

Cooperation as a signal of time preferences

Julien Lie-Panis, Jean-Baptiste André

▶ To cite this version:

Julien Lie-Panis, Jean-Baptiste André. Cooperation as a signal of time preferences. Proceedings of the Royal Society B: Biological Sciences, 2022, 289 (1973), 10.1098/rspb.2021.2266. hal-03899999

HAL Id: hal-03899999 https://hal.science/hal-03899999v1

Submitted on 15 Dec 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Cooperation as a signal of time preferences

Julien Lie-Panis*^{a,b,c} and Jean-Baptiste $\mathrm{Andr}\acute{\mathrm{e}}^{\dagger a}$

^aInstitut Jean Nicod, Département d'études cognitives, Ecole normale supérieure, Université PSL, EHESS, CNRS, 75005 Paris, France

^bLTCI, Télécom Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France

^c Université de Paris, EURIP Graduate School for Interdisciplinary Research, 75004 Paris, France

March 24, 2022

Abstract

Many evolutionary models explain why we cooperate with non kin, but few explain why cooperative behavior and trust vary. Here, we introduce a model of cooperation as a signal of time preferences, which addresses this variability. At equilibrium in our model, (i) future-oriented individuals are more motivated to cooperate, (ii) future-oriented populations have access to a wider range of cooperative opportunities, and (iii) spontaneous and inconspicuous cooperation reveal stronger preference for the future, and therefore inspire more trust. Our theory sheds light on the variability of cooperative behavior and trust. Since affluence tends to align with time preferences, results (i) and (ii) explain why cooperation is often associated with affluence, in surveys and field studies. Time preferences also explain why we trust others based on proxies for impulsivity, and, following result (iii), why uncalculating, subtle and one-shot cooperators are deemed particularly trustworthy. Time preferences provide a powerful and parsimonious explanatory lens, through which we can better understand the variability of trust and cooperation.

Keywords: cooperation, trust, time preferences, evolution, costly signaling

^{*}Email: jliep@protonmail.com; Corresponding author; ORCID: 0000-0001-7273-7704 †Email: jeanbaptisteandre@gmail.com; ORCID: 0000-0001-9069-447X

Human cooperation is inherently variable. Cooperation varies with the indi-2 vidual. We are not all equally likely to help an unrelated stranger in the field or in the lab, and report differing levels of cooperative behavior in surveys (Akee 3 et al., 2018; Amir et al., 2018; Andreoni et al., 2017; Chen et al., 2013; Guinote et al., 2015; Korndörfer et al., 2015; Lettinga et al., 2020; McCullough et al., 5 2013; Nettle et al., 2011; Piff et al., 2010; Schmukle et al., 2019; Stamos et al., 2020; Wu et al., 2017; Wu et al., 2020; Zwirner & Raihani, 2020). Cooperation is also a function of historical and social context. Social trust tends to be 8 lower in poorer countries, and in the aftermath of conflict or other dramatic 9 events (Albanese & de Blasio, 2013; Balliet & Lange, 2013; Besley & Reynal-10 Querol, 2014; Bjørnskov, 2007; Nunn & Wantchekon, 2011; Rohner et al., 2013). 11 For the same interaction, the norm may even be to cooperate in one society, 12 and defect in another (Henrich, Ensminger, et al., 2010; Henrich, Heine, et al., 13 2010). Finally, the value of cooperation itself is variable. We place more trust 14 in spontaneous and inconspicuous cooperators than we do in individuals who 15 help others in deliberate or overt fashion (Bird & Power, 2015; Bird et al., 2018; 16 Critcher et al., 2013; Everett et al., 2016; Gambetta & Przepiorka, 2014; Jordan, 17 18 Hoffman, Nowak, et al., 2016; Levine et al., 2018).

Evolutionary biologists and game theoreticians explain the evolution of co-19 operation with non kin based on the principle of reciprocity. We trust and help 20 those who have helped us (Axelrod & Hamilton, 1981; Trivers, 1971) or others, 21 and have thus acquired a trustworthy reputation (Alexander, 1987; Nowak & 22 Sigmund, 1998; Ohtsuki & Iwasa, 2006; Panchanathan & Boyd, 2003). These 23 approaches, however, are chiefly concerned with explaining the existence of co-24 operation, and rarely attend to its variable nature. In most models helpful be-25 havior varies because of exogenous noise (Boyd, 1989; McNamara et al., 2008; 26 McNamara et al., 2004; Nowak & Sigmund, 1993). Cooperative variability re-27 mains an open question: we are unable to predict who is more prone to help, 28 where cooperation is more likely to emerge and what determines its informa-29 tional value. 30

The variable nature of cooperation may be studied following a framework 31 introduced by Leimar (1997). His model is based on the assumption that indi-32 viduals derive differing payoffs from cooperation, and may thus be differentially 33 motivated to help others (see also Boyd, 1992). In line with honest signaling 34 theory (Grafen, 1990; Zahavi, 1975), an individual's behavior in cooperative 35 encounters will then reveal her private payoffs, and therefore her future cooper-36 ative intentions — making it reasonable to trust others based on past behavior 37 (André, 2010; Leimar, 1997; Leimar & Hammerstein, 2001). 38

Leimar's model provides the general framework for our study. At first glance however, his central assumption seems unrealistic. Virtually all the resources or services that we acquire on our own may be obtained via cooperative exchanges; it is therefore difficult to conceive that some of us could systematically benefit more from cooperation than others. In order to better understand the who, the where and the what of cooperation, we must first explain why individual payoffs should vary *in general*.

⁴⁶ One answer to these questions may lie in differences in individual time pref⁴⁷ erences. Laboratory and field experiments performed in a diversity of contexts
⁴⁸ reveal that individuals can be distinguished according to their level of prefer⁴⁹ ence for immediate vs. future rewards (Amir et al., 2019; Frederick et al., 2002;
⁵⁰ Kirby et al., 2002; Tanaka et al., 2010). These time preferences are stable in the

short to medium term (Chuang & Schechter, 2015; Meier & Sprenger, 2015),
 and across similar decisions (Harrison et al., 2002; Ubfal, 2016).

Interindividual differences could originate from adaptive phenotypic plastic-53 ity, as harsher environments make future rewards more uncertain and/or present 54 needs more pressing, and select for stronger preference for the present (Chu et 55 al., 2010; Ellis et al., 2009; Fawcett et al., 2012; Mell et al., 2021; Nettle & 56 Frankenhuis, 2020; Pepper & Nettle, 2017; Stevens & Stephens, 2010). At a 57 fundamental level, cooperation entails paying immediate costs (to help others) 58 and, following the principle of reciprocity, receiving delayed benefits (in the form 59 of future help) (André, 2010; Barclay & Barker, 2020; Leimar, 1997; Leimar & 60 Hammerstein, 2001; Nowak & Sigmund, 1998). In theory, an individual's time 61 preferences should equivalently affect all the payoffs she derives from coopera-62 tive encounters. 63

In this paper, we formally explore the hypothesis that time horizon is the 64 underlying cause of the variability of human cooperation. We develop a mathe-65 matical model of cooperation in which individuals are characterized by a hidden 66 discount rate, which remains constant throughout their life, and affects all fu-67 ture payoffs. Individuals face strangers in a cooperative setting, and may use 68 their reputation to discriminate between trustworthy and exploitative partners. 69 Help emerges as an honest signal of time preferences in our model. Variation of 70 time horizon ensures behavioral variability at evolutionary equilibrium, which 71 stabilizes cooperation (Ferriere et al., 2002; Fishman et al., 2001; Lotem et al., 72 1999; McNamara & Leimar, 2010; Sherratt, 2001). In addition, assuming that 73 individual time preferences vary allows us to account for all three dimensions of 74 cooperative variability. 75

