
HAL Id: hal-03899955
https://hal.science/hal-03899955

Preprint submitted on 15 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Roots of outer automorphisms of free groups and
centralizers of abelian subgroups of Out(F_N)

Yassine Guerch

To cite this version:
Yassine Guerch. Roots of outer automorphisms of free groups and centralizers of abelian subgroups
of Out(F_N). 2022. �hal-03899955�

https://hal.science/hal-03899955
https://hal.archives-ouvertes.fr


Roots of outer automorphisms of free groups and

centralizers of abelian subgroups of OutpFNq

Yassine Guerch

December 15, 2022

Abstract

Let N ¥ 2 and let OutpFN q be the outer automorphism group of a nonabelian
free group of rank N . Let IAN pZ{3Zq be the finite index subgroup of OutpFN q
which is the kernel of the natural action of OutpFN q on H1pFN ,Z{3Zq. We show
that IAN pZ{3Zq is an R-group, that is, for every φ, ψ P IAN pZ{3Zq, if there exists
k P N� such that φk � ψk, then φ � ψ. This answers a question of Handel and
Mosher. We then use the fact that IAN pZ{3Zq is an R-group in order to prove that
the normalizer in IAN pZ{3Zq of every abelian subgroup of IAN pZ{3Zq is equal to
its centralizer. We finally give an alternative proof of a result, due to Feighn and
Handel, that the centralizer of an element of OutpFN q which has only finitely many
periodic orbits of conjugacy classes of maximal cyclic subgroups of FN is virtually
abelian. 1

1 Introduction

Let N ¥ 2 and let OutpFN q be the outer automorphism group of a nonabelian free group
FN . When studying dynamical or algebraic properties of OutpFN q, one often needs to
pass to a finite index subgroup in order to avoid periodic behaviours. A finite index
subgroup of particular importance for such considerations is the subgroup IAN pZ{3Zq,
which is the kernel of the natural action of OutpFN q on the first homology group of FN
with coefficients in Z{3Z. The group IAN pZ{3Zq is an analogue of the congruence sub-
groups of arithmetic lattices, which are finite index subgroups of the considered lattices
having the advantage of being torsion free. The group IAN pZ{3Zq similarly satisfies
numerous aperiodic properties. For instance, it is torsion free [BFH1, Corollary 5.7.6],
every virtually abelian subgroup of IAN pZ{3Zq is abelian [HM4], and any conjugacy
class of a free factor of FN which has a periodic orbit by a subgroup of IAN pZ{3Zq is in
fact fixed [HM3, Theorem II.3.1]. We notice that we could have replaced Z{3Z in the
definition of IAN pZ{3Zq by any other Z{mZ with m ¥ 3 without changing the aperiodic
properties of the group. On the contrary, the group IAN pZ{2Zq is not torsion free as it
contains the involution sending every element of some basis of FN to its inverse.

1Keywords: Nonabelian free groups, outer automorphism groups, group actions on trees, centralizers
of subgroups. AMS codes: 20E05, 20E08, 20E36, 20F65
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This is why the group IAN pZ{3Zq is predominant when studying rigidity properties of
OutpFN q. It is for instance of central importance in the proof of the Tits alternative due
to Bestvina, Feighn and Handel [BFH1, BFH3]. The fact that periodic conjugacy classes
of free factors and elements of FN are fixed by subgroups of IAN pZ{3Zq is a key step
in the proof of decomposition theorems due to Handel and Mosher [HM3] and in their
alternative regarding the second bounded cohomology of subgroups of OutpFN q [HM2].
It also intervenes in the proof of the rigidity of the abstract commensurator of OutpFN q
due to Farb and Handel [FaH] for N ¥ 4 and Horbez and Wade [HW] for N ¥ 3. Finally,
it also appears in the recent proof of the measure equivalence rigidity of OutpFN q due
to Guirardel and Horbez [GH2].

In this article, we prove another aperiodic property of IAN pZ{3Zq, which is the
content of the following theorem.

Theorem 1.1. Let N ¥ 2 and let φ, ψ P IAN pZ{3Zq. Suppose that there exists k P N�

such that φk � ψk. Then φ � ψ.

This answers a question of Handel and Mosher [HM4, Question 1.4]. Following
Kontorovič [Kon] (see also [Bau]), Theorem 1.1 implies that IAN pZ{3Zq is an R-group.
This implies in particular (see Corollary 4.2) that the normalizer in IAN pZ{3Zq of any
cyclic subgroup of IAN pZ{3Zq is equal to its centralizer.

Another consequence of Theorem 1.1 is that one can enlarge the recognition theorem
due to Feighn and Handel [FH2, Theorem 5.3] to a larger class of elements of OutpFN q.
Indeed, the recognition theorem only applies to forward rotationless elements. By [FH2,
Lemma 4.42], there exists KN P N� such that, for every φ P OutpFN q, the element φKN

is forward rotationless. Thus, we have the following corollary.

Corollary 1.2. Let N ¥ 2 and let KN P N� be the constant given by [FH2, Lemma 4.42].
Let φ, ψ P IAN pZ{3Zq. Then φ � ψ if and only if φKN and ψKN satisfy the hypotheses
of the recognition theorem [FH2, Theorem 5.3].

Recall that, in an R-group, the normalizer of every cyclic subgroup is equal to its
centralizer. We may ask whether this property extends to every abelian subgroup of
IAN pZ{3Zq. This is in fact the case as shown by the following theorem.

Theorem 1.3 (see Theorem 5.1). Let N ¥ 2. For every abelian subgroup H � IAN pZ{3Zq,
the normalizer of H in IAN pZ{3Zq is equal to its centralizer.

Note that Theorem 1.3 is no longer true if we remove the assumption of being abelian.
We thus deduce this new algebraic characterization of abelian subgroups of IAN pZ{3Zq.

Corollary 1.4. Let H be a subgroup of IAN pZ{3Zq. Then H is abelian if and only if its
normalizer in IAN pZ{3Zq equals its centralizer.

