTSSs is studied. To handle the robust out-
put regulation problem of linear two-time-scale systems
with input saturation, the internal model principle is
combined with low gain feedback technique and singular
perturbed theory to design the output regulation con-
troller.

Based on the stabilizing controller (17), the output reg-
ulation controller is designed as

η̇ = Φη + Γe,

u = K1x+K2z −Gcξ+γB⊤
ε EM̄⊤P3(η−EM̄ξ), (18)

where the matrices Gc, K1, K2, M̄ and Pi, i = 1, 2, 3
have same definition as in (17). Then, the next theorem
is proposed, whose proof is given in the appendix.

Theorem 3 Suppose Assumptions 1-4 hold. Given Υ >
0, there exists a compact set V ⊂ R

nv containing the ori-
gin, and, for any priori given compact subsets X ⊂ R

nx ,
Z ⊂ R

nz , and V̄ ⊂ R
nvq all containing the origin, there

exists ε̄ > 0 such that for any ε ∈ (0, ε̄], the robust semi-
global output regulation problem stated in Definition 1 is
solvable for system (1)-(2) with the controller (18).

Remark 3 Based on the internal model design, the out-
put regulation problem can be transformed into a stabi-
lization problem with the corresponding coordinate trans-
formation, so the output regulation controller (18) has a
similar form with stabilizing controller (17). Benefiting
from the internal model based design, the proposed con-
troller is structurally robust which guarantee the rejection
of the small structural disturbance.

3.3 The application to single time scale linear systems

The above result is also suitable for single time scale
linear systems. Consider system

{

ẋ = A0(w)x+B0(w)σ(u) + F0(w)v,

e = C(w)x+Q(w)v,
(19)

where (A0(w), B0(w), F0(w), C0(w), Q0(w)) are all con-
tinuous matrix functions of w ∈ W with appropri-
ate dimensions and v is generated by exosystem (2).
For convenience, (A0(0), B0(0), F0(0), C0(0), Q0(0)) is
denoted by (A0, B0, F0, C0, Q0). Suppose the matrix

(

A0 − λI B0

C0 0

)

has independent rows for each λ being

an eigenvalues of S.

Then, the next corollary is proposed. The proof is similar
with that of Theorem 3, thus it is omitted here.

Corollary 1 Suppose Assumptions 1, 3 hold. Given
Υ > 0, there exists a compact set V ⊂ R

nv containing
the origin, and, for any priori given compact subsets
X ⊂ R

nx , and V̄ ⊂ R
nv×q all containing the origin, and

all (x(0), v(0), η(0)) ∈ X×V× V̄, there always exists an
γ∗ ∈ (0, 1], such that for all γ ∈ (0, γ∗], the regulator

η̇ = Φη + Γe,

u = K0(γ)x−B⊤
0 P1(γ)x+γB⊤

0 M⊤P3(η−M0x), (20)

with K0(γ) defined as in Lemma 2, P1, P3 being the so-
lutions of (5), (12) and M0 being the solution of

M(A0 +B0K0) = ΦM0 + ΓC, (21)

solves the robust output regulation problem stated in Def-
inition 1.

4 Illustrative Example

To illustrate the effectiveness of the obtained results,
consider two time scales system (1) with ε = 0.01,

A11(w)=

(

10w1 − 5 2w1 − 1

1 4

)

, A12(w)=

(

−2 −3

w1 2

)

,

A21(w)=

(

1+w2 2+2w2

−1−w2 1

)

, A22(w)=

(

0 1

−1−w2 w2

)

,

B1(w)=

(

−1

w1 − 2

)

, B2(w)=

(

w2 − 1

2 + w2

)

,

F (w)=

(

w1 − 0.2 0 0.1(w2 − 1) −w2

0.3 0.1 0 0.1

)⊤

,

C(w)=
(

0 w1 1 1 + w2

)

, Q(w)=
(

−0.5− w1 0
)

,

and exosystem (2) with S=

(

0 1

−1 0

)

. Thus, Assumptions

1 and 2 are satisfied.

