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Theoretical analysis of flow effects in spatially-encoded diffusion NMR  

Rituraj Mishra and Jean-Nicolas Dumez* 

Nantes Université, CNRS, CEISAM, UMR6230, F-4400 Nantes, France 

 

ABSTRACT 

The measurement of translational diffusion coefficients by nuclear magnetic resonance (NMR) 

spectroscopy is essential in a broad range of fields including organic, inorganic, polymer and 

supramolecular chemistry. It is also a powerful method for mixture analysis. Spatially-encoded 

diffusion (SPEN-D) NMR is a time efficient technique to collect diffusion NMR data, which is 

particularly relevant for the analysis of samples that evolve in time. In many cases, motion other 

than diffusion is present in NMR samples. This is for example the case of flow NMR experiments 

for, e.g., online reaction monitoring, and in the presence of sample convection. Such motion is 

deleterious for the accuracy of DNMR experiments in general, and for SPEN DNMR in particular. 

Limited theoretical understanding of flow effects in SPEN DNMR experiments is an obstacle to 

their broader experimental implementation. Here, we present a detailed theoretical analysis of 

flow effects in SPEN DNMR, and of their compensation, throughout the relevant pulse sequences. 

This analysis is validated by comparison with numerical simulation performed with the Fokker-

Planck formalism. We then consider, through numerical simulation, the specific cases of constant, 

laminar and convection flow, and the accuracy of SPEN DNMR experiments in these contexts. This 

analysis will be useful for the design and implementation of fast diffusion NMR experiments, and 

for their applications.  
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I.  INTRODUCTION 

Nuclear magnetic resonance spectroscopy is a powerful approach to measure the translational 

diffusion coefficients of molecules in solution.1 Diffusion NMR measurements are used to probe 

polymer sizes,2–5  to characterise host-guest interactions,6–9 and to measure the size of 

aggregates,10–13 among other things. Diffusion NMR is also widely used as a way to separate the 

spectral information on components in a mixture, without physical separation of the components 

themselves. This approach is used for applications ranging from authentication14,15 to reaction 

monitoring.16,17 

The measurement of diffusion coefficients by NMR is based on the application of a pair of 

magnetic field gradient pulses, separated by a delay. Diffusion during the delay results in an 

attenuation of the NMR signals. Conventional diffusion NMR experiments rely on the stepwise 

incrementation of the area of the gradient pulses across a series of consecutive scans. This results 

in experiment duration of a few minutes or more. Spatially Encoded Diffusion NMR (SPEN DNMR) 

makes it possible to collect a complete data set in a single scan of less than one second, by spatial 

parallelisation of the gradient pulse area.18–22  In SPEN DNMR pulse sequence, the gradient pulses 

found in conventional DNMR are replaced by the combined application of a gradient pulse and a 

frequency swept pulse. This fast DNMR method has proven useful for the monitoring of chemical 

reactions,22 and for the analysis of hyperpolarised samples.23,24 

Diffusion NMR experiments are sensitive to the displacements of molecules, even if they are 

not due to diffusion. In particular, DNMR experiments are sensitive to any mesoscopic 

displacements within the sample, and this can result in highly inaccurate estimates of the 

diffusion coefficients. For example, convection effects, if left uncompensated, are well-known to 

result in overestimated diffusion coefficients.25–28 The accurate measurement of diffusion 

coefficients for a sample in continuous flow is also particularly challenging.17,29 The effect of flow 

on conventional diffusion NMR and MRI is well studied theoretically and experimentally.31–40 

Notably, it can be shown that a constant velocity flow results in an additional phase shift of the 

magnetization. For conventional experiments, an elegant convection compensation strategy was 

introduced by Jerschow and Mueller in 1998.41 It consists of using two diffusion encoding steps 
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instead of one, designed such that the effect of convection cancels out. This approach has become 

standard for DNMR experiments carried out in solvents that are prone to convection.1,42 It has 

also been exploited for diffusion measurements in continuous flow.17,43  

Convection compensation has also been extended to the case of spatially-encoded diffusion 

NMR experiments.22,24 Following the idea of flow-compensated conventional diffusion sequence, 

two diffusion encoding blocks are used instead of one. This has led to the possibility to collect 

accurate DNMR data for samples hyperpolarised with dissolution dynamic nuclear polarisation,24 

and also for the real-time monitoring of a chemical reaction in an organic solvent.22 While 

simplistic numerical simulation and analytical calculations hinted at the validity of this 

approach,24,44 flow effects in SPEN DNMR experiments remain poorly described an understood. 

This is also an obstacle in using these experiments for reaction monitoring by flow NMR. 

In this article, we provide a detailed theoretical description of flow effects is SPEN DNMR 

experiments, supported by numerical spin simulation. We use the propagator model33 to derive 

analytical expressions of the echo amplitude for the SPEN stimulated echo and double stimulated 

echo pulse sequence. These expressions work outside of the small displacement approximation 

that was used in earlier work, and are validated by exact numerical simulation using the SPINACH 

library.19,45–47 We also describe flow effects during the acquisition part of SPEN DNMR pulse 

sequences. This framework is then used to analyse three cases of practical importance, plug flow, 

laminar flow, and convection flow. In the three cases, the expected accuracy of SPEN DNMR 

experiments is discussed, and data processing strategies to improve it are described. Overall, this 

study provides both physical insights and practical tools for applications of SPEN DNMR in the 

presence of flow, be it for reaction monitoring or the analysis of hyperpolarised samples.    

II. NUMERICAL METHODS 

A.  Numerical simulations for a single velocity 

All the numerical simulations were performed with the SPINACH library, version 2.3.4934.19,45–47 An 

ensemble of uncoupled spins I = 1/2 was considered, with a translational diffusion coefficient of 

8×10-10 m2/s. The simulated pulse sequences are shown in Fig. 1. Simulations were performed 

with linearly swept chirp pulses with a duration of 1.5 ms and a bandwidth of 110 kHz. The 
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encoding gradients had an amplitude of 0.2535 T/m, resulting in a size of 10 mm for the spatial 

region swept by the pulse. A sample length of 15 mm was equally divided in 3000 spatial grid 

points. The diffusion delay Δ was set to 150 ms. The effect of relaxation was not considered during 

the simulation. The unwanted coherences were removed by setting them equal to zero.  

1. Without explicit acquisition 

In order to characterise the encoding process only, the acquisition block was not simulated, and 

the transverse component of the magnetisation at the end of the encoding block was obtained 

as a function of position simply by retaining the corresponding element of the state vector.  