Theorem 1.3 extends a similar result due to Handel and Mosher for abelian UPG
subgroups of IAN pZ{3Zq [HM4, Proposition 1.3]. It also enlarges the known informa-
tions regarding both abelian subgroups of OutpFN q (see for instance the work of Feighn
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and Handel [FH1]) and centralizers of subgroups of OutpFN q, see for instance the work
of Rodenhausen and Wade [RW], Algom-Kfir and Pfaff [AKP] and Andrew and Mar-
tino [AM].

As we will see in Corollary 5.2, Theorem 1.3 gives obstructions to the existence of
subgroups of IAN pZ{3Zq isomorphic to some semidirect products of groups. Indeed, if H
is a subgroup of IAN pZ{3Zq isomorphic to A�B where A is abelian, then Theorem 1.3
implies that H is in fact isomorphic to the direct product of A and B.

Finally, our techniques also enable us to understand centralizers of some elements of
OutpFN q. The following theorem also follows from the work of Feighn and Handel [FH1]
regarding abelian subgroups of OutpFN q (see also the work of Mutanguha [Mut] regarding
centralizers of atoroidal elements of OutpFN q).

Theorem 1.5 (Theorem 5.3). [FH1] Let N ¥ 2 and let φ P OutpFN q be an outer auto-
morphism which has only finitely many periodic orbits of conjugacy classes of maximal
cyclic subgroups of FN . The centralizer of φ in OutpFnq is virtually abelian.

We note that the work of Feighn and Handel uses the technology of train tracks,
while the proof of Mutanguha uses some actions on limit trees. Our proof relies on
isometric actions of OutpFN q on some Gromov-hyperbolic spaces, so that the techniques
used in this paper significantly differs from the other two proofs.

We now sketch the proof of Theorem 1.1, the proofs of Theorems 1.3 and 1.5 following
essentially the same lines. Let φ, ψ P IAN pZ{3Zq and let k P N� be such that φk � ψk.
The idea of the proof is to show that the group H � xφ, ψy is abelian. Since IAN pZ{3Zq
is torsion free and since φk � ψk, this will imply that H is cyclic and this will conclude
the proof.

The proof is by induction onN , the caseN � 1 being immediate. Consider a maximal
proper H-invariant free factor system F of FN (see Section 2.1). If F is sporadic, then
one can canonically associate to F a Bass-Serre tree S of FN whose conjugacy classes
of vertex stabilizers are contained in F . The action of FN on S naturally extends to an
action of the preimage rH of H in AutpFN q. A thorough investigation of the action ofrH then shows that H is necessarily abelian. This investigation relies on the induction
hypothesis in order to deal with the action of rH on vertex stabilizers of S in FN .

Suppose now that F is nonsporadic. Then H acts by isometries on a Gromov hyper-
bolic space called the free factor graph of FN relative to F and denoted by FFpFN ,Fq.
Maximality of F implies that H contains a loxodromic element by results of Handel and
Mosher [HM3, Theorem A] and Guirardel and Horbez [GH1, Theorem 7.1]. Moreover,
since H is abelian, it acts with a finite orbit on the Gromov boundary B8FFpFN ,Fq of
FFpFN ,Fq. A thorough analysis of stabilizers of points in B8FFpFN ,Fq based on their
description by Guirardel and Horbez [GH1] and Horbez and Wade [HW] then concludes
the proof. The analysis is essentially done in Proposition 4.1.

We now present the structure of the article. In Section 2, we recall basic definitions
associated with OutpFN q such as free factor systems, splittings and properties of the
action of OutpFN q on the relative free factor graph. Sections 3 and 4 are devoted to the
proof of Theorem 1.1. Section 3 focuses on the sporadic case and we finish the proof
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of Theorem 1.1 in Section 4. Finally, in Section 5, we prove Theorem 1.3 regarding the
normalizer of abelian subgroups of IAN pZ{3Zq and Theorem 1.5 regarding the centralizer
of some elements of OutpFN q.

Acknowledgments. I warmly thank Damien Gaboriau, Camille Horbez and Frédéric Paulin
for their precious advices as well as their very helpful remarks regarding earlier versions of this
work. I am also grateful to Jean Pierre Mutanguha for his numerous very useful comments and
for pointing out an improvement of an earlier version of Theorem 1.5.

The author was supported by the LABEX MILYON of Université de Lyon.

2 Preliminaries

2.1 Free factor systems of FN

Let N ¥ 2 and let FN be a nonabelian free group of rank N . In this section, we present
the definition of free factor systems of FN , which are specific finite sets of conjugacy
classes of subgroups of FN . First, we give the definition of some larger collections of
conjugacy classes of subgroups of FN called subgroup systems.

Definition 2.1 (Subgroup system). A subgroup system is a finite (possibly trivial) set A
of conjugacy classes of finitely generated subgroups of FN .

There exists a natural partial order on the set of subgroup systems of FN , where
A1 ¤ A2 if for every subgroup A of FN such that rAs P A1, there exists rBs P A2 such
that A � B. The subgroup system A2 is then an extension of A1.

The group OutpFN q has a natural action on the set of subgroup systems, and this
action preserves the partial order defined above. Given a subgroup system A, we denote
by OutpFN ,Aq the subgroup of OutpFN q preserving A.

Let A be a subgroup system of FN . An element g of FN is A-peripheral if there exists
rAs P A such that g P A. Otherwise, we say that g is A-nonperipheral. A subgroup of
FN is A-nonperipheral if it contains an A-nonperipheral element, and is A-peripheral
otherwise.

We now present an important family of subgroup systems, the free factor systems.
A free factor system is a subgroup system F � trA1s, . . . , rAksu of FN such that there
exists a subgroup B of FN with FN � A1 � . . . �Ak �B.

Definition 2.2 (Sporadic extension). Let F1 ¤ F2 be two free factor systems of FN . The
extension F1 ¤ F2 is sporadic if one of the following holds:

p1q there exist rAs, rBs P F1 such that F2 � pF1 � trAs, rBsuq Y trA �Bsu;

p2q there exist rAs P F1 and g P FN such that F2 � pF1 � trAsuq Y trA � xgysu;

p3q there exists g P FN such that F2 � F1 Y trxgysu.