First, we predict that more future-oriented individuals should be more prone 76 to help. At equilibrium in our model, trustworthy partners are individuals 77 whose time horizon surpasses a certain threshold. This result conforms with 78 empirical data. Many studies report a positive correlation between individual 79 time horizon and cooperation (Curry et al., 2008; Fehr & Leibbrandt, 2011; 80 Harris & Madden, 2002; Kocher et al., 2013; Sjåstad, 2019), although it should 81 be noted that some of the evidence is inconclusive (Barclay & Barker, 2020; 82 Wu et al., 2017). Our first result also helps explain interindividual cooperative 83 variability. In surveys and field studies, individual cooperation is associated to 84 environmental affluence (Andreoni et al., 2017; Korndörfer et al., 2015; Lettinga 85 et al., 2020; Nettle et al., 2011; Schmukle et al., 2019; Zwirner & Raihani, 2020) 86 a variable which closely aligns with time horizon (Adams & White, 2009; 87 Amir et al., 2019; Bulley & Pepper, 2017; Griskevicius et al., 2011; Harrison 88 et al., 2002; Kirby et al., 2002; Reimers et al., 2009; Tanaka et al., 2010). Time 89 preferences have been found to mediate the relationship between environmental 90 affluence and individual investment in collective actions (Lettinga et al., 2020). 91 Second, we predict that more future-oriented populations should have access 92 to a wider range of stable cooperative opportunities. In surveys and field studies, 93 average cooperation and trust are associated to collective wealth (Albanese & de 94 Blasio, 2013; Korndörfer et al., 2015; Lettinga et al., 2020; Nunn & Wantchekon, 95 2011; Schmukle et al., 2019). Our model offers two complementary explanations 96 for these observations. Following our first result, we expect higher aggregate 97 cooperation when many individuals are future-oriented. Following our second 98 result, we expect cooperation and trust to emerge in a wider range of contexts 99

when population distribution of time preferences shifts towards the future.

Figure 1: Reputation formation. Signaler behavior is observed with probability p and error σ by the entire population in our model ($0 and <math>0 < \sigma < \frac{1}{2}$). This may be interpreted to reflect direct observation by one or several witnesses, and rapid social transmission of information (gossip) (Giardini & Vilone, 2016; Nowak & Sigmund, 1998, 2005). Direct observers mention their observation to several acquaintances, who in turn inform their acquaintances, etc. When this process is rapid relative to social interactions, all individuals receive information by the next trust game. Error σ can thus be seen to reflect the noisiness of social transmission: when a Signaler is observed cooperating, $1 - \sigma$ percent of individuals form a trustworthy image of that Signaler, and σ percent an exploitative image (and vice-versa with defection). We assume that new information replaces old information, and that individuals never forget. In future trust games, partners of that Signaler may condition their trust on (their private view of) her reputation.

Third, we predict that cooperation should be a more informative signal of 101 time preferences when observation is unlikely, or when the cost-benefit ratio is 102 low. Our theory may explain why we place more trust in helpful partners who 103 maintain a low profile or make impromptu decisions (Bird & Power, 2015; Bird 104 et al., 2018; Critcher et al., 2013; Everett et al., 2016; Gambetta & Przepiorka, 105 2014; Jordan, Hoffman, Nowak, et al., 2016; Levine et al., 2018). Inconspic-106 uous cooperators are indeed less likely to be observed and, since spontaneous 107 cooperators help more frequently (Jordan, Hoffman, Nowak, et al., 2016; Levine 108 et al., 2018; Rand et al., 2012), they stand to gain less from the average en-109 counter. Both behaviors reveal strong preference for the future in our model, 110 and therefore strong cooperative motivation. 111

112 1 Cooperating with strangers

Table 1: Payoffs for the trust game.

Signaler

		Cooperate (C)	Defect (D)
Chooser	Accept (A)	(b, r-c)	(-h,r)
	Reject (R)	(0, 0)	(0, 0)

We model cooperative encounters following a trust game with two roles (adapted from Jordan, Hoffman, Bloom, et al., 2016). The game consists in two stages: in the first, the "Chooser" may either accept the "Signaler" or reject partnership with that prospective partner, putting an early end to the interaction. Accepted Signalers reap reward r.

Partnership is only advantageous with trustworthy Signalers. In the second stage, the Signaler may cooperate with the Chooser, or opt to defect. Cooperation costs c and benefits the Chooser, who earns b. In contrast, defection is free and harms the Chooser, who loses h. We assume cooperation is net beneficial for Signalers: r > c. Payoffs are summarized in Table 1.

¹²³ When in the role of Chooser, individuals always face a strange Signaler, ¹²⁴ with whom they have never interacted before, and of whom they possess no ¹²⁵ privileged information. Choosers may however condition their play on their ¹²⁶ partner's reputation. Signalers are observed with probability p, and error σ . ¹²⁷ Individuals form a trustworthy or exploitative image of Signalers based on the ¹²⁸ most recent observation (see Figure 1).

¹²⁹ Signalers have varying time preferences. We assume that individuals engage ¹³⁰ in a large number of cooperative interactions throughout their life, and that ¹³¹ lifetime payoffs can be calculated following a discounted utility model (Frederick ¹³² et al., 2002). A Signaler's time preference is represented by her discount rate δ : ¹³³ obtaining payoff π at future time t is worth $(\frac{1}{1+\delta})^t \times \pi$ now. δ is positive and ¹³⁴ fixed at birth, by drawing in the population distribution of discount rates. The ¹³⁵ closer δ is to zero, the more an individual is future-oriented.

In the Supplementary Information, we give a full description of the model, 136 and provide a thorough equilibrium analysis. Below we focus on the conditional 137 trust and trustworthiness (CTT) strategy profile, which is defined in relation 138 to a threshold discount rate $\hat{\delta}$, and whereby, throughout their life, (i) Choosers 139 accept strangers given trustworthy reputation, and reject them given exploita-140 tive reputation; and (ii) Signalers cooperate when their discount rate is smaller 141 than δ , and defect when their discount rate is larger than δ . Demonstrations 142 for this strategy profile are detailed in the Materials and Methods section. 143

$_{144}$ 2 Results

¹⁴⁵ 2.1 Cooperative equilibrium

¹⁴⁶ We show that CTT is an evolutionarily stable strategy (ESS) if and only if ¹⁴⁷ (Maynard Smith & Price, 1973):

$$\hat{\delta} = p \times \left[(1 - \sigma)(\frac{r}{c} - 1) - \sigma \frac{r}{c} \right] \tag{1}$$

$$\frac{\sigma h}{\sigma h + (1 - \sigma)b} < \mathcal{P}(\delta < \hat{\delta}) < 1 - \frac{\sigma b}{\sigma b + (1 - \sigma)h}$$
(2)

Equation (1) specifies the strategy profile under study, by specifying the value of the threshold discount rate. Since $\hat{\delta}$ must be positive for cooperation to actually occur, we deduce an upper bound on error σ :

$$\sigma < \frac{\frac{r}{c} - 1}{2\frac{r}{c} - 1} \tag{3}$$

Cooperation is stabilized by variation of individual time preferences. Follow-151 ing equation (2), CTT is an ESS when at least $\frac{\sigma h}{\sigma h + (1-\sigma)b}$ percent of individuals 152 have a discount rate which is smaller than $\hat{\delta}$, and therefore cooperate when in the Signaler role; and at least $\frac{\sigma b}{\sigma b + (1-\sigma)h}$ individuals are above that threshold, 153 154 and therefore defect. Both fractions are positive, increasing functions of error σ : 155 cooperation is evolutionarily stable in our model when behavior at equilibrium 156 is sufficiently variable (Ferriere et al., 2002; Fishman et al., 2001; Lotem et al., 157 1999; McNamara & Leimar, 2010; Sherratt, 2001), and error sufficiently small 158 (Giardini & Vilone, 2016). 159

