Thermodynamics and signatures of criticality in a network of neurons - Archive ouverte HAL
Article Dans Une Revue Proceedings of the National Academy of Sciences of the United States of America Année : 2015

Thermodynamics and signatures of criticality in a network of neurons

Résumé

The activity of a neural network is defined by patterns of spiking and silence from the individual neurons. Because spikes are (relatively) sparse, patterns of activity with increasing numbers of spikes are less probable, but, with more spikes, the number of possible patterns increases. This tradeoff between probability and numerosity is mathematically equivalent to the relationship between entropy and energy in statistical physics. We construct this relationship for populations of up to N = 160 neurons in a small patch of the vertebrate retina, using a combination of direct and model-based analyses of experiments on the response of this network to naturalistic movies. We see signs of a thermodynamic limit, where the entropy per neuron approaches a smooth function of the energy per neuron as N increases. The form of this function corresponds to the distribution of activity being poised near an unusual kind of critical point. We suggest further tests of criticality, and give a brief discussion of its functional significance.

Dates et versions

hal-03900067 , version 1 (15-12-2022)

Identifiants

Citer

Gašper Tkačik, Thierry Mora, Olivier Marre, Dario Amodei, Stephanie Palmer, et al.. Thermodynamics and signatures of criticality in a network of neurons. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112 (37), pp.11508-11513. ⟨10.1073/pnas.1514188112⟩. ⟨hal-03900067⟩
25 Consultations
0 Téléchargements

Altmetric

Partager

More