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Abstract
A path is isometric if it is a shortest path between its endpoints. In this article, we consider the
graph covering problem Isometric Path Cover, where we want to cover all the vertices of the
graph using a minimum-size set of isometric paths. Although this problem has been considered from
a structural point of view (in particular, regarding applications to pursuit-evasion games), it is little
studied from the algorithmic perspective. We consider Isometric Path Cover on chordal graphs,
and show that the problem is NP-hard for this class. On the positive side, for chordal graphs, we
design a 4-approximation algorithm and an FPT algorithm for the parameter solution size. The
approximation algorithm is based on a reduction to the classic path covering problem on a suitable
directed acyclic graph obtained from a breadth first search traversal of the graph. The approximation
ratio of our algorithm is 3 for interval graphs and 2 for proper interval graphs. Moreover, we extend
the analysis of our approximation algorithm to k-chordal graphs (graphs whose induced cycles have
length at most k) by showing that it has an approximation ratio of k + 7 for such graphs, and to
graphs of treelength at most ℓ, where the approximation ratio is at most 6ℓ + 2.
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46:2 ISOMETRIC PATH COVER

1 Introduction

Problems involving paths in graphs are fundamental in theoretical computer science. A
prominent example is Path Cover, which asks whether the vertex set of an input graph
can be covered by at most k paths. This problem is NP-hard even for k = 1 as, in this
case, it is Hamilton Path. Path Cover is extensively studied and has many applcations,
see [3, 5, 26]. A packing counterpart of Path Cover is the well-known problem Disjoint
Paths which asks, given pairs of terminal vertices of a graph G, for disjoint paths joining
the terminal pairs. Disjoint Paths has found many applications, due to its connections to
the Graph Minor project [29].

Certain types of paths are of special interest, in particular, shortest paths between vertex
pairs are important in many applications. A path is called isometric if it is a shortest
path between two vertices. The corresponding variant of Disjoint Paths, called Disjoint
Shortest Paths, has recently gained some attention [22]. The goal of this paper is to study
the “shortest path” variant of Path Cover, which was introduced in [13] with inspiration
from earlier work on pursuit-evasion games [2].

An isometric path cover of a graph G is a set of isometric paths such that each vertex
of G belongs to at least one of the paths. The isometric path number of G is the smallest size
of an isometric path cover of G. The algorithmic problem studied in this paper is as follows.

Isometric Path Cover
Input: A graph G, and a positive integer k.
Question: Does G have an isometric path cover of size at most k?

Isometric Path Cover was introduced in the context of the well-known Cops and
Robber game (where multiple cops try to catch a robber, each protagonist being able to
move to an adjacent vertex in each round of the game). Indeed, given an isometric path
cover, one can assign a cop to “guard” each isometric path: each cop patrols along its path,
always staying as close as possible to the robber. This strategy shows that the isometric path
number of the graph is an upper bound to the cop number of the graph (the smallest number
of cops needed to catch one robber) [2, 13]. More sophisticated techniques, still based on
isometric paths, have been developed in this context, for example cop-decompositions, which
are tree decomposition where the subgraph induced by the vertices of each bag that are not
present in the parent’s bag has a small isometric path cover [1]. Isometric Path Cover
plays a crucial role in the proof of the Product Structure Theorem [11] of planar graphs.
Isometric Path Cover is also studied in the context of machine learning [30].