The comparison with analytical expressions of the diffusion decay required a reference 

profile, that was obtained by running the simulation with the translational diffusion coefficient 

set to 0 m2/s. Experimentally, the reference profile can be obtained by using the minimum possible 

diffusion delay. While this introduces some additional error (because of diffusion during the spatial 

encoding block), this error is similar with and without flow effects.  

2. With explicit acquisition 

When simulated, the acquisition block of the pulse sequence consisted of a train of bipolar 

gradient pulses of strength ±0.52 T/m and of duration 2𝜏 for each pulse, preceded by a prephasing 

gradient pulse of strength –0.52 T/m and of duration 𝜏. Each gradient pulse of duration 𝜏 (2𝜏) is 

divided into 64 (128) points with the fixed dwell time 𝑑𝑤 of 1.5×10-6 s. The EPSI block is shown in 

Fig. 1. In the following, the origin of the time axis for acquisition will be at the start of the 

prephasing gradient pulse, although the data points from 0 to 𝜏 are discarded. The segment from 

(4𝑞 + 1)𝜏 to (4𝑞 + 3)𝜏, with 𝑞 ∈ ℕ, will be called as odd echoes while the segment from (4𝑞 +

3)𝜏 to (4𝑞 + 5)𝜏 as even echoes throughout the manuscript. A combination of one odd and even 

echo gradient create a single loop and 256 such loops were used to acquire the data. The sign of 

prephasing and the bipolar gradient shown in Fig. 1c and 1d is for odd echo acquisition while for 

even echo acquisition, the reverse sign is used for both the gradients.  

The resulting 1D data was rearranged into two 𝑀	 × 	𝑁 2D matrix, one for odd echoes and 

one for even echoes, where 𝑀 is the number of points per gradient pulses, and	𝑁 is the number 
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of loops. The data was then 2D Fourier transformed to obtain space-frequency domain data. A 

slice (intensity as a function of z) was extracted at the location of the maximum in the spectral 

dimension.  

A reference profile was obtained by running the simulation for the whole sequence with the 

translational diffusion coefficient set to 0 m2/s. The diffusion decay curve was divided by the 

reference profile to compensate for the effect of the spatial selectivity of the chirp + gradient 

block. The diffusion decay curve, after correction by the reference profile, was used to extract the 

diffusion coefficient via non-linear least square fitting. 

When velocity-correction was applied for the detection period, the simulated signal was 

multiplied element-wise, before 2D FT, by the 𝑀	 × 	𝑁 matrix 𝑒!"#$%&!'"(	*#+,$-), where 𝑡/ is 

varying from −𝜏 to 𝜏,	𝑛0  varies from 1 to total number of loops, 𝐺1 is the strength of acquisition 

gradient, and 𝑣2 is the linear velocity (see section IV.C).  

B. Numerical simulations with a velocity distribution 

The effect of laminar and convection flow can be modelled by dividing the sample in elements of 

constant velocity, as illustrated in Fig. 2. For that purpose, a cross section of the NMR tube is 

divided in 𝑛34 (cs in the subscript stands for cross-section) concentric rings of width 𝑑𝑟. In the 

case of convection flow, each ring is further divided into 𝑛5 elements. The total simulated data is 

obtained with a weighted sum of independent 1D simulations, each performed with constant 

velocity. 

1. Laminar flow 

For laminar flow, the velocities corresponding to different rings were calculated according to:34 

𝑣(𝑟) = 𝑣617 <1 − =
𝑟
𝑎?

#
@ (1) 

where 𝑟 is the radial distance, which varies from 0 to 𝑎, where 𝑎 is the radius of the cross-section 

of the sample, and 𝑣617 is the maximum velocity at the center of the cross-section. 

Simulations were performed for a grid of radial distance, 𝑟", from 0 to 2.5 mm in 281 equal 

steps. The SPEN DNMR simulations for flow compensated sequence were performed for all the 
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velocities with the parameters, chosen in the starting of this section, except the velocity, dwell 

time (𝑑𝑤) and number the points in a gradient pulse (𝑚8). The velocity was chosen to be 5 mm/s. 

The 𝑑𝑤 was doubled, i.e., 3 × 10!9	𝑠, and 𝑚8 was halved, i.e., 64, to decrease the field of view 

(FOV) without changing the resolution. 

The FIDs acquired with even and odd echoes for each velocity are Fourier transformed 

(FT) along both dimensions separately to provide space-frequency (𝑧 − 𝜔) domain data, 𝐼(𝑟). 

Since the velocity 𝑣(𝑟) is independent of the angle 𝜙, the double weighted summation over 

variable radius 𝑟 and angle 𝜙 becomes a single sum as follows: 

𝐼016",1: = 2𝜋K
𝑎
𝑛34

,%&

";/

𝑟" 	𝐼(𝑟")		 (2) 

The same procedure is used to obtain the reference laminar profile, 𝐼016",1:
:<= , except all 

the simulations were performed without diffusion. For analysis and display, the profiles are 

normalised by dividing the profiles by their maxima. 

2. Convection flow 

In the case of convection flow, the velocities vary as31 

𝑣(𝑟, 𝜙) = K𝑣,

>

,;?

M
𝐼,(𝑘𝑟)
𝐼,(𝑘𝑎)

−
𝐽,(𝑘𝑟)
𝐽,(𝑘𝑎)

P 𝑐𝑜𝑠	(𝑛𝜙)	 (3) 

 where 𝐽, and 𝐼, are Bessel and modified Bessel functions, 𝑛 is the mode of flow, 𝑣, is a system 

dependent scalar of velocity for each mode of flow and is non-zero only for odd 𝑛 and zero for 

even 𝑛, 𝜙 is varied from 0 to 2𝜋, 𝑘𝑟 and 𝑘𝑎 is defined respectively as 𝑅1
//+	 =:

1
? and 𝑅1

//+. The 

Rayleigh number 𝑅1 is given by31 

𝑅1 = −
𝛽𝜌#𝑎+𝑐8𝑔

𝑑𝑇
𝑑𝑍

𝜂𝜅  (4) 

 where 𝛽 is the volumetric thermal expansion coefficient, 𝜌 is the fluid density, 𝑐8 is the specific 

heat capacity, 𝑔 is the acceleration due to gravity, AB
AC

 is temperature gradient, 𝜂 is the dynamic 

viscosity, and 𝜅 is the thermal conductivity. In the present article 𝑅1 is taken to be 100.  
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The velocities were varied according Eq. 3 by incrementing the radial distance 𝑟 

sequentially from 0 to 2.5	𝑚𝑚	(𝑎) in the steps of 𝑑𝑟 = 𝑎/𝑛34, where 𝑛34 = 26. The angle 𝜙 was 

also sequentially varied from 0 to 2𝜋, in the steps of 𝑑𝜙 = 2𝜋/𝑛5, where 𝑛5 = 25. Since for 

NMR experiments only vertical flow is observed therefore 𝑛 = 1 and 𝑣/ was chosen to be 1.5 

mm/s. The 𝑣/ is not the maximum velocity unlike in the case of laminar flow. These values result 

into a 𝑛5 × 𝑛34	(25 × 26) velocity profile shown in Fig. 3. Since the profile was symmetrical with 

respect to 𝑥 − 𝑧 plane, only 13 × 26 = 338 velocities were chosen to perform the simulation for 

the flow compensated SPEN DNMR sequence. Except for the value of 𝑣/, all other parameters are 

the same as in laminar flow.  

