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Fast numerical estimation of residual stresses induced by laser shock peening

L. Lapostolle ∗, L. Morin, K. Derrien, L. Berthe, O. Castelnau
PIMM, Arts et Metiers Institute of Technology, CNRS, Cnam, HESAM University, 151 boulevard de l’Hopital, 75013 Paris, France

A B S T R A C T

The aim of this paper is to develop a model allowing a fast first approximate estimation of the elastic–plastic
stress wave propagation caused by a laser impact and the resulting residual stress field. We start by modeling
the stress wave propagation, adopting a 1D uniaxial modeling, reducing the behavior of the specimen to the
axis of the laser impact, excluding any edge effects caused by the edges of the laser spot. The plastic strain
field resulting from this propagation can in turn be used to compute the residual stresses, by making use of
an analytic modeling in the case of an infinite planar plate. The accuracy of the 1D model is assessed by
comparing it to finite elements simulations, acting as a reference solution, for several materials and laser spot
diameters. The results show that the stress wave propagation from the 1D model is close to identical to the
reference solution. The residual plastic and stress fields from the finite elements model present a uniaxial
distribution on a large portion of the laser spot, except for the very edge and spot center. The comparison
between the 1D model and the reference solution shows a good match, indicating that the 1D model can be
used for a fast approximation the mechanical fields created by a laser impact for laser spot diameters larger
than 2 mm.

1. Introduction

The Laser Shock Peening (LSP) process is a surface treatment aiming
to induce compressive residual stresses in a material. A high energy
laser beam (> GW/cm2) is used to impact the surface of the mate-
rial, creating a high pressure plasma. The expansion of this plasma
transmits energy to the material in the form of a pressure wave, with
an amplitude of a few GPa and a time duration of a few dozens of
nanoseconds, generating plastic strains on its path (Fig. 1). The pressure
profile of the plasma was modeled in several works (Fabbro et al., 1990;
Scius-Bertrand et al., 2021; Rondepierre et al., 2021). The relaxation of
the material in turn creates compressive residual stresses, which have
been shown to increase the fatigue resistance of the specimen (Ding
and Ye, 2006a; Peyre et al., 1998, 1996). To increase the amount of
energy transmitted from the plasma into the material, water is used
as confinement in experimental setups (Fox, 1974). In addition, the
specimen is generally covered by a protective coating to avoid thermal
effects (which could lead to tensile stresses at the surface). The main
applications of LSP currently reside in the aeronautics and energy
industries (Montross et al., 2002; Clauer, 2019).

The modeling and simulation of LSP started decades ago with the
seminal works of Ballard (1991) (see also Ballard et al., 1991; Heuzé,
2017) and Braisted (1999) using Finite Element (FE) models. LSP
simulations consider the propagation of a stress wave in an elastic–
plastic material induced by a dynamic pressure impulse. The impacted

specimen is modeled by an isotropic homogeneous material in most
cases. Given the range of pressure of LSP, the elastic behavior can
incorporate a hydrodynamic component in the form of an Equation of
State (EOS) (Peyre et al., 2012, 2003). The plastic behavior is generally
modeled by the Johnson–Cook model (Johnson and Cook, 1983), which
accounts for the strain-rate dependency of the behavior. The simula-
tions thus allow the study of various model parameters, such as the
laser spot size, and the overlapping of several laser shots (Brockman
et al., 2012; Song, 2010; Hfaiedh et al., 2015; Adu-Gyamfi et al.,
2018). The behaviors of materials under laser impact loading were
successfully reproduced in several 3D FE simulations when compared to
experimental results, see for example (Peyre et al., 2007; Seddik et al.,
2022).

Once the heterogeneous plastic strain field has been correctly com-
puted in the material by solving the stress wave propagation problem,
it can be used to determine the resulting residual stresses remaining in
the material after the relaxation, using various methods. The residual
stresses were initially linked analytically to eigenstrains (such as plastic
strains), which do not generate stress on their own but by their hetero-
geneous distribution in the material, leading to strain incompatibilities,
to which the specimen reacts by generating elastic strains (Johns,
1965; Korsunsky, 2005; Gelineau, 2018; Cochennec, 2009; Ahdad and
Desvignes, 1996). Similarly, the Almen strip deflection method can be



used the compute the residual stresses in a thin sample by combining 
analytical solution and experimental measurements (Glaser et al., 2022; 
Miao et al., 2010). Other analytical solutions exist. Taddia and Troiani 
(2015) use a formula for the surface distribution of residual stresses 
introduced by Tada and Paris (1983). However this concerns only 
the surface residual stresses, while we are interested by the in-depth 
residual stresses, and the function used is artificially constructed and 
does not stem from physical models. Because such analytical solutions 
are valid only for specific specimen geometries, numerical simulations 
offer a wider array of possibilities. The recent work of Cai (2022) 
presents a methodology where only the final equilibrium is simulated, 
allowing the reconstruction of the 3D residual stress field induced by a 
laser impact from particular experimental data points. Some literature 
works (Peyre et al., 2012, 2007) use a single dynamic explicit numerical 
algorithm for both the stress wave propagation and the relaxation, 
with a simulation duration several order of magnitudes longer than 
the pulse duration (a few dozens of milliseconds for a single impact 
lasting a few dozens of nanoseconds), leaving enough time for the 
kinetic energy to dissipate. On the other hand, several works (Seddik 
et al., 2022; Achintha and Nowell, 2011; Ocaña et al., 2004; Achintha 
et al., 2013) use an explicit analysis for the stress wave propagation, 
which generates a plastic strain field, followed by an implicit relaxation 
step. Brockman et al. (2012) uses a hybrid methodology, using explicit 
and implicit procedures for the several relaxation steps necessary in 
their multiple shots simulations. Because of the small time increment 
necessary for explicit procedures to yield stable results, they are often 
inappropriate for long simulation times, such as the ones required for 
several impacts simulations. Overall, obtaining the residual stresses 
generated by a LSP using a FE approach is computationally demanding, 
and requires specific modeling techniques.

The aim of this paper is to provide a tool to give a fast first 
approximation of the mechanical fields during the impact and of the 
residual stresses induced by LSP. To do so, we develop a 1D modeling 
composed of the following steps:

(1) An explicit numerical uniaxial resolution of the elasto-plastic
stress wave propagation. This step is necessary to compute the
plastic strain fields induced by the stress wave.

(2) An analytic computation of the residual stresses based on the
plastic strain field generated in the previous step, using eigenstrain-
based methods.

To assess this approximate modeling, we compare it to a reference
3D FE axisymmetric model. Though this 1D approach cannot capture
some features of the axisymmetric fields, we show that a large part
of the impacted zone can be approximated by a uniaxial field. We
give numerical examples for various materials having a strain-rate
dependent behavior. The proposed approximation can be useful to
provide a first insight into the residual stresses induced on a given
material, or as a calibration tool to determine an initial estimation of
the material parameters. The numerical tool, which is made available,
can reach results in close agreement with the FE models, but orders of
magnitude faster, and is simple to use.

The paper is organized as follows. In Section 2 we present the
mechanical framework, derive the stress wave propagation equations
for an elastic–plastic behavior with a strain-rate dependent behavior,
and detail the numerical method used for the simulations. The ob-
tained plastic strain field is then used for the analytic residual stress
computations based on eigenstrains methods. Then in Section 3, we
perform numerical tests on various materials, to assess the propagation
step of our model by investigating the backface velocity profiles and
comparing it to a FE reference solution. Finally in Section 4 we apply
the same methodology to assess the distribution of the residual fields
induced by the stress wave propagation, by comparison to a reference
FE solution. The numerical tool used here, named EVEREST, is made
available under LGPL license (Lapostolle, 2022).

2. A 1D model for the stress wave propagation and the resulting
residual stress field

The aim of this section is to present a simple 1D model for the
residual stresses caused by the propagation of an elasto-plastic stress
wave induced by a laser shock. Such a model cannot replace more
complex and accurate 3D models, but can be used as an initial modeling
of the problem.