Otherwise, we say that the extension F1 ¤ F2 is nonsporadic.
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A free factor system F of FN is sporadic if the extension F ¤ trFN su is sporadic.
Note that, for a sporadic free factor system F , either F � trAsu or F � trAs, rBsu for
some subgroups A,B � FN .

Let φ P OutpFN q and let F be a free factor system of FN . Suppose that φ fixes every
element of F . Then, for every rAs P F , by malnormality of A, the element φ induces an
element φ|A P OutpAq.

2.2 Splittings of FN and twists automorphisms

A splitting of FN is an FN -equivariant homeomorphism class S of a minimal, simplicial
action of FN on a simplicial tree S. Here, minimal means that S does not contain a
proper FN -invariant subtree. If F is a free factor system of FN , an pFN ,Fq-splitting S
is a splitting of FN such that, for every rAs P F , the group A is elliptic in S. If v is
a vertex of S, we denote by Gv its stabilizer. Let V be a set of representatives of the
FN -orbits of vertices in S.

A splitting S is free if edge stabilizers of S are trivial. Note that, in this case, the
set trGvsuvPV is a free factor system of FN . Given a free factor system F of FN , a
Grushko pFN ,Fq-free splitting is an pFN ,Fq-free splitting such that, for every v P V
with nontrivial stabilizer, we have rGvs P F .

The group AutpFN q acts on the right on the set of splittings of FN by precomposition
of the action. This action passes to the quotient to give an action of OutpFN q. Note
that this action preserves the set of free splittings.

Let F be a free factor system of FN . Given two pFN ,Fq-splittings S and S 1, we say
that S is a refinement of S 1 if there exist S P S and S1 P S 1 such that S1 is obtained
from S by collapsing some orbits of edges. Two pFN ,Fq-splittings are compatible if they
have a common refinement which is an pFN ,Fq-splitting.

Let S be a splitting of FN and let S be a representative of S. The subgroup StabpSq
of elements of OutpFN q which fix S has a natural description by a result of Levitt [Lev,
Proposition 4.2]. Indeed, there exists a natural homomorphism from StabpSq to the
group of graph automorphisms AutgrpFNzSq of the underlying graph of FNzS. We
denote the kernel of this homomorphism by KpSq. Moreover, there exists a natural
homomorphism KpSq Ñ

±
vPV OutpGvq given by the action on vertex stabilizers. The

kernel of this homomorphism, denoted by T pSq, is the group of twists of S.

Lemma 2.3. [CLus, Lemma 5.3] Let S be a splitting of FN whose edge stabilizers are all
nontrivial. The group T pSq is central in KpSq.

Let F be a sporadic free factor system of FN . Then one can naturally associate to
F a Grushko pFN ,Sq-free splitting S, which is the Bass-Serre tree of FN associated with
F . A representative S P S has exactly one orbit of edges. The splitting S is fixed by
OutpFN ,Fq. Moreover, by [Lev, Proposition 3.1], the group of twists of S is isomorphic
to a direct product of two free (maybe cyclic) groups.
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2.3 Properties of the subgroup IANpZ{3Zq

Let N ¥ 2 and let

IAN pZ{3Zq � kerpOutpFN q Ñ AutpH1pFN ,Z{3Zqq.

In this section, we recall some properties of IAN pZ{3Zq that will be used in the proof
of Theorem 1.1. Most of the following results state the aperiodicity of some orbits
associated with the action of IAN pZ{3Zq on some natural sets.

Proposition 2.4. [BFH1, Corollary 5.7.6] The group IAN pZ{3Zq is torsion free.

Theorem 2.5. [HM3, Theorem II.3.1] Let H be a subgroup of IAN pZ{3Zq and let F be
an H-periodic free factor system. Then F is fixed by H and every element rAs P F is
fixed by H.

Theorem 2.6. [HM3, Theorem II.4.1] Let H be a subgroup of IAN pZ{3Zq. Then every
H-periodic conjugacy class of some element of FN is fixed by H.

Theorem 2.7. [HM4, Theorem 1.1] Let H be a virtually abelian subgroup of IAN pZ{3Zq.
Then H is abelian and finitely generated.

The fact, stated in Theorem 2.7, that any abelian subgroup H of OutpFN q is finitely
generated also follows from the work of Bass and Lubotzky [BL].

Lemma 2.8. [HW, Lemma 2.6] Let H � IAN pZ{3Zq and let S be an H-periodic free
splitting. Then S is fixed by H and H � KpSq.

Lemma 2.9. A subgroup H of IAN pZ{3Zq is abelian if and only if it does not contain a
nonabelian free group.

Proof. By the Tits alternative due to Bestvina, Feighn and Handel [BFH1, BFH3], either
H is virtually solvable, or it contains a nonabelian free group. By [BFH2, Theorem 1.1]
(see also [Ali, Corollary 1.3]), either H is virtually abelian or H contains a nonabelian
free group. By Theorem 2.7, either H is abelian or it contains a nonabelian free group.

2.4 Relative free factor graph and relative arational trees

Let F be a free factor system of FN . The free factor graph of FN relative to F , denoted
by FFpFN ,Fq, is the graph whose vertices are the pFN ,Fq-free splittings of FN , two such
splittings being adjacent if they have a common refinement which is free or if they share
a common elliptic F-nonperipheral element. By a result of Guirardel and Horbez [GH1,
Proposition 2.11] (see also the work of Handel and Mosher [HM1] for the case F � ∅),
the graph FFpFN ,Fq is Gromov-hyperbolic. In the rest of the section, we describe the
group of isometries of FFpFN ,Fq as well as its Gromov boundary.

The group OutpFN ,Fq acts naturally on FFpFN ,Fq by isometries. An outer au-
tomorphism φ P OutpFN ,Fq is fully irreducible relative to F if there does not exist a
proper free factor system F   F 1 fixed by a power of φ. These elements are in fact the
loxodromic elements of FFpFN ,Fq.

6



Theorem 2.10. [Gup, Theorem A] Let F be a nonsporadic free factor system of FN . An
element φ P OutpFN ,Fq is a loxodromic element of FFpFN ,Fq if and only if φ is fully
irreducible relative to F .