The 𝑘 − 𝑡 domain fids obtained after the simulation are Fourier transformed in both 

dimensions to result into (64 × 256) space-frequency (𝑧 − 𝜔) domain data, 𝐼(𝑟" , 𝜙D) for each 

velocity. The final diffusion decay profile for the sample undergoing convection is obtained by 

weighted summation of 𝐼(𝑟, 𝜙) over the radius 𝑟, angle 𝜙.  

𝐼3E,*<3'"E, =K
2𝜋
𝑛5

,'

D;/

K
𝑎
𝑛34

,%&

";/

𝑟" 	𝐼^𝑟" , 𝜙D_ (5) 

By performing the simulation with zero diffusion coefficient, however following the same 

procedure described above, the reference profile 𝐼3E,*<3'"E,
:<=  is obtained. The diffusion decay 

curve and reference profiles were extracted from 𝐼3E,*<3'"E, and 𝐼3E,*<3'"E,
:<= . For analysis and 

display, the profiles are normalised by dividing them by their maxima. 

III. SPEN DNMR WITHOUT FLOW 

Prior to introducing the effect of flow in spatially encoded diffusion NMR pulse sequences, in this 

section we will be introducing the SPEN STimulated Echo (STE) pulse sequence, used to acquire 

diffusion-NMR data, and the general analytical expression used for data analysis.18–21 In this study, 

we rely on a description of diffusion NMR experiments in which magnetisation vectors are used 

to describe the spins of individual atoms in molecules, which undergo random Brownian motion. 

This common representation gives correct results for mesoscopic quantities. Note, however, that 

the numerical simulation in SPINACH instead describes the magnetisation of mesoscopic volume 
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elements. Molecular motion is not explicitly described, and its effect is accounted for by 

magnetisation passing between volume elements. The two descriptions are complementary.   

A.  Diffusion attenuation: qualitative description 

Consider first a conventional spin echo sequence, shown in Fig. 1a.1 The equilibrium 

magnetisation is first rotated to the transverse plane by the first 𝜋/2 pulse. The first gradient 

pulse then results in a linear variation of the spin’s phase as a function of position, which 

corresponds to a magnetisation helix. Brownian motion during the diffusion delay then results in 

partial scrambling of the helix. The second magnetic field gradient pulse then refocuses the 

magnetisation helix. However, the refocusing is imperfect, because the molecules’ positions have 

changed between the two gradient pulses. As a result, signal acquired after the gradient pair will 

be attenuated compared to the signal that would be acquired without gradients pulses, to an 

extent that depends on the pitch of the magnetisation helix, and thus on the area of the gradient 

pulses. Quantitatively, this attenuation is given by:48 

𝑆 = 𝑆?𝑒!%
(F(G(HI)  (6) 

where 𝑆? is the amplitude in the absence of diffusion attenuation, 𝛾 is gyromagnetic ratio of the 

nuclei, 𝑔 is the gradient strength, 𝛿 is the gradient duration, 𝐷 is the diffusion coefficient, and ΔJ 

is the diffusion delay, corrected to account for the finite width of the gradient pulse (for example, 

ΔJ = Δ − Δ − 𝛿/3 in the classic stimulated echo pulse sequence). 

This description applies similarly to the conventional stimulated echo pulse sequence, 

shown in Fig. 1b. The second and first 𝜋/2 pulses in that case serve to store magnetisation along 

the z axis, to mitigate the effects of relaxation and J modulation, but they have no effect on the 

diffusion encoding process (the information is temporarily transferred from the spin’s phase to 

their amplitude). 

Consider now the SPEN STE DNMR pulse sequence shown in Fig. 1c.18–21 The hard 𝜋/2 

pulses play the same role as in the conventional sequence. The gradient pulses are replaced by 

the combined application of a frequency-swept pulse and a gradient pulse. The result of this 

spatial encoding block is that the effective duration of the gradient pulse experienced by the spins 
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depends on their position in the sample. Considering also the gradient pulse applied after the 

chirp pulse, the effective duration of the total gradient pulse varies from 0 at one end of the swept 

region to 2𝑇<  at the other end. This results in a quadratic dependence of the magnetisation’s 

phase with respect to position. Pictorially, this corresponds to a magnetisation helix with a pitch 

that varies across the sample. Brownian motion during the diffusion delay does, as in the 

conventional experiment, scramble the helix. And, as in the conventional experiment, the perfect 

refocusing of the magnetisation, that would be achieved by the second chirp + gradient block in 

the absence of diffusion, is compromised by molecular motion. The key feature of the SPEN 

DNMR experiment is that the effect of diffusion is now position dependent. In the absence of 

flow, the signal acquired for a slice at position z (with a slice width such that the phase variation 

is approximately linear within the slice), is given by a generalised form of Eq. 6 :49 

𝑆 = 𝑆?𝑒!KL(2)M
(
HI)  (7) 

where 𝐷 is the diffusion coefficient, 𝛥′ is the effective diffusion delay, and 𝐾(𝑧) is the spatial 

derivative of the spin’s phase 𝜙NOPQ(𝑧) at the end of the first chirp + gradient block:50 

𝐾(𝑧) =
𝜕𝜙NOPQ(𝑧)

𝜕𝑧  (8) 

Equation 7 can be derived in several ways. Here we will use the propagator model, which provides 

a convenient way to then include flow effects.   