Then, it can be obtained that A0 = A11−A12A
−1
22 A21 =

(

0 3

−1 0

)

,B0 = B1−A12A
−1
22 B2 =

(

−8 0
)⊤

. Assump-

tion 3 is satisfied.
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The simulation is presented with (w1, w2) = (0.01, 0.01),
(x1(0), x2(0), z1(0), z2(0)) = (−2,−5, 5, 15), v(0) =
(−22, 0) and Υ = 1. Let γ = 0.005, then from (5) and
(6), it can be obtained that

P1 =

(

0.0072 −0.0008

−0.0008 0.0224

)

, P2 =

(

0.0302 0.0018

0.0018 0.0337

)

.

Then, K0 := B⊤
0 P1 =

(

0.0576 −0.0066
)

, K2 =

B⊤
2 P2 =

(

0.0266 −0.0655
)

,K1 = (1−K2A
−1
22 B2)K0+

K2A
−1
22 A21 =

(

0.0194 −0.1643
)

.

Denote Φ =

(

0 1

−1 0

)

, Γ =

(

1

0

)

. Thus, from (12), we

can choose P3 =

(

1 0

0 1

)

. From (13), it has

M̄ =

(

−0.2826 2.9112 −5.7181 −0.4541

−0.9537 0.1569 −2.6812 2.1078

)

,

Gc =
(

−0.0187 0.1642 −0.0266 0.0655
)

.

Then, controller (17) is designed based on Theorem 3.

Simulation results are presented in Fig. 1-3, which show
that the output error converges to origin asymptotically
without input being saturated, which confirms the effec-
tiveness of Theorem 3.
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Fig. 1. Output regulation error evolution of system (1).

To test the robustness of the designed controller
to structural disturbance w, let W = {w|w1 ∈
(−0.01, 0.01), w2 ∈ (−0.01, 0.01)}. It can be verified

that J̃(w) is Hurwitz for all w ∈ W, which ensure
the internal stability of system (1). Simulation re-
sults are presented in Table 1. Table 1 shows that
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Fig. 2. State evolution of the internal model.
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Fig. 3. Evolution of ‖u‖∞ in the form of (18).

the corresponding upper bound λmin on the real part
of all eigenvalues of J̃(w) and ‖u(t)‖∞,0 for a few
w when (x1(0), x2(0), z1(0), z2(0)) = (−2,−5, 5, 15),
v(0) = (−22, 0) and input saturation is ignored.

Table 1 Influence of w

w λmin ‖u(t)‖∞,0

w1 = −0.005, w2 = 0.006 -0.1245 0.7853

w1 = 0.01, w2 = 0.01 -0.1165 0.9327

w1 = −0.01, w2 = 10.01 -0.1489 0.7628

w1 = −0.03, w2 = 0.02 -0.0011 0.7657

w1 = −0.05, w2 = 0.06 -0.0008 1.0983

w1 = 0.05, w2 = −0.02 -0.1298 1.2277

w1 = 0.1, w2 = −0.2 0.6897 ∞

For the sake of comparison, the simulation for the con-
troller designed by directed solving the output regulator
equation is run with same initial state condition as fol-
lows. The controller can be designed in a form similar to
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the one in as follows,

u = g(x, z, v) = K1x+K2z +Gv, (22)

where K1, K2 have same definition as in above, G =
Γc −KΠc, and Γc, Πc are the solution of the following
output regulator equation,

AΠc +BΓc + F = EΠcS,

CΠc +Q = 0, (23)

where A = EAε, B = EBε. Thus,

Γc =
(

−0.0477 −0.1315
)

+O(ε)

Πc =















−0.2762 0.0908

0.0092 −0.4762

0.19 −0.73

0.31 0.73















+O(ε).

Here, the error part O(ε) of the solution (Γc,Πc) is ig-
nored in the simulation, as ε is small.
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Fig. 4. Output regulation error evolution of system (1) with
controller (22).

The obtained evolution of the regulation error and in-
put are given in Fig. 4-5. Obviously, under the proposed
controller (18), the system (1) has better performance.
It is noted that the input is saturated as shown in Fig. 5
and the controller (22) is not robust to the structure un-
certainty, so that the output regulation is not achieved
under the controller (22) as shown in Fig. 4.

