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This paper investigates the robust semi-global output regulation of uncertain linear two time scales systems with input saturation. In this setup, one cannot apply off-the-shelf techniques to reject structural uncertainties due to numerical issues caused by the two time scales but also due to technical issues generated by the input saturation. To solve this problem we combine internal model principle with low gain technique and singular perturbation theory. Explicitly, the output regulation controller design is based on the computation of the solutions of a Sylvester equation which are hard to get in the two time scales settings. To overcome this, we propose an easily solvable equation and the existence and uniqueness of its solution are guaranteed under some standard assumptions. Accordingly, an internal model based controller is designed such that the semiglobal robust output regulation problem can be solved. In order to cope with the input saturation we impose that the ultimate upper bound of the infinity-norm of the exosystem state is limited and satisfies certain constrains. Finally, a numerical example is provided to illustrate the effectiveness of the results.

Introduction

Systems involving processes that evolve on both fast and slow time scales appear in many practical applications such as robotics [START_REF] Siciliano | A singular perturbation approach to control of lightweight flexible manipulators[END_REF], biology [START_REF] Wang | Modelling periodic oscillation of biological systems with multiple timescale networks[END_REF] and electric power management [START_REF] Peponides | Singular perturbations and time scales in nonlinear models of power systems[END_REF][START_REF] Jiang | A two-time scale dynamic correction method for fifth-order generator model undergoing large disturbances[END_REF]. A small positive parameter commonly is introduced to mathematically describe the time-scale separation between the fast and slow dynamics. Thus, numerical issues often appear and hamper the applica-tion of the traditional control design techniques. Tailored methodological tools for two-time-scale systems (TTSSs) are therefore needed, see e.g., [START_REF] Kokotović | Singular perturbation methods in control: analysis and design[END_REF][START_REF] Khalil | Nonlinear systems (3rd Edition)[END_REF][START_REF] Rejeb | Stability analysis of a general class of singularly perturbed linear hybrid systems[END_REF][START_REF] Yang | Exponential stability of singularly perturbed switched systems with all modes being unstable[END_REF].

In this context, we focus on the robust regulation problem for uncertain linear time-invariant TTSSs. This problem has been a fundamental control problem since 1970s [START_REF] Byrnes | Output regulation of uncertain nonlinear systems[END_REF][START_REF] Huang | Nonlinear output regulation: theory and applications[END_REF][START_REF] Wang | Pre-processing nonlinear output regulation with nonvanishing measurements[END_REF] and is relevant in many applications such as the control of unmanned aerial vehicles [START_REF] Tran | Control augmentation system design for quad-tilt-wing unmanned aerial vehicle via robust output regulation method[END_REF], spacecrafts [START_REF] Chen | Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control[END_REF] or power systems [START_REF] Silani | Robust output regulation for voltage control in dc networks with time-varying loads[END_REF]. By achieving robust output regulation, we mean that the system's output asymptotically tracks some reference input regardless the external disturbance and some structural uncertainty, while the internal stability is ensured. It is noteworthy that the reference input and external disturbance are generated by an exosystem. Over the last decade, the problem received an increasing attention and the internal model principle has been widely utilized for the robust output regulation of linear uncertain systems [START_REF] Paunonen | Controller design for robust output regulation of regular linear systems[END_REF][START_REF] Liang | Robust output regulation of linear systems by event-triggered dynamic output feedback control[END_REF] and nonlinear uncertain systems [START_REF] Serrani | Global robust output regulation for a class of nonlinear systems[END_REF][START_REF] Serrani | Semi-global nonlinear output regulation with adaptive internal model[END_REF][START_REF] Liu | Cooperative robust output regulation for a class of nonlinear multi-agent systems subject to a nonlinear leader system[END_REF][START_REF] Astolfi | Harmonic internal models for structurally robust periodic output regulation[END_REF]. However, to the best of our knowledge, only few results focus on systems exhibiting two time scales. Ignoring the structural uncertainty, the output regulation problem for linear Takagi-Sugeno fuzzy TTSSs has been handled in [START_REF] Chen | Output regulation of nonlinear singularly perturbed systems based on t-s fuzzy model[END_REF]. For specific classes of nonlinear TTSSs in which only the slow subsystem is subject to the disturbance generated by the exosystem and the output regulation error is independent of the fast subsystem the problem has been addressed in [START_REF] Yu | Output regulation of nonlinear singularly perturbed systems[END_REF]. It is important to note that the control designs in [START_REF] Chen | Output regulation of nonlinear singularly perturbed systems based on t-s fuzzy model[END_REF][START_REF] Yu | Output regulation of nonlinear singularly perturbed systems[END_REF] are not robust against the structural uncertainty since they require the exosystem's states. In other words, the output tracking error of the system cannot asymptotically converge to the origin even if the structural uncertainty is very small. Moreover, most works on robust output regulation problem ignore the input saturation, which often appears in practice due to the limitations of physical devices. If the input saturation is not carefully handled it may either damage the installation or lead to poor control performances. The small gain design technique is an effective method for input saturation problem of asymptotically null-controllable linear system [START_REF] Schmitendorf | Null controllability of linear systems with constrained controls[END_REF][START_REF] Lin | Semi-global exponential stabilization of linear systems subject to input saturation via linear feedbacks[END_REF][START_REF] Lin | Low gain feedback[END_REF], and has been utilized for the output regulation of linear systems [START_REF] Lin | Output regulation for linear systems subject to input saturation[END_REF] and singular linear systems [START_REF] Lan | Semiglobal stabilization and output regulation of singular linear systems with input saturation[END_REF] with input saturation. Furthermore, for linear systems [START_REF] Santis | Output regulation for linear systems with anti-stable eigenvalues in the presence of input saturation[END_REF][START_REF] Santis | On the output regulation for linear systems in the presence of input saturation[END_REF] and discrete-time singular linear systems [START_REF] Jafari | Robust output regulation in discrete-time singular systems with actuator saturation and uncertainties[END_REF] with anti-stable eigenvalues and subject to input saturation, the output regulation problem is achieved within the specific initial region, and the nonlinear design technique is used as in [START_REF] Chen | Composite nonlinear feedback control for linear systems with input saturation: theory and an application[END_REF][START_REF] He | Composite nonlinear control with state and measurement feedback for general multivariable systems with input saturation[END_REF] to enlarge corresponding initial region. However the proposed controllers are not robust against structured uncertainty which is an important property in the output regulation setting as pointed out in [START_REF] Paunonen | Controller design for robust output regulation of regular linear systems[END_REF][START_REF] Liang | Robust output regulation of linear systems by event-triggered dynamic output feedback control[END_REF][START_REF] Bin | About robustness of control systems embedding an internal model[END_REF]. Moreover, the aforementioned results are for single time scale systems. As far as we know, no results are available for robust output regulation of TTSSs with input saturation.