B.  Diffusion attenuation with the propagator model 

Assuming that gradient pulses are sufficiently short for the effect of diffusion during the pulses to 

be negligible (the “narrow-pulse approximation”), the echo amplitude for a pair of identical 

gradient pulses separated by a delay Δ is given by33 

𝐸 = i𝑃4k(𝑍, 𝛥)𝑒"5(C)𝑑𝑍 (9) 

where 𝑍 is the dynamic displacement in the gradient direction, 𝜙(𝑍) is the spin phase at the end 

of the second gradient pulse for a molecule displaced by 𝑍, and 𝑃4k(𝑍, 𝛥) is the average probability 

that molecules are displaced by 𝑍 in time 𝛥. If translational diffusion is the only motion, then this 

propagator is given by:33 
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𝑃4k(𝑍, 𝛥) = (4𝜋𝐷𝛥	)!/ #⁄ 𝑒!C( +⁄ HI	 (10) 

In order to calculate the attenuation for a given pulse sequence, one needs to calculate 

the term 𝜙(𝑍). Since the pulse sequence is designed as an echo sequence, the contribution of 

chemical shift evolution to the phase will not be included during the phase calculation.  

The spin phase after the first chirp + gradient block of the SPEN STE pulse sequence can 

be calculated by assuming that spins flip instantaneously when their resonance frequency 

matches that of the swept pulse. With this assumption, one has:49 

𝜙NOPQ(𝑧) = −
𝛾#𝐺<#

𝑅 𝑧# − 𝛾𝐺<𝑇<𝑧	 (11) 

For the SPEN STE pulse sequence, the phase 𝜙NBP  at the end of the second chirp + gradient block 

is thus 

𝜙NBP(𝑧, 𝑧?) = −
𝛾#𝐺<#

𝑅 𝑧# − 𝛾𝐺<𝑇<𝑧 +
𝛾#𝐺<#

𝑅 𝑧?# + 𝛾𝐺<𝑇<𝑧? (12) 

where 𝑧? and 𝑧 are the position of the molecule at the time of the first and second gradient pulse. 

Eq. 12 may be rearranged as: 

𝜙NBP(𝑧, 𝑧?) = −𝛾𝐺<𝑇<(𝑧 − 𝑧?) l1 +
𝛾𝐺<
𝑅𝑇<

(𝑧? + 𝑧)m (13) 

Introducing the dynamic displacement, 𝑍 = 𝑧 − 𝑧?, one has: 

𝜙NBP(𝑍) = −𝛾𝐺<𝑇<𝑍 l1 +
𝛾𝐺<
𝑅𝑇<

(2𝑧 − 𝑍)m (14) 

𝜙NBP(𝑍) = −𝛾𝐺<𝑇<𝑍 <1 + 2
𝛾𝐺<
𝑅𝑇<

𝑧@ +
𝛾#𝐺<#

𝑅 𝑍# (15) 

For translational diffusion alone, the mean squared displacement is given by 2𝐷Δ, and the 

last term on the right-hand side of Eq. 15 is negligible provided that  

2𝐷𝛥 ≪
𝜋𝑅
𝛾#𝐺<#

 (16) 
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This condition means that the diffusion length is much smaller than the length of the spatial 

region over which the phase variation can be considered to be linear.50 This quantity will be 

referred to as the encoding slice width. This condition is usually verified, giving: 

𝜙NBP(𝑍) ≈ −𝛾𝐺<𝑇<𝑍 <1 + 2
𝛾𝐺<𝑧
𝑅𝑇<

@ (17) 

The approximation of neglecting the squared dynamic displacement in the phase calculation will 

be referred to as the small-displacement approximation. Equation 17 can be rewritten by 

identifying the spatial derivative of the spin’s phase at the end of the chirp + gradient block:  

𝜙NBP(𝑍) ≈ 𝐾(𝑧)𝑍	 (18) 

The echo amplitude calculated from Eqs. 9, 10 and 18 provides, after some algebra, the required 

diffusion-decay equation: 

𝐸NBPH (𝑧) = 𝑒!KL(2)M
(
H∆ (19) 

  

C. Echo planar spectroscopic imaging 

The spatial-spectral information embedded in the diffusion decay curve obtained after the SPEN 

STE sequence is unravelled by a train of bipolar gradient pulses, preceded by a prephasing 

gradient pulse. This acquisition block is known as echo planar spectroscopic imaging (EPSI). In Fig. 

1c and Fig. 1d, EPSI blocks are shown as the final step of the pulse sequences. The phase acquired 

by the magnetization during the EPSI block is given by 

𝜙13T(𝑡) = −𝛾 Mi 𝑑𝑡J	𝐺(𝑡J)
'

?
P 𝑧 (20) 

where 𝐺(𝑡′) is the variable acquisition gradient strength (which is +Ga for positive pulses and -Ga 

for negative pulses). Fig. 4a shows the result of a numerical simulation of an EPSI block, together 

with the analytical expression given by Eq. 20. The phase during acquisition varies linearly with 

positive and negative slopes respectively for positive and negative gradients. Further, the phase 

refocuses at the middle of the odd echo (positive gradient), and even echo (negative gradient).  
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Data processing and acquisition in MRI is conveniently described by introducing the variable 

𝑘(𝑡) = −𝛾 ∫ 𝑑𝑡J	𝐺(𝑡J)'
? . The EPSI block results in a zig-zag trajectory in a 2D 𝑘 − 𝑡 space. The data 

from the prephasing gradient is discarded (or simply not acquired). The data from the odd echoes 

forms a 2D matrix that can be Fourier transformed to give a spectroscopic image. The data from 

even echoes is processed similarly. The two can be co-added when they give comparable results, 

which is the case in the absence of flow. The spectroscopic data is then used to extract the 

diffusion coefficient via least square fitting method with the model Eq. 19 or more precisely Eq. 

7.   

IV.  VELOCITY EFFECTS IN SPEN DNMR  

Conventional diffusion NMR pulse sequences are sensitive to flow effects. When molecules move 

with constant velocity 𝑣2 during a stimulated echo pulse sequence, spins acquire an additional 

phase variation that is proportional to 𝑣2 and to the diffusion delay. Similarly, flow also imparts 

an additional phase to the spins, and to the signal, in SPEN STE pulse sequences. It has been 

shown, as in the case of conventional diffusion NMR pulse sequences, that the use of two 

diffusion-encoding steps instead of one makes it possible to refocus the velocity-induced phase 
51,52. For example, the SPEN double stimulated echo pulse (DSTE) pulse sequence, shown in Fig. 

1d, was used for experiments in low-viscosity organic solvents.22,24 It consists of two consecutive 

SPEN STE blocks separated by a 𝜋 pulse. In this section we will be calculating analytically velocity 

effects in SPEN DNMR pulse sequence, using the propagator model.  