2.1. Mechanical behavior

In this work we consider an isotropic homogeneous material with an
elasto-plastic behavior, which is described by the following equations
(in the absence of body force):
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(1)

where 𝝈 is the stress tensor, 𝜺 the total strain tensor, 𝜺𝑒 the elastic
strain tensor, 𝜺𝑝 the plastic strain tensor and 𝒖 the displacement field.
In the flow rule and consistency conditions, 𝜆 is the (standard) plastic
multiplier, whose time derivative is either zero when 𝑔 < 0 (purely
elastic response), or positive when 𝑔 = 0 (plastic strains occur), as
enforced by the condition �̇�𝑔 = 0. The quantity 𝜌 is the density of the
material, and C is the fourth-order stiffness tensor which is given by

C = 3𝜅J + 2𝜇K, (2)

where 𝜅 and 𝜇 are the bulk and shear moduli respectively. C is assumed
to be isotropic, although the developments can be easily extended to
anisotropic materials. The fourth-order tensors J and K are given by

J = 1
3
𝑰 ⊗ 𝑰 and K = I − J, (3)

𝑰 being the second-order identity tensor, and I the fourth-order identity
tensor. In the yield criterion, 𝑅 is the yield stress and 𝜎eq is the von
Mises equivalent stress which reads

𝜎eq =
√

3
2
𝝈𝑑 ∶ 𝝈𝑑 , 𝝈𝑑 = 𝝈 − 1

3
Tr(𝝈)𝑰 , (4)

where 𝝈𝑑 is the deviator of the stress tensor. Tr(⋅) is the trace operator.
LSP is characterized by very high strain rates (∼ 106 s−1). Account-

ing for the strain rate dependency of the material’s behavior is essential.
Hence, an adapted plasticity model should be employed. Furthermore,
for our applications, we will neglect the variations of temperature,
by considering the experimental configuration including a protective
coating (Hu and Grandhi, 2012). This coating was shown to absorb
thermal effects (Gill et al., 2015; Rubio-González et al., 2006). We
thus neglect any thermal strains, or changes in the material properties
caused by the temperature rise. The model commonly used in the
literature (Julan, 2014; Julan et al., 2014; Amarchinta et al., 2009;
Chaieb, 2004; Peyre et al., 2012, 2007) is the Johnson–Cook plasticity
model (Johnson and Cook, 1983), for which the yield stress 𝑅 is given
by (without the influence of the temperature):

𝑅 (𝑝, �̇�) = (𝐴 + 𝐵𝑝𝑛)
(

1 + 𝐶ln
(

�̇�
�̇�0

))

, (5)

where �̇� is the (von Mises) equivalent strain rate and 𝑝 is the accumu-
lated plastic strain defined by

�̇� =
√

2
3
�̇�𝑝 ∶ �̇�𝑝, 𝑝 = ∫

𝑡

0
�̇�(𝜏)d𝜏. (6)



Fig. 1. Illustration of the LSP process.

For this model, it can be shown that �̇� = �̇�. In Eq. (5), 𝐴, 𝐵, 𝐶, 𝑛
and �̇�0 are parameters to be determined. For our applications, we will
not consider any kinematic hardening. Kinematic hardening is needed
when the load has a cyclic nature, as in the case of repeated impacts,
a situation that we will not consider in this paper. Such developments
are left for future works.

It should be noted that the elastic behavior of the material is
described by Hooke’s law, instead of an Equation of State (EOS), as it is
usually done for LSP simulations (Peyre et al., 2012, 2007; Seddik et al.,
2022). An EOS is generally necessary to describe the hydrodynamic
behavior of a material when subjected to a shock loading with high
pressure and strain rate. Nonetheless, in the context of this work
(i.e. the determination of the residual stress field), EOS can be neglected
because, as shown by Chaieb (2004), it has little effect on the residual
stress field generated by the stress wave propagation. Moreover, accord-
ing to Ballard (1991) (see also Ballard et al., 1991; Heuzé, 2017), the
hydrodynamic behavior of a material can be neglected if the applied
pressure is under 0.1𝜅, which is of the order of a dozen of GPa for
our applications. We will check that this condition is verified in our
applications.

Eqs. (1) to (6) can be used to describe the propagation of an elasto-
plastic stress wave. This problem can be separated into two sequential
calculation steps, the first one computing the propagation of an elastic
wave, the second applying a plastic correction when needed.

2.2. Stress wave propagation step

2.2.1. Stress wave equation for an axisymmetric configuration
We derive here the expression of the equations governing the stress

wave propagation, following the methodology of Ballard (1991), Bal-
lard et al. (1991) and Heuzé (2017) (see also Lapostolle et al., 2022;
Ayad et al., 2022). To that aim we adopt the small displacement hy-
pothesis, and consider a circular laser spot. The stress and strain fields
which are solutions of the problem are thus axisymmetric. Thereafter,
we restrict the analysis along the symmetry axis, denoted by 𝒆1 in
Fig. 1. Hence the displacement and total strain field are uniaxial and
read:

𝒖(𝑥, 𝑡) = 𝑢1(𝑥, 𝑡)𝒆1 and 𝜺(𝑥, 𝑡) = 𝜀11(𝑥, 𝑡)𝒆1 ⊗ 𝒆1, (7)

with 𝜀11 = 𝜕𝑢1∕𝜕𝑥, 𝑥 being the coordinate in the 𝒆1 direction. This sit-
uation is as though the laser spot were infinite in the planar directions
𝒆2 and 𝒆3. Furthermore, the (isochoric) plastic strain field is of the form

𝜺𝑝(𝑥, 𝑡) = 𝜀𝑝(𝑥, 𝑡)
(

𝒆1 ⊗ 𝒆1 −
1
2
(

𝒆2 ⊗ 𝒆2 + 𝒆3 ⊗ 𝒆3
)

)

. (8)

Using Eqs. (1)1, (7) and (8), it follows that the stress field is of the form

𝝈(𝑥, 𝑡) = 𝜎11(𝑥, 𝑡)𝒆1 ⊗ 𝒆1 + 𝜎22(𝑥, 𝑡)
(

𝒆2 ⊗ 𝒆2 + 𝒆3 ⊗ 𝒆3
)

, (9)

with
⎧

⎪

⎨

⎪

⎩

𝜎11(𝑥, 𝑡) =
(

𝜅 + 4
3
𝜇
)

𝜀11(𝑥, 𝑡) − 2𝜇𝜀𝑝(𝑥, 𝑡)

𝜎22(𝑥, 𝑡) =
(

𝜅 − 2
3
𝜇
)

𝜀11(𝑥, 𝑡) + 𝜇𝜀𝑝(𝑥, 𝑡).
(10)

It follows, from the dynamic equilibrium and Hooke’s law in Eq. (1),
that the wave propagation equations reduce to

⎧

⎪

⎨

⎪

⎩

𝜕𝜎11
𝜕𝑥

(𝑥, 𝑡) = 𝜌
𝜕𝑣1
𝜕𝑡

(𝑥, 𝑡)
𝜕𝜎11
𝜕𝑡

(𝑥, 𝑡) =
(

𝜅 + 4
3
𝜇
) 𝜕𝜀11

𝜕𝑡
(𝑥, 𝑡) − 2𝜇

𝜕𝜀𝑝
𝜕𝑡

(𝑥, 𝑡),
(11)

where 𝑣1 = 𝜕𝑢1∕𝜕𝑡 is the material velocity in the direction of the impact.
By taking advantage of the relation
𝜕𝜀11
𝜕𝑡

= 𝜕
𝜕𝑡

(

𝜕𝑢1
𝜕𝑥

)

= 𝜕
𝜕𝑥

(

𝜕𝑢1
𝜕𝑡

)

=
𝜕𝑣1
𝜕𝑥

, (12)

the system in Eq. (11) thus becomes

⎧

⎪

⎨

⎪

⎩

𝜕𝜎11
𝜕𝑥

(𝑥, 𝑡) = 𝜌
𝜕𝑣1
𝜕𝑡

(𝑥, 𝑡)
𝜕𝜎11
𝜕𝑡

(𝑥, 𝑡) =
(

𝜅 + 4
3
𝜇
) 𝜕𝑣1

𝜕𝑥
(𝑥, 𝑡) − 2𝜇

𝜕𝜀𝑝
𝜕𝑡

(𝑥, 𝑡).
(13)

System (13) is used to model the elastic–plastic stress wave propaga-
tion, which we will now detail the resolution.
2.2.2. Elastic propagation

The first step to solve the stress wave propagation system (13) is to
compute the trial elastic predictor, by assuming (momentarily) that the
rate of the plastic strain is null (𝜕𝜀𝑝∕𝜕𝑡 = 0). In that case, Eq. (13) can
be written in the following matrix form:
𝜕𝑼
𝜕𝑡

+𝑨 𝜕𝑼
𝜕𝑥

= 0, (14)

with

𝑼 =
(

𝜎11
𝑣1

)

and 𝑨 =
⎛

⎜

⎜

⎝

0 −
(

𝜅 + 4
3𝜇

)

−1
𝜌

0

⎞

⎟

⎟

⎠

. (15)

Eq. (14) is called the advection equation, and is a hyperbolic system
of partial differential equations (PDE). As such, it can be numerically
solved by a large variety of dedicated explicit algorithms based on the
finite-volumes approach (Leveque, 2002).