Surprisingly, the algorithmic complexity of Isometric Path Cover has not garnered
much attention. Its NP-hardness was recently posed as an open problem in both [23, 24].
The problem is easy to solve on trees [3]. More generally, Isometric Path Cover is known
to be polynomial-time solvable on block graphs [27]. It can be approximated in polynomial
time within a factor of log(d) for graphs of diameter d by a greedy algorithm [30] and solved
in polynomial time for every fixed value of k by an XP algorithm [12]. Isometric Path
Cover has also been studied from a structural point of view: the optimal solution sizes have
been determined for square grids [13], hypercubes [14], complete r-partite graphs [28] and
Cartesian products of complete graphs [28], and it was recently proved that the pathwidth
of a graph is always upper-bounded by the size of its smallest isometric path cover [12]. The
version where the cover is actually a partition was also studied [23]. The variants where the
set of endpoints of the paths is prescribed in the input is studied in [8, 12, 21], and when the
set of allowed paths is prescribed it is studied on trees in [18].
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Figure 1 Inclusion diagram for graph classes discussed here (and related ones). If a class A has
an upward path to class B, then A is included in B. For graphs in the green classes, Isometric
Path Cover is polynomial-time solvable; for graphs in the red classes, it is NP-complete. For all
shown graph classes, Isometric Path Cover is constant-factor approximable in polynomial time.

Graph classes studied in this paper. Let us introduce the various graph classes
studied in this paper. See Figure 1 for a visualization of the inclusion diagram of the graph
classes discussed in this paper (and related ones). A chordal graph is a graph without
any induced cycle of order at least 4. An interval representation of a graph G is a set
I = {[x−

u , x+
u ] : u ∈ V (G)} of intervals where each interval in I corresponds to a vertex, and

two intervals intersect if and only if the corresponding vertices share an edge. A graph is an
interval graph if it has an interval representation. A graph is a proper interval graph if it has
an interval representation where no interval contains another interval as a subset. Interval
graphs are also chordal graphs. In fact, Fulkerson & Gross [15] proved that interval graphs
are exactly the chordal graphs without an asteroidal triple (three vertices a, b, c of a graph G

form an asteroidal triple if for any {w1, w2, w3} = {a, b, c}, there is a path between w1, w2
that does not contain any vertex from the neighbourhood of w3.)

Even though the classes of AT -free graphs (i.e., graphs without an asteroidal triple) and
chordal graphs are incomparable, both of them have bounded chordality. A graph is k-chordal
if it does not contain an induced cycle of order greater than k. Chordal graphs are exactly the
class of 3-chordal graphs, and all AT-free graphs are 5-chordal. A superclass of AT -graphs
are graphs that contain a dominating shortest path [7]. A graph G has a dominating shortest
path if there exists a shortest path P in G such that the closed neighbourhood of any vertex
of the graph intersects with the vertex set of P . Even though graph classes with bounded
chordality are incomparable with the class of graphs having a dominating shortest path,
both of these classes have bounded treelength, a parameter introduced by Dourisboure &
Gavoille [10]. A tree-decomposition of a graph G is a tree T where each vertex v of T is
associated to a subset Xv of V (G) called bag, such that: (i)

⋃
v∈V (T )

Xv = V (G), (ii) for each

edge xy ∈ E(G), there exists a bag Xv such that {x, y} ⊆ Xv, and (iii) for every vertex
x ∈ V (G), the vertices of T associated to the bags containing x induce a connected subtree
of T . Define length(T ) = max

v∈V (T )
u,v∈Xv

d (u, v), where the distance d (u, v) denotes the number of

edges in a shortest path between u and v in G. The treelength of G, denoted as tl (G), is
defined as minT length(T ), where the minimum is taken over all tree-decompositions of G.

ISAAC 2022
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Our results. We first settle the question of the complexity of Isometric Path Cover,
showing it is NP-hard even for chordal graphs.

▶ Theorem 1. Isometric Path Cover is NP-hard, even for chordal graphs with a domin-
ating vertex.

To complement the above result, we design a constant-factor approximation algorithm for
Isometric Path Cover for graph classes that strictly contain chordal graphs, and other
related ones. We summarize these results in Theorem 2.

▶ Theorem 2. There is a polynomial-time approximation algorithm that computes a valid
solution for Isometric Path Cover for every input graph, and has performance ratio of:

(a) 2 on proper interval graphs,
(b) 3 on interval graphs,
(c) 4 on chordal graphs,
(d) 5 on graphs with a dominating shortest path,
(e) (k + 7) on k-chordal graphs, for k ≥ 4, and
(f) (6ℓ + 2) on graphs with treelength at most ℓ.