A.  Simplified calculation of velocity effects 

The effect of a molecular displacement with constant velocity 𝑣2 during the diffusion delay of a 

STE pulse sequence can be taken into account in the propagator model by modifying the 

propagator as: 

𝑃4k(𝑍, 𝛥) = (4𝜋𝐷𝛥	)!/ #⁄ 𝑒!(C!*#I)( +⁄ HI (21) 

The distribution of dynamic displacements is now centred on 𝑣2Δ. The echo amplitude for the 

SPEN STE block can then still be calculated according to Eq. 9. Let us assume first that the small 

displacement approximation is fully valid. This gives: 
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𝐸NBP,1
H,* (𝑧) = 𝑒!KL(2)M

(
HI𝑒"L(2)*#I (22) 

The superscript refers to the fact that both diffusion and velocity effects are taken into account, 

while the subscript a refers to the fact that an approximate expression of the spin’s phase was 

used.  

Consider now the SPEN DSTE pulse sequence. The spin’s phase at the end of the final chirp 

+ gradient block is:  

𝜙HNBP(𝑧, 𝑧?, 𝑧/) = −𝛾𝐺<𝑇<(𝑧/ − 𝑧) M1 +
%&*
VB*

(𝑧 + 𝑧/)P + 𝛾𝐺<𝑇<(𝑧 − 𝑧?) M1 +

%&*
VB*

(𝑧? + 𝑧)P  
(23) 

where 𝑧?, 𝑧, and 𝑧/ are the position at the time of the first, second, and fourth chirp + gradient 

block (the spin’s position is assumed to be unchanged between the second and third blocks). 

Equation 23 may be rewritten by introducing the dynamic displacements 𝑍 = 𝑧 − 𝑧?, and 𝑍J =

𝑧/ − 𝑧 during the first and second diffusion encoding blocks:   

𝜙HNBP(𝑍, 𝑍′) = −𝛾𝐺<𝑇<𝑍′ <1 +
𝛾𝐺<
𝑅𝑇<

2𝑧@ +
𝛾#𝐺<#

𝑅 𝑍′# + 𝛾𝐺<𝑇<𝑍 <1 +
𝛾𝐺<
𝑅𝑇<

2𝑧@ −
𝛾#𝐺<#

𝑅 𝑍# (24) 

Assuming that the small-displacement approximation is valid:  

𝜙HNBP(𝑍, 𝑍′) ≈ −𝛾𝐺<𝑇<𝑍′ <1 +
𝛾𝐺<
𝑅𝑇<

2𝑧@ + 𝛾𝐺<𝑇<𝑍 <1 +
𝛾𝐺<
𝑅𝑇<

2𝑧@ (25) 

Identifying 𝐾(𝑧), Eq. 25 can be written:  

𝜙HNBP(𝑍, 𝑍′) ≈ 𝐾(𝑧)𝑍J − 𝐾(𝑧)𝑍	 (26) 

Substituting the value of phase from Eq. 26 and the average probability factor 𝑃4k(𝑍, 𝛥) from Eq. 

21 in Eq. 9 results into the echo amplitude after the final chirp + gradient block of the SPEN DSTE 

pulse sequence: 

𝐸HNBP,1
H,* (𝑧) = 𝑒!#KL(2)M

(
HI (27) 

The above analytical expression shows that the phase factor, 𝑒"L(2)*#W, appeared during the first 

stimulated echo due to flow is compensated after a 𝜋 pulse and second stimulated echo. 
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 Numerical simulations provide a powerful mean to test the validity of analytical 

expressions and of the underlying approximations. Fig. 5 and Fig. 6 show a comparison between 

the calculated echo amplitude and phase for the SPEN STE and DSTE pulse sequences, given by 

Eqs 22 and 27, and the result of a numerical simulation of these pulse sequence. Both the 

magnitude and the phase of the transverse magnetisation are shown. Note that the result of Eq. 

22 and 27 is multiplied for that comparison by the reference profile obtained by numerical 

simulation in the absence of diffusion (see section II), since the analytical calculation does not 

account for the spatial selectivity of the chirp pulse. 

It can be seen that the linear phase observed for the STE sequence in the presence of flow 

is suppressed for the DSTE sequence. However, while there is good agreement between analytical 

calculation and numerical simulation of the magnitude in the absence of flow, there is a clear 

difference between the calculated and the simulated results in the presence of flow. In fact, when 

the simulated data is fitted according to Eq. 27, a value of 5.06(±0.06)×10-10 m2/s is obtained in 

the presence of flow, against 7.95(±0.00)×10-10 m2/s in the absence of flow.  

 The discrepancy between numerical simulations and analytical calculation can be traced 

back to the validity of the small-displacement approximation. While it is always valid in the case 

of diffusion alone, it is not necessarily the case when flow is present as well. For example, with a 

velocity of 0.01 m/s and a diffusion delay of 150 ms, molecules move by 1.5 mm between two 

gradient pulses.  

B.  Diffusion attenuation and convection compensation, full calculation 

In order to separate the effect of diffusion and flow in the calculation of the echo amplitude, it is 

helpful to make the change of variables 

𝑍 ⟵ 𝑍 + 𝑣2𝛥 (28) 

in Eq. 9. With this replacement, the propagator, Eq. 21, accounts for diffusion only and becomes 

equivalent to the propagator shown in Eq. 9, while the phase shift becomes, in the STE case:  

𝜙NBP = 𝑘(𝑧)(𝑍 + 𝑣2𝛥) + (𝑍 + 𝑣2𝛥)#
𝛾#𝐺<#𝑇<
2𝜋𝐵𝑊  (29) 
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The small-displacement approximation remains valid for diffusion, meaning that terms including 

𝑍# can be neglected. This gives: 

𝜙NBP = M𝑘(𝑧) + 2𝑣2𝛥
𝛾#𝐺<#𝑇<
2𝜋𝐵𝑊P𝑍 + 𝑘(𝑧)𝑣2𝛥 + 𝑣2#𝛥#

𝛾#𝐺<#𝑇<
2𝜋𝐵𝑊  (30) 

Combining Eq. 9, 10, and 30 gives, after some algebra: 

𝐸NBP
H,* (𝑧) ≃ 𝑒

!XKY(2)M(HIZ+*#
(I(%+&*+B*(
(#$[\)( HIZ+Y(2)*#I

%(&*(B*
#$[\ HI]

𝑒"Y(2)*#I𝑒"X*#
(I(%

(&*(B*
#$[\ ] (31) 

 For typical values of the linear velocity, the argument of the complex exponential in Eq. 31 is 

negligibly small, such that: 

𝐸NBP
H,* (𝑧) ≈ 𝑒

!XKY(2)M(HIZ+*#
(I(%+&*+B*(
(#$[\)( HIZ+Y(2)*#I

%(&*(B*
#$[\ HI]

𝑒"Y(2)*#I (32) 

Defining the encoding slice width as 𝑙< =
#$V
%(&*(

, where 𝑅 = [\
B*

, and root mean square 

displacement (diffusion length) as 𝜆 = √2𝐷Δ, this equation becomes 

𝐸NBP
H,* (𝑧) ≈ 𝑒!Y(2)(H∆𝑒"Y(2)*#∆𝑒!#Y(2)*#I

^(
0* 𝑒!#*#

(I(X^0*
]
(

 (33) 

 Fig. 5a shows a comparison between the simulated diffusion decay, and the analytical 

calculation according to Eq. 33. In this case, the simulated and calculated curves are in very good 

agreement. The small-displacement approximation can be invalid for the flow contribution, in 

which case the full expression given by Eq. 33 should be used. The small-displacement 

approximation remains valid for the diffusion contribution. This is consistent with the fact the 

displacement due to velocity is larger than the encoding slice width, while that due to diffusion is 

not.   