¹⁶⁰ 2.2 Who: cooperators are sufficiently future-oriented in-¹⁶¹ dividuals

At equilibrium, trustworthy Signalers are individuals whose discount rate is 162 inferior to δ . When individuals play CTT, Signalers who cooperate pay im-163 mediate cost c and increase their chances of facing well-disposed partners in 164 the future, once they have been observed. The value of establishing and main-165 taining a trustworthy reputation $\hat{\rho}$ depends on the average delay Signalers have 166 to wait before they are observed, which is proportional to $\Delta t = \frac{1}{p}$, and on 167 the benefit of consistently cooperating instead of defecting after observation, 168 $\hat{\beta} = (1 - \sigma)(r - c) - \sigma r.$ 169

We can in fact write: $\hat{\rho} = p[(1-\sigma)(r-c) - \sigma r] = \frac{\hat{\beta}}{\Delta t}$. Since $\sum_{t=1}^{\infty} (\frac{1}{1+\delta})^t = \frac{1}{\delta}$, an individual's social future may be represented by a single trust game whose 170 171 payoffs are discounted with rate $\frac{1}{\delta}$. Signalers cooperate at equilibrium if and 172 only if the value they attach to gaining $\hat{\rho}$ their entire future social life exceeds 173 the immediate cost of cooperation c — mathematically, $\delta < \hat{\delta} \iff \frac{1}{\delta} \times \hat{\rho} > c$. 174 Everything is as if trustworthy Signalers pay c to secure benefit $\hat{\beta}$ in a future 175 trust game which occurs with probability p. (Note that $\hat{\rho}$ tends towards r-c176 when p tends toward 1 and σ towards 0; when observation is highly faithful and 177 certain, trustworthy Signalers pay c in order to gain r-c their entire future life, 178 with quasi-certainty.) 179

2.3 Where: future-oriented populations have access to a wider range of cooperative opportunities

¹⁸² When average discount rates are low, equation (2) is verified for a wide range ¹⁸³ of possible parameter values, including when $\hat{\delta}$ is small — i.e. when the cost¹⁸⁴ benefit ratio $\frac{r}{c}$ of cooperation is low, and/or when observation is unlikely (small ¹⁸⁵ p) or unreliable (large σ). Even the most demanding forms of cooperation are ¹⁸⁶ stable in sufficiently future-oriented populations.

¹⁸⁷ 2.4 What: cooperation reveals underlying time prefer-¹⁸⁸ ences

Cooperation evolves as a signal of time preferences. At equilibrium, when a Sig-189 naler cooperates, she reveals that her discount rate is under δ . What's more, co-190 operation emerges as a signal, and not merely a cue, of Signaler time preferences 191 (Biernaskie et al., 2018). Cooperation is selected because it affects Choosers' 192 behavior: future-oriented Signalers cooperate in order to increase their chances 193 of being trusted in the future; effectively paying c now in order to gain $\rho > 0$ 194 their entire future life. In contrast, cooperation cannot evolve in the absence of 195 such an effect. If for instance Choosers accept whatever the information they 196 are presented with, cooperative Signalers do not increase their relative chances 197 of being trusted in the future; in such a case, they would pay c now to gain 198 nothing later. 199

In addition, the informative value of cooperation increases when $\hat{\delta}$ decreases. When a Signaler helps given small cost-benefit ratio $\frac{r}{c}$ or unlikely observation p, she reveals that her temporal discount rate must be small — and that she could therefore potentially be trusted in a wide array of cooperative interactions.

204 3 Discussion

In this paper, we have shown that cooperation can be understood as a signal of time preferences, using a formal model. We derived three predictions from our model: (i) future-oriented individuals should be more motivated to cooperate, (ii) future-oriented populations should have access to a wider range of cooperative opportunities, and (iii) cooperators who reveal stronger preference for the future should inspire more trust. These results shed light on the variability of cooperative behavior and trust.

²¹² 3.1 Environment and cooperation

Results (i) and (ii) help explain why individual and aggregate cooperation are 213 associated to environmental affluence in large representative surveys (Albanese 214 & de Blasio, 2013; Korndörfer et al., 2015; Lettinga et al., 2020; Nunn & 215 Wantchekon, 2011; Schmukle et al., 2019), in field studies (Andreoni et al., 216 2017; Nettle et al., 2011; Zwirner & Raihani, 2020) and a natural experiment 217 (Akee et al., 2018) — since people in more privileged circumstances tend to 218 display stronger preferences for the future (Adams & White, 2009; Amir et al., 219 2019; Bulley & Pepper, 2017; Griskevicius et al., 2011; Harrison et al., 2002; 220 Kirby et al., 2002; Reimers et al., 2009; Tanaka et al., 2010) (see also de Courson 221 & Nettle, 2021). 222

Due to adaptive phenotypic plasticity, the environment in which we grow up and live may in fact directly fashion our time preferences; and therefore fashion our cooperative inclinations (Ellis et al., 2009; Nettle & Frankenhuis, 2020; Pepper & Nettle, 2017). Evolutionary models show that it is adaptive to be more

present-oriented in adverse circumstances, i.e. when future rewards are uncer-227 228 tain (Fawcett et al., 2012; Stevens & Stephens, 2010), or when present needs are pressing (Chu et al., 2010; Mell et al., 2021). Interindividual differences in time 229 preferences and cooperation could thus arise from an adaptive plastic response 230 to one's environment, for either of these reasons. In support of this hypothesis, 231 a recent study finds that present biases partially mediate the relationship be-232 tween affluence and investment in collective actions (Lettinga et al., 2020), while 233 a meta-analytic review finds a negative correlation between early-life stress and 234 self-reported cooperation (Wu et al., 2020). 235

It should be noted that the evidence from behavioral experiments is mixed. 236 While some economic games have produced a positive association between afflu-237 ence and cooperation (Balliet & Lange, 2013; Henrich, Ensminger, et al., 2010; 238 Korndörfer et al., 2015; McCullough et al., 2013; Nettle et al., 2011; Schmukle 239 et al., 2019), other laboratory experiments yield the opposite association (Amir 240 et al., 2018; Chen et al., 2013; Guinote et al., 2015; Piff et al., 2010), or no 241 effect at all (Stamos et al., 2020; Wu et al., 2017). The previously mentioned 242 meta-analysis finds no significant overall correlation (Wu et al., 2020). In some 243 244 instances, this discrepancy is attributable to small sample sizes (Korndörfer et al., 2015; Stamos et al., 2020). More largely, the generalizability and ecological 245 validity of many laboratory experiments can be questioned; in particular when 246 only one economic game is performed. Recent studies find that measures derived 247 from a single economic game do not correlate with self-reported cooperation or 248 real-life behavior, but that a general factor based on several games does (Galizzi 249 & Navarro-Martinez, 2019; McAuliffe et al., 2019). 250

²⁵¹ 3.2 Trust depends on revealed time preferences

Result (iii) helps explain why we infer trustworthiness from traits which appear 252 unrelated to cooperation, but happen to predict time preferences. We trust 253 known partners and strangers based on how impulsive we perceive them to be 254 (Peetz & Kammrath, 2013; Righetti & Finkenauer, 2011); impulsivity being as-255 sociated to both time preferences and cooperativeness in laboratory experiments 256 (Aguilar-Pardo et al., 2013; Burks et al., 2009; Cohen et al., 2014; Martinsson 257 et al., 2014; Myrseth et al., 2015; Restubog et al., 2010). Other studies show 258 we infer cooperative motivation from a wide variety of proxies for partner self-259 control, including indicators of their indulgence in harmless sensual pleasures 260 (for a review see Fitouchi et al., 2021), as well as proxies for environmental 261 affluence (Moon et al., 2018; Williams et al., 2016). 262

Time preferences further offer a parsimonious explanation for why different forms of cooperation inspire more trust than others. When probability of observation p or cost-benefit ratio $\frac{r}{c}$ are small in our model, helpful behavior reveals large time horizon — and cooperators may be perceived as relatively genuine or disinterested. We derive two different types of conclusion from this principle.