Theorem 2.10 was proved by Gupta [Gup] and later extended by Guirardel and
Horbez to outer automorphisms of free products of groups [GH1, Theorem 4.1].

The following theorem was proved by Handel and Mosher [HM3] in the finitely gen-
erated case and by Guirardel and Horbez [GH1] in the general case.

Theorem 2.11. [GH1, Theorem 7.1][HM3, Theorem A] Let H be a subgroup of IAN pZ{3Zq
and let F be a maximal proper H-invariant free factor system. Suppose that F is non-
sporadic. Then H contains a fully irreducible outer automorphism relative to F .

We now describe the Gromov boundary of FFpFN ,Fq. An pFN ,Fq-free factor is a
subgroup of FN which arises as a point stabilizer of some pFN ,Fq-free splitting. An
pFN ,Fq-free factor is proper if it is F-nonperipheral and not equal to FN . Note that, if
A is an pFN ,Fq-free factor, then F induces a free factor system of A, denoted by F |A.

An pFN ,Fq-arational tree is an R-tree T equipped with an FN -action by isometries
such that T is not a Grushko pFN ,Fq-free splitting and such that, for every proper
pFN ,Fq-free factor A, the action of A on its minimal tree is a Grushko pA,F |Aq-free
splitting.

We record the following fact, which is a consequence of the description of the Gromov
boundary of FFpFN ,Fq. It is due to Hamenstädt [Ham] for the case F � ∅, and
Guirardel and Horbez [GH1] for the general case.

Proposition 2.12. [GH1, Theorem 3.4] Let F be a nonsporadic free factor system of FN
and let H be a subgroup of OutpFN ,Fq. If H has a finite orbit in B8FFpFN ,Fq, then H
has a finite index subgroup which fixes the homothety class of an pFN ,Fq-arational tree.

We now describe the stabilizer in OutpFN ,Fq of the homothety class rT s of an ara-
tional pFN ,Fq-tree T . We have a natural homomorphism

SF: StabprT sq Ñ R�
�

given by the stretching factor, whose kernel is denoted by StabisompT q. The homomor-
phism SF has the following properties.

Lemma 2.13. [GH1, Lemma 6.2, Proposition 6.3, Corollary 6.12] p1q The image of SF
is cyclic.

p2q For every φ P StabprT sq, we have SFpφq � 1 if and only if φ is fully irreducible
relative to F .

The following proposition is extracted from [HW], where it is attributed to Guirardel
and Levitt. Given an pFN ,Fq-arational tree T , it describes an pFN ,Fq-splitting canon-
ically associated with a subgroup of StabisompT q.
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Proposition 2.14. [HW, Lemmas 5.3, 5.6, Theorem 5.4] Let F be a nonsporadic free
factor system and let T be an pFN ,Fq-arational tree. Let H � StabisompT qX IAN pZ{3Zq
be a subgroup. There exists an pFN ,Fq-splitting ST,H fixed by the normalizer of H in
OutpFN ,Fq with the following properties.

p1q Every edge stabilizer is nontrivial.

p2q There exists a partition V � V0 > V1 of the vertices of ST,H such that

(a) for every v P V1, the conjugacy class rGvs is contained in F ;

(b) the set V0 consists in a unique FN -orbit of a vertex v0 P V0. The group Gv0 is a
nonabelian free group. Moreover, the homomorphism

H XKpST,Hq Ñ OutpGv0q

has trivial image.

We will also use the following corollary, which is an easy consequence of Proposi-
tion 2.14 p2qpbq (see [GH1, Proposition 6.10] for a proof).

Corollary 2.15. [GH1, Proposition 6.10] Let F be a nonsporadic free factor system and
let T be an pFN ,Fq-arational tree. For every φ P StabisompT q X IAN pZ{3Zq, there exist
a nonabelian free group F of FN and a representative Φ P φ such that ΦpF q � F and
Φ|F � idF .

3 The sporadic case

In this section, we prove Theorem 1.1 when the elements φ, ψ P IAN pZ, 3Zq fix a sporadic
free factor system. We first need some preliminary lemmas.

Lemma 3.1. Let Φ,Ψ P AutpFN q. Suppose that there exists k P N� such that Φk � Ψk

and that the image φ of Φ in OutpFN q is equal to the image ψ of Ψ and is contained in
IAN pZ{3Zq. Then Φ � Ψ.

Proof. We only need to show that Φ and Ψ commute. Indeed, in this case, the group
xφ, ψy is abelian. By Proposition 2.4, the group xφ, ψy is also torsion free. Thus, since
the kernel of AutpFN q Ñ OutpFN q is a nonabelian free group, the group xΦ,Ψy is free
abelian. Since Φk � Ψk, we have in fact Φ � Ψ.

So let us prove that Φ commutes with Ψ. Let K be the normal subgroup of xΦ,Ψy
consisting in all its inner automorphisms and let K0 be the subgroup of FN consisting
in all elements g P FN with adg P K.

We first treat the case where K0 is cyclic, generated by g P FN . Since K is a
normal subgroup of xΦ,Ψy, the group K0 is preserved by xΦ,Ψy. By Theorem 2.6, since
φ, ψ P IAN pZ{3Zq, the element g is fixed by xΦ,Ψy. Note that, since φ � ψ, we have
ΦΨ�1 P K. Since K0 is cyclic, we have Φ � Ψ � adgm for some m P Z. Since g is fixed
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by Ψ, we see that Φk � Ψk � adgkm . Since Φk � Ψk, we have adgkm � id, so that g � e
and Φ � Ψ. This concludes the proof when K0 is cyclic.

Suppose now that K0 is a nonabelian free group. Since Φk is central in xΦ,Ψy, it
fixes every element g P K0. Since φ, ψ P IAN pZ{3Zq, by Theorem 2.6, both φ and ψ fix
the conjugacy class of every element in K0. Thus, there exist gφ, gψ P FN such that, for
every g P K0, we have Φpgq � gφgg

�1
φ and Ψpgq � gψgg

�1
ψ .