Theorem 2 is proved by analyzing one algorithm, which is based on constructing a suitable
directed acyclic graph by breadth-first-search, and a reduction to the directed path covering
problem for this digraph. We also prove that our analysis is tight for items (a), (b) and (c).

We then show that, on chordal graphs, one can solve Isometric Path Cover in linear
time when the treewidth (i.e., the clique number) is bounded, which implies that Isometric
Path Cover is fixed-parameter-tractable (FPT) on this class for parameter solution size.

▶ Theorem 3. On chordal graphs of order n and treewidth w, Isometric Path Cover can
be solved in time 2k2O(w)

n and in time 22O(k)
n, where k is the solution size.

Organisation of the paper. We first prove our hardness result in Section 2. We then
describe and analyze our approximation algorithm for Isometric Path Cover in Section 3.
The FPT algorithm for Isometric Path Cover on chordal graphs is described in Section 4.
We conclude in Section 5.

General notations. A sequence of vertices forms a path P if any two consecutive vertices
are adjacent. Whenever we fix a path P of G, we shall refer to the subgraph formed by the
edges between the consecutive vertices of P . For a path P of a graph G between two vertices
u and v, the vertices V (P ) \ {u, v} are internal vertices of P . A path between two vertices
u and v is called a (u, v)-path. Similarly, we have the notions of isometric (u, v)-path and
induced (u, v)-path.

2 NP-hardness of Isometric Path Cover on chordal graphs

In this section, we prove that Isometric Path Cover is NP-hard, answering a question
raised in both [24, 23]. In fact, we prove that Isometric Path Cover is NP-hard for
chordal graphs. To prove this, we reduce Induced P3-Partition on chordal graphs to
Isometric Path Cover on chordal graphs (in fact the reduction is the same as the one
in [23]). Given a graph G, the objective of Induced P3-Partition is to decide if there
exists a partition P of V (G) such that each set in P induces a path on three vertices in G.
We use the following result, which is implied from a result of van Bevern et al. [31, Theorem
9] (their result does not concern induced paths, but one can easily check that their reduction
holds with this restriction too).
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▶ Proposition 4 ([31]). Induced P3-Partition is NP-hard even if the input is a chordal
graph with 3k vertices for some integer k.

Proof of Theorem 1: To prove this, we give a reduction from Induced P3-Partition
on chordal graphs to Isometric Path Cover on chordal graphs. Let G be a chordal
graph such that |V (G)| = 3k for some integer k ≥ 1. Let G′ be the graph whose vertex
set is V (G′) = V (G) ∪ {u, v, w}, where u, v, w are three new vertices. The edge set of G′ is
E(G′) = E(G) ∪ {(u, v), (v, w)} ∪ {(v, x) | x ∈ V (G)}. It is easy to see that G′ is a chordal
graph, and that v is a dominating vertex.

We shall show that G is a yes-instance of Induced P3-Partition if and only if G′ has
an isometric path cover of cardinality k + 1. We have the following observation, due to the
fact that G′ has diameter 2.

▶ Observation 5. Any isometric path of G′ contains at most three vertices.

First, let P be a partition of V (G) such that each set P ∈ P induces a path on three
vertices. Observe that for any two vertices u, v ∈ V (G′), the isometric (u, v)-path in G′

contains at most three vertices. Therefore, each path P ∈ P is in fact an isometric path in
G′. Hence, P ∪ {(u, v, w)} is a set of isometric paths with cardinality k + 1 that covers all
vertices of G′.

To prove the reverse direction, assume that G′ has an isometric path cover C of size at
most k + 1. We now have the following observation.

▶ Observation 6. There is an isometric path in C that covers both u and w in G′.

Proof. Otherwise, let P, Q ∈ C be two distinct isometric paths that cover u and v, respectively
and S = V (G′)\(P ∪Q). Observe that |S| ≥ 3k−2 and C contains a subset with C′ containing
k − 1