²⁶⁸ 3.3 Inconspicuous cooperation

First, time preferences explain why we trust our partners more when they cooperate in an inconspicuous manner (see also Bird & Power, 2015; Bird et al., 2018; Hoffman et al., 2018; Quillien, 2020). In our model, the average delay cooperators have to wait before help can be profitable varies like $\Delta t = \frac{1}{p}$. Given smaller probability of observation p, helpful individuals literally reveal they are
able to wait for a longer amount of time. In contrast, when immediate rewards
are added (e.g. when blood donors are promised payment), help becomes much
less informative; and less valuable to the more genuinely prosocial (Benabou &
Tirole, 2003).

In particular, only acutely future-oriented individuals will help when observability p is tiny. Their cooperation is akin to a "message in a bottle": a powerful demonstration of their intrinsic cooperativeness, which, so long as $p \neq 0$, will eventually be received by others. This could explain why some of us cooperate in economic games which are designed to make our help anonymous (Raihani & Bshary, 2015), so long as we assume that anonymity is never absolutely certain (see also Delton et al., 2011).

²⁸⁵ 3.4 Spontaneous cooperation

Second, time preferences explain why we trust our partners more when they 286 cooperate spontaneously — when their behavior appears more natural, unhesi-287 tant, intuitive, uncalculating or underlain by emotion (Critcher et al., 2013; 288 Everett et al., 2016; Gambetta & Przepiorka, 2014; Jordan, Hoffman, Nowak, 289 et al., 2016; Levine et al., 2018). Since they help their partners more frequently 290 (Jordan, Hoffman, Nowak, et al., 2016; Levine et al., 2018; Rand et al., 2012), 291 including when defection is tempting, more spontaneous cooperators enjoy lower 292 expected payoffs in the typical encounter (see also Hoffman et al., 2015). Greater 293 spontaneity could thus indicate willingness to help given smaller values of $\frac{r}{c}$; and 294 therefore stronger preference for the future. 295

²⁹⁶ 3.5 Time preferences and other partner qualities

Our analysis has fixated on time preferences. This is somewhat arbitrary. Many 297 other characteristics affect our cooperative interests, and are revealed by our 298 social behavior — underlying costs and benefits (Jordan, Hoffman, Bloom, et al., 299 2016; Jordan, Hoffman, Nowak, et al., 2016), revelation probability (Hoffman et 300 al., 2018), and, when interacting with known associates, specific commitment to 301 the shared relationship (Barclay, 2020; Barclay & Barker, 2020; Barclay et al., 302 2021; Bird et al., 2018; Quillien, 2020) (this latter dimension is absent in our 303 model). These qualities shape our strategic interests in a given social context: 304 we stand to gain more from cooperation when it involves a partner we know 305 and are committed to; and when it occurs in a social network we value and 306 are embedded in, where we should enjoy higher observability and payoffs. Yet, 307 context changes fast. We can help a close friend today, and donate anonymously 308 tomorrow. 309

In contrast to other partner qualities, time preferences appear remarkably 310 stable. Communication of time preferences is likely to be a fundamental element 311 of human cooperation. It may even underlie other facets of our social life. The 312 larger our time horizon, the more likely we are to invest in our social surround-313 ings, via dyadic help as well as collective actions or policing. Contribution to 314 public goods (Gintis et al., 2001) and prosocial punishment (Jordan, Hoffman, 315 Bloom, et al., 2016), which function as signals of cooperative intent, may also 316 rely on communication of time preferences. 317

318 Materials and methods

This section gives a sketch of the evidence regarding the conditional trust and trustworthiness strategy profile, in a simplified setting. For a full description of the model, and a thorough equilibrium analysis, see the Supplementary Information.

Two types of players engage in a repeated trust game: Choosers and Signalers. In each round, a Chooser faces a Signaler she has never encountered before. She may first accept or reject the Signaler, putting an early end to the interaction. If accepted, the Signaler reaps reward r, and may then cooperate or defect. Cooperation involves the Signaler paying cost c for the Chooser to gain b; defection is free, and harms the Chooser, who loses h.

³²⁸ Choosers may condition their strategy on their private view of the Signaler's repu-³²⁹ tation. Each time a Signaler acts, she is observed with probability p. When a Signaler ³³⁰ is observed cooperating, $1 - \sigma$ percent of Choosers receive information \mathcal{T} , correctly ³³¹ indicating that the Signaler behaved in a trustworthy manner; and the remaining σ ³³² percent receive information \mathcal{E} , falsely indicating exploitative behavior (and vice-versa ³³³ with defection). We assume new information replaces old information.

Signalers may condition their strategy on their discount rate δ . To simplify things, 334 we assume here that Signalers play a stationary strategy (always cooperate, or always 335 defect), and that they are initially certain to be accepted (before the first observation). 336 We relax both these assumptions in the Supplementary Information, and obtain the 337 same results. δ is fixed at birth, by drawing in a continuous probability distribution 338 which characterizes the Signaler population. Signalers engage in a large number of 339 rounds of the repeated trust game, a payoff t rounds in the future being discounted 340 by factor $\left(\frac{1}{1+\delta}\right)^t$ now. 341

According to the conditional trust and trustworthiness (CTT) strategy profile, (i) Choosers accept given trustworthy reputation \mathcal{T} , and reject given exploitative reputation \mathcal{E} ; and (ii) Signalers cooperate if their discount rate is smaller than a certain threshold value $\hat{\delta}$, and defect if their discount rate is larger than $\hat{\delta}$. We show that CTT is an evolutionarily stable strategy (ESS) (Maynard Smith & Price, 1973) under the conditions set by equations (1-2), by computing equilibrium and deviation payoffs for Signalers first, and Choosers second.

³⁴⁹ Signaler equilibrium payoffs

We consider a Signaler of discount rate δ . Let Π_C and Π_D be the lifetime discounted payoff she can expect from cooperation and defection respectively. We show that when the value of $\hat{\delta}$ is given by equation (1), the Signaler stands to strictly lose from deviation from CTT.

Let us first calculate Π_C . When the Signaler cooperates, she gains r - c every round she is accepted. She will eventually be observed, from which point she can expect to be accepted $1 - \sigma$ percent of the time in equilibrium, in rounds where she is paired with a Chooser who has (correctly) received information \mathcal{T} . In other words, she eventually gains payoff $\Pi_C^{\infty} = \sum_{t=0}^{\infty} (\frac{1}{1+\delta})^t (1-\sigma)(r-c) = \frac{1+\delta}{\delta}(1-\sigma)(r-c)$, starting from the point of first observation.

In the initial round however, she is certain to be accepted, and gain r - c. Observation affects her payoffs starting in the next round, which are discounted by factor $\frac{1}{1+\delta}$: if she is observed, she gains Π_C^{∞} starting the next round, if not, she continues to gain payoff Π_C . In other words, we have:

$$\Pi_C = r - c + \frac{p \times \Pi_C^\infty + (1 - p) \times \Pi_C}{1 + \delta}$$

364 From which we deduce:

$$\Pi_C = (r - c + \frac{p \times \Pi_C^\infty}{1 + \delta}) \times \frac{1 + \delta}{p + \delta}$$

We can apply an analogous reasoning to calculate Π_D . When the Signaler defects, she gains r every round she is accepted. After the first observation, the Signaler can expect to be accepted σ percent of the time, when paired with a Chooser who has (incorrectly) received information \mathcal{T} . She eventually gains: $\Pi_D^{\infty} = \sum_{t=0}^{\infty} (\frac{1}{1+\delta})^t \sigma r =$ $\frac{1+\delta}{\delta} \sigma r$. Starting from the initial round, she therefore gains:

$$\Pi_D = r + \frac{p \times \Pi_D^\infty + (1-p) \times \Pi_D}{1+\delta}$$

370 Which yields:

$$\Pi_D = \left(r + \frac{p \times \Pi_D^\infty}{1 + \delta}\right) \times \frac{1 + \delta}{p + \delta}$$