5 Conclusion

The robust semi-global output regulation problem was
investigated for linear TTSSs with input saturation and
structural uncertainty. An internal model based state
feedback control law has been proposed with combining
the low gain feedback technique and singular perturbed
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Fig. 5. Evolution of ‖u‖ in the form of (22).

theory. As a result, the output regulation error can con-
verge to the origin asymptotically regardless small struc-
tural uncertain parameters. It would be interesting in
the future to consider the robust output regulation prob-
lem for nonlinear TTSSs.

6 Appendix

6.1 Proof of Theorem 1

For proving Theorem 1, next Lemma is presented firstly.

Lemma 4 Suppose Assumptions 1-4 hold. Consider
system















η̇ =Φη + Γ(C1x+ C2z),

ẋ =A11x+A12z +B1u,

εż =A21x+A22z +B2u,

u =K1(γ)x+K2(γ)z +G(x, z, η),

(24)

where K1(γ), K2(γ) and G(x, z, η) have the same defi-
nition as in Theorem 1. Then, for any priori given com-
pact subsets X ⊂ R

nx , Z ⊂ R
nz , and V̄ ⊂ R

nvq all
containing the origin, and for any γ ∈ (0, 1], for all
(x(0), z(0), η(0)) ∈ X × Z × V̄, there exist ε̄ > 0 such
that, for any ε ∈ (0, ε̄], lim

t→∞
‖x(t)‖ = 0, lim

t→∞
‖z(t)‖ = 0,

lim
t→∞

‖η(t)‖ = 0. Moreover, there exists r > 0, such that

for any t ≥ 0, (x(t), z(t), η(t)) ∈ B(r) := {{(x, z, η) ∈
R

nx × R
nz × R

nvq : ‖(x, z, η)‖ ≤ r}.

Proof 2 For the stability analysis, Chang transforma-
tion is introduced for the TTSS to separate the slow dy-
namics from the fast ones, see Chapter 3 in [5], which is
presented as follows

(

xs

zf

)

:= T−1
c

(

x

z

)

, (25)
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where Tc
−1 :=

(

Inx
− εHL −εH

L Inz

)

, and the matrices L

and H are the solution of the following equations

Λ21−Λ22L+εLΛ11−εLΛ12L = 0,

Λ12−HΛ22+εΛ11H−εΛ12LH−εHLΛ12 = 0. (26)

As a result, the system in the (xs, zf ) coordinates is

(

ẋs

żf

)

=

(

Λs 0

0
Λf

ε

)(

xs

zf

)

+ T−1
c BεG(x, z, η), (27)

where

Λs := As+BsKs,Λf := Af+BfK2,

As := A0 − εA12A
−1
22 L(A11 −A12L),

Bs := B0 − εA12A
−1
22 LB1,Ks := K1 −K2L,

Af := A22 + εLA12, Bf := B2 + εLB1, (28)

From the definition of L, H, we have

As +BsKs = (1 +O(ε))(A0 +B0K0),

Af +BfK2 = (1 +O(ε))(A22 +B2K2).

From (5) and (6), A0 +B0K0 and A22 +B2K2 are both
Hurwitz. Thus, there exist ε̄1 > 0 such that for any ε ∈
(0, ε̄1], As +BsKs and Af +BfK2 are Hurwitz.

Recall that Pε(γ) := diag{P1(γ), εP2(γ)} and ξ := (x, z).
Consider the Lyapunov function candidate

V :=ξ⊤(T−1
c )⊤Pε(γ)T

−1
c ξ+γ(η−Mξ)⊤P3(η −Mξ)

=x⊤
s P1xs+εz⊤f P2zf+γ(η−Mξ)⊤P3(η−Mξ). (29)

Thus, the derivative of V along with (24) yields,

V̇ =x⊤
s (A

⊤
s P1(γ) + P1(γ)As − 2P1(γ)BsKs)xs

+ z⊤f (A⊤
f P2(γ) + P2(γ)Af − 2P2(γ)BfK2)zf

+ 2ξ⊤(T−1
c )⊤Pε(γ)T

−1
c BεG(x, z, η)