We subdivide the time and spatial domain of our problem and
introduce the space and time increments 𝛥𝑥 and 𝛥𝑡, and the notations
(.)𝑖 and (.)𝑘 corresponding to a given spatial cell and time increment
respectively. Thus 𝑥𝑖 = 𝑥𝑖−1 + 𝛥𝑥, 𝑡𝑘 = 𝑡𝑘−1 + 𝛥𝑡, and 𝒖

(

𝑥𝑖, 𝑡𝑘
)

= 𝒖𝑘𝑖 ,
with 1 ≤ 𝑖 ≤ 𝑁 , 𝑁 being the number of nodes. The numerical methods
considered for this problem are explicit, and must respect the so-called
Courant–Friedrichs–Lewy (CFL) condition:

CFL = 𝑐 𝛥𝑡
𝛥𝑥

≤ 1, (16)

where 𝑐 is the maximum compressive/tensile stress wave velocity. It is
given by

𝑐 =

√

1
𝜌
𝜕𝜎11
𝜕𝜀11

, (17)

which reduces, in the case of an isotropic elastic medium, to

𝑐 =
√

(

𝜅 + 4
3
𝜇
)

∕𝜌. (18)

It is worth noting that in the case of an elastic–plastic evolution,
the maximum value of the velocity 𝑐 is achieved during the elastic
propagation since the tangent modulus is lower when plastic strains
are generated. Hence, the value considered in all cases for 𝑐 is the



𝑘

one given by Eq. (18). In practice, the CFL condition (16) is used to
compute the maximum value of the time increment 𝛥𝑡, for a given 
spatial discretization (𝛥𝑥), material properties (𝜅, 𝜇 and 𝜌) and CFL 
value.

We consider a Godunov-type algorithm (Leveque, 2002; LeVeque, 
1997) which combines simplicity and accuracy as it permits to avoid 
spurious numerical effects as oscillations and damping (Lapostolle
et al., 2022). Let us denote 𝑼 𝑖 the unknown vector at the time incre-
ment 𝑘 and at the spatial cell 𝑖. The numerical resolution of Eq. (14) is
done by computing 𝑼𝑘+1

𝑖 with

𝑼𝑘+1
𝑖 = 𝑼𝑘

𝑖 −
𝛥𝑡
𝛥𝑥

(

𝑭 𝑘
𝑖+1∕2 − 𝑭 𝑘

𝑖−1∕2

)

. (19)

In Eq. (19), the quantities 𝑭 𝑘
𝑖+1∕2 and 𝑭 𝑘

𝑖−1∕2 are given by

𝑭 𝑘
𝑖+1∕2 = 𝑨+𝑼𝑘

𝑖 +𝑨−𝑼𝑘
𝑖+1, 𝑭 𝑘

𝑖−1∕2 = 𝑨+𝑼𝑘
𝑖−1 +𝑨−𝑼𝑘

𝑖 , (20)

where 𝑨+ and 𝑨− are the matrices defined by

𝑨+ = 𝑷
(

𝑐 0
0 0

)

𝑷 −1 𝑨− = 𝑷
(

0 0
0 −𝑐

)

𝑷 −1, (21)

with 𝑷 being the matrix composed of the eigenvectors of 𝑨, here given
by:

𝑷 =
⎛

⎜

⎜

⎝

−
√

𝜌
(

𝜅 + 4
3
𝜇
)

√

𝜌
(

𝜅 + 4
3
𝜇
)

1 1

⎞

⎟

⎟

⎠

. (22)

With this numerical method, the unknown 𝑼𝑘+1
𝑖 is obtained by linear

combination of the (known) quantities 𝑼𝑘
𝑖−1, 𝑼

𝑘
𝑖 and 𝑼𝑘

𝑖+1 at the previ-
ous time increment. To solve this problem efficiently, Eq. (19) is written
as

𝑿𝑘+1 = 𝑫𝑿𝑘, (23)

with 𝑿𝑘 =
(

𝑼𝑘
1 𝑼𝑘

2 … 𝑼𝑘
𝑁
)𝑇 and 𝑫 is a matrix constructed from

𝑨+ and 𝑨−. It should be noted that several improvements of the
Godunov method, based on non-linear flux limiters, permit to improve
the quality of the solution field in the presence of discontinuous solu-
tions (Leveque, 2002; Heuzé, 2017). Nonetheless, since the numerical
applications in the paper will only consider homogeneous material
and smooth loading signals, non-linear flux limiters are not considered
and Eq. (23) is used.

This elastic propagation step is used to compute at the time 𝑡𝑘+1 the
material velocity 𝑣1 and the stress component 𝜎11, by assuming that the
rate of plastic strain is null. Interestingly, since the plastic strain does
not appear in the evolution equation of the material velocity 𝑣1 (see
Eq. (13)1), the calculation of 𝑣1 will still hold in the presence of plastic
deformation. The stress field obtained is called the elastic predictor and
will identified by the subscript (⋅)trial.
2.2.3. Plastic correction

After the computation of the stress field considering an elastic prop-
agation, we must check if the elastic predictor is plastically admissible.
If the condition 𝑔(𝝈𝑘+1

trial, 𝑅
𝑘) ≤ 0 is met, then the evolution is purely

elastic and the final mechanical state is simply given by
{

𝝈𝑘+1 = 𝝈𝑘+1
trial

𝜀𝑘+1𝑝 = 𝜀𝑘𝑝 ,
(24)

where the stress component (𝜎𝑘+122 )trial is obtained using Eq. (10):

(𝜎𝑘+122 )trial = 𝜎𝑘22 +
3𝜅 − 2𝜇
3𝜅 + 4𝜇

(

(𝜎𝑘+111 )trial − 𝜎𝑘11
)

. (25)

However, if 𝑔(𝝈𝑘+1
trial, 𝑅

𝑘) > 0, then the elastic predictor is not plastically
admissible and a plastic correction is needed using a radial return algo-
rithm (Simo and Taylor, 1986; Ming and Pantalé, 2018) (for a detailed
description see Bonnet and Frangi, 2007) to ensure that the plasticity
criterion is verified. In that case, the increment of the plastic strain
must be computed using the flow rule and the consistency conditions.
Because of the non-linearity of the Johnson–Cook model in Eq. (5),

there is no explicit solution to this problem, making it semi-analytic.
The final stress can be written as

𝝈𝑘+1 = 𝝈𝑘+1
trial − (3𝜅J + 2𝜇K) ∶ 𝛥𝜺𝑘𝑝 , (26)

where 𝛥𝜺𝑘𝑝 is the plastic strain increment which is given by

𝛥𝜺𝑘𝑝 = 𝛥𝑝𝑘 3
2
𝝈𝑘+1
𝑑

𝜎𝑘+1eq
. (27)

In Eq. (27), 𝛥𝑝𝑘 is the increment of the equivalent plastic strain, which
constitutes the unknown of the projection problem. Using Eq. (27), the
final stress reads

𝝈𝑘+1 = 𝝈𝑘+1
trial − 3𝜇𝛥𝑝𝑘

𝝈𝑘+1
𝑑

𝜎𝑘+1eq
. (28)

By taking the von Mises norm of the stress 𝝈𝑘+1, one gets

𝜎𝑘+1eq = 𝜎𝑘+1trial,eq − 3𝜇𝛥𝑝𝑘. (29)

The yield criterion 𝑔(𝝈𝑘+1, 𝑅𝑘+1) = 0 must be verified which leads to:

𝜎𝑘+1trial,eq − 3𝜇𝛥𝑝𝑘 − 𝑅(𝑝𝑘+1, �̇�𝑘+1) = 0, (30)

where 𝑝𝑘+1 and �̇�𝑘+1 are given by

𝑝𝑘+1 = 𝑝𝑘 + 𝛥𝑝𝑘, �̇�𝑘+1 =
𝛥𝑝𝑘

𝛥𝑡
. (31)

Eq. (30) is a nonlinear equation with the sole unknown 𝛥𝑝𝑘 which can
be solved using a Newton method. Once 𝛥𝑝𝑘 is known, the final stress
can be deduced by combining Eqs. (28) and (29):

𝝈𝑘+1 = 1
3

Tr(𝝈𝑘+1
trial)𝑰 + 𝝈𝑘+1

trial,𝑑

⎛

⎜

⎜

⎝

1 −
3𝜇𝛥𝑝𝑘

𝜎𝑘+1trial,eq

⎞

⎟

⎟

⎠

. (32)

𝝈𝑘+1 can now be used to compute 𝜺𝑘+1𝑝 = 𝜺𝑘𝑝 + 𝛥𝜺𝑘𝑝 with Eq. (27).
The plastic correction is further detailed in the following pseudo-

code algorithm.
Algorithm Plastic correction

Input variables: 𝜎𝑘11, 𝜎
𝑘
22, 𝜀

𝑘
11, 𝜀

𝑘
𝑝,11, 𝑝

𝑘, 𝑅𝑘.
Compute 𝜎trial

11 , 𝑣𝑘+11 with the numerical method assuming an elastic
propagation with Eq. (23).
Compute the corresponding 𝜎trial

22 value with Eq. (10).
Elastic trial: 𝜀𝑘+1𝑝,11 = 𝜀𝑘𝑝,11 and 𝑝𝑘+1 = 𝑝𝑘

if 𝐽2(𝝈trial) − 𝑅𝑘 ≤ 0 then
𝝈𝑘+1 = 𝝈trial

else
Find 𝛥𝑝 such that 𝜎𝑘+1eq,trial − 3𝜇𝛥𝑝 − 𝑅(𝑝𝑘+1, �̇�𝑘+1) = 0

Compute 𝝈𝑘+1 = 1
3

Tr(𝝈𝑘+1
trial)𝑰 + 𝝈𝑘+1

trial,𝑑

⎛

⎜

⎜

⎝

1 −
3𝜇𝛥𝑝𝑘

𝜎𝑘+1trial,eq

⎞

⎟

⎟

⎠

Compute 𝛥𝜺𝑝 =
3
2
𝝈𝑘+1
𝑑

𝜎trial
eq

𝛥𝑝

Compute 𝜺𝑘+1𝑝 and 𝑝𝑘+1 using 𝛥𝜺𝑝 and 𝛥𝑝.
Compute 𝑅𝑘+1 = 𝑅(𝑝𝑘+1, �̇�𝑘+1)

End

2.3. Residual stresses modeling

The resolution of the shock wave propagation permits the determi-
nation of the evolution of residual plastic strain. However, the residual
stresses results from the material reaching a static equilibrium. In other
words, the residual stress field has to be determined once there is no
more wave propagating in the specimen. It is thus necessary to rely on
another procedure to determine the residual stress field. To this end,
the residual stress field can be approximated by analytic methods, as
presented in the case of thermal strains by Johns (1965). Ahdad and



Fig. 2. Illustration of the plate specimen. The red curve symbolizes the typical in-depth
distribution of the plastic strain. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Desvignes (1996) applied a similar method for plastic strains for various
geometries (see also Korsunsky, 2005; Gelineau, 2018; Cochennec,
2009; Ahdad and Desvignes, 1996; Cellard et al., 2012, 2007). These
methods are based on the calculation of the stress equilibrium due
to the presence of incompatible internal permanent strains (termed
as eigeinstrains) which can be induced by inhomogeneous inelastic
deformation, temperature gradients, or phase transformations. The an-
alytic nature of these methods allows a fast computation of the residual
stresses.

Therefore, the plastic strain field, generated by the shock wave
propagation presented in Section 2, will be used as an initial eigenstrain
and the associated residual stress field will be determined from it. In
practice, the residual stress field also depends on the thickness of the
specimen, and more generally on its geometry.

Here we assume that the specimen is an infinite planar plate free
of external loads, and is of finite thickness 𝑒, with plastic strains intro-
duced along a thickness ℎ, as illustrated on Fig. 2. In this configuration,
the plate is left unconstrained and is free to bend as a result of the static
equilibrium. The notation ℎ corresponds to the depth until which LSP
generates plastic strain, i.e. 𝜀𝑝(𝑥) = 0 for 𝑥 ≥ ℎ and thus ∫ 𝑒

ℎ 𝜀𝑝(𝑥)d𝑥 = 0.
Due to the axisymmetry of the laser shock considered in Section 2, the
resulting plastic strain field obtained in the stress wave propagation
step is axisymmetric, see Eq. (8). We assume that this plastic strain field
is uniform and infinite in the 𝒆2 and 𝒆3 directions, and thus depends
only on 𝑥. The total strain tensor is also axisymmetric:

𝜺 = 𝜀11(𝑥)𝒆1 ⊗ 𝒆1 + 𝜀22(𝑥)
(

𝒆2 ⊗ 𝒆2 + 𝒆3 ⊗ 𝒆3
)

. (33)

Following Korsunsky (2005) (see also Gelineau 2018 who studied this
problem in a more general case), the resolution of the compatibility
equations yields that the radial strains in the bent plate are of the
following form:

𝜀22(𝑥) = 𝜀33(𝑥) = 𝛼𝑥 + 𝛽, (34)

where 𝛼 and 𝛽 are constants to be determined. This result, stemming
from the resolution of the compatibility equations, was also used in Cel-
lard et al. (2012) to compute the plastic strains from measured residual
stresses. Then, since the plate is infinite in the 𝒆2 and 𝒆3 directions and
the axial stress in zero at the surface, the stress state is planar, so that
one has

𝜎11(𝑥) = 0, ∀𝑥. (35)

This implies that

𝜀11(𝑥) = −2
3𝜅 − 2𝜇
3𝜅 + 4𝜇

𝜀22(𝑥) +
6𝜇

3𝜅 + 4𝜇
𝜀𝑝(𝑥). (36)

Using Eqs. (36), (34) and Eq. (1)2, we obtain:

𝜎22(𝑥) = 𝜎33(𝑥) =
18𝜅𝜇

3𝜅 + 4𝜇

(

𝛼𝑥 + 𝛽 +
𝜀𝑝(𝑥)
2

)

. (37)

The constants 𝛼 and 𝛽 are determined by enforcing the absence of
external force, so that the normal forces and bending moment are at

equilibrium. This leads to:

⎧

⎪

⎨

⎪

⎩

∫

𝑒

0
𝜎22(𝑥)d𝑥 = 0

∫

𝑒

0
𝜎22(𝑥)𝑥d𝑥 = 0,

(38)

and similarly for 𝜎33(𝑥), not indicated hereafter. Eq. (38) leads to the
following system:

⎧

⎪

⎨

⎪

⎩

9𝑒
(

𝛼 𝑒
2
+ 𝛽

)

+ ∫

ℎ

0
𝜀𝑝(𝑥)d𝑥 = 0

9𝑒2
(

𝛼 𝑒
3
+

𝛽
2

)

+ ∫

ℎ

0
𝜀𝑝(𝑥)𝑥d𝑥 = 0,

(39)

where the quantity 𝜀𝑝(𝑥) is integrated only up to ℎ since ∫ 𝑒
ℎ 𝜀𝑝(𝑥)d𝑥 = 0.

Using the following notations

𝛤1 = ∫

ℎ

0
𝜀𝑝(𝑥)d𝑥 and 𝛤2 = ∫

ℎ

0
𝜀𝑝(𝑥)𝑥d𝑥, (40)

the resolution of system (38) leads to

⎧

⎪

⎨

⎪

⎩

𝛼 = 12
𝑒3

(

𝛤2 −
𝑒𝛤1
2

)

𝛽 = 2
𝑒

(

2𝛤1 −
3𝛤2
𝑒

)

,
(41)

and

𝜎22(𝑥) = 𝜎33(𝑥) =
18𝜅𝜇

3𝜅 + 4𝜇

(

2𝛤1

𝑒2
(2𝑒 − 3𝑥) +

6𝛤2

𝑒3
(2𝑥 − 𝑒) +

𝜀𝑝(𝑥)
2

)

.