 It is interesting to compare the expression of the echo amplitude obtained with (Eq. 22) 

and without (Eq. 33) making the small-displacement approximation for the flow contribution. Out 

of the two extra exponential term, the second one is close to one, while the first one has a 

noticeable role. In fact, if a simulated decay is fitted with Eq. 33, then a diffusion coefficient of 

7.77(±0.00)×10-10 m2/s is obtained (against 5.39(±0.01)×10-10 m2/s using Eq. 22).  
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A similar calculation can be performed in the DSTE case. Here we simply report the result 

that is obtained by making the small-displacement approximation for diffusion only: 

𝐸HNBP
H,* (𝑧) ≈ 𝑒!#H∆Y(2)(𝑒!+Y(2)*#∆

^(
0* 𝑒!_*#

(I(X^0*
]
(

 (34) 

  Fig. 5b shows a comparison between simulated diffusion decay and analytical expression for 

DSTE, and the two are in excellent agreement. 

 Several points can be noted from a comparison of Eqs 27, 33 and 34. First, one can see 

that, in analogy with the conventional case, double diffusion encoding for SPEN DNMR makes it 

possible to refocus velocity induced phase variations. However, double diffusion encoding does 

not compensate for the fact that the position of the encoded region changes between the 

beginning and the end of each diffusion delay. The use of Eq. 34 for data analysis still makes it 

possible to retrieve the correct value of the diffusion coefficient, provided that the velocity is 

known. This will be further discussed below.    

C.  EPSI: velocity compensation and motion correction 

In order to analyse the effect of flow during EPSI, the effect of a constant velocity term on the 

gradient phase was calculated by replacing 𝑧 by 𝑧? + 𝑣2𝑡′, where 𝑧? is the initial position at the 

time 𝑡 = 0, in Eq. 20.34 The resulting phase during acquisition will hence be given by 

𝜙13T* (𝑡) = −𝛾i 𝑑𝑡J	𝐺(𝑡J)(𝑧? + 𝑣2𝑡′)
'

?
 (35) 

where 𝐺(𝑡′) is variable acquisition gradient strength and is +Ga for positive pulse and -Ga for 

negative pulses. While the phase gets refocused at the middle of odd and even echo in absence 

of flow, (Fig. 4a) the phase in presence of flow only refocuses at the middle of even echoes. It can 

be shown if we calculate the total phase accumulated at 4𝜏,34,40 

𝜙13T
`= (𝑡 = 4𝜏) = −𝛾 ∫ 𝑑𝑡J	(−𝐺1)(𝑧? + 𝑣2𝑡′)

-
? − 𝛾 ∫ 𝑑𝑡J	(𝐺1)(𝑧? + 𝑣2𝑡′)

#-
- − 𝛾 ∫ 𝑑𝑡J	(𝐺1)(𝑧? +

a-
#-

𝑣2𝑡′) − 𝛾 ∫ 𝑑𝑡J	(−𝐺1)(𝑧? + 𝑣2𝑡′)
+-
a-    
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													= +𝛾𝐺1 =𝑧?𝜏 + 𝑣2
-(

#
? − 𝛾𝐺1 =𝑧?(2𝜏 − 𝜏) + 𝑣2

+-(!-(

#
? − 𝛾𝐺1 =𝑧?(3𝜏 − 2𝜏) +

𝑣2
b-(!+-(

#
? + 	𝛾𝐺1 =𝑧?(4𝜏 − 3𝜏) + 𝑣2

/9-(!b-(

#
? = 0  

(36) 

This means that under flow condition, the data from even echoes should be more reliable.  

 The expression obtained from Eq. 35 can be validated with the result of numerical 

simulations. The phase of a magnetisation vector at a given position can be obtained from the 

density matrix as a function of time. Since the velocity induced dephasing is position independent, 

the comparison can be made for any position in the sample. Fig. 4b shows a comparison between 

analytical and simulated phases during EPSI for a slice at z = 4.5 mm, for the first loop. The two 

are in perfect agreement.   

 Using data from even echoes ensures that the magnetisation is suitably refocused at the 

middle of the gradient pulse even with non-zero velocity. This does not, however, address the 

fact that the position of the encoded region changes during acquisition. With the parameters used 

for the simulation (dwell time = 1.5×10-6 s, number of loops = 256, number of points in odd/even 

echo = 128, velocity (vz) = 0.01 m/s ), the position varies in the range of few 𝜇𝑚 to 1	𝑚𝑚, it results 

in shifting of magnetisation along the spatial axis. This effect is most easily observed by comparing 

the Fourier transform of the first and last acquired echoes, for a SPEN DNMR pulse sequence, 

shown in Fig. 7. If uncorrected, this displacement will introduce an error for the estimated 

diffusion coefficient. 

This effect can also be described by considering the phase of the magnetisation 

throughout the echo train. The phase during the nl
th even echo can be written as:   

𝜙13T* (𝑡) = 𝛾𝐺1𝑡/ M𝑧? + 𝑣2
(𝑡/ + 8𝑛0𝜏)

2 P	 (37) 

where 𝑡/ is varying from −𝜏 to 𝜏. Correction by this additional phase in 𝑘-dimension will result 

into linear shift in density matrices along the 𝑧-dimension. The overall density matrix in 𝑘 − 𝑡 

dimension can be obtained by  

𝜌 = ∫ 𝜌(𝑧)𝑒"#$5!%,- (')𝑑𝑧 
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𝜌 = ∫ 𝜌(𝑧)𝑒Z"#$%&!'"2.𝑒Z"#$%&!'"c	*#
'"
# d𝑒Z"#$%&!'"(	*#+,$-)𝑑𝑧	 (38) 

Since the factor 𝑒Z"#$%&!'"c	*#
/"
( d ≈ 1 with the chosen parameters, i.e., 𝑣2 = 0.01	𝑚/𝑠, 𝑡/ =

−64 × 1.5 × 10!9 to 64 × 1.5 × 10!9, therefore 

𝜌 = ∫ 𝜌(𝑧)𝑒"#$%&!'"2.𝑒"#$%&!'"(	*#+,$-)𝑑𝑧	 (39) 

 On multiplying the 𝑘 − 𝑡 space data by 𝑒!"#$%&!'"(	*#+,$-) to remove the effect of additional 

phase results into a non-sheared 𝑧 − 𝜔 space data, as shown in Fig. 6b. 