By comparing both expressions, we deduce that the Signaler strictly benefits from cooperation if and only if the cost of cooperating now is smaller than the benefit of receiving Π_C^{∞} instead of receiving Π_D^{∞} in the future, with probability p:

$$\Pi_D < \Pi_C \iff c < p \times \frac{\Pi_C^\infty - \Pi_D^\infty}{1 + \delta}$$

And, by replacing Π_C^{∞} and Π_D^{∞} by their values, we deduce the logical equivalence:

$$\Pi_D < \Pi_C \iff \delta < p \times [(1 - \sigma)(\frac{r}{c} - 1) - \sigma \frac{r}{c}]$$

³⁷⁵ Under condition (1), the Signaler therefore always stands to strictly lose from ³⁷⁶ deviation from CTT. If her discount rate δ is smaller than $\hat{\delta}$, she strictly gains on ³⁷⁷ average from cooperating her whole life instead of defecting her whole life; if conversely, ³⁷⁸ $\delta > \hat{\delta}$, she strictly benefits from defecting. Note that CTT does not prescribe behavior ³⁷⁹ for the Signaler when her discount rate is precisely equal to the threshold. Here, we ³⁸⁰ neglect this possibility, based on the fact that the population distribution of discount ³⁸¹ rates is continuous (we come back to this in the Supplementary Information).

³⁸² Chooser equilibrium payoffs

We show that in equilibrium, Choosers stand to strictly lose from deviation from CTT when equation (2) is verified. Let us first consider a Chooser faced with information \mathcal{T} . If the Chooser rejects the Signaler, she gains nothing; if she accepts, she stands to gain expected benefit $P(C|\mathcal{T}) \times b + P(D|\mathcal{T}) \times (-h) = P(C|\mathcal{T})(b+h) - h$. Accepting given \mathcal{T} is therefore strictly beneficial iff:

$$\mathbf{P}(C|\mathcal{T}) > \frac{h}{b+h}$$

Let $\tau = P(C) = P(\delta < \hat{\delta})$ be the equilibrium probability that the Signaler is trustworthy. Following Bayes' rule, $P(C|\mathcal{T}) = \frac{P(\mathcal{T}|C)}{P(\mathcal{T})} \times \tau$. The above inequality can be rewritten as:

$$\frac{1-\sigma}{\tau(1-\sigma)+(1-\tau)\sigma} \times \tau > \frac{h}{b+h}$$

³⁹¹ This is equivalent to:

$$\tau > \frac{\sigma h}{\sigma h + (1 - \sigma)b} \tag{2a}$$

Let us now consider a Chooser faced with information \mathcal{E} . An analogous calculation shows that rejecting given \mathcal{E} is strictly beneficial iff:

$$\mathbf{P}(C|\mathcal{E}) < \frac{h}{b+h}$$

Using Bayes' rule, we find: $P(C|\mathcal{E}) = \frac{P(\mathcal{E}|C)}{P(\mathcal{E})} \times \tau = \frac{\sigma}{\tau\sigma + (1-\tau)(1-\sigma)} \times \tau$. By replacing in the above inequality, we deduce that rejection given \mathcal{E} is strictly beneficial iff:

$$\tau < 1 - \frac{\sigma b}{\sigma b + (1 - \sigma)h} \tag{2b}$$

Combining equations (2a) and (2b), and replacing $\tau = P(\delta < \hat{\delta})$ we deduce equation (2). Under that condition, Choosers therefore stand to strictly lose from deviation from CTT. We deduce that CTT is an ESS under the conditions set by equations (1-2): any mutant is strictly counter-selected. We show in the Supplementary Information that we in fact have an equivalence; CTT is an ESS if and only if both equations are verified.

Acknowledgments

This study was supported by the EUR FrontCog grant ANR-17-EURE-0017 and funding from the EURIP Graduate School for Interdisciplinary Research. We thank an anonymous reviewer, Pat Barclay, Léo Fitouchi and Moshe Hoffman for their insightful feedback, and Clara Lie for her graphic prowess.

References

- Adams, J., & White, M. (2009). Time perspective in socioeconomic inequalities in smoking and body mass index. <u>Health Psychology</u>, <u>28</u>(1), 83–90. https://doi.org/10.1037/0278-6133.28.1.83
- Aguilar-Pardo, D., Martínez-Arias, R., & Colmenares, F. (2013). The role of inhibition in young children's altruistic behaviour. <u>Cognitive Processing</u>, 14(3), 301–307. https://doi.org/10.1007/s10339-013-0552-6
- Akee, R., Copeland, W., Costello, E. J., & Simeonova, E. (2018). How Does Household Income Affect Child Personality Traits and Behaviors?
 <u>American Economic Review</u>, <u>108</u>(3), 775–827. Retrieved October 19, 2020, from https://econpapers.repec.org/article/aeaaecrev/ v_3a108_3ay_3a2018_3ai_3a3_3ap_3a775-827.htm
- Albanese, G., & de Blasio, G. (2013). Who trusts others more? A cross-European study. <u>Empirica</u>, <u>41</u>, 803–820. https://doi.org/10.1007/s10663-013-9238-7
- Alexander, R. D. (1987). <u>The Biology of Moral Systems</u>. Transaction Publishers.
- Amir, D., Jordan, M., Mcauliffe, K., Valeggia, C., Sugiyama, L., Bribiescas, R.,
 Snodgrass, J., & Dunham, Y. (2019). The developmental origins of risk and time preferences across diverse societies.
 Journal of Experimental Psychology: General, 149. https://doi.org/10.1037/xge0000675
- Amir, D., Jordan, M. R., & Rand, D. G. (2018). An uncertainty management perspective on long-run impacts of adversity: The influence of childhood socioeconomic status on risk, time, and social preferences. <u>Journal of Experimental Social Psychology</u>, <u>79</u>, 217–226. <u>https://doi.org/10.1016/j.jesp.2018.07.014</u>

- André, J.-B. (2010). The Evolution of Reciprocity: Social Types or Social Incentives? The American Naturalist, 175(2), 197–210. https://doi.org/10.1086/649597
- Andreoni, J., Nikiforakis, N., & Stoop, J. (2017). Are the Rich More Selfish than the Poor, or Do They Just Have More Money? A Natural Field Experiment. (w23229), w23229. https://doi.org/10.3386/w23229
- Axelrod, R., & Hamilton, W. D. (1981). The evolution of cooperation. <u>Science</u>, 211(4489), 1390–1396. https://doi.org/10.1126/science.7466396
- Balliet, D., & Lange, P. (2013). Trust, Punishment, and Cooperation Across 18 Societies A Meta-Analysis. <u>Perspectives on Psychological Science</u>, <u>8</u>, 363–379. https://doi.org/10.1177/1745691613488533
- Barclay, P. (2020). Reciprocity creates a stake in one's partner, or why you should cooperate even when anonymous. <u>Proceedings of the Royal Society B.</u> https://doi.org/10.1098/rspb.2020.0819
- Barclay, P., & Barker, J. L. (2020). Greener Than Thou: People who protect the environment are more cooperative, compete to be environmental, and benefit from reputation. Journal of Environmental Psychology, <u>72</u>, 101441. https://doi.org/10.1016/j.jenvp.2020.101441
- Barclay, P., Bliege Bird, R., Roberts, G., & Számadó, S. (2021). Cooperating to show that you care: Costly helping as an honest signal of fitness interdependence. <u>Philosophical Transactions of the Royal Society B: Biological Sciences</u>, <u>376(1838)</u>, 20200292. https://doi.org/10.1098/rstb.2020.0292
- Benabou, R., & Tirole, J. (2003). Intrinsic and Extrinsic Motivation. <u>Review of Economic Studies</u>, 70(3), 489–520. <u>https://doi.org/10.1111/1467-937X.00253</u>
- Besley, T., & Reynal-Querol, M. (2014). The Legacy of Historical Conflict: Evidence from Africa. <u>American Political Science Review</u>, <u>108</u>(2), 319–336. https://doi.org/10.1017/S0003055414000161
- Biernaskie, J. M., Perry, J. C., & Grafen, A. (2018). A general model of biological signals, from cues to handicaps. <u>Evolution Letters</u>, 2(3), 201–209. https://doi.org/10.1002/evl3.57 _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/evl3.57
- Bird, R. B., & Power, E. A. (2015). Prosocial signaling and cooperation among Martu hunters. <u>Evolution and Human Behavior</u>, <u>36</u>(5), 389–397. https://doi.org/10.1016/j.evolhumbehav.2015.02.003
- Bird, R. B., Ready, E., & Power, E. A. (2018). The social significance of subtle signals. <u>Nature Human Behaviour</u>, 2(7), 452–457. https://doi.org/10.1038/s41562-018-0298-3
- Bjørnskov, C. (2007). Determinants of generalized trust: A cross-country comparison. Public Choice, 130(1), 1–21. https://doi.org/10.1007/s11127-006-9069-1
- Boyd, R. (1989). Mistakes allow evolutionary stability in the repeated prisoner's dilemma game. Journal of Theoretical Biology, <u>136</u>(1), 47–56. https://doi.org/10.1016/S0022-5193(89)80188-2
- Boyd, R. (1992). The evolution of reciprocity when conditions vary. <u>Coalitions and alliances in humans and other animals</u>. Retrieved November 10, 2020, from https://ci.nii.ac.jp/naid/10016622827/
- Bulley, A., & Pepper, G. V. (2017). Cross-country relationships between life expectancy, intertemporal choice and age at first birth. <u>Evolution and Human Behavior</u>, <u>38</u>(5), 652–658. <u>https://doi.org/10.1016/j.evolhumbehav.2017.05.002</u>
- Burks, S. V., Carpenter, J. P., Goette, L., & Rustichini, A. (2009). Cognitive skills affect economic preferences, strategic behavior, and job attachment. <u>Proceedings of the National Academy of Sciences</u>, <u>106</u>(19), 7745–7750. <u>https://doi.org/10.1073/pnas.0812360106</u>