(42)

Notably, the curvature radius of the plate due to the bending is
given by 𝛺 = 𝑒∕

[

6
(

2𝛤2 − 𝛤1
)]

(see for example Korsunsky 2005). The
curvature radius is particularly useful for the residual stresses analysis
by Almen strip deflection (Glaser et al., 2022; Miao et al., 2010) (which
requires however experimental measurements unlike our approach).

It is worth noticing that for very large thicknesses, i.e. when 𝑒 tends
to infinity, the coefficients 𝛼 and 𝛽 from Eq. (41) tend to zero. We
thus have 𝜀22(𝑥) = 0 and we obtain the standard result (Ahdad and
Desvignes, 1996):

𝜎22(𝑥) = 𝜎33(𝑥) =
18𝜅𝜇

3𝜅 + 4𝜇
𝜀𝑝(𝑥)
2

. (43)

3. Backface velocity simulations

3.1. Presentation of the simulations

The purpose of this section is to assess the model developed in
Section 2 through several numerical tests. These numerical results will
be notably compared to 3D FE results acting as a reference, to assess
the ability of our model to correctly evaluate the mechanical fields, in
the case of different material parameters and laser spot diameters for
the 3D FE model. We start with a section dedicated to the backface
velocity, which is a quantity of interest, because it can be measured
experimentally (Peyre et al., 2012). The simulation of the backface
velocity only needs the stress propagation step (see Section 2.2). The
comparison to a 3D FE model will also allow us to investigate to what
extend the 1D model correctly approximates 3D fields.

Material parameters To investigate the performances of the 1D model,
various material will be tested. We will consider four materials with
a strain-rate dependent behavior: a 12Cr steel, a stainless steel alloy,
a titanium alloy and an aluminum alloy. The material parameters are
given in Table 1, where 𝐸 refers to Young’s modulus, and 𝜈 to the
Poisson ratio.



Table 1
Materials parameters for the simulations according to the references listed.

𝜌 (kg.m−3) 𝐸 (GPa) 𝜈 𝜅 (GPa) 𝜇 (GPa) 𝐴 (MPa) 𝐵 (MPa) 𝑛 𝐶 �̇�0 (s−1)

12Cr Steel (Peyre et al.,
2007)

7800 210 0.3 175 80.8 870 400 0.4 0.015 0.01

316L (Umbrello et al.,
2007)

7800 210 0.3 175 80.8 305 441 0.1 0.057 1

Ti-6Al-4V (Meyer and
Kleponis, 2001)

4500 116 0.34 120.8 43.3 862.5 331.2 0.34 0.012 1

Al7075-T6 (Zhang
et al., 2015)

2700 69 0.33 67.6 25.9 473 210 0.3813 0.033 0.01

Fig. 3. Laser loading modeling from Le Bras et al. (2019): (a) normalized time pressure profile, (b) normalized spatial pressure distribution for several spot diameters.

Applied loading The applied loading is typical for a laser impact appli-
cation. We use a temporal and spatial description (adapted from Le Bras
et al., 2019) of the pressure applied on the top surface of the specimen,
represented in Fig. 3. Fig. 3(b) displays several spatial distributions,
corresponding to different spot diameters. The values chosen for those
diameters are physical diameters used in experimental conditions, and
will be used in the 3D FE model.

For both the 1D and 3D models, we consider a thickness of the
specimen of 𝑒 = 0.5 mm to mimic standard experimental conditions,
a pressure amplitude of 𝑃 = 5 GPa in order to properly observe plastic
effects in the backface velocity results, and a total simulation duration
of 400 ns.

Description of the 1D model For the 1D modeling, we impose 𝛥𝑥 =
2 μm for the spatial increment, which is a value for which conver-
gence is reached, and a CFL value of 0.9, leading to values of 𝛥𝑡 of
approximately 0.3 ns. The used boundary conditions are:

𝜎11(0, 𝑡) = 𝑃 (𝑡) and 𝜎11 (𝑒, 𝑡) = 0, (44)

where 𝑃 (𝑡) refers to the time pressure profile (see Fig. 3(a)). According
to Ballard (1991) (see also Ballard et al., 1991; Heuzé, 2017), the
hydrodynamic behavior of the specimen can be neglected when the
maximum value of the pressure is smaller than 0.1𝜅, which is satis-
fied for all the materials in Table 1. In that case, the small strains
approximation is valid. Moreover, the initial conditions are:
{

𝜎11(𝑥, 0) = 0
𝑣1(𝑥, 0) = 0

for 0 ≤ 𝑥 ≤ 𝑒. (45)

Description of the finite element model For the finite element modeling,
we follow the strategy of Seddik et al. (2022), and use an axisymmetric
model with the commercial code ABAQUS. The model is illustrated
in Fig. 4. We set 𝐿 = 7 mm, which is large enough not to influence
the results. This geometry is chosen in order to mimic experimental
conditions. The spatial distribution of the applied pressure follows
the profiles of Fig. 3(b) for the various spot diameters 𝑑, which are
taken and adapted from Le Bras et al. (2019). CAX4R elements of
dimensions 2 μm × 2 μm are used. The results are achieved with an

ABAQUS/Explicit analysis step lasting 400 ns, which is long enough for
the axial wave to travel back and forth several times. Still in order to
replicate the experimental setup, a unique zero-displacement and zero-
rotation boundary condition is enforced at the location of point 𝐴 in
Fig. 4. The backface velocity corresponds to the axial velocity taken at
point 𝑂.

3.2. Backface velocity results

We present the results for the backface velocity in Fig. 5 for the four
materials of Table 1.

The results of Fig. 5 show the evolution on the backface velocity of
point 𝑂 in Fig. 4. Only the results for the diameters 𝑑 = 1 mm, 𝑑 = 3 mm
and 𝑑 = 5 mm were presented to keep Fig. 5 clear. The results for
diameters 𝑑 = 2 mm and 𝑑 = 4 mm are intermediary to their respective
adjacent diameters. Each ‘‘principal’’ peak in Fig. 5 represents the axial
wave being reflected at the back face. The time separating the large
peaks corresponds to the time necessary for the wave to go back and
forth in the specimen. Fig. 5 shows that for all materials, the larger the
spot size, the longer the 1D model perfectly captures the behavior of
the 3D model. An excellent match is obtained for approximately 120 ns
for 𝑑 = 1 mm, and up to 350 ns for 𝑑 = 5 mm. For all materials, the
first peak exhibits a slight change of curve at approximately 100 ns.
This is called the elastic precursor, and corresponds to the lowest value
of velocity above which the wave induces plasticity. It is caused by a
change of wave velocity, which is higher when the stress wave is elastic
than when it is plastic. For all material and spot sizes, after a while,
edge effects (Berthe et al., 2011; Ecault et al., 2016; Ayad et al., 2022)
start to appear, thus causing discrepancies. These edge effects are due
to waves originating from the laser spot edges and propagating inward,
and thus this perturbation arrives quicker at the center for smaller spot
sizes. Therefore these perturbations depend mainly on the spot size but
also on the plate thickness and the material. Overall, the approximate
1D model proposed is suitable to describe the elastic–plastic stress wave
propagation apart from edge effects, and yields excellent results for
large spot sizes (𝑑 ≥ 5 mm). More specifically, an excellent agreement
was observed for a large spot diameter of 15 mm (in this case we
used 𝐿 = 15 mm) for the whole duration of the simulation, but the



Fig. 4. Illustration of the FE model used for the backface velocity simulations.