V. FLOW SIMULATIONS 

Having clear understanding of flow effects during the encoding and acquisition part, the effect of 

different kinds of flow distributions on SPEN DNMR sequences can be studied. The constant/plug 

flow corresponds to the simplest situation, the other two most often encountered flow in NMR 

are laminar flow34 and convection flow.32 In the further section we will discuss these three kinds 

of flows in the context of SPEN D-NMR.  

A.  Plug flow 

The first case of interest is that of plug flow, that is, motion with a single and uniform velocity. 

This case was also studied with simulation in Ref.24 Fig. 8 shows the result of the complete 

simulation of a SPEN DSTE pulse sequence. In panel 8a and 8b, the simulated data was processed 

without velocity correction, and fitted with Eq. 34 (which accounts for velocity effects). It can be 

seen that the resulting diffusion coefficient, 6.27 (±0.14) × 10-10 m2/s, is under-estimated by 14 %. 

In contrast, when the data is processed with velocity correction, the estimated diffusion 

coefficient is 7.90(±0.01) ×10-10 m2/s , which is much closer to the correct value, as shown in panels 

8c and 8d. Overall, in order to obtain the correct value of the diffusion coefficients, the effects of 

flow have to be accounted for during both encoding and detection, and this requires knowledge 

of the value of the linear velocity. The SPEN DSTE sequence, using even echoes, makes it possible 

to avoid velocity induced dephasing, but not distortions of the spatial profile. Note that, even if it 

is not a priori known, the velocity may be measured by NMR, using, for example, a spin-echo 

based sequence. In principle it may even be possible to obtain the velocity from the phase 

difference between the centre points of even and odd echoes in the EPSI data. This can be 
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achieved for the present simulated data, but in practice it would be susceptible to errors due to, 

e.g. chemical shift evolution. 

These results may be compared with those of Ref. 24, which also considered a double-diffusion 

encoding pulse sequence. In that work, however, flow was only included during the diffusion 

delays, and not during detection, for the simulations. The observed error, of about 12 %, was then 

due to the fact that Eq. 19 was used for the fit, which does not account for velocity effects.  

Interestingly, as shown in Fig. 9, when velocity effects are not accounted for in the analysis, 

the fitted diffusion coefficient varies linearly with the input coefficient. The separation power of 

the experiments would thus still be preserved to some extent. It can be noted, however, that the 

associated error bar is larger when velocity is not accounted for, because the data is not suitably 

described by the model. The agreement between fitted and input values is conserved in the 

presence of noise. By introducing varying levels of noise in the data, it was observed that the 

estimated uncertainty remains lower than 0.01 m2/s as long as signal-to-noise ratio (S/N) remain 

≥ 100. 

B. Laminar flow 

Laminar flow is the side-by-side movement of layers of liquid along the direction of flow. The layer 

near to the surface moves with the minimum velocity mostly due to friction with the surface, 

however, the layers away from the surface move with higher velocity and reaches a maximum 

velocity at the centre of the cylinder. The velocity varies from 0 at the edge to 𝑣617 in the centre, 

and has mean value ∫ 𝑟𝑑𝑟	𝑣2
1
? /∫ 𝑟𝑑𝑟 = 	𝑣617/2	

1
? . Since the velocity in each layer is assumed to 

be constant, the profile obtained with SPEN DNMR in the case of laminar flow can be modelled 

as a weightage average of the various constant velocity profiles, as discussed in section II.A. 

The profile in the case of laminar flow, 𝐼016",1:  and the corresponding reference profile 

𝐼016",1:
:<=  (obtained with zero diffusion coefficient), are used as input for analysis. In this case, the 

correction for velocity effects during EPSI, described in section IV.C, cannot be performed. 

Attempts to perform this correction using the mean velocity were unsuccessful. This is 

unsurprising, since the average of profiles that are shifted by different amounts is not expected 
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to be the same as a single profile shifted by the mean displacement. This means that motion 

during detection can limit the accuracy of SPEN DNMR experiments carried out on a sample that 

experience laminar flow.     

The simulated data in the case of even echoes is shown in Fig. 10a. When this data is fitted 

with Eq. 34, using the mean velocity, to extract the diffusion coefficient, a value of 6.45(±0.04)×10-

10 m2/s is obtained for the diffusion coefficient. This result is consistent with the plug flow case 

where the additional velocity correction was not performed and the diffusion coefficient was 

found to be 6.27(±0.14)×10-10 m2/s. Note that a value of 5.87(±0.06)×10-10 m2/s is obtained with 

Eq. 27 is used for the fit, illustrating the fact that the error is reduced when velocity-effects during 

encoding are accounted for.  

The data acquired for the odd echoes was also processed through the same procedure 

discussed above and had resulted into 5.97(±0.07)×10-10 m2/s diffusion coefficient which is further 

from the simulated value. The diffusion decay curve with reference profile and the fitted curve 

have been shown in Fig. 10. The less accurate diffusion coefficient while processing with odd 

echoes further testifies the processing of even echo acquired data for the extraction of diffusion 

coefficient.  

Overall, this means that convection compensated SPEN DNMR sequences should be able to 

achieve 20 % accuracy when applied to a sample that flows with a laminar flow. These results will 

be compared against experimental measurement, that will require the use of a low-pulsation 

pump. Indeed, any time dependence of the velocity would severely compromise the possibility 

to retrieve accurate diffusion information with spatially encoded diffusion NMR. 

C.  Convection flow 

Convection is a heat transfer process in a fluid through the motion of matter, and happens due 

to temperature differences between two parts of the sample. In many PFG NMR experiments, the 

effect of convections translates into inaccurate estimates of the diffusion coefficients,53 and this 

is also true for spatially encoded diffusion NMR. A typical convection velocity profile for an NMR 

tube is shown in . The difference between the density of heated and colder particles results into 

a complicated velocity distribution in the NMR tube. The possibility to compensate for this effect 
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in SPEN DNMR experiments is illustrated in Fig. 11, which shows the result of numerical simulation 

performed with a convection-compensated SPEN DSTE pulse (Fig. 1d). 