- Chen, Y., Zhu, L., & Chen, Z. (2013). Family Income Affects Children's Altruistic Behavior in the Dictator Game. <u>PLOS ONE</u>, <u>8</u>(11), e80419. https://doi.org/10.1371/journal.pone.0080419
- Chu, C. Y. C., Chien, H.-K., & Lee, R. D. (2010). The evolutionary theory of time preferences and intergenerational transfers. Journal of Economic Behavior & Organization, <u>76</u>(3), 451–464. https://doi.org/10.1016/j.jebo.2010.09.011
- Chuang, Y., & Schechter, L. (2015). Stability of experimental and survey measures of risk, time, and social preferences: A review and some new results. <u>Journal of Development Economics</u>, <u>117</u>, 151–170. <u>https://doi.org/10.1016/j.jdeveco.2015.07.008</u>
- Cohen, T. R., Panter, A. T., Turan, N., Morse, L., & Kim, Y. (2014). Moral character in the workplace. Journal of Personality and Social Psychology, <u>107</u>(5), 943–963. https://doi.org/10.1037/a0037245
- Critcher, C. R., Inbar, Y., & Pizarro, D. A. (2013). How Quick Decisions Illuminate Moral Character. <u>Social Psychological and Personality Science</u>, <u>4</u>(3), 308–315. https://doi.org/10.1177/1948550612457688
- Curry, O. S., Price, M. E., & Price, J. G. (2008). Patience is a virtue: Cooperative people have lower discount rates. <u>Personality and Individual Differences</u>, 44(3), 780–785. https://doi.org/10.1016/j.paid.2007.09.023
- de Courson, B., & Nettle, D. (2021). Why do inequality and deprivation produce high crime and low trust? <u>Scientific Reports</u>, <u>11</u>(1), 1937. https://doi.org/10.1038/s41598-020-80897-8
- Delton, A. W., Krasnow, M. M., Cosmides, L., & Tooby, J. (2011). Evolution of direct reciprocity under uncertainty can explain human generosity in one-shot encounters. <u>Proceedings of the National Academy of Sciences</u>, 108(32), 13335–13340. https://doi.org/10.1073/pnas.1102131108
- Ellis, B. J., Figueredo, A. J., Brumbach, B. H., & Schlomer, G. L. (2009). Fundamental Dimensions of Environmental Risk: The Impact of Harsh versus Unpredictable Environments on the Evolution and Development of Life History Strategies. <u>Human Nature</u>, 20(2), 204–268. https://doi.org/10.1007/s12110-009-9063-7
- Everett, J. A. C., Pizarro, D. A., & Crockett, M. J. (2016). Inference of trustworthiness from intuitive moral judgments. <u>Journal of Experimental Psychology: General</u>, <u>145</u>(6), 772–787. <u>https://doi.org/10.1037/xge0000165</u>
- Fawcett, T. W., McNamara, J. M., & Houston, A. I. (2012). When is it adaptive to be patient? A general framework for evaluating delayed rewards. <u>Behavioural Processes</u>, <u>89</u>(2), 128–136. <u>https://doi.org/10.1016/j.beproc.2011.08.015</u>
- Fehr, E., & Leibbrandt, A. (2011). A field study on cooperativeness and impatience in the Tragedy of the Commons. <u>Journal of Public Economics</u>, <u>95</u>(9), 1144–1155. https://doi.org/10.1016/j.jpubeco.2011.05.013

Ferriere, R., Bronstein, J. L., Rinaldi, S., Law, R., & Gauduchon, M. (2002). Cheating and the evolutionary stability of mutualisms. <u>Proceedings of the Royal Society of London. Series B: Biological Sciences</u>, 269(1493), 773–780. https://doi.org/10.1098/rspb.2001.1900

- Fishman, M. A., Lotem, A., & Stone, L. (2001). Heterogeneity Stabilizes Reciprocal Altruism Interactions. Journal of Theoretical Biology, <u>209</u>(1), 87–95. https://doi.org/10.1006/jtbi.2000.2248
- Fitouchi, L., André, J.-B., & Baumard, N. (2021). Moral disciplining: The cognitive and evolutionary foundations of puritanical morality. https://doi.org/10.31234/osf.io/2stcv