Fig. 5. Comparison of the backface velocity simulations between the 1D model and 3D FE reference solution for the different materials and three laser spot sizes. (a) 12Cr, (b)
316L, (c) Ti-6Al-4V and (d) Al7075-T6.

corresponding results are not presented for the sake of conciseness and
since such large spot sizes hold little physical meaning, because they
are unrealistic for current LSP configurations. An approximate critical
time above which the results from the 1D and 3D models are expected
to differ can be expressed as:

𝑡𝑐 =
𝑑
2

√

3𝜌
3𝜅 + 4𝜇

, (46)

which corresponds to the time a compression/traction wave takes to
travel from the laser spot edges to the center of the impact at the
surface. Therefore, for a given spot size, the 1D model can be used for
the identification of the constitutive relation for any time 𝑡 such that
𝑡 < 𝑡𝑐 . To quantify further the performance of the 1D model, we can
compute the average relative errors obtained for the backface velocity
profiles between the 1D and 3D models for the different materials and
spot diameters used in the simulations. The errors are calculated with
the parts of the results such that 𝑡 ≤ 𝑡𝑐 , since this is the condition we
have identified for the 1D model to be relevant. It is worth noting that

the backface velocity is extremely well reproduced by the 1D model, the
average error between the 1D and the 3D FE models being smaller than
2% up to the critical time 𝑡𝑐 for all materials and spot diameters. When
calculating the same errors for 𝑡 ≤ 400 ns (i.e. for the whole duration
of the simulations), they are of the order of 21.5% for 𝑑 = 1 mm, 10%
for 𝑑 = 2 mm, 6.8% for 𝑑 = 3 mm, 2.2% for 𝑑 = 4 mm and 1.3%
for 𝑑 = 5 mm. It must be noted that this critical time 𝑡𝑐 is not an
exact value but only an approximation. Finally, to give an estimation
of the CPU time that can be expected to obtain such results, converged
computations with the 1D model are generally 10 times faster than with
the 3D model with the parameters considered.

4. Residual fields induced by the stress wave propagation

4.1. Presentation of the simulations

Now that the performance of the propagation scheme is validated
until a critical time that depends on the spot size, we focus on the resid-
ual fields generated by the propagation of a stress wave, more precisely



Table 2
Mesh sizes considered for the FE calculations.

𝑑 = 1 mm 𝑑 = 2 mm 𝑑 = 3 mm 𝑑 = 4 mm 𝑑 = 5 mm

𝐿 (mm) 2 4 6 8 10
mesh size (μm × μm) 5 × 5 10 × 10 10 × 10 10 × 10 10 × 10

Fig. 6. Representation of the FE model used for the residual stress field simulations.
The size of the represented mesh is only for illustrative purposes, not to scale.

the residual plastic strains and residual stresses. The developments of
Section 2 will be here again compared to a 3D model for various laser
spot sizes and materials already indicated in Section 3.1. Since we are
simulating the LSP process, a change of configuration is necessary.

Description of the 1D model For the 1D model, the thickness 𝑒 is 10 mm,
the spatial increment is 𝛥𝑥 = 5 μm, so that the computations have
reached convergence while keeping the size of the model reasonable.
The CFL number is set to 0.9. Again, the laser loading keeps only the
time pressure profile from Fig. 3(a), with a pressure amplitude of 3
GPa (which is also under 0.1𝜅 allowing us to neglect the hydrodynamic
behavior Ballard, 1991; Ballard et al., 1991, keeping the deformation
small).

The boundary conditions are similar to the ones used for the back
face velocity simulations of Section 3.1: the boundary conditions for
𝜎11(0, 𝑡), 𝜎11(𝑥, 0) and 𝑣1(𝑥, 0) are the same as in Eq. (44) and Eq. (45).
The residual stress field can be computed once the total kinetic energy
in the specimen has vanished. To reach this state in the simulation,
we enforce non-reflective boundary conditions, to avoid reflection of
the stress wave at the boundary. To that end, we use a zero-order
extrapolation (Leveque, 2002) of the unknowns at the boundary 𝑥 = 𝑒:

{

𝜎𝑘11,𝑁 = 𝜎𝑘11,𝑁−1
𝑣𝑘1,𝑁 = 𝑣𝑘1,𝑁−1

(47)

Description of the finite element model For the FE reference solution, we
follow the methodology of Morin et al. (2021). The geometry is divided
into two zones, as illustrated in Fig. 6: (i) a central rectangular zone
of dimension 𝑒 × 𝐿 mm meshed with CAX4R elements in which we
will study the mechanical fields; (ii) an outer zone meshed with infinite
CINAX4 elements which ensure that there is no stress wave reflection.

It should be noted that the mesh represented in Fig. 6 does not
represent the actual mesh, which is too fine to be clearly presented.
The analysis is made with a unique ABAQUS/Explicit step (Peyre et al.,
2012, 2007) with a total duration of 20 μs, so that the relaxation can
occur, and so that the kinetic energy of the system reduces to a small
fraction of its original value. Clamped boundary conditions are applied
on the bottom edge of the model. The maximum pressure applied is
𝑃 = 3 GPa, the time profile remaining the same as in Fig. 3.

Since plasticity will not be induced on the same surface size for all
the test cases, the number of elements leading to converged results
for the residual fields will not be the same as well. Thus, for each
spot diameter, the FE results will be presented for a mesh producing
converged results. Besides, to avoid models with a too large number of
nodes, the width 𝐿 of the finely meshed box will also vary. It has been
verified that the residual stress field results show no variations for a
ratio 𝐿∕𝑑 of 2 or greater, 𝑑 denoting the spot diameter. The parameters
are summarized in Table 2.

4.2. Results

4.2.1. Plastic strain field
In this section we analyze the plastic strain field. To do so, a section

of the 3D results is first presented, as well as a map of the relative error
between the 3D and the 1D results. As explained above, the 1D results
do not depend on 𝑟 unlike the 3D FE results. The relative error map
is computed by comparing the in-depth profiles from both models, at
the different distances 𝑟 from the center for the 3D model. These maps
will only be presented in the case of the 316L material, for the sake of
conciseness (see Fig. 7). Similar results are obtained for the three other
materials.

Fig. 7(a) shows the axisymmetric axial plastic strain field for the
3D FE model, in the case the 316L alloy and for a spot diameter of
𝑑 = 5 mm. In this case, it is observed that the plastic strain field
of the FE reference solution varies only along the depth 𝑥 in a large
radial domain (for 𝑟 between 0.3 and 2 mm). In this volume, the fields
are close to be uniaxial, and resemble the ones computed with the
1D model. This is underlined by Fig. 7(b), in which the relative error
between both models is at its lowest in this area, with values smaller
than 20%. This is however not true for 0 ≤ 𝑟 ≤ 0.3 mm, and for
𝑟 > 2 mm. Indeed, the large plastic strain at the center of the impact
is caused by radial waves originating at the edges of the laser spot,
propagating inward and combining themselves at the center, causing
the material to reach plasticity again in this area after the first plastic
strains caused by the main axial wave, as pointed out by Ding and
Ye (2006b). These authors suggest that an unsymmetrical laser spot
shape would avoid those effects, which has been verified in the case
of a square spot (Cao et al., 2011; Kim et al., 2014; Ding, 2003).
Additionally, the area beyond 𝑟 > 2 mm corresponds to the decrease
in the pressure spatial profile (see Fig. 3(b)). It is thus no longer high
enough to induce plasticity, so the plastic strains decrease. Hence these
results suggest that the 1D model can be compared to the 3D FE in the
domain 0.3 ≤ 𝑟 ≤ 2 mm, which make approximately 60% of the laser
spot size. In the following we compare the 1D results to the 3D results
for values taken at 𝑟 = 𝑑∕4. The residual strain profiles (as a function of
the depth) are represented in Fig. 8 for the four materials considered.

The results from Fig. 8 show that the axial plastic strain obtained
with the 1D approximation and with the 3D FE model at 𝑟 = 𝑑∕4 are
close to identical for all the materials considered. The plastic strains at
the surface 𝑥 = 0 mm are correctly approximated by the 1D model,
as well as the plastically affected depth. In this area of the impact,



Fig. 7. Distribution of the residual plastic strain in the case of the 316L steel for the 5 mm spot size. (a) 3D FE reference solution and (b) Logarithm (log10) of the relative error
between the 1D model and the 3D model.

Fig. 8. Comparison of residual axial plastic strain between the 1D (using the plate approximation) and 3D models. The 3D results are for 𝑟 = 𝑑∕4. Various spot diameters are
shown. (a) 12Cr, (b) 316L, (c) Ti-6Al-4V and (d) Al7175-T6.

the spot diameter has little influence on the plastic strain field, except
for the 1 mm diameter spot for which some slight differences between
the models are observed. It was checked that these differences for the
1 mm diameter are not linked to the mesh size, as a mesh of 2 μm ×
2 μm yielded the same results. This apparent size effect is related to the
applied pressure whose temporal profile is identical for all test cases:
the wavelength of the stress wave being constant, a modification of
the spot size can lead to different behaviors. The mean relative errors
between the 1D and 3D models for the plastic strains profiles for the
different materials and spot sizes are summarized in Table 3.