The estimated diffusion coefficient, using Eq. 27 (which is equivalent to Eq. 34 with using 𝑣2 =

0), and no velocity correction during processing, is found to be to be 7.90(±0.00)×10-10  m2/s, 

when the data acquired during even echoes were processed. In contrast, with odd echo data the 

diffusion coefficient was found to be 8.94(±0.05)×0-10  m2/s. As in the case of constant and laminar 

flow, the even echo data provides more reliable results than the odd echo data. Further the 

diffusion coefficient is more accurate than the one obtained for the laminar flow. It is due to the 

fact that in convection, the effect of velocities throughout the sample gets compensated due to 

its anti-symmetrical distribution with respect to centre of the tube. In the case of laminar flow 

that the inability of performing the velocity effect correction results into the deviation from the 

accurate value of diffusion coefficient. In contrast, in the case of convection, although the same 

correction is not performed, compensation of error occurs between the effect of positive 

velocities in one half of the sample, and that of negative velocities in the other half. 

Overall, these results explain why the convection compensated SPEN DNMR pulse sequence 

should have high accuracy in the case of convection flow, as was observed experimentally. 

VI.  CONCLUSIONS 

In summary, we have provided a detailed description of flow effects in SPEN DNMR pulse 

sequences, through theoretical analyses and numerical simulations. These results explain the 

possibility to measure accurate diffusion coefficients with convection-compensated SPEN DNMR 

pulse sequences. They also give methods that should be applicable to systems in continuous flow, 

based on the processing of even-echo data only, and, in the case of plug flow, on a correction for 

sample motion effect. Overall, this works provides both physical insight and practical tools for 

applications of spatially encoded diffusion NMR methods in the presence of sample flow.  
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FIGURES 

 

Fig. 1. Diffusion NMR pulses sequences. Hard RF pulses are shown as filled rectangles, swept RF pulses are 
shown as rectangles with an arrow, gradients pulses are represented as empty rectangles. The roman 
numbers (I, II, III, IV) in the bottom of (b) and (c) are used to show the helices at the corresponding 
positions of the pulse sequence. (a) Pulsed field gradient spin echo sequence. (b) Pulsed field gradient 
stimulated echo sequence. (c) Stimulated echo pulse sequence for spatially encoded diffusion-ordered 
NMR spectroscopy (SPEN DOSY STE). (d) Flow compensated double stimulated echo pulse sequence for 
spatially encoded diffusion-ordered NMR spectroscopy (SPEN DOSY DSTE). For sequence (b) and (c), the 
transverse magnetization as a function of axis- z is shown at specific stages of the sequence. 
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Fig. 2. Cross-section of an NMR tube representing the grids used for integration when simulating laminar 
and convection flow. 

dr

a
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Fig. 3. Three-dimensional representation of convection velocity profiles in cylindrical coordinates. The 
velocities in left side of the tube are with positive sign while those in right are with negative sign. The 
vertical axis represents relative velocities of convection as a function of radial position.54 
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Fig. 4. Evolution of the phase of the magnetisation during EPSI. The rectangles represent acquisition 
gradients. The phase consists of two terms, i.e. the phase acquired due to spatial position (𝑧) and the phase 
acquired due to velocity (𝑣#𝑡). (a) On including the effect of both the terms, the comparison between 
simulated (solid-green) and analytical (dashed-blue) phases acquired by the magnetization at 4.5 mm with 
time. (b) On excluding the effect of spatial term, the comparison between simulated (solid-green) and 
analytical (dashed-blue) phases acquired by the magnetization with time. The phases in both the figures 
are getting refocused only at the middle of the even echo, not at the middle of the odd echo. 

 

 

 

Fig. 5. Comparison between simulated and analytical echo amplitudes for the (a) SPEN STE and (b) SPEN 
DSTE pulse sequence, with constant velocity. Simulated echo amplitudes are shown in green. Analytical 
echo amplitudes obtained with the small displacement approximation for both diffusion and flow are 
shown in pink (Eq. 22 and 27. Analytical echo amplitudes obtained without the small displacement 
approximation for diffusion (Eq. 33 and Eq. 34) are shown in blue.  
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Fig. 6. Comparison between simulated and analytical phases for the (a) SPEN STE and (b) SPEN DSTE pulse 
sequence, with constant velocity. Simulated phases are shown in green. Analytical phases are shown in 
pink (Eq. 22 and 27).  

 

 

 

 

Fig. 7. Diffusion decay profiles (a) without and (b)with velocity correction after first (𝑛$ = 1) and last EPSI 
loop (𝑛$ = 256).  
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Fig. 8. Plug flow simulation. Diffusion decay profile (red) and reference profile (green) obtained (a) without 
and (c) with velocity correction during processing (Eq. 39. Diffusion decay data (red circle), obtained after 
dividing the diffusion decay profile by reference profile and fitted curve (blue line) (b) without and (d) with 
velocity correction during processing. Without correction the diffusion coefficient is found to be 
6.27(±0.14)×10-10 m2/s, while after correction the value of diffusion coefficient is 7.90(±0.01)×10-10 m2/s. 
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Fig. 9. Comparison between input and fitted values of the diffusion coefficient, for a series of values of the 
input diffusion coefficient. The analysis of the simulated data is carried out with (blue) and without (red) 
taking into accoung velocity effects.  
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Fig. 10. Laminar flow simulation. Diffusion decay profile (red) and reference profile (green) obtained by 
processing and analysis of (a) even or (b) odd echoes of the EPSI train. Diffusion decay data (red circle), 
obtained after dividing the diffusion decay profile by reference profile and fitted curve (blue line) after 
processing and analysis of (a) even or (b) odd echoes of the EPSI train. Without correction the diffusion 
coefficient is found to be 6.45(±0.04)×10-10 m2/s, while after correction the value of diffusion coefficient is   
5.97(±0.07)×10-10 m2/s.  
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Fig. 11. Convection flow. Diffusion decay profile (red) and reference profile (green) obtained by processing 
and analysis of (a) even or (b) odd echoes of the EPSI train. Diffusion decay data (red circle), obtained after 
dividing the diffusion decay profile by reference profile and fitted curve (blue line) after processing and 
analysis of (a) even or (b) odd echoes of the EPSI train.  Without correction the diffusion coefficient is 
found to be 7.90(±0.00)×10-10 m2/s, while after correction the value of diffusion coefficient is   
8.94(±0.05)×10-10 m2/s. 
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