In this context, we consider the plant modeled by uncertain linear TTSSs subject to external disturbance and input saturation. Our objective is to design a controller, which handle the robust semi-global output regulation problem. To avoid the continuous monitoring of exosystem, an internal model is introduced as in [START_REF] Byrnes | Output regulation of uncertain nonlinear systems[END_REF][START_REF] Huang | Nonlinear output regulation: theory and applications[END_REF][START_REF] Bin | Internal models in control, bioengineering, and neuroscience[END_REF]. We first investigate the semi-global stabilization of the augmented system consisting of the internal model system and the original uncertain TTSS without the external disturbance. Due to the numerical issues caused by the two time-scale evolution and the input saturation nonlinearity, the traditional control design techniques for single time scale linear systems in [START_REF] Huang | Nonlinear output regulation: theory and applications[END_REF][START_REF] Paunonen | Controller design for robust output regulation of regular linear systems[END_REF] cannot be directly applied here. Thus, the low gain feedback technique is combined with singular perturbation theory to design the stabilizing controller. It is also noted that, different from [START_REF] Yu | Output regulation of nonlinear singularly perturbed systems[END_REF][START_REF] Chen | Output regulation of nonlinear singularly perturbed systems based on t-s fuzzy model[END_REF], a more general case is considered, i.e., both the slow and fast subsystems are subject to external disturbance, and the output tracking error relies on both the fast and slow states. In this case, solving the corresponding Sylvester equation as constructed in [START_REF] Huang | Nonlinear output regulation: theory and applications[END_REF][START_REF] Paunonen | Controller design for robust output regulation of regular linear systems[END_REF] would suffer from numerical issues. Thus, an eas-ily solvable Sylvester equation is proposed and the existence and uniqueness of its solution are guaranteed under some standard assumptions. Accordingly, the stabilizing controller is redesigned to ensure that the origin of the augmented system is asymptotically stable regardless some small structural uncertainty. Then, an internal model based tracking controller is further designed such that the robust semi-global output regulation problem can be handled. The main contributions of this paper is threefold.

1) The robust semi-global output regulation problem is handled for uncertain linear systems exhibiting two time scales and input saturation. 2) An internal model based controller is designed by combining the low gain technique and singular perturbation theory. As a result, the monitoring of the exosystem's states can be avoided and the output regulation error can converge to the origin asymptotically regardless some small structural uncertainty. 3) To avoid the numerical issues, an easily solvable equation is proposed to provide the solution of corresponding Sylvester function needed for control design. Besides, the existence and uniqueness of its solution are guaranteed under some standard assumptions.

The rest of the paper is organized as follows. The problem formulation is stated in Section II. The robust semiglobal output regulation of uncertain linear TTSS with input saturation is investigated in Section III. An illustrative example is presented in Section IV. Conclusions are drawn in Section V.

Notation. R m×n denotes the set of m × n real matrices. The notation I n stands for the n-dimensional unit matrix. For a given real symmetric matrix P , P > 0 means that P is a positive definite matrix. The notation • denotes the Euclidean norm for vectors or the induced 2-norm for matrices depending on the context. For a matrix A, V ec(A) denotes the vectorization of A. For a piecewise continuous bounded function v : [0, ∞) → R m , and

T ≥ 0, v(t) ∞,T sup t≥T v(t) ∞ . The func- tion f : [0, ∞) 2 → R m×n is said to be O(ε) if there exist positive constants k and ε * strictly positive such that f (t, ε) ≤ kε, for all t ∈ [0, ∞) and ε ∈ [0, ε * ].

Problem Statement

In this work, we address the problem of robust output regulation for the class of TTSSs described below. Notice that, for convenience, we often neglect the time argument of the variables.

   ẋ = A 11 (w)x+A 12 (w)z+B 1 (w)σ(u)+F 1 (w)v, ε ż = A 21 (w)x+A 22 (w)z+B 2 (w)σ(u)+F 2 (w)v, e = C 1 (w)x+C 2 (w)z+Q(w)v, (1) 
where x ∈ R nx and z ∈ R nz are the slow and the fast states, respectively, ε is a small positive parameter describing the time-scale separation between the slow and the fast dynamics, u ∈ R p is the control input, e ∈ R q is the output regulation error, v ∈ R nv is the state of the exosystem, representing both external disturbances and time-varying references input and it is generated by an autonomous exosystem of the form

v = Sv, (2) 
where S is a constant matrix with appropriate dimensions. The matrices Q(w), A ij (w), B i (w), F i (w), C i (w), i, j = 1, 2, are all continuous matrix functions of w ∈ W with appropriate dimensions, where W is an open neighborhood of the origin. For the sake of convenience, (Q(0),

A ij (0), B i (0), F i (0), C i (0)) is denoted by (Q, A ij , B i , F i , C i ), i, j = 1, 2
, which are all known constant matrices. σ(•) is a vector-valued saturation function with

σ(u) = (σ(u 1 ), σ(u 2 ), . . . , σ(u p )), (3) 
where

σ(u i ) =    u i , if |u i | ≤ Υ -Υ, if u i < -Υ Υ, if u i > Υ,
where Υ is the saturation level. The goal of this paper is to design a state-feedback controller

η = Φη + Γe, u = K 1 x + K 2 z + G(x, z, η), (4) 
where η ∈ R nη , such that the semi-global output regulation problem of TTSS (1) can be handled, as formalized next. It is noted that the design of controller (4) does not require the information of the state of the exosystem and is independent of parameter ε.

Definition 1

The robust semi-global output regulation problem of TTSS (1) is solved under the controller in the form of (4), if for any priori given compact subsets X ⊂ R nx , Z ⊂ R nz , and V ⊂ R nvq all containing the origin, there exists ε > 0 such that for any ε ∈ (0, ε],

(1) (Internal Stability) When v = 0 and w = 0, the equilibrium point (x, z, η) = (0, 0, 0) of the corresponding closed-loop system composed of (1) and ( 4) is asymptotically stable with X × Z × V being contained in its basin of attraction. (2) (Robust Output Regulation) There exists a compact subset V ⊂ R nv containing the origin and some open neighborhood W of the origin, such that, for any w ∈ W, any (x(0), z(0), v(0), η(0)) ∈ X × Z × V× V, the trajectories of the closed-loop system composed of (1), ( 2) and (4) are bounded for all t ≥ 0, and satisfies lim t→∞ e(t) = 0.