We claim that gφ and gψ are fixed by Φk. We prove the result for gφ, the arguments for
gψ being similar. Since the group K is normal in xΦ,Ψy, the automorphism Φ preserves
K0. In particular, for every g P K0, we have � gφgg

�1
φ P K0. Thus, for every g P K0, we

have
Φkpgφgg

�1
φ q � ΦkpgφqgΦkpg�1

φ q � gφgg
�1
φ ,

where the first equality follows from the fact that g is fixed by Φk. Thus, for every
g P K0, the element Φkpgφq

�1gφ commutes with g. Since this is true for every g P K0

and since the group K0 is nonabelian, we have in fact Φkpgφq � gφ.
Thus, the group K 1

0 � xK0, gφ, gψy is fixed elementwise by Φk. Since K0 is a non-
abelian free group and since φ, ψ P IAN pZ{3Zq, by Theorem 2.6, the automorphisms Φ
and Ψ act on K 1

0 by a global conjugation by respectively gφ and gψ.
Let g P K0 be such that Φ � adg � Ψ, which exists since φ � ψ. We claim that

g P xgψy. Indeed, otherwise xg, gψy is a nonabelian free group of rank 2. But gφ � ggψ,
so that, for every i P N�, the element Φipgψq can be written as a nontrivial product of
elements in xgψy and elements in xgy (recall that Φ acts on K 1

0 by a global conjugation
by gφ). This contradicts the fact that Φkpgψq � gψ.

Hence we have g P xgψy. Thus, the element g is fixed by Ψ. Therefore, we see that
Ψ commutes with adg. Since Ψ�1 � Φ � adg, we see that Ψ commutes with Φ. This
concludes the proof.

Lemma 3.2. Let Φ P AutpFN q with φ � rΦs P IAN pZ{3Zq. Let a, b P FN and k P N be
such that

k¹
i�0

Φipaq �
k¹
i�0

Φipbq.

Then a � b.

Proof. Let a, b P FN be such that
±k
i�0 Φipaq �

±k
i�0 Φipbq. Let A �

±k�1
i�0 Φipaq and

let B �
±k�1
i�0 Φipbq. Note that, for every c P ta, bu, we have

k¹
i�0

Φipcq � cΦpCq,

so that
a�1b � ΦpAB�1q.

Moreover, we have AΦkpaq � BΦkpbq. Thus,

Φkpa�1bq � pΦkpaqq�1Φkpbq � pΦkpaqq�1B�1AΦkpaq.
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Thus, the outer automorphism φk�1 sends the conjugacy class of AB�1 to the conju-
gacy class of B�1A. Since AB�1 � BB�1AB�1, we see that φk�1 sends the conjugacy
class of AB�1 to itself. Thus the orbit of rAB�1s under iteration of φ is periodic. By
Theorem 2.6, we see that the conjugacy class of AB�1 is fixed by φ. Thus, we have
rAB�1s � ra�1bs, that is

raΦpaq . . .ΦkpaqΦkpb�1q . . .Φpb�1qb�1s � ra�1bs.

Since

raΦpaq . . .ΦkpaqΦkpb�1q . . .Φpb�1qb�1s � rΦpaq . . .ΦkpaqΦkpb�1q . . .Φpb�1qb�1as,

there exists h P FN with

rΦpaq . . .ΦkpaqΦkpb�1q . . .Φpb�1qs � rha�1bh�1a�1bs.

Using this argument inductively, we see that there exist g, h0, . . . , hk P FN with

ga�1bg�1
k¹
i�0

hiΦ
ipa�1bqh�1

i � e.

Since Φ preserves the conjugacy class of a�1b, there exist g, g0, . . . , gk P FN with

ga�1bg�1
k¹
i�0

gia
�1bg�1

i � e.

Thus some product of conjugates of a�1b is trivial. By for instance [CLyn, Corollary 4.5],
this implies that a�1b � e, which concludes the proof.

Lemma 3.3. Let φ, ψ P IAN pZ{3Zq and let k P N� be such that φk � ψk. Suppose that
there exists a xφ, ψy-invariant sporadic free factor system F of FN such that, for every
rAs P F , we have φ|A � ψ|A. Then φ � ψ.

Proof. Since F is sporadic, the Bass-Serre tree S of FN associated with F is a Grushko
pFN ,Fq-free splitting fixed by OutpFN ,Fq, and in particular by xφ, ψy. Since we have
xφ, ψy � IAN pZ{3Zq, by Lemma 2.8, we also have xφ, ψy � KpSq. We distinguish
between two cases, according to the distinct cases in the definition of a sporadic free
factor system.

Suppose first that F � trAs, rBsu, so that FN � A � B. For every θ P KpSq, let
Θ be the unique representative of θ such that ΘpAq � A and ΘpBq � B. By [Lev,
Proposition 4.2], the map θ ÞÑ pΘ|A,Θ|Bq gives an isomorphism between KpSq and
AutpAq�AutpBq. Note that, by assumption on φ and ψ, the outer automorphism class of
Φ|A (resp. Φ|Bq is the same as the one of Ψ|A (resp. Ψ|Bq. Since φ|A, ψ|A P IApA,Z{3Zq
and φ|B, ψ|B P IApB,Z{3Zq, by Lemma 3.1, we have Φ|A � Ψ|A and Φ|B � Ψ|B. Thus,
we have φ � ψ.
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Suppose now that F � trAsu and let g P FN be such that FN � A � xgy. For every
θ P KpSq, let Θ be the unique representative of θ such that ΘpAq � A and Θpgq � ggθ
with gθ P A. By [Lev, Proposition 4.2], the map θ ÞÑ pgθ,Θ|Aq gives an isomorphism
between KpSq and A�AutpAq. As in the first case, by Lemma 3.1, we have Φ|A � Ψ|A.

It now suffices to prove that gφ � gψ. But gφk � gψk . Thus, we have

gφk �
k�1¹
i�0

Φipgφq � gψk �
k�1¹
i�0

Ψipgψq �
k�1¹
i�0

Φipgψq,

where the last equality follows from the fact that Φ|A � Ψ|A and from the fact that
gψ P A. By Lemma 3.2, we have gφ � gψ. This concludes the proof.