From these results, it can be considered (empirically) that the 1D
model is a good estimate of the 3D model when the spot diameter used

Table 3
Average relative errors (in %) between the 1D and 3D plastic strains
profiles for the different materials and spot sizes, calculated for 0 mm ≤
𝑥 ≤ 10 mm.

1 mm 2 mm 3 mm 4 mm 5 mm

12Cr 5.6 2.8 3.6 3.7 3.7
316L 6.1 2.5 1.2 1.3 1.5
Ti-6Al-4V 7.2 2.6 3.7 3.8 3.8
Al7075-T6 5.6 1.9 2.7 1.3 2.3

is such that

𝑑 > 2𝐿𝑝, (48)

zidekhile
Note

zidekhile
Note



Fig. 9. Distribution of the residual stresses in the case of the 316L steel for the 5 mm spot size. (a) 3D FE reference solution (𝜎22 in MPa) and (b) Logarithm (log10) of the relative
error between the 1D model and the 3D model.

where 𝐿𝑝 is the plastically affected depth defined by Ballard (1991) (see
also Ballard et al., 1991; Heuzé, 2017) in the case of an elastic perfectly
plastic material subjected to a step function loading of duration 𝜏:

𝐿𝑝 =
𝑐𝑐𝑝𝜏
𝑐 − 𝑐𝑝

⌊

6𝜇𝑃 + 𝐴 (4𝜇 + 3𝜅)
2𝐴 (4𝜇 + 3𝜅)

⌋

. (49)

In Eq. (49), 𝐴 is the yield strength of the material, ⌊⋅⌋ is the floor
function, 𝑐 is the elastic stress wave velocity (see Eq. (18)) and 𝑐𝑝 is
the plastic stress wave velocity in an elastic perfectly plastic material
given by:

𝑐𝑝 =
√

𝜅
𝜌
. (50)

In our case the loading is not a step function, but the duration of the
time profile of Fig. 3(a) is approximately 20 ns, so Eq. (49) is to be
used with 𝜏 = 20 ns. The criteria of Eq. (48) was checked for all spot
diameters and materials displayed in Fig. 8.

4.2.2. Residual stress field
We continue with the study of the residual stresses. First, we inves-

tigate the distribution of the residual stress field in the 3D FE reference
solution (see Fig. 9) in the case of the 316L steel. Similar results are
observed for the other materials.

As for the residual plastic strain field (Fig. 7) it is observed in
Fig. 9(a) that the residual stress field of the FE reference solution vary
only along the depth 𝑥 in a large domain (0.3 mm ≤ 𝑟 ≤ 2 mm). This
is also confirmed by Fig. 9(b), showing that the relative error between
the 1D model calculated using Eq. (37) and the 3D model is the lowest
in the corresponding area. This is also in this area that the error is the
lowest for surface values. Following the trend of the plastic strains field,
the center of the impact at the surface shows a singular concentration
of residual stresses, up to 0.3 mm, because of the plasticity induced by
the radial waves converging in the center after the main axial wave,
as reported by Ding and Ye (2006b). As the distance from the center
increases, residual stresses tend to zero, starting from 2 mm. In the
following, Eq. (37) is used to compute the residual stress field from the
plastic strain distribution (shown in Fig. 8) in the 1D model. The results
of the 1D model will be compared to the 3D FE reference solution at
𝑟 = 𝑑∕4 (see Fig. 10).

Overall, a good agreement between the 1D and 3D models is ob-
served for the residual stress profile. The surface residual stresses
are generally well reproduced, especially in the cases of the 12Cr
(Fig. 10(a)) and the Ti-6Al-4V (Fig. 10(c)) materials. For the 316L
and Al7075-T6 materials, the comparison improves when the spot size
increases, and an almost perfect comparison is achieved for a spot
diameter greater than 9 mm (not shown in Fig. 10). The affected depth
by the compressive residual stresses is also correctly approximated,
with a maximal error of approximately 0.1 mm. Because of the form

Table 4
Average relative errors (in %) between the 1D and 3D residual stresses
profiles for the different materials and spot sizes, calculated for 0 mm ≤
𝑥 ≤ 10 mm.

1 mm 2 mm 3 mm 4 mm 5 mm

12Cr 3.7 3.4 3 2.7 2.4
316L 5.3 4.8 4.5 4.1 3.8
Ti-6Al-4V 4.3 3.9 3.5 3.1 2.8
Al7075-T6 5.7 5.1 4.8 4.5 3.9

the residual stress field with the thin plate hypothesis from Eq. (37), the
residual stresses decrease linearly once the plastic strain has reached
zero, whereas the results from the FE model decrease to zero more
rapidly after having reached a maximum. However some discrepancies
are observed when the spot diameter decreases, in contrast with the
plastic strains, for which the match was equally good for all spot
diameters larger than 2 mm. Here again, the average relative errors
between the 1D and 3D models for the residual stresses profiles for the
different materials and spot diameters are presented in Table 4.

These results show that the 1D model can provide a good approx-
imation of 3D mechanical fields. In the following sections, we will
discuss the performance of the 1D model under different parameters.

5. Discussion

The results from Sections 3 and 4 showed that the 1D model
developed in Section 2 is able to successfully reproduce 3D FE refer-
ence results for typical parameters involved in LSP processing. In this
discussion, we wish to investigate the effect of the specimen thickness
and the influence of the pressure on the ability of the 1D model to
correctly compute the residual mechanical fields.

Influence of the thickness The results from Figs. 8 and 10 have shown
that the 1D model developed in this paper can provide a correct
approximation of the residual mechanical fields after the propagation
of the stress wave. The results were presented for the same thickness
along which residual stresses reach equilibrium, i.e. 10 mm. We wish
to discuss the sensitivity of the results on the thickness, by performing
simulations with thicknesses of 𝑒 = 3 mm and 𝑒 = 20 mm. The ratio
ℎ∕𝑒 with ℎ and 𝑒 defined in Fig. 2 is thus different. Since the results of
Figs. 8 and 10 showed that the spot diameter has little influence on the
results for large laser spots, the following results will be presented for a
spot diameter of 5 mm. Furthermore, results will only be presented in
the case of the 316L steel, the conclusions drawn from it being similar
for the other materials.

Fig. 11(a) shows a comparison of the axial plastic strains between
the FE and 1D models for two different thicknesses. The results are
presented as functions of the depth normalized against the thickness.



Fig. 10. Comparison of residual stresses between the 1D (using the plate approximation) and 3D models. The 3D results are for 𝑟 = 𝑑∕4. Various spot diameters are shown. The
inserted figures show zooms for 𝑟 ≤ 1 mm of the corresponding results. (a) 12Cr, (b) 316L, (c) Ti-6Al-4V and (d) Al7175-T6.

Fig. 11. Comparison between the 3D FE (for a spot diameter of 5 mm) and 1D models, with thicknesses of 3 mm and 20 mm, for the 316L steel. (a) Residual plastic strains and
(b) Residual stresses.

As in the case of 𝑒 = 10 mm (Fig. 8), the 3D axial plastic strains at
mid-radius are very well approximated by the 1D model for both the
3 mm and 20 mm thicknesses. Since there is no variation of geometry in
the plastically affected zone, and since the plastic strains only depend
on the load amplitude, it is expected to obtain similar results for the
tested thicknesses. Contrary to the plastic strains, the residual stress
field is sensitive to the geometry of the specimen, since it must be at
equilibrium over all the specimen. Hence, the residual stress profiles
of Fig. 11(b) are different between the 3 mm and 20 mm thicknesses.

According to Fig. 11(b), the overall comparison between the 3D and 1D
models remains good for the 20 mm thickness, with a correct approx-
imation of the affected depth as well as the surface residual stresses.
However, the 3 mm thickness does not yield a similar comparison.
Indeed, since the coefficients 𝛼 and 𝛽 from Eq. (41) are greater for a
smaller thickness than a larger one, the results for the case 𝑒 = 3 mm
are shifted toward smaller stress values compared to the results of the
case 𝑒 = 20 mm, which makes the 1D model overestimating the 3D FE
model in the 20 mm case, and underestimating it for the 3 mm case.



Fig. 12. Comparison of the residual stresses between the 3D FE (for a spot diameter of
5 mm) and 1D models, with the infinitely planar and semi infinite specimen hypotheses,
for the 316L material.