We remark that the compact set V, i.e. the size of the admissible exosignals, cannot be arbitrarily large due to the presence of the input saturation. On the other hand, the size of the compact set of initial conditions X ⊂ R nx , Z ⊂ R nz , and V ⊂ R nvq can be arbitrarily chosen, i.e. we are in a semi-global context. Furthermore, note that to handle the robust semi-global output regulation problem in above, controller (4) should be applicable for any ε ∈ (0, ε] and w ∈ W to ensure both disturbance rejection and asymptotic tracking, i.e., the proposed controller should be robust to parameters ε and w. Due to the numerical issues caused by the small positive parameter ε, the eigenvalues of the control matrix and the exact solution of the corresponding Sylvester equation would be hard to obtained. The control design techniques for the single time scale system subject to input saturation in [START_REF] Lin | Output regulation for linear systems subject to input saturation[END_REF][START_REF] Santis | On the output regulation for linear systems in the presence of input saturation[END_REF] are no longer applicable. The nonlinearity caused by input saturation would be harder to handle and the stability analysis would be more complicated.

To achieve the goal, the next four assumptions and one Lemma are presented.

Assumption 1 The eigenvalues of matrix S are semisimple with zero real parts.

Assumption 1 is common and standard for ensuring the neutrally stability of the exosystem.

Assumption 2

The matrix A 22 is invertible.

Assumption 2 is essential to decouple the slow and fast dynamics, which is standard in the singularly perturbed literature, see, e.g., [START_REF] Kokotović | Singular perturbation methods in control: analysis and design[END_REF].

Assumption 3

The pairs (A 0 , B 0 ) and (A 22 , B 2 ) are asymptotically null controllable with bounded controls (ANCBC), i.e.

(1) The pairs (A 0 , B 0 ) and (A 22 , B 2 ) are stabilizable (2) All eigenvalues of A 0 , A 22 are in the closed left half s-plane,

where A 0 := A 11 -A 12 A -1 22 A 21 , B 0 := B 1 -A 12 A -1 22 B 2 .
Assumption 3 (also being used in [START_REF] Schmitendorf | Null controllability of linear systems with constrained controls[END_REF][START_REF] Lin | Semi-global exponential stabilization of linear systems subject to input saturation via linear feedbacks[END_REF][START_REF] Lin | Low gain feedback[END_REF]) is common and instrumental for the design of semi-global asymptotically stabilizing feedback gains for the reduced order and boundary layer subsystems. We recall now the following Lemma from [START_REF] Lin | Low gain feedback[END_REF], which is a direct consequence of precious assumption.

Lemma 1 ([25]

) Under Assumption 3, for any γ ∈ (0, 1], there exist unique real symmetric matrices P 1 > 0, P 2 > 0, which solve the following algebraic Riccati equations:

A ⊤ 0 P 1 + P 1 A 0 -2P 1 B 0 B ⊤ 0 P 1 + γI nx = 0, (5) 
A ⊤ 22 P 2 + P 2 A 22 -2P 2 B 2 B ⊤ 2 P 2 + γI nz = 0. (6) Moreover, lim γ→0 P 1 (γ) = 0 nx×nx , lim γ→0 P 2 (γ) = 0 nz×nz .
Finally, we introduce the following non-resonance condition, necessary in the context output regulation (see, e.g. [START_REF] Byrnes | Output regulation of uncertain nonlinear systems[END_REF]).

Assumption 4

The matrix

A ε -λI B ε C 0 has inde-
pendent rows for each λ being an eigenvalues of S, where

A ε = A 11 A 12 A21 ε A22 ε , B ε = B 1 B2 ε , C = C 1 C 2 .
Assumption 4 is standard and instrumental for the output regulation of TTSSs ( 1), which has also been used in [START_REF] Byrnes | Output regulation of uncertain nonlinear systems[END_REF].

Main result

In this section, the semi-global stabilization and output regulation problem of TTSSs are investigated.

Semi-global stabilization of TTSSs

In this subsection, the semi-global stabilization problem of TTSSs is studied. The goal is to design a controller

u = K 1 x + K 2 z + G(x, z, η), (7) 
such that the semi-global stabilization problem defined next can be solved for the following augmented TTSSs

   η = Φη + Γ(C 1 x + C 2 z), ẋ = A 11 x + A 12 z + B 1 σ(u), ε ż = A 21 x + A 22 z + B 2 σ(u), (8) 
where the internal model unit of η ∈ R nvq is designed as in [START_REF] Byrnes | Output regulation of uncertain nonlinear systems[END_REF][START_REF] Huang | Nonlinear output regulation: theory and applications[END_REF] with

Φ =        0 I q 0 . . . 0 0 0 I . . . 0 . . . . . . . . . . . . . . . -s 0 I q -s 1 I q -s 2 I q . . . -s nv-1 I q        , Γ = I q 0 q . . . 0 q ⊤ , (9) 
and the real numbers s 0 , . . . , s nv-1 denote the coefficients of the minimal polynomial of the matrix S.

Definition 2

The semi-global stabilization problem of system (8) is solved under the controller in the form of [START_REF] Rejeb | Stability analysis of a general class of singularly perturbed linear hybrid systems[END_REF], if for any priori given compact subsets X ⊂ R nx , Z ⊂ R nz , and V ⊂ R nvq all containing the origin, there exists ε > 0 such that for any ε ∈ (0, ε] and all (x(0), z(0), η(0

)) ∈ X × Z × V, lim t→∞ x(t) = 0, lim t→∞ z(t) = 0, lim t→∞ η(t) = 0.
Before the controller design, next lemma is introduced.

Lemma 2 ( [START_REF] Kokotović | Singular perturbation methods in control: analysis and design[END_REF]) Suppose Assumption 2 holds. There exists ε > 0 such that for any ε ∈ (0, ε], the origin of the system (10) is exponentially stable,

ẋ ε ż = Λ 11 Λ 12 Λ 21 Λ 22 x z ( 10 
)
where

Λ ij := A ij + B i K j (γ), for i, j = 1, 2, K 1 (γ) := (1 -K 2 (γ)A -1 22 B 2 )K 0 (γ) + K 2 (γ)A -1 22 A 21 , K 0 (γ) := B ⊤ 0 P 1 (γ), K 2 (γ) := B ⊤ 2 P 2 (γ), P 1 (γ), P 2 (γ)
are the solutions of ( 5) and (6) with γ > 0.

The design of the controller ( 7) is based on a two-step procedure. Firstly, the control gains K 1 and K 2 are design based on Lemma 2 for the stabilization of two-timescale system of (x, z). Then the so-called forwarding approach inspired by [START_REF] Astolfi | Harmonic internal models for structurally robust periodic output regulation[END_REF] is applied as follows to design G(x, z, η) for the stabilization of the system of η.