4 Proof of Theorem 1.1

In this section, we prove Theorem 1.1 in the general case. First, we need a proposition
regarding stabilizers of pFN ,Fq-arational trees which is of independant interest.

Proposition 4.1. Let H be a subgroup of IAN pZ{3Zq and let F be a nonsporadic free factor
system fixed by H. Suppose that H fixes the homothety class of an pFN ,Fq-arational
tree T and, for every rAs P F , that the image of the homomorphism H Ñ OutpAq is
abelian. Then H is abelian.

Proof. By Lemma 2.9, it suffices to show that H does not contain a nonabelian free
group.

Note that the stretching factor homomorphism SF associated with StabprT sq has
abelian image. Thus, the group H contains a nonabelian free group if and only if so
does K � StabisompT q XH.

Let ST,K be the canonical pFN ,Fq-splitting associated with T and K given by Propo-
sition 2.14. Let V � V0 >V1 be the associated partition of the vertices, let v P V0 and let
v1, . . . , vk be representatives of the FN -orbits in V1. Note that, by Proposition 2.14 p2qpbq
the set V0 consists in a unique FN -orbit. Up to taking a finite index subgroup of K, we
have a homomorphism

Λ: K Ñ OutpGvq �
k¹
i�1

OutpGviq.

By Proposition 2.14 p2qpaq, for every i P t1, . . . , ku, there exists rAs P F such that
rGvis � rAs. Thus, by assumption, for every i P t1, . . . , ku, the image of K in OutpGviq
is abelian. Moreover, by Proposition 2.14 p2qpbq, the image of K in OutpGvq is trivial.
Hence the image of Λ is abelian.

Thus H contains a nonabelian free subgroup if and only if so does kerpΛq. But kerpΛq
is contained in the group of twists of ST . Recall that, by Proposition 2.14 p1q, every
edge stabilizer of ST is nontrivial. Hence, by Lemma 2.3, the group of twists of ST is
central in KpSq. Thus, the group kerpΛq is abelian. This concludes the proof.
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Proof of Theorem 1.1. Let φ, ψ P IAN pZ{3Zq and suppose that there exists k P N� such
that φk � ψk. We prove that φ � ψ by induction on the rank N of FN . When N � 1,
we have IAN pZ{3Zq � tidu and there is nothing to prove.

Suppose that N ¥ 2 and let H � xφ, ψy. Let F � trA1s, . . . , rA`su be a maximal
proper H-invariant free factor system. Since φ, ψ P IAN pZ{3Zq, by Theorem 2.5, every
element of F is fixed by H. Therefore, for every i P t1, . . . , `u, we have a natural
homomorphism H Ñ OutpAiq whose image is contained in IAN pAi,Z{3Zq. By induction,
for every i P t1, . . . , `u, we have φ|Ai � ψ|Ai . Hence the image of the homomorphism

Λ: H Ñ
¹̀
i�1

OutpAiq

is cyclic. Thus, if F is sporadic, by Lemma 3.3, we see that φ � ψ.
Therefore, we may suppose that F is a nonsporadic free factor system. We prove

that the group H is abelian. Since IAN pZ{3Zq is torsion free by Proposition 2.4 and
since φk � ψk, this will conclude the proof. By Lemma 2.9, it suffices to prove that H
does not contain a nonabelian free group.

We claim that φ and ψ are fully irreducible relative to F . Indeed, otherwise, we may
suppose that some power of φ fixes a free factor system F 1 with F   F 1   trFN su. By
Theorem 2.5, the element φ fixes F 1. Thus, φk � ψk fixes F 1. By Theorem 2.5, we see
that ψ and H fix F 1. This contradicts the maximality of F .

Hence φ and ψ are fully irreducible relative to F . Thus, by Theorem 2.10, they
act loxodromically on the Gromov hyperbolic free factor graph FFpFN ,Fq relative to
F . Note that both φ and ψ fix exactly two points in B8FFpFN ,Fq by hyperbolicity
of FFpFN ,Fq. Since φk � ψk, it follows that φ and ψ fix the same two points in the
Gromov boundary B8FFpFN ,Fq. Thus, the group H has a finite orbit in B8FFpFN ,Fq.

By Proposition 2.12, H has a finite index subgroup H 1 which fixes the homothety
class of an arational pFN ,Fq-tree. Note that H contains a nonabelian free group if and
only if so does H 1.

But the group

ΛpH 1q �
k¹
i�1

OutpAiq

is cyclic by hypothesis. Thus, we can apply Proposition 4.1 to show that H 1 is abelian.
Hence H does not contain a nonabelian free group. This concludes the proof.

Following Kontorovič [Kon] (see also [Bau]), Theorem 1.1 implies that the group
IAN pZ{3Zq is an R-group. The following properties then follow for instance from [FW,
Proposition 2.2].

Corollary 4.2. The group IAN pZ{3Zq satisfies the following properties.

p1q For every φ P IAN pZ{3Zq, the normalizer of xφy in IAN pZ{3Zq coincides with its
centralizer.

p2q For every φ, ψ P IAN pZ{3Zq, if there exist m,n P Z� such that φm and ψn commute,
then φ and ψ commute.

12



5 Abelian subgroups of IANpZ{3Zq

In this section, we study some properties of abelian subgroups of IAN pZ{3Zq. These
properties are mainly consequences of Proposition 4.1 and Corollary 4.2.

Theorem 5.1. Let N ¥ 2 and let H be an abelian subgroup of IAN pZ{3Zq. The normalizer
of H in IAN pZ{3Zq is equal to its centralizer.

Proof. Let φ P NIAN pZ{3ZqpHq. In order to prove Theorem 5.1, it suffices to prove that
the group H 1 � xφ,Hy is abelian.

We prove the result by induction on N , the case N � 1 being immediate. Suppose
that N ¥ 2 and let F be a maximal proper H 1-invariant free factor system of FN . We
distinguish between two cases, according to the nature of F .

Case A. Suppose that F is nonsporadic.

Since F is maximal, by Theorem 2.11, the group H 1 contains a fully irreducible outer
automorphism relative to F . By Theorem 2.10, the group H 1 contains a loxodromic
element of the relative free factor graph FFpFN ,Fq, hence has unbounded orbits in
FFpFN ,Fq.