- Frederick, S., Loewenstein, G., & O'Donoghue, T. (2002). Time Discounting and Time Preference: A Critical Review. Journal of Economic Literature, <u>40</u>(2), 351–401. https://doi.org/10.1257/jel.40.2.351
- Galizzi, M. M., & Navarro-Martinez, D. (2019). On the External Validity of Social Preference Games: A Systematic Lab-Field Study. <u>Management Science</u>, 65(3), 976–1002. https://doi.org/10.1287/mnsc.2017.2908
- Gambetta, D., & Przepiorka, W. (2014). Natural and Strategic Generosity as Signals of Trustworthiness. <u>PLOS ONE</u>, 9(5), e97533. https://doi.org/10.1371/journal.pone.0097533
- Giardini, F., & Vilone, D. (2016). Evolution of gossip-based indirect reciprocity on a bipartite network. <u>Scientific Reports</u>, <u>6</u>(1), 37931. https://doi.org/10.1038/srep37931
- Gintis, H., Smith, E. A., & Bowles, S. (2001). Costly Signaling and Cooperation. Journal of Theoretical Biology, 213(1), 103–119. https://doi.org/10.1006/jtbi.2001.2406
- Grafen, A. (1990). Biological signals as handicaps. Journal of Theoretical Biology, 144(4), 517–546. https://doi.org/10.1016/S0022-5193(05)80088-8
- Griskevicius, V., Tybur, J. M., Delton, A. W., & Robertson, T. E. (2011). The influence of mortality and socioeconomic status on risk and delayed rewards: A life history theory approach. <u>Journal of Personality and Social Psychology</u>, <u>100</u>(6), 1015–1026. <u>https://doi.org/10.1037/a0022403</u>
- Guinote, A., Cotzia, I., Sandhu, S., & Siwa, P. (2015). Social status modulates prosocial behavior and egalitarianism in preschool children and adults. Proceedings of the National Academy of Sciences, 112(3), 731–736.
- Harris, A. C., & Madden, G. J. (2002). Delay Discounting and Performance on the Prisoner's Dilemma Game. <u>The Psychological Record</u>, <u>52</u>(4), 429–440. https://doi.org/10.1007/BF03395196
- Harrison, G. W., Lau, M. I., & Williams, M. B. (2002). Estimating Individual Discount Rates in Denmark: A Field Experiment. <u>American Economic Review</u>, 92(5), 1606–1617. <u>https://doi.org/10.1257/000282802762024674</u>
- Henrich, J., Ensminger, J., McElreath, R., Barr, A., Barrett, C., Bolyanatz, A., Cardenas, J. C., Gurven, M., Gwako, E., Henrich, N., Lesorogol, C., Marlowe, F., Tracer, D., & Ziker, J. (2010). Markets, Religion, Community Size, and the Evolution of Fairness and Punishment. <u>Science</u>, <u>327</u>(5972), 1480–1484. https://doi.org/10.1126/science.1182238
- Henrich, J., Heine, S. J., & Norenzayan, A. (2010). The weirdest people in the world? <u>Behavioral and Brain Sciences</u>, <u>33</u>(2-3), 61–83. <u>https://doi.org/10.1017/S0140525X0999152X</u>
- $\begin{array}{l} \text{Hoffman, M., Hilbe, C., \& Nowak, M. A. (2018). The signal-burying game can} \\ & \text{explain why we obscure positive traits and good deeds.} \\ & \underline{\text{Nature Human Behaviour, } \underline{2}(6), 397\text{--}404.} \\ & \underline{\text{https://doi.org/10.1038/s41562-018-0354-z}} \end{array}$
- Hoffman, M., Yoeli, E., & Nowak, M. A. (2015). Cooperate without looking: Why we care what people think and not just what they do.
 <u>Proceedings of the National Academy of Sciences</u>, <u>112</u>(6), 1727–1732.
 <u>https://doi.org/10.1073/pnas.1417904112</u>
- Jordan, J. J., Hoffman, M., Bloom, P., & Rand, D. G. (2016). Third-party punishment as a costly signal of trustworthiness. <u>Nature</u>, <u>530</u>(7591), 473–476. https://doi.org/10.1038/nature16981
- Jordan, J. J., Hoffman, M., Nowak, M. A., & Rand, D. G. (2016). Uncalculating cooperation is used to signal trustworthiness.

 $\frac{\text{Proceedings of the National Academy of Sciences}}{\text{https://doi.org/10.1073/pnas.1601280113}}, \frac{113}{(31)}, 8658-8663.$

- Kirby, K., Godoy, R., Reyes-García, V., Byron, E., Apaza, L., Leonard, W., Perez, E., Vadez, V., & Wilkie, D. (2002). Correlates of Delay-discount Rates: Evidence from Tsimane' Amerindians of the Bolivian Rain Forest. Journal of Economic Psychology, 23, 291–316. https://doi.org/10.1016/S0167-4870(02)00078-8
- Kocher, M. G., Martinsson, P., Myrseth, K. O. R., & Wollbrant, C. E. (2013).
 <u>Strong, Bold, and Kind: Self-Control and Cooperation in Social Dilemmas</u> (SSRN Scholarly Paper No. ID 2258344). Social Science Research Network. Rochester, NY. Retrieved April 15, 2021, from https://papers.ssrn.com/abstract=2258344
- Korndörfer, M., Egloff, B., & Schmukle, S. C. (2015). A Large Scale Test of the Effect of Social Class on Prosocial Behavior. <u>PLOS ONE</u>, <u>10</u>(7), e0133193. https://doi.org/10.1371/journal.pone.0133193
- Leimar, O. (1997). Reciprocity and communication of partner quality. Proceedings of the Royal Society of London. Series B: Biological Sciences, 264(1385), 1209–1215. https://doi.org/10.1098/rspb.1997.0167
- Leimar, O., & Hammerstein, P. (2001). Evolution of cooperation through indirect reciprocity. Proceedings of the Royal Society of London. Series B: Biological Sciences,

268(1468), 745–753. https://doi.org/10.1098/rspb.2000.1573

- Lettinga, N., Jacquet, P. O., André, J.-B., Baumand, N., & Chevallier, C. (2020). Environmental adversity is associated with lower investment in collective actions. <u>PLOS ONE</u>, 15(7), e0236715. https://doi.org/10.1371/journal.pone.0236715
- Levine, E. E., Barasch, A., Rand, D., Berman, J. Z., & Small, D. A. (2018). Signaling emotion and reason in cooperation. Journal of Experimental Psychology: General, <u>147</u>(5), 702–719. https://doi.org/10.1037/xge0000399
- Lotem, A., Fishman, M. A., & Stone, L. (1999). Evolution of cooperation between individuals. <u>Nature</u>, <u>400</u>(6741), 226–227. https://doi.org/10.1038/22247
- Martinsson, P., Myrseth, K. O. R., & Wollbrant, C. (2014). Social dilemmas: When self-control benefits cooperation. Journal of Economic Psychology, <u>45</u>, 213–236. https://doi.org/10.1016/j.joep.2014.09.004
- Maynard Smith, J., & Price, G. R. (1973). The Logic of Animal Conflict. <u>Nature</u>, <u>246(5427)</u>, 15–18. https://doi.org/10.1038/246015a0
- McAuliffe, W. H., Forster, D. E., Pedersen, E. J., & McCullough, M. E. (2019). Does Cooperation in the Laboratory Reflect the Operation of A Broad Trait? <u>European Journal of Personality</u>, <u>33</u>(1), 89–103. <u>https://doi.org/10.1002/per.2180</u>
- McCullough, M. E., Pedersen, E. J., Schroder, J. M., Tabak, B. A., & Carver, C. S. (2013). Harsh childhood environmental characteristics predict exploitation and retaliation in humans.
 <u>Proceedings of the Royal Society B: Biological Sciences</u>, <u>280</u>(1750), 20122104. https://doi.org/10.1098/rspb.2012.2104
- McNamara, J. M., Barta, Z., Fromhage, L., & Houston, A. I. (2008). The coevolution of choosiness and cooperation. <u>Nature</u>, <u>451</u>(7175), 189–192. https://doi.org/10.1038/nature06455
- McNamara, J. M., Barta, Z., & Houston, A. I. (2004). Variation in behaviour promotes cooperation in the Prisoner's Dilemma game. <u>Nature</u>, <u>428</u>(6984), 745–748. https://doi.org/10.1038/nature02432
- McNamara, J. M., & Leimar, O. (2010). Variation and the response to variation as a basis for successful cooperation.

Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1553), 2627–2633. https://doi.org/10.1098/rstb.2010.0159