Based on Lemma 2, there exists ε1 > 0 such that for any ε ∈ (0, ε1 ], the intersection of the spectrum of Λ ε :=

Λ 11 Λ 12 Λ21 ε Λ22 ε
(which is Hurwitz) and Φ (which is neutrally stable) is empty. Thus, the matrix M is uniquely defined as the solution of the following Sylvester function

M Λ ε = ΦM + ΓC. ( 11 
)
Since Φ is neutrally stable, there exists a real symmetric matrix P 3 > 0, which solves the following inequality:

Φ ⊤ P 3 + P 3 Φ ≤ 0. ( 12 
)
With assuming that the exact solution of ( 11) is obtained, the next Theorem is firstly proposed , whose proof is given in the appendix.

Theorem 1 Suppose Assumptions 1-4 hold. For any priori given compact subsets X ⊂ R nx , Z ⊂ R nz , and V ⊂ R nvq all containing the origin, there exists ε > 0 such that ∀ε ∈ (0, ε], the semi-global stabilization problem is solvable for system [START_REF] Yang | Exponential stability of singularly perturbed switched systems with all modes being unstable[END_REF] with controller (7) when

• K 1 , K 2 are defined as in Lemma 2, • G(x, z, η) = -B ⊤ ε (T -1 c ) ⊤ P ε (γ)T -1 c ξ+γB ⊤ ε M ⊤ P 3 (η- M ξ
) with ξ := (x, z), P ε (γ) := diag{P 1 (γ), εP 2 (γ)}, P 1 (γ) and P 2 (γ) as defined in Lemma 2, M and Φ as defined [START_REF] Wang | Pre-processing nonlinear output regulation with nonvanishing measurements[END_REF] and [START_REF] Tran | Control augmentation system design for quad-tilt-wing unmanned aerial vehicle via robust output regulation method[END_REF], respectively.

Remark 1 Due to the two-time-scale feature, the traditional control design techniques for input saturation are not applicable. Thus, the singular perturbed theory is combined with low gain feedback technique to design the stabilizing controller [START_REF] Rejeb | Stability analysis of a general class of singularly perturbed linear hybrid systems[END_REF].

It is noted that γB ⊤ ε M ⊤ P 3 ∞ and B ⊤ ε (T -1 c ) ⊤ P ε (γ)T -1 c
∞ will not go to infinity when ε tends to be zero from (35) and (36) as shown in the proof of Theorem 1 in Appendix.

However, since ε is very small, it is hard to get exact solutions M for (11) due to the numerical issues. The controller designed in Theorem 1 would be hard to apply, which is also one of the challenges in this context. To handle it, an easily solved equation is proposed to replace [START_REF] Wang | Pre-processing nonlinear output regulation with nonvanishing measurements[END_REF] in the next lemma.

Lemma 3 Suppose Assumption 1-3 hold. There exists ε > 0 such that for any ε ∈ (0, ε], the equation ( 13) has an unique solution M ,

M Λ = Φ M Ē + ΓC, ( 13 
)
where

Ē = diag{I nx , 0}, Λ := Λ 11 Λ 12 Λ 21 Λ 22
has the same definition as in [START_REF] Huang | Nonlinear output regulation: theory and applications[END_REF].

Besides, it satisfies M E -1 = M + O(ε) with E = diag{I nx , εI nz }.
Proof 1 From Lemma 2, there exists ε1 > 0 such that for any ε ∈ (0, ε1 ], Λ ε is Hurwitz. Then, Λ = EΛ ε and

Λ -1 = Λ -1 ε E -1 .
In this way, solving the equation ( 13) is equal to solving

M = Φ M ĒΛ -1 + ΓCΛ -1 , (14) 
which is also equal to solving

(I nvq×(nx+nz) -Φ⊗ ĒΛ -1 )Vec( M ) = Vec(ΓCΛ -1
). ( 15)

From (27), we have Λ -1 ε = T c A -1 D T -1 c , where A -1 D = Λ -1 s 0 0 εΛ -1 f , Λ s = A s + B s K s and Λ f = A f + B f K 2 .
Thus,

ĒΛ -1 = ĒT c A -1 D T -1 c E -1 = I nx εH 0 0 A D T -1 c E -1 = Λ -1 s ε 2 HΛ -1 f 0 0 T -1 c E -1 = Λ -1 s (I nx -εHL)+ε 2 HΛ -1 f L -Λ -1 s H +ε 2 HΛ -1 f 0 0 .
Obviously, there exists 0 < ε3 ≤ ε1 such that for any ε ∈ (0, ε3 ], Λ -1 s (I nx -εHL) + ε 2 HΛ -1 f L is always Hurwitz. Thus, matrix I nvq×(nx+nz) -Φ ⊗ ĒΛ -1 has no zero eigenvalues, which means that equation [START_REF] Chen | Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control[END_REF] has an unique solution M .

From [START_REF] Wang | Pre-processing nonlinear output regulation with nonvanishing measurements[END_REF] and (13), we have 16)

(M -M E)Λ ε = Φ(M -M E) + Φ M (E -Ē). (
Since Λ ε is Hurwitz, it can be obtained that,

(M E -1 -M ) = Φ(M E -1 -M )Λ -1 +εΦ M (I nx+nz -Ē)Λ -1 .
Thus, we have

(I nvq×(nx+nz) -Φ ⊗ Λ -1 )Vec(M E -1 -M ) =εVec(Φ M (I nx+nz -Ē)Λ -1 ).
Since the intersection of the spectrum of Λ ε and Φ is empty,

I nvq×(nx+nz) -Φ ⊗ Λ -1 is invertible. Thus Vec(M E -1 -M ) =ε (I nvq×(nx+nz) -Φ ⊗ Λ -1 ) -1 Vec(Φ M (I nx+nz -Ē)Λ -1 ) =O(ε),
which also means that M E -1 = M + O(ε). The proof is complete.

From Lemma 3, the solution M of (13) can always be exactly obtained. Besides, when ε is very small, M can be regarded as an approximated solution of [START_REF] Wang | Pre-processing nonlinear output regulation with nonvanishing measurements[END_REF].

Accordingly, the controller can be designed as follows, [START_REF] Serrani | Global robust output regulation for a class of nonlinear systems[END_REF] where

u = K 1 x + K 2 z -G c ξ + γB ⊤ M ⊤ P 3 (η -M Ēξ),
B = (B ⊤ 1 , B ⊤ 2 ) ⊤ , K 1 , K 2 , M , P i , i = 1, 2, 3, have the same definition as in above, G c = (B ⊤ 1 P 1 (γ)- B ⊤ 2 (Λ 12 Λ -1 22 ) ⊤ P 1 (γ)+B ⊤ 2 P 2 (γ)Λ -1 22 Λ 21 , B ⊤ 2 P 2 (γ)).
Then, the next theorem is obtained, whose proof is given in the appendix.