Suppose first that H contains a loxodromic element ψ of FFpFN ,Fq. Then ψ has
exactly two periodic points in B8FFpFN ,Fq, which are its attracting and repelling
fixed points. Since H is abelian, the group H has also at most two finite orbits in
B8FFpFN ,Fq, and such an H-finite orbit exists. This implies that H 1 has a finite orbit
in B8FFpFN ,Fq. By Proposition 2.12, the group H 1 has a finite index normal subgroup
H 1

0 which fixes the homothety class of an pFN ,Fq-arational tree T .
Let H0 be a characteristic subgroup of H of finite index and contained in H 1

0 (it
exists since H is finitely generated by Theorem 2.7). Let k P N� be such that φk P H 1

0.
Then the element φk normalizes H0.

Note that, since xH0, φ
ky � IAN pZ{3Zq, by Theorem 2.5, for every rAs P F , we have

a homomorphism xH0, φ
ky Ñ OutpAq whose image is abelian by induction hypothesis.

Hence, by Proposition 4.1, the group xH0, φ
ky is abelian. By Corollary 4.2 p2q, we see

that φ is in the centralizer of H.
Suppose now that H does not contain any loxodromic element of FFpFN ,Fq. Since

H is a normal subgroup of H 1 and since H 1 has unbounded orbits, by for instance [HW,
Proposition 4.2], the group H has a (not necessarily unique) finite orbit in B8FFpFN ,Fq.

By Proposition 2.12, the group H contains a finite index subgroup H0 which fixes the
homothety class of an pFN ,Fq-arational tree T . Since H is abelian, it is finitely generated
by Theorem 2.7. Hence we may suppose that H0 is also a characteristic subgroup of H,
so that H 1 � NpH0q.

By Lemma 2.13, since H0 does not contain any fully irreducible element of FN relative
to F , we have in fact H0 � StabisompT q. Let ST,H0 be the pFN ,Fq-splitting of FN given
by Proposition 2.14. The splitting ST,H0 is fixed by the normalizer of H0 in OutpFN ,Fq.
In particular, it is fixed by H 1. Let V � V0>V1 be the associated partition of the vertices,
let v P V0 and let v1, . . . , vk be representatives of the FN -orbits in V1. Note that, by
Proposition 2.14 p2qpbq the set V0 consists in a unique FN -orbit.
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Recall that, by Proposition 2.14 p2qpaq, for every i P t1, . . . , ku, we have rGvis P F .
Since H 1 � IAN pZ{3Zq, Theorem 2.5 imples that, for every i P t1, . . . , ku, the group
H 1 fixes the conjugacy class of Gvi . Since V0 consists in a unique FN -orbit, we see that
H 1 � KpST,H0q. Therefore, we have a homomorphism

Λ0 : H 1 Ñ OutpGvq �
k¹
i�1

OutpGviq.

By induction and Proposition 2.14 p2qpaq, for every i P t1, . . . , ku, the homomorphism
H 1 Ñ OutpGviq has abelian image.

By Proposition 2.14 p2qpbq, the image of the homomorphism H0 Ñ OutpGvq is trivial.
By [HW, Lemma 5.5], this implies that the image of the homomorphism H Ñ OutpGvq
is also trivial. Since H 1 � xH,φy, the homomorphism H 1 Ñ OutpGvq has cyclic image.
Thus H 1 contains a nonabelian free group if and only if kerpΛ0q contains a nonabelian
free group.

By Proposition 2.14 p1q, every edge stabilizer of ST,H0 is nontrivial. By Lemma 2.3,
the kernel kerpΛ0q is abelian. This shows that H 1 does not contain a nonabelian free
group and, by Lemma 2.9, that H 1 is abelian. This proves Theorem 5.1 when F is
nonsporadic.

Case B. Suppose that F is sporadic.

The group H 1 then fixes the splitting S associated with the Bass-Serre tree of FN
relative to F . Let V be a set of representatives of the orbits of vertices of S P S.

Since H 1 � IAN pZ{3Zq, by Lemma 2.8, we have H 1 � KpSq. Thus, we have a
homomorphism

Λ: H 1 Ñ
¹
vPV

OutpGvq

whose kernel is T pSq XH 1. Since S is the Bass-Serre tree of FN associated with F , for
every v P V , we have rGvs P F . By induction hypothesis, the image of Λ is abelian.

Recall that, by Lemma 2.9, in order to prove that H 1 is abelian, it suffices to prove
that H 1 does not contain a nonabelian free group. Note that, since the image of Λ is
abelian, the group H 1 contains a nonabelian free group if and only if T pSqXH 1 contains
a nonabelian free group. Note also that, since H is normal in H 1 � xφ,Hy, for every
ψ P H 1, there exist kψ P Z and hψ P H such that ψ � φkψhψ. We distinguish between
several cases, according to the intersection H 1 X T pSq.

Subcase 1. Suppose that, for every ψ P T pSq XH 1, we have kψ � 0.

In that case, we see that T pSq X H 1 � H. Since H is abelian, this implies that
T pSq XH 1 is abelian. Thus, H 1 is abelian.

Subcase 2. Suppose that there exists ψ P T pSq XH 1 with kψ � 0 and that H X T pSq �
t1u.

In that case, H and H 1 X T pSq are normal subgroups of H 1 with trivial intersection.
Thus, the groups H and H 1XT pSq commute. Therefore, ψ commutes with every element
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of H. Since H is abelian and since hψ P H, this implies that φkψ commutes with every
element of H. By Corollary 4.2 p2q, we see that ψ commutes with every element of H.

Subcase 3. Suppose that there exists ψ P T pSq XH 1 with kψ � 0 and that H X T pSq �
t1u.

Recall that T pSq is isomorphic to A�B, where A and B are free (maybe cylic) groups.
Since H is abelian, there exist TA P A and TB P B such that H X T pSq � xTA, TBy.