+ 2γ(η−Mξ)⊤P3(Φη+ΓCξ−M(Λεξ+BεG(x, z, η)))

≤− (1−O(ε))(γx⊤
s xs + γz⊤f zf )

+ 2ξ⊤(T−1
c )⊤Pε(γ)T

−1
c BεG(x, z, η)

+ 2γ(η −Mξ)⊤P3(Φ(η −Mξ)−MBεG(x, z, η)).

Thus, there exists 0 < ε̄2 ≤ ε̄1, such that for any ε ∈
(0, ε̄2],

1
2 −O(ε) > 0. Then, for ε ∈ (0, ε̄2],

V̇ ≤− γ

2
x⊤
s xs−

γ

2
z⊤f zf − 2G⊤(x, z, η)G(x, z, η). (30)

By using La Salle’s arguments, we can prove that the

state of the closed-loop system (24) converges to the
set {(x, z, η) ∈ R

nx × R
nz × R

nv×q : x = 0, z =
0, G(x, z, η) = 0} = {0} × {0} × {B⊤

ε M⊤P3η = 0}.
Thus, lim

t→∞
‖x(t)‖ = 0, lim

t→∞
‖z(t)‖ = 0. Since ξ con-

verges to zero, the dynamics of η reduces to

η̇ = Φη.

Based on the Proposition 2 in [20], under Assump-
tion 4, the pair (B⊤

ε M⊤P3,Φ) is observable. Then,

lim
t→∞

‖η(t)‖ = 0. Denote J :=

(

Φ ΓC

γBεB
⊤
ε M⊤P3 Λ̃ε

)

,

where Λ̃ε = Λε−BεB
⊤
ε (T−1

c )⊤PεT
−1
c −γBεB

⊤
ε M⊤P3M .

Then TTSSs (24) can be rewritten as

(

η̇

ξ̇

)

= J

(

η

ξ

)

. (31)

Thus, for ε ∈ (0, ε̄2], J is Hurwitz.

Meanwhile, from (30), there exists a class KL function
βs, such that ∀t ≥ 0,

‖(xs(t),
√
εzf (t), η(t)−Mξ(t))‖

≤βs(‖(xs(0), zf (0), η(0))‖, t).

Due to the fact that (x(0), z(0), η(0)) ∈ X × Z × V̄, and
X, Z, V̄ are compact subsets, there exists r1 > 0 such that

‖(xs(t), η(t)−Mξ(t))‖ ≤ r1, ∀t ≥ 0. (32)

It is noted that a upper bound of ‖zf (t)‖ independent of ε
can not be obtained from (30). Thus, the next Lyapunov
function candidate is further introduced,

Vf := εz⊤f P2zf . (33)

With a similar proof in above, it can be obtained that, for
ε ∈ (0, ε̄2],

V̇f ≤− γ

2
z⊤f zf − 2G⊤(x, z, η)G(x, z, η)

+ 2γ(η−Mξ)⊤P3MBεG(x, z, η)

− 2x⊤
s P1(B1 −HB2 − εHLB1)G(x, z, η)

≤− γ

2
z⊤f zf + ‖γB⊤

ε M⊤P3(η −Mξ)‖2

+ ‖(B1 −HB2 − εHLB1)
⊤P1xs‖2

From Lemma 3, it can be obtained that B⊤
ε M⊤ =

B⊤M̄⊤+O(ε). Then, from (32), it can be obtained that,

V̇f ≤− γ

2
z⊤f zf + r2. (34)
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where r2 > (‖γB⊤M̄⊤P3‖2 + ‖(B1 − HB2)
⊤P1‖2 +

O(ε))r21. Thus, there exists a class KL function βf , such
that ∀t ≥ 0,

‖zf (t)‖ ≤ βf (‖(x(0), z(0))‖, t) +
√

2r2
γ

.