Theorem 2 Suppose Assumptions 1-4 hold. For any priori given compact subsets X ⊂ R nx , Z ⊂ R nz , and V ⊂ R nvq all containing the origin, there exists ε > 0 such that for any ε ∈ (0, ε], the semi-global stabilization problem is solvable for system [START_REF] Yang | Exponential stability of singularly perturbed switched systems with all modes being unstable[END_REF] with controller [START_REF] Serrani | Global robust output regulation for a class of nonlinear systems[END_REF].

Remark 2 It is noted that, controller [START_REF] Serrani | Global robust output regulation for a class of nonlinear systems[END_REF] is independent of ε and is the approximation of the de-signed controller in Theorem 1 with G(x, z, η) = -G c ξ +γB ⊤ M ⊤ P 3 (η -M Ēξ)+O(ε)η +O(ε)η. Besides, due to the robustness of the closed-loops systems and the continuity of its solution to the controller parameters, with small enough ε, the controller (17) can still remain unsaturated, and the stabilization of systems (8) can be ensured under controller [START_REF] Serrani | Global robust output regulation for a class of nonlinear systems[END_REF].

Semi-global Output Regulation of TTSSs

In this subsection, the semi-global output regulation problem of TTSSs is studied. To handle the robust output regulation problem of linear two-time-scale systems with input saturation, the internal model principle is combined with low gain feedback technique and singular perturbed theory to design the output regulation controller.

Based on the stabilizing controller [START_REF] Serrani | Global robust output regulation for a class of nonlinear systems[END_REF], the output regulation controller is designed as η = Φη + Γe,

u = K 1 x + K 2 z -G c ξ +γB ⊤ ε E M ⊤ P 3 (η-E M ξ), (18) 
where the matrices G c , K 1 , K 2 , M and P i , i = 1, 2, 3 have same definition as in [START_REF] Serrani | Global robust output regulation for a class of nonlinear systems[END_REF]. Then, the next theorem is proposed, whose proof is given in the appendix.

Theorem 3 Suppose Assumptions 1-4 hold. Given Υ > 0, there exists a compact set V ⊂ R nv containing the origin, and, for any priori given compact subsets X ⊂ R nx , Z ⊂ R nz , and V ⊂ R nvq all containing the origin, there exists ε > 0 such that for any ε ∈ (0, ε], the robust semiglobal output regulation problem stated in Definition 1 is solvable for system (1)-( 2) with the controller [START_REF] Serrani | Semi-global nonlinear output regulation with adaptive internal model[END_REF].

Remark 3

Based on the internal model design, the output regulation problem can be transformed into a stabilization problem with the corresponding coordinate transformation, so the output regulation controller (18) has a similar form with stabilizing controller [START_REF] Serrani | Global robust output regulation for a class of nonlinear systems[END_REF]. Benefiting from the internal model based design, the proposed controller is structurally robust which guarantee the rejection of the small structural disturbance.

The application to single time scale linear systems

The above result is also suitable for single time scale linear systems. Consider system

ẋ = A 0 (w)x + B 0 (w)σ(u) + F 0 (w)v, e = C(w)x + Q(w)v, (19) 
where (A 0 (w), B 0 (w), F 0 (w), C 0 (w), Q 0 (w)) are all continuous matrix functions of w ∈ W with appropriate dimensions and v is generated by exosystem (2). For convenience, (A 0 (0), B 0 (0), F 0 (0), C 0 (0), Q 0 (0)) is denoted by (A 0 , B 0 , F 0 , C 0 , Q 0 ). Suppose the matrix A 0 -λI B 0 C 0 0 has independent rows for each λ being an eigenvalues of S.

Then, the next corollary is proposed. The proof is similar with that of Theorem 3, thus it is omitted here.

Corollary 1 Suppose Assumptions 1, 3 hold. Given Υ > 0, there exists a compact set V ⊂ R nv containing the origin, and, for any priori given compact subsets X ⊂ R nx , and V ⊂ R nv×q all containing the origin, and all (x(0), v(0), η(0)) ∈ X × V × V, there always exists an γ * ∈ (0, 1], such that for all γ ∈ (0, γ * ], the regulator

η = Φη + Γe, u = K 0 (γ)x -B ⊤ 0 P 1 (γ)x+γB ⊤ 0 M ⊤ P 3 (η-M 0 x), ( 20 
)
with K 0 (γ) defined as in Lemma 2, P 1 , P 3 being the solutions of (5), ( 12) and M 0 being the solution of

M (A 0 + B 0 K 0 ) = ΦM 0 + ΓC, ( 21 
)
solves the robust output regulation problem stated in Definition 1.

Illustrative Example

To illustrate the effectiveness of the obtained results, consider two time scales system (1) with ε = 0.01,

A 11 (w) = 10w 1 -5 2w 1 -1 1 4 , A 12 (w) = -2 -3 w 1 2 , A 21 (w) = 1+w 2 2+2w 2 -1-w 2 1 , A 22 (w) = 0 1 -1-w 2 w 2 , B 1 (w) = -1 w 1 -2 , B 2 (w) = w 2 -1 2 + w 2 , F (w) = w 1 -0.2 0 0.1(w 2 -1) -w 2 0.3 0.1 0 0.1 ⊤ , C(w) = 0 w 1 1 1 + w 2 , Q(w) = -0.5 -w 1 0 ,
and exosystem (2) with S = 0 1 -1 0 . Thus, Assumptions 1 and 2 are satisfied.

Then, it can be obtained that

A 0 = A 11 -A 12 A -1 22 A 21 = 0 3 -1 0 , B 0 = B 1 -A 12 A -1 22 B 2 = -8 0 ⊤ . Assump- tion 3 is satisfied.
The simulation is presented with (w 1 , w 2 ) = (0.01, 0.01), (x 1 (0), x 2 (0), z 1 (0), z 2 (0)) = (-2, -5, 5, 15), v(0) = (-22, 0) and Υ = 1. Let γ = 0.005, then from ( 5) and ( 6), it can be obtained that P 1 = 0.0072 -0.0008 -0.0008 0.0224 , P 2 = 0.0302 0.0018 0.0018 0.0337 . Then, controller ( 17) is designed based on Theorem 3.