For all the materials, the average absolute error between the 1D and
3D results is about twice as much for the 3 mm thickness (∼ 20 MPa)
than for the 20 mm thickness (∼ 10 MPa).

In addition, in the case 𝑒 = 20 mm, it can be interesting to use the
semi infinite specimen approximation of Eq. (43). Fig. 12 presents a
comparison between the residual stresses obtained by the 1D models,
with infinitely planar (with a thickness of 20 mm) and semi-infinite
approximation, and with the 3D FE model for a spot diameter of
5 mm. These results show that for this thickness, the infinite plate and
semi infinite specimen hypotheses are close for the first hundreds of
microns, with notably very close values for the surface residual stresses.
However, the affected depth by the compressive residual stresses is
overestimated by the semi infinite specimen hypothesis for all mate-
rials (which does not capture the tensile residual stresses due to the
equilibrium, even though these stresses are small). The far field of
the reference solution, which is zero, is more correctly approximated
by the semi infinite specimen hypothesis. However, the slope and
values of the infinitely planar solution in the far field are such that
this solution is also close to zero. For these reasons, the infinitely
planar hypothesis remains a good approximation for large thicknesses,
while the semi-infinite specimen hypothesis is relevant for very large
thicknesses.

Influence of the pressure In this paragraph, we wish to discuss its sensi-
tivity to the applied pressure. We will thus consider now an amplitude
of 5 GPa, instead of the previous 3 GPa. All the other parameters will
be identical to the ones used in Section 4. The results will be only
presented for the 316L steel, the conclusion being similar for the other
materials.

Fig. 13 presents the comparison between the 1D and 3D models
for the plastic strains and residual stresses. The trend of the results
is similar to Figs. 8 and 10, but with some differences. The plastic
strains in Fig. 13 for spot diameters from 3 mm to 5 mm and the
1D results exhibit a saturation plateau close to the surface, which was
absent of the profiles in Fig. 8. Interpretations for the phenomena can
be found in the work of Ballard (1991), who explains, in the ideal
case of an elastic perfectly plastic material, that above a given pressure
amplitude, plasticity will not only be induced during the loading front
of the shockwave, but also during the release front of the wave (when
the axial stress is decreasing), resulting in a saturation plateau, whose
value depends only on the material parameters. Moreover, the value of
the plateau in the FE results seems to be affected by the spot diameter,
becoming closer to the 1D model as the spot diameter increases. Fur-
thermore, specimen undergoes softening during the unloading phase of
the pressure wave, as the equivalent plastic strain 𝑝 continues to rise,
but its rate �̇� decreases, due to the fact that the pressure time profile in
Fig. 3(a) is not symmetric, thus leading to a yield stress lower that the

one achieved during the loading phase of the shock, according to the
Johnson–Cook model given by Eq. (5). As the stress wave is attenuated
during the propagation, there is a transition between the zone where
plasticity is induced only by the loading phase, and the zone where
the unloading also induces plasticity. This transition is marked on
Fig. 13 at 𝑥 ∼ 0.25 mm, where the plastic strain and residual stress
profiles exhibit a sharp evolution. This saturation plateau corresponds
to the softened part of the specimen, explaining the behavior in the
residual fields profiles. Furthermore, as previously, the larger the spot
size, the better the comparison between the 1D and 3D models is. The
surface residual stresses are overestimated for small spot sizes, but the
stress profile is well approximated, as well as the affected depth. These
results seem to indicate that for high pressures, the 1D model can again
approximate precisely the FE reference solution, but for large spot sizes.
For the results of Fig. 13, additional simulations have shown that a
better agreement of the surface values are is achieved for a laser spot
of 15 mm. The profiles of Fig. 13 can also be used to check the criteria
of Eq. (48).

As for the CPU times required by both models to complete the
computations, the 1D algorithm is significantly faster. It should be
noted that the computational time can be influenced by the type of
materials since (i) a material with a low yield strength will need
more plastic correction steps (which take longer than the purely elastic
propagation computation) and (ii) the CFL condition of Eq. (16) must
hold at all times so a material with a faster propagation speed will
need a smaller time increment (for a given CFL number and spatial
increment), and thus a longer time to complete the simulation. Overall,
for the residual fields with the current parameters, the 1D model is
approximately 40 times faster than the 3D model.

6. Conclusion

The present work aimed at providing a 1D model to achieve a
fast approximation of the mechanical fields induced by a stress wave
caused by a laser impact during the Laser Shock Peening process. This
model is based on a stress wave propagation step, which generates
plastic strains, which are then used to compute the residual stress field
using a eigenstrain-based method. The modeling for the propagation
step is based on a uniaxial strain hypothesis, which corresponds to
the behavior of the material for very large laser spot sizes, with no
description of stress wave phenomenon originating from the spot edges.
The propagation step is computed by solving a hyperbolic PDE sys-
tem with a Godunov-type numerical scheme. This propagation step
generates a heterogeneous plastic strain field, which is the origin of
the residual stress field. An analytic modeling based on an infinitely
planar plate allows to link the plastic strains to the residual stresses. To
assess the relevance of this model, we compared it to a Finite Element
model, acting as a reference solution, for several materials and spot
diameters. The stress wave propagation step is validated by comparing
the backface velocity of a thin plate impacted on the opposed face
between the 1D model and the reference FE solution. For all materials,
the match is close to perfect for large spot sizes, preventing edge effects
from quickly disturbing the velocity field along the center of the impact.
Another dedicated FE model is used to compare the residual plastic and
stress fields. It highlights that these fields are uniaxial for the most part
of the laser spot, except for the edges, and the center of the impact,
which is a locus of additional plastic evolution in the case of circular
laser spot shape, because of radial stress waves originating at the edges,
propagating inward and focusing at the center of the impact. Apart
from these areas, the 1D model yields a very satisfactory approximation
of the plastic strains field compared to the FE model, again for the
large spot sizes. For the residual stresses, several discrepancies are
introduced by the analytic modeling, but the 1D model remains a
good approximation for spot diameters larger than 2 mm. Additional
tests showed that the 1D model remains relevant for large thicknesses
(from 10 mm and higher), but less so for small thicknesses (around
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Fig. 13. Comparison of the residual fields between the 1D and 3D models for a pressure amplitude of 5 GPa for the 316L material. (a) Axial plastic strain and (b) Residual
stresses.

3 mm). These results suggest that the 1D model can be used to compute
a first approximation of the mechanical fields introduced by a laser
impact. Such an approximation is quicker to be computed, with the
1D model being on average one or two orders of magnitude faster (this
however strongly depends on the machines used, as well as the parallel
computing options). This work opens the following perspectives:

• For a material whose behavior is already known, the 1D model
could be used to have an initial estimation of the induced resid-
ual stress field, before refining the results with more complex
models. The 1D model could thus be used to perform an initial
optimization of the process parameters.

• In the case where the material parameters are unknown, this 1D
model can be efficiently used as a calibration tool. Indeed, even
though the Johnson–Cook model has only a few parameters, their
identification can be cost and time consuming when using 3D FE
simulations (Ayad et al., 2022; Milani et al., 2009; Seddik et al.,
2022). Based on proper experimental measurements (backface ve-
locity or in-depth residual stresses) for a material with unknown
properties, the 1D model can be used to quickly identify the
rheological parameters used to describe the strain rate dependent
behavior of the material.

• The thermal effects in the Johnson–Cook model were neglected
in this work. However, literature works (Rubio-González et al.,
2006; Gill et al., 2015) have shown that the absence of sacrificial
overlay protecting the sample from thermal effects can lead to
a strong influence of the temperature on the residual stresses,
which are less compressive than without thermal effects. An
improvement of the model developed in this article would be
to include a modeling of the temperature evolution inside the
sample given an specific thermal loading, and its influence of the
mechanical behavior. This would affect the yield stress and thus
the stress wave propagation, and generate eigenstrains of thermal
origin, changing the distribution of the residual stresses.

The 1D model presented in this work is made freely available online
in the form of a python code called EVEREST (strEss waVE pRopagation
and rESidual STress solver) under LGPL license (Lapostolle, 2022).
The use of this code only requires a Python installation and standard
scientific packages, and thus no commercial software or knowledge of
finite elements modeling. Its use and results are thus faster than finite
elements codes.
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