Note that ψ normalizes the groups H X T pSq, A and B. Since A and B are free
groups and since ψ P T pSq, the element ψ centralizes TA and TB. Since ψ P T pSq and
since A and B are free groups, one of the following holds:
piq we have ψ P xTA, TBy;
piiq the element TA is trivial and ψ P xA, TBy;
piiiq the element TB is trivial and ψ P xB, TAy.

Suppose that TA and TB are not trivial. In that case, Assertion piq holds for every
ψ P H 1 X T pSq. Thus, the group H 1 X T pSq is contained in the abelian group xTA, TBy.
Hence the group H 1 X T pSq does not contain a nonabelian free group. By Lemma 2.9,
the group H 1 is abelian.

Up to exchanging the roles of A and B, suppose that Assertion piiq holds. Then
every element ψ P H 1 X T pSq with kψ � 0 is contained in xA, TBy. Since Assertion piiq
holds, we have H X T pSq � xTBy � B. Since the centralizer of TB in A�B is xA, TBy,
the group H 1 X T pSq contains a nonabelian free group if and only if H 1 X A contains a
nonabelian free group.

Since H X T pSq � B, the groups H 1 X A and H are normal subgroups of H 1 with
trivial intersection. Thus, they commute with each other. The conclusion is now similar
to the one in Case 2.

As we have ruled out every case, this concludes the proof of Theorem 5.1.

From Theorem 5.1, we immediately deduce the following corollary, which gives ob-
structions to the existence of subgroups of IAN pZ{3Zq isomorphic to some semidirect
products of groups.

Corollary 5.2. Let H be a subgroup of IAN pZ{3Zq isomorphic to a semidirect product
A�B, where A is abelian. Then H is isomorphic to the direct product A�B.

In particular, if H is a subgroup of IAN pZ{3Zq which fits in a short exact sequence

1 Ñ AÑ H Ñ B Ñ 1

where A is abelian and B is a free group, then H is isomorphic to A�B.

Given an element φ P IAN pZ{3Zq, we denote by Fixpφq the set of conjugacy classes of
maximal cyclic subgroups of FN fixed by φ. The following result follows from the work of
Feighn and Handel [FH1] (see also the work of Mutanguha [Mut] regarding centralizers
of atoroidal elements of OutpFnq). Corollary 4.2 p1q allows us to extend this result to
normalizers.
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Theorem 5.3. [FH1] Let φ P IAN pZ{3Zq be such that Fixpφq is finite. The normalizer of
xφy in IAN pZ{3Zq is abelian.

Proof. Let H be the centralizer of φ in IAN pZ{3Zq. By Corollary 4.2 p1q, it suffices to
prove that H is abelian. The proof is by induction on N , the result for N � 1 being
immediate. Let F be a maximal proper H-invariant free factor system of FN . As in the
proof of Theorem 5.1, we distinguish between two cases, according to the nature of F .

Suppose that F is sporadic and let S be the splitting of FN associated with the Bass-
Serre tree of FN relative to F . Let V be a set of representatives of orbits of vertices in
S P S. As in the proof of Theorem 5.1, we have a homomorphism Λ: H Ñ

±
vPV OutpGvq

whose image is abelian by induction hypothesis.
We claim that the kernel of Λ is abelian. Indeed, by Lemma 2.9, it suffices to prove

that the kernel of Λ does not contain a nonabelian free group. Recall that the kernel of
Λ is H X T pSq and that the group T pSq is isomorphic to a direct product G1 � G2 of
two free (maybe cyclic) groups. Recall also that both G1 and G2 are normal subgroups
of KpSq. In particular, let a P G1 and b P G2 be such that ab P H X T pSq. Then both
a and b centralizes φ. Thus, H X T pSq contains a nonabelian free group if and only if
H XG1 or H XG2 contains a nonabelian free group.

For every i P t1, 2u, the map H X Gi Ñ FN which sends ψ P H X Gi to its twistor
is injective (see for instance [Lev, Proposition 3.1]). By for instance [HW, Lemma 2.9],
for every i P t1, 2u and every ψ P H XGi, the element φ fixes the conjugacy class of the
twistor associated with ψ. Thus, if there exists i P t1, 2u such that H X Gi contains a
nonabelian free group, then Fixpφq is infinite. Therefore, since Fixpφq is finite, for every
i P t1, 2u, the group H X Gi does not contain a nonabelian free group. Therefore, the
kernel of Λ does not contain a nonabelian free group. By Lemma 2.9, this shows that H
is abelian. This concludes the proof when F is sporadic.

Suppose now that F is nonsporadic. We claim that φ is fully irreducible relative
to F . Indeed, by maximality of F and Theorem 2.11, the group H contains a fully
irreducible outer automorphism ψ relative to F . If φ � ψ, we are done.

Otherwise, by Theorem 2.10, the element ψ is a loxodromic element of the relative free
factor graph FFpFN ,Fq. Thus ψ has exactly two fixed points in the Gromov boundary
B8FFpFN ,Fq.

Since φ commutes with ψ, the group xφ, ψy has a finite orbit in B8FFpFN ,Fq. By
Proposition 2.12, the group xφ, ψy has a finite index subgroup K which fixes the homo-
thety class of an pFN ,Fq-arational tree T . Let k P N� be such that φk P K.

We claim that the element φk is not contained in the kernel of the stretching fac-
tor homomorphism SF: K Ñ R�

�. Indeed, since Fixpφq is finite, by Theorem 2.6, so is
Fixpφkq. Therefore, there do not exist a nonabelian free group F of FN and a represen-
tative Φk of φk such that ΦkpF q � F and Φk|F � idF . Thus, by Corollary 2.15, we see
that φk R StabisompT q. This proves the claim.

Thus, we have SFpφkq � 1. By Lemma 2.13, the element φk is fully irreducible
relative to F . Thus, φ is fully irreducible relative to F . This proves the claim.

By Theorem 2.10, the element φ fixes exactly two points in B8FFpFN ,Fq. Hence H
has a finite orbit in B8FFpFN ,Fq. By Proposition 2.12, the group H virtually fixes the
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homothety class of an pFN ,Fq-arational tree. As in the proof of Theorem 5.1, we can
apply Proposition 4.1 to show that H is virtually abelian. By Theorem 2.7, the group
H is abelian. This concludes the proof.
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