Then, K 0 := B ⊤ 0 P 1 = 0.0576 -0.0066 , K 2 = B ⊤ 2 P 2 = 0.0266 -0.0655 , K 1 = (1-K 2 A -1 22 B 2 )K 0 + K 2 A -1 22 A 21 = 0.0194 -0.1643 . Denote Φ = 0 1 -1 0 , Γ = 1 0 .
Simulation results are presented in Fig. 123, which show that the output error converges to origin asymptotically without input being saturated, which confirms the effectiveness of Theorem 3. To test the robustness of the designed controller to structural disturbance w, let W = {w|w 1 ∈ (-0.01, 0.01), w 2 ∈ (-0.01, 0.01)}. It can be verified that J(w) is Hurwitz for all w ∈ W, which ensure the internal stability of system (1). Simulation results are presented in Table 1. Table 1 shows that the corresponding upper bound λ min on the real part of all eigenvalues of J(w) and u(t) ∞,0 for a few w when (x 1 (0), x 2 (0), z 1 (0), z 2 (0)) = (-2, -5, 5, 15), v(0) = (-22, 0) and input saturation is ignored.

Table 1 Influence of w w λ min u(t) ∞,0 

w 1 = -0.
w 1 = 0.1, w 2 = -0.2 0.6897 ∞
For the sake of comparison, the simulation for the controller designed by directed solving the output regulator equation is run with same initial state condition as follows. The controller can be designed in a form similar to the one in as follows,

u = g(x, z, v) = K 1 x + K 2 z + Gv, (22) 
where K 1 , K 2 have same definition as in above, G = Γ c -KΠ c , and Γ c , Π c are the solution of the following output regulator equation,

AΠ c + BΓ c + F = EΠ c S, CΠ c + Q = 0, (23) 
where

A = EA ε , B = EB ε . Thus, Γ c = -0.0477 -0.1315 + O(ε) Π c =        -0.2762 0.0908 0.0092 -0.4762 0.19 -0.73 0.31 0.73        + O(ε).
Here, the error part O(ε) of the solution (Γ c , Π c ) is ignored in the simulation, as ε is small. The obtained evolution of the regulation error and input are given in Fig. 45. Obviously, under the proposed controller (18), the system (1) has better performance. It is noted that the input is saturated as shown in Fig. 5 and the controller ( 22) is not robust to the structure uncertainty, so that the output regulation is not achieved under the controller [START_REF] Yu | Output regulation of nonlinear singularly perturbed systems[END_REF] as shown in Fig. 4.

Conclusion

The robust semi-global output regulation problem was investigated for linear TTSSs with input saturation and structural uncertainty. An internal model based state feedback control law has been proposed with combining the low gain feedback technique and singular perturbed theory. As a result, the output regulation error can converge to the origin asymptotically regardless small structural uncertain parameters. It would be interesting in the future to consider the robust output regulation problem for nonlinear TTSSs.

6 Appendix

Proof of Theorem 1

For proving Theorem 1, next Lemma is presented firstly.

Lemma 4 Suppose Assumptions 1-4 hold. Consider system

       η =Φη + Γ(C 1 x + C 2 z), ẋ =A 11 x + A 12 z + B 1 u, ε ż =A 21 x + A 22 z + B 2 u, u =K 1 (γ)x + K 2 (γ)z + G(x, z, η), ( 24 
)
where K 1 (γ), K 2 (γ) and G(x, z, η) have the same definition as in Theorem 1. Then, for any priori given compact subsets X ⊂ R nx , Z ⊂ R nz , and V ⊂ R nvq all containing the origin, and for any γ ∈ (0, 1], for all (x(0), z(0), η(0)) ∈ X × Z × V, there exist ε > 0 such that, for any ε ∈ (0, ε], lim t→∞ x(t) = 0, lim t→∞ z(t) = 0, lim t→∞ η(t) = 0. Moreover, there exists r > 0, such that for any t ≥ 0, (x(t), z(t), η(t)) ∈ B(r

) := {{(x, z, η) ∈ R nx × R nz × R nvq : (x, z, η) ≤ r}.
Proof 2 For the stability analysis, Chang transformation is introduced for the TTSS to separate the slow dynamics from the fast ones, see Chapter 3 in [START_REF] Kokotović | Singular perturbation methods in control: analysis and design[END_REF], which is presented as follows As a result, the system in the (x s , z f ) coordinates is

x s z f := T -1 c x z , (25 
ẋs żf = Λ s 0 0 Λ f ε x s z f + T -1 c B ε G(x, z, η), ( 27 
)
where

Λ s := A s +B s K s , Λ f := A f +B f K 2 , A s := A 0 -εA 12 A -1 22 L(A 11 -A 12 L), B s := B 0 -εA 12 A -1 22 LB 1 , K s := K 1 -K 2 L, A f := A 22 + εLA 12 , B f := B 2 + εLB 1 , (28) 
From the definition of L, H, we have

A s + B s K s = (1 + O(ε))(A 0 + B 0 K 0 ), A f + B f K 2 = (1 + O(ε))(A 22 + B 2 K 2 ).
From ( 5) and (6), A 0 + B 0 K 0 and A 22 + B 2 K 2 are both Hurwitz. Thus, there exist ε1 > 0 such that for any ε ∈ (0, ε1 ], A s + B s K s and A f + B f K 2 are Hurwitz.

Recall that P ε (γ) := diag{P 1 (γ), εP 2 (γ)} and ξ := (x, z).

Consider the Lyapunov function candidate

V :=ξ ⊤ (T -1 c ) ⊤ P ε (γ)T -1 c ξ +γ(η-M ξ) ⊤ P 3 (η -M ξ) =x ⊤ s P 1 x s +εz ⊤ f P 2 z f +γ(η-M ξ) ⊤ P 3 (η-M ξ). ( 29 
)
Thus, the derivative of V along with (24) yields,

V =x ⊤ s (A ⊤ s P 1 (γ) + P 1 (γ)A s -2P 1 (γ)B s K s )x s + z ⊤ f (A ⊤ f P 2 (γ) + P 2 (γ)A f -2P 2 (γ)B f K 2 )z f + 2ξ ⊤ (T -1 c ) ⊤ P ε (γ)T -1 c B ε G(x, z, η) + 2γ(η-M ξ) ⊤ P 3 (Φη+ΓCξ -M (Λ ε ξ +B ε G(x, z, η))) ≤ -(1 -O(ε))(γx ⊤ s x s + γz ⊤ f z f ) + 2ξ ⊤ (T -1 c ) ⊤ P ε (γ)T -1 c B ε G(x, z, η) + 2γ(η -M ξ) ⊤ P 3 (Φ(η -ξ) -M B ε G(x, z, η)).
Thus, there exists 0 < ε2 ≤ ε1 , such that for any ε ∈

(0, ε2 ], 1 2 -O(ε) > 0. Then, for ε ∈ (0, ε2 ], V ≤ - γ 2 x ⊤ s x s - γ 2 z ⊤ f z f -2G ⊤ (x, z, η)G(x, z, η). ( 30 
)
By using La Salle's arguments, we can prove that the state of the closed-loop system (24) converges to the set

{(x, z, η) ∈ R nx × R nz × R nv×q : x = 0, z = 0, G(x, z, η) = 0} = {0} × {0} × {B ⊤ ε M ⊤ P 3 η = 0}
. Thus, lim t→∞ x(t) = 0, lim t→∞ z(t) = 0. Since ξ converges to zero, the dynamics of η reduces to η = Φη.