- Meier, S., & Sprenger, C. D. (2015). Temporal Stability of Time Preferences. <u>The Review of Economics and Statistics</u>, <u>97</u>(2), 273–286. <u>https://doi.org/10.1162/REST_a_00433</u>
- Mell, H., Baumard, N., & André, J.-B. (2021). Time is money. Waiting costs explain why selection favors steeper time discounting in deprived environments. <u>Evolution and Human Behavior</u>, <u>42</u>(4), 379–387. <u>https://doi.org/10.1016/j.evolhumbehav.2021.02.003</u>
- Moon, J. W., Krems, J. A., & Cohen, A. B. (2018). Religious People Are Trusted Because They Are Viewed as Slow Life-History Strategists. <u>Psychological Science</u>, 29(6), 947–960. https://doi.org/10.1177/0956797617753606
- Myrseth, K. O. R., Riener, G., & Wollbrant, C. E. (2015). Tangible temptation in the social dilemma: Cash, cooperation, and self-control. <u>Journal of Neuroscience, Psychology, and Economics</u>, <u>8</u>(2), 61–77. <u>https://doi.org/10.1037/npe0000035</u>
- Nettle, D., Colléony, A., & Cockerill, M. (2011). Variation in Cooperative Behaviour within a Single City. <u>PLOS ONE</u>, <u>6</u>(10), e26922. https://doi.org/10.1371/journal.pone.0026922
- Nettle, D., & Frankenhuis, W. E. (2020). Life-history theory in psychology and evolutionary biology: One research programme or two? <u>Philosophical Transactions of the Royal Society B: Biological Sciences</u>, 375(1803), 20190490. https://doi.org/10.1098/rstb.2019.0490
- Nowak, M. A., & Sigmund, K. (1993). A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner's Dilemma game. <u>Nature</u>, <u>364</u>(6432), 56–58. https://doi.org/10.1038/364056a0
- Nowak, M. A., & Sigmund, K. (1998). Evolution of indirect reciprocity by image scoring. Nature, 393(6685), 573–577. https://doi.org/10.1038/31225
- Nowak, M. A., & Sigmund, K. (2005). Evolution of indirect reciprocity. <u>Nature</u>, <u>437</u>(7063), 1291–1298. https://doi.org/10.1038/nature04131
- Nunn, N., & Wantchekon, L. (2011). The Slave Trade and the Origins of Mistrust in Africa. American Economic Review, 101(7), 3221–3252. https://doi.org/10.1257/aer.101.7.3221
- Ohtsuki, H., & Iwasa, Y. (2006). The leading eight: Social norms that can maintain cooperation by indirect reciprocity. Journal of Theoretical Biology, 239(4), 435–444. https://doi.org/10.1016/j.jtbi.2005.08.008
- Panchanathan, K., & Boyd, R. (2003). A tale of two defectors: The importance of standing for evolution of indirect reciprocity. Journal of Theoretical Biology, 224(1), 115–126. https://doi.org/10.1016/S0022-5193(03)00154-1
- Peetz, J., & Kammrath, L. (2013). Folk understandings of self regulation in relationships: Recognizing the importance of self-regulatory ability for others, but not the self. Journal of Experimental Social Psychology, <u>49</u>(4), 712–718. https://doi.org/10.1016/j.jesp.2013.02.007
- Pepper, G. V., & Nettle, D. (2017). The behavioural constellation of deprivation: Causes and consequences. <u>Behavioral and Brain Sciences</u>, <u>40</u>, e314. https://doi.org/10.1017/S0140525X1600234X
- Piff, P. K., Kraus, M. W., Côté, S., Cheng, B., & Keltner, D. (2010). Having less, giving more: The influence of social class on prosocial behavior. <u>Journal of Personality and Social Psychology</u>. <u>https://doi.org/10.1037/a0020092</u>
- Quillien, T. (2020). Evolution of conditional and unconditional commitment. Journal of Theoretical Biology, 492, 110204. https://doi.org/10.1016/j.jtbi.2020.110204

- Raihani, N. J., & Bshary, R. (2015). Why humans might help strangers. Frontiers in Behavioral Neuroscience, 9. https://doi.org/10.3389/fnbeh.2015.00039
- Rand, D. G., Greene, J. D., & Nowak, M. A. (2012). Spontaneous giving and calculated greed. <u>Nature</u>, <u>489</u>(7416), 427–430. https://doi.org/10.1038/nature11467
- Reimers, S., Maylor, E. A., Stewart, N., & Chater, N. (2009). Associations between a one-shot delay discounting measure and age, income, education and real-world impulsive behavior. <u>Personality and Individual Differences</u>, 47(8), 973–978. https://doi.org/10.1016/j.paid.2009.07.026
- Restubog, S. L. D., Garcia, P. R. J. M., Wang, L., & Cheng, D. (2010). It's all about control: The role of self-control in buffering the effects of negative reciprocity beliefs and trait anger on workplace deviance. <u>Journal of Research in Personality</u>, <u>44</u>(5), 655–660. <u>https://doi.org/10.1016/j.jrp.2010.06.007</u>
- Righetti, F., & Finkenauer, C. (2011). If you are able to control yourself, I will trust you: The role of perceived self-control in interpersonal trust. Journal of Personality and Social Psychology, <u>100</u>(5), 874–886. <u>https://doi.org/10.1037/a0021827</u>
- Rohner, D., Thoenig, M., & Zilibotti, F. (2013). Seeds of distrust: Conflict in Uganda. Journal of Economic Growth, 18(3), 217–252. https://doi.org/10.1007/s10887-013-9093-1
- Schmukle, S. C., Korndörfer, M., & Egloff, B. (2019). No evidence that economic inequality moderates the effect of income on generosity. <u>Proceedings of the National Academy of Sciences</u>, <u>116</u>(20), 9790–9795. <u>https://doi.org/10.1073/pnas.1807942116</u>
- Sherratt, T. N. (2001). The importance of phenotypic defectors in stabilizing reciprocal altruism. <u>Behavioral Ecology</u>, <u>12</u>(3), 313–317. https://doi.org/10.1093/beheco/12.3.313
- Sjåstad, H. (2019). Short-sighted greed? Focusing on the future promotes reputation-based generosity. Judgment and Decision Making, 15.
- Stamos, A., Lange, F., Huang, S. C., & Dewitte, S. (2020). Having less, giving more? Two preregistered replications of the relationship between social class and prosocial behavior. Journal of Research in Personality, <u>84</u>, 103902. https://doi.org/10.1016/j.jrp.2019.103902
- Stevens, J. R., & Stephens, D. W. (2010). The adaptive nature of impulsivity. <u>Impulsivity: The behavioral and neurological science of discounting</u> (pp. 361–387). American Psychological Association. https://doi.org/10.1037/12069-013
- Tanaka, T., Camerer, C. F., & Nguyen, Q. (2010). Risk and Time Preferences: Linking Experimental and Household Survey Data from Vietnam. <u>American Economic Review</u>, <u>100</u>(1), 557–571. <u>https://doi.org/10.1257/aer.100.1.557</u>
- $\begin{array}{l} \mbox{Trivers, R. L. (1971). The Evolution of Reciprocal Altruism.} \\ \underline{\mbox{The Quarterly Review of Biology, } 46(1), 35{-}57. \\ \underline{\mbox{https://doi.org/10.1086/406755}} \end{array}$
- Ubfal, D. (2016). How general are time preferences? Eliciting good-specific discount rates. Journal of Development Economics, <u>118</u>, 150–170. https://doi.org/10.1016/j.jdeveco.2015.07.007
- Williams, K. E. G., Sng, O., & Neuberg, S. L. (2016). Ecology-driven stereotypes override race stereotypes. <u>Proceedings of the National Academy of Sciences</u>, 113(2), 310–315. https://doi.org/10.1073/pnas.1519401113
- Wu, J., Balliet, D., Tybur, J. M., Arai, S., Van Lange, P. A. M., & Yamagishi, T. (2017). Life history strategy and human cooperation in economic games.

 $\frac{\text{Evolution and Human Behavior, } 38(4),\,496\text{--}505.}{\text{https://doi.org/10.1016/j.evolhumbehav.2017.03.002}}$

- Wu, J., Guo, Z., Gao, X., & Kou, Y. (2020). The relations between early-life stress and risk, time, and prosocial preferences in adulthood: A meta-analytic review. <u>Evolution and Human Behavior</u>, <u>41</u>(6), 557–572. https://doi.org/10.1016/j.evolhumbehav.2020.09.001
- Zahavi, A. (1975). Mate selection—a selection for a handicap. <u>Journal of Theoretical Biology</u>, $\underline{53}(1)$, 205–214. <u>https://doi.org/10.1016/0022-5193(75)90111-3</u>
- Zwirner, E., & Raihani, N. (2020). Neighbourhood wealth, not urbanicity, predicts prosociality towards strangers. <u>Proceedings of the Royal Society B: Biological Sciences</u>, <u>287</u>(1936), 20201359. https://doi.org/10.1098/rspb.2020.1359