Thus, there exist ε2 > 0 and r > 0 such that for any ε ∈
(0, ε̄], and t ≥ 0, (x(t), z(t), η(t)) ∈ B(r) := {{(x, z, η) ∈
R

nx × R
nz × R

nvq : ‖(x, z, η)‖ ≤ r}.

Then, the proof of Theorem 1 is presented.

From Lemma 1, it can be obtained that

lim
γ→0

‖P1(γ)‖∞ = 0, lim
γ→0

‖P2(γ)‖∞ = 0.

Then, from the definition of K1 and K2 in Lemma
2, it is easily obtained that lim

γ→0
‖K1(γ)‖∞ = 0 and

lim
γ→0

‖K2(γ)‖∞ = 0. Besides, from Lemma 3,

B⊤
ε M⊤ = B⊤M̄⊤ +O(ε), (35)

thus lim
γ→0

‖γB⊤
ε M⊤P3‖∞ = 0.

From the definition of T−1
c in (25), it can be obtained

that

B⊤
ε (T−1

c )⊤Pε(γ)

=
(

(B⊤
1 −B⊤

2 H⊤+O(ε))P1(γ) (B
⊤
2 +O(ε))P2(γ)

)

.

(36)

Thus, lim
γ→0

‖B⊤
ε (T−1

c )⊤Pε(γ)T
−1
c ‖∞ = 0.

Since (x(0), z(0), η(0)) ∈ X×Z× V̄, and X×Z× V̄ is the
compact set, it can be obtained that lim

γ→0
‖u(γ)‖∞,0 = 0.

From Lemma 4, for any γ ∈ (0, 1] there exist ε̄1 > 0
and r > 0 such that for any ε ∈ (0, ε̄1], and t ≥ 0,
(x(t), z(t), η(t)) ∈ B(r) := {{(x, z, η) ∈ R

nx × R
nz ×

R
nvq : ‖(x, z, η)‖ ≤ r}. Thus, there exists an γ∗ ∈ (0, 1],

such that for all γ ∈ (0, γ∗], ‖u(t)‖∞,0 ≤ Υ. Let γ ∈
(0, γ∗]. In this case, for all (x(0), z(0), η(0)) ∈ X×Z× V̄,
TTSS (8) can always be rewritten as (24). Thus, with
similar proof of Lemma 4, there exist 0 < ε̄ ≤ ε̄1 such
that, for any ε ∈ (0, ε̄], lim

t→∞
‖x(t)‖ = 0, lim

t→∞
‖z(t)‖ = 0,

lim
t→∞

‖η(t)‖ = 0. Thus, the equilibrium point (x, z, η) =

(0, 0, 0) of the corresponding closed-loop system (7)-(8)
is asymptotically stable with X×Z× V̄ being contained
in its basin of attraction. Thus, the semi-global stabi-
lization problem of system (8) can be solved. The proof
is complete.

6.2 Proof of Theorem 2

From (36), it can be obtained that

B⊤
ε (T−1

c )⊤Pε(γ)T
−1
c

=
(

(B⊤
1 −B⊤

2 H⊤+O(ε))P1(γ) (B⊤
2 +O(ε))P2(γ)

)

T−1
c

=
(

B⊤
1 P1(γ)+B⊤

2 (H⊤P1(γ)+P2(γ)L) B⊤
2 P2(γ)

)

+O(ε).

Meanwhile, from (26), it can be obtained that

L = Λ−1
22 Λ21 +O(ε), H = Λ12Λ

−1
22 +O(ε).

Thus

B⊤
ε (T−1

c )⊤Pε(γ)T
−1
c = Gc +O(ε). (37)

From Lemma 2, 3 and the proof in above, there exists
ε̄1 > 0, such that for any ε ∈ (0, ε̄1], we have that the
matrix J is Hurwitz, and

M =M̄E +O(ε) = M̄Ē +O(ε). (38)

Define J̄ :=

(

Φ ΓC

γBεB
⊤M̄⊤P3 Λ̄ε

)

, where Λ̄ε = Λε −

Bε(Gc + γB⊤M̄⊤P3M̄Ē). From (37) and (38), we have

J̄ = J +O(ε).