Based on the Proposition 2 in [START_REF] Astolfi | Harmonic internal models for structurally robust periodic output regulation[END_REF], under Assumption 4, the pair (B ⊤ ε M ⊤ P 3 , Φ) is observable. Then, [START_REF] Lin | Semi-global exponential stabilization of linear systems subject to input saturation via linear feedbacks[END_REF] can be rewritten as

lim t→∞ η(t) = 0. Denote J := Φ ΓC γB ε B ⊤ ε M ⊤ P 3 Λε , where Λε = Λ ε -B ε B ⊤ ε (T -1 c ) ⊤ P ε T -1 c -γB ε B ⊤ ε M ⊤ P 3 M . Then TTSSs
η ξ = J η ξ . (31) 
Thus, for ε ∈ (0, ε2 ], J is Hurwitz.

Meanwhile, from [START_REF] Jafari | Robust output regulation in discrete-time singular systems with actuator saturation and uncertainties[END_REF], there exists a class KL function β s , such that ∀t ≥ 0,

(x s (t), √ εz f (t), η(t) -M ξ(t)) ≤β s ( (x s (0), z f (0), η(0)) , t).
Due to the fact that (x(0), z(0), η(0)) ∈ X × Z × V, and X, Z, V are compact subsets, there exists r 1 > 0 such that

(x s (t), η(t) -M ξ(t)) ≤ r 1 , ∀t ≥ 0. ( 32 
)
It is noted that a upper bound of z f (t) independent of ε can not be obtained from [START_REF] Jafari | Robust output regulation in discrete-time singular systems with actuator saturation and uncertainties[END_REF]. Thus, the next Lyapunov function candidate is further introduced,

V f := εz ⊤ f P 2 z f . ( 33 
)
With a similar proof in above, it can be obtained that, for ε ∈ (0, ε2 ], [START_REF] He | Composite nonlinear control with state and measurement feedback for general multivariable systems with input saturation[END_REF], it can be obtained that,

Vf ≤ - γ 2 z ⊤ f z f -2G ⊤ (x, z, η)G(x, z, η) + 2γ(η-M ξ) ⊤ P 3 M B ε G(x, z, η) -2x ⊤ s P 1 (B 1 -HB 2 -εHLB 1 )G(x, z, η) ≤ - γ 2 z ⊤ f z f + γB ⊤ ε M ⊤ P 3 (η -M ξ) 2 + (B 1 -HB 2 -εHLB 1 ) ⊤ P 1 x s 2 From Lemma 3, it can be obtained that B ⊤ ε M ⊤ = B ⊤ M ⊤ + O(ε). Then, from
Vf ≤ - γ 2 z ⊤ f z f + r 2 . (34) 
(8) can be solved under the controller (17).

Proof of Theorem 3

Denote J(w) := Φ ΓC(w)

γB ε (w)B ⊤ (0) M ⊤ P 3 Λε , where C(w) = C 1 (w) C 2 (w) , Λε = A ε (w) + B ε (W )K -B ε (W )(G c + γB ⊤ (0) M ⊤ P 3 M Ē), A ε (w) = A 11 (w) A 12 (w) A21(w) ε A22(w) ε , B ε (w) = B 1 (w) B2(w) ε .
Based on Theorem 2, there exists small enough ε1 > 0, such that for all ε ∈ (0, ε1 ], the matrix J is Hurwitz. Thus, there exists an open neighborhood W 1 of the origin, such that for any w ∈ W 1 , J(w) is Hurwitz. Then, the intersection of the spectrum of S and J is empty. There exist matrices Π and Σ uniquely defined such that

Σ Π S = J(w) Σ Π + ΓQ(w) F ε , (40) 
where 

F ε = (F ⊤ 1 , F ⊤ 2 
It can be easily obtained that the output regulation of system (1) can be achieved under controller [START_REF] Serrani | Semi-global nonlinear output regulation with adaptive internal model[END_REF], when there is no input saturation. Thus, we also have ξ = Πv and u = K 1 Π x v + K 2 Π z v -G c Πv + γB ⊤ ε E M ⊤ P 3 (Σv -E M Πv). Thus, Π = Π c and lim

γ→0 K 1 Π x + K 2 Π z -G c Π + γB ⊤ ε E M ⊤ P 3 (Σ -E M Π) = lim γ→0 γB ⊤ ε E M ⊤ P 3 Σ = Γ c .
It is noted that the exact solution (Π x , Π z , Γ c ) of ( 43) is hard to be obtained. The approximate solution ( Πx , Πz , Γc ) is introduced in place of (Π x , Π z , Γ c ), which satisfying It is noted that the exact solution (Π, Σ) of ( 40) is hard to be obtained. The approximate solution ( Π, Σ) is introduced in place of (Π, Σ), which satisfying

Ê Σ Π S = Ĵ Σ Π + ΓQ F , (45) 
where Ê = diag{I nvq , Ē}, Ĵ = Φ ΓC γBB ⊤ M ⊤ P 3 E Λε = diag{I nvq , E} J. With a similar proof of Lemma 3, the equation (45) has an unique solution, and (Π, Σ) = ( Π, Σ) + O(ε) + O(w). Thus, with the approximate solution ( Π, Σ), for any given compact sets X, Z, V, V all containing the origin, there always exist compact sets X r ⊂ R nx , Z r ⊂ R nz , Vr ⊂ R nvq containing the origin such that for all (x(0), z(0), v(0), η(0)) ∈ X × Z × V × V, ( ξ(0), η(0)) ∈ X r × Z r × Vr .

Consider the Lyapunov function V := ξ⊤ (T -1 c ) ⊤ P ε (γ)T -1 c ξ +γ(η-M ξ) ⊤ P 3 (η-M ξ).

With a similar proof of theorem 2, there exist 0 < ε3 ≤ ε 2 and r > 0 such that for any ε ∈ (0, ε3 ], and t ≥ 0, ( ξ(t), η(t)) ∈ B(r) := {{( ξ, η) ∈ R nx × R nz × R nvq : ( ξ, η) ≤ r}. From (18), we have u = (K -G c )( ξ + Πv)+γB ⊤ ε E M ⊤ P 3 (η -E M ( ξ +Πv))+γB ⊤ ε E M ⊤ P 3 Σv, where K = K 1 K 2 . Thus, lim | Γc e S(t-t0) v| ∞ < Υ.

In this way, there exist 0 < ε ≤ ε 3 and an open neighborhood W ⊂ W 2 of the origin, such that there exists a small enough γ * ∈ (0, 1], such that for all ε ∈ (0, ε], w ∈ W and γ ∈ (0, γ * ], u(t) ∞,0 ≤ Υ. Let γ ∈ (0, γ * ], then TTSS (1), [START_REF] Serrani | Semi-global nonlinear output regulation with adaptive internal model[END_REF] can always be rewritten as (42). Since J(w) is Hurwitz, the origin of the system is stable, which means that lim t→∞ e(t) = lim t→∞ C(w) ξ = 0. The proof is complete.
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 1 Fig. 1. Output regulation error evolution of system (1).

2 Fig. 2 .Fig. 3 .

 223 Fig. 2. State evolution of the internal model.
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 4 Fig.[START_REF] Jiang | A two-time scale dynamic correction method for fifth-order generator model undergoing large disturbances[END_REF]. Output regulation error evolution of system (1) with controller[START_REF] Yu | Output regulation of nonlinear singularly perturbed systems[END_REF].

Fig. 5 .

 5 Fig.5. Evolution of u in the form of[START_REF] Yu | Output regulation of nonlinear singularly perturbed systems[END_REF].

) where T c - 1

 1 := I nx -εHL -εH L I nz , and the matrices L and H are the solution of the following equations Λ 21 -Λ 22 L+εLΛ 11 -εLΛ 12 L = 0, Λ 12 -HΛ 22 +εΛ 11 H -εΛ 12 LH -εHLΛ 12 = 0. (26)

ε

  ) ⊤ . It noted that the first equation above leads to C(w)Π + Q(w) = 0, since S and Φ have the same eigenvalues [9, Theorem 1.7, pages 24-26]. Define the following coordinate transformation ξ := ξ -Πv, η := η -Σv.(41)When u(t) ∞,0 ≤ Υ, the closed-loop system (1),[START_REF] Serrani | Semi-global nonlinear output regulation with adaptive internal model[END_REF] in the coordinates (η, ξ) isη ξ = J(w) η ξ , e = C ξ. (42)As Assumption 4 holds, there exists an open neighborhood W 2 ⊂ W 1 of the origin, such that for any w ∈ W 2 , the output regulation solution of system (1) exists and can be defined as ξ := Π c v, u := Γ c v, where Π c := (Π x , Π z ) and Γ c satisfyΠ x S = A 11 (w)Π x + A 12 (w)Π z + B 1 (w)Γ c + F 1 (w), εΠ z S = A 21 (w)Π x + A 22 (w)Π z + B 2 (w)Γ c + F 2 (w), 0 = C 1 (w)Π x + C 2 (w)Π z + Q(w).

Πx S = A 11

 11 Πx + A 12 Πz + B 1 Γc + F 1 , 0 = A 21 Πx + A 22 Πz + B 2 Γc + F 2 , 0 = C 1 Πx + C 2 Πz + Q. (44)With a similar proof of Lemma 3, there exist small enough 0 < ε2 ≤ ε 1 , such that for all ε ≤ ε2 , the equation (44) has an solution, and (Π x , Π z , Γ c ) = ( Πx , Πz , Γc ) + O(ε) + O(w).

γ→0 u = B ⊤ ε E M ⊤ P 3

 3 Σv = Γ c v = Γc v + O(ε)v + O(w)v. Denote V = {v ∈ R nv : v ≤ v} with v > 0 and sup |v|≤v,t≥t0
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where r 2 > ( γB ⊤ M ⊤ P 3 2 + (B 1 -HB 2 ) ⊤ P 1 2 + O(ε))r 2 1 . Thus, there exists a class KL function β f , such that ∀t ≥ 0, z f (t) ≤ β f ( (x(0), z(0)) , t) + 2r 2 γ .

Thus, there exist ε 2 > 0 and r > 0 such that for any ε ∈ (0, ε], and t ≥ 0, (x(t), z(t), η(t)) ∈ B(r

Then, the proof of Theorem 1 is presented.

From Lemma 1, it can be obtained that

Then, from the definition of K 1 and K 2 in Lemma 2, it is easily obtained that lim

thus lim

From the definition of T -1 c in [START_REF] Lin | Low gain feedback[END_REF], it can be obtained that

Thus, lim

From Lemma 4, for any γ ∈ (0, 1] there exist ε1 > 0 and r > 0 such that for any ε ∈ (0, ε1 ], and

can always be rewritten as [START_REF] Lin | Semi-global exponential stabilization of linear systems subject to input saturation via linear feedbacks[END_REF]. Thus, with similar proof of Lemma 4, there exist 0 < ε ≤ ε1 such that, for any ε ∈ (0, ε], lim t→∞ x(t) = 0, lim t→∞ z(t) = 0, lim t→∞ η(t) = 0. Thus, the equilibrium point (x, z, η) = (0, 0, 0) of the corresponding closed-loop system (7)-( 8) is asymptotically stable with X × Z × V being contained in its basin of attraction. Thus, the semi-global stabilization problem of system (8) can be solved. The proof is complete.

Proof of Theorem 2

From (36), it can be obtained that

Meanwhile, from [START_REF] Lin | Output regulation for linear systems subject to input saturation[END_REF], it can be obtained that

From Lemma 2, 3 and the proof in above, there exists ε1 > 0, such that for any ε ∈ (0, ε1 ], we have that the matrix J is Hurwitz, and

Define J := Φ ΓC 37) and (38), we have

Thus, with a similar proof of theorem 4, there exists small enough 0 < ε2 ≤ ε1 , such that for all ε ∈ (0, ε], J and J are both Hurwitz.

Then, from (38) and the continuity of the solution to the controller parameters, for any γ ∈ (0, 1], with a similar proof of Lemma 4, there similarly exist 0 < ε < ε 2 and r > 0 such that for any ε ∈ (0, ε], and t ≥ 0, (x(t), z(t), η(t)) ∈ B(r

Similarly, it can be obtained that there exists γ * ∈ (0, 1], such that for all γ ∈ (0, γ * ] and for all (x(0), z(0), η(0

Then, we can ensure that σ(u(t)) = u(t), ∀t ≥ 0, and TTSS (8) with the controller (17) can always be rewritten as

Since J is Hurwitz, the origin of the corresponding closed-loop system (8)-( 17) is asymptotically stable with X × Z × V being contained in its basin of attraction. The semi-global stabilization problem of system