Thus, with a similar proof of theorem 4, there exists
small enough 0 < ε̄2 ≤ ε̄1, such that for all ε ∈ (0, ε̄], J
and J̄ are both Hurwitz.

Then, from (38) and the continuity of the solution to
the controller parameters, for any γ ∈ (0, 1], with a sim-
ilar proof of Lemma 4, there similarly exist 0 < ε̄ < ε2
and r > 0 such that for any ε ∈ (0, ε̄], and t ≥ 0,
(x(t), z(t), η(t)) ∈ B(r) := {{(x, z, η) ∈ R

nx × R
nz ×

R
nvq : ‖(x, z, η)‖ ≤ r}. Similarly, it can be obtained that

there exists γ∗ ∈ (0, 1], such that for all γ ∈ (0, γ∗] and
for all (x(0), z(0), η(0)) ∈ X×Z× V̄, ‖u(t)‖∞,0 ≤ Υ. Let
γ ∈ (0, γ∗]. Then, we can ensure that σ(u(t)) = u(t),
∀t ≥ 0, and TTSS (8) with the controller (17) can al-
ways be rewritten as

(

η̇

ξ̇

)

= J̄

(

η

ξ

)

. (39)

Since J̄ is Hurwitz, the origin of the corresponding
closed-loop system (8)-(17) is asymptotically stable
with X × Z × V̄ being contained in its basin of attrac-
tion. The semi-global stabilization problem of system
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(8) can be solved under the controller (17).

6.3 Proof of Theorem 3

Denote

J̃(w) :=

(

Φ ΓC(w)

γBε(w)B
⊤(0)M̄⊤P3 Λ̃ε

)

,

where C(w) =
(

C1(w) C2(w)
)

, Λ̃ε = Aε(w) +

Bε(W )K − Bε(W )(Gc + γB⊤(0)M̄⊤P3M̄Ē), Aε(w) =
(

A11(w) A12(w)
A21(w)

ε

A22(w)
ε

)

, Bε(w) =

(

B1(w)
B2(w)

ε

)

.

Based on Theorem 2, there exists small enough ε̄1 > 0,
such that for all ε ∈ (0, ε̄1], the matrix J̄ is Hurwitz.
Thus, there exists an open neighborhood W1 of the ori-
gin, such that for any w ∈ W1, J̃(w) is Hurwitz. Then,
the intersection of the spectrum of S and J̄ is empty.
There exist matrices Π and Σ uniquely defined such that

(

Σ

Π

)

S = J̃(w)

(

Σ

Π

)

+

(

ΓQ(w)

Fε

)

, (40)

where Fε = (F⊤
1 ,

F⊤

2

ε
)⊤. It noted that the first equation

above leads to C(w)Π +Q(w) = 0, since S and Φ have
the same eigenvalues [9, Theorem 1.7, pages 24-26].

Define the following coordinate transformation

ξ̄ := ξ −Πv, η̄ := η − Σv. (41)

When ‖u(t)‖∞,0 ≤ Υ, the closed-loop system (1), (18)
in the coordinates (η̄, ξ̄) is

(

˙̄η
˙̄ξ

)

= J̃(w)

(

η̄

ξ̄

)

, e = Cξ̄. (42)

As Assumption 4 holds, there exists an open neigh-
borhood W2 ⊂ W1 of the origin, such that for any
w ∈ W2, the output regulation solution of system (1)
exists and can be defined as ξ := Πcv, u := Γcv, where
Πc := (Πx,Πz) and Γc satisfy

ΠxS = A11(w)Πx +A12(w)Πz +B1(w)Γc + F1(w),

εΠzS = A21(w)Πx +A22(w)Πz +B2(w)Γc + F2(w),

0 = C1(w)Πx + C2(w)Πz +Q(w). (43)

It can be easily obtained that the output regulation of
system (1) can be achieved under controller (18), when
there is no input saturation. Thus, we also have ξ = Πv
and u = K1Πxv+K2Πzv−GcΠv+ γB⊤

ε EM̄⊤P3(Σv−

EM̄Πv). Thus, Π = Πc and lim
γ→0

K1Πx+K2Πz −GcΠ+

γB⊤
ε EM̄⊤P3(Σ− EM̄Π) = lim

γ→0
γB⊤

ε EM̄⊤P3Σ = Γc.

It is noted that the exact solution (Πx,Πz,Γc) of (43)
is hard to be obtained. The approximate solution
(Π̄x, Π̄z, Γ̄c) is introduced in place of (Πx,Πz,Γc), which
satisfying

Π̄xS = A11Π̄x +A12Π̄z +B1Γ̄c + F1,

0 = A21Π̄x +A22Π̄z +B2Γ̄c + F2,

0 = C1Π̄x + C2Π̄z +Q. (44)

With a similar proof of Lemma 3, there exist small
enough 0 < ε̄2 ≤ ε1, such that for all ε ≤ ε̄2, the
equation (44) has an solution, and (Πx,Πz,Γc) =
(Π̄x, Π̄z, Γ̄c) +O(ε) +O(w).

It is noted that the exact solution (Π,Σ) of (40) is hard
to be obtained. The approximate solution (Π̄, Σ̄) is in-
troduced in place of (Π,Σ), which satisfying

Ê

(

Σ̄

Π̄

)

S = Ĵ

(

Σ̄

Π̄

)

+

(

ΓQ

F

)

, (45)

where Ê = diag{Invq, Ē}, Ĵ =

(

Φ ΓC

γBB⊤M̄⊤P3 EΛ̄ε

)

=

diag{Invq, E}J̄ . With a similar proof of Lemma 3, the
equation (45) has an unique solution, and (Π,Σ) =
(Π̄, Σ̄) + O(ε) + O(w). Thus, with the approximate so-
lution (Π̄, Σ̄), for any given compact sets X, Z, V, V̄ all
containing the origin, there always exist compact sets
Xr ⊂ R

nx , Zr ⊂ R
nz , V̄r ⊂ R

nvq containing the origin
such that for all (x(0), z(0), v(0), η(0)) ∈ X×Z×V× V̄,
(ξ̄(0), η̄(0)) ∈ Xr × Zr × V̄r.

Consider the Lyapunov function

V̄ := ξ̄⊤(T−1
c )⊤Pε(γ)T

−1
c ξ̄+γ(η̄−Mξ̄)⊤P3(η̄−Mξ̄).

With a similar proof of theorem 2, there exist 0 < ε̄3 ≤ ε2
and r > 0 such that for any ε ∈ (0, ε̄3], and t ≥ 0,
(ξ̄(t), η̄(t)) ∈ B̄(r) := {{(ξ̄, η̄) ∈ R

nx × R
nz × R

nvq :
‖(ξ̄, η̄)‖ ≤ r}. From (18), we have u = (K − Gc)(ξ̄ +
Πv)+γB⊤

ε EM̄⊤P3(η̄−EM̄(ξ̄+Πv))+γB⊤
ε EM̄⊤P3Σv,

whereK =
(

K1 K2

)

. Thus, lim
γ→0

u = B⊤
ε EM̄⊤P3Σv =

Γcv = Γ̄cv + O(ε)v + O(w)v. Denote V = {v ∈ R
nv :

‖v‖ ≤ v̄} with v̄ > 0 and

sup
|v|≤v̄,t≥t0

|Γ̄ce
S(t−t0)v|∞ < Υ.

In this way, there exist 0 < ε̄ ≤ ε3 and an open neigh-
borhood W ⊂ W2 of the origin, such that there exists
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a small enough γ∗ ∈ (0, 1], such that for all ε ∈ (0, ε̄],
w ∈ W and γ ∈ (0, γ∗], ‖u(t)‖∞,0 ≤ Υ. Let γ ∈ (0, γ∗],
then TTSS (1), (18) can always be rewritten as (42).

Since J̃(w) is Hurwitz, the origin of the system is stable,
which means that lim

t→∞
‖e(t)‖ = lim

t→∞
‖C(w)ξ̄‖ = 0. The

proof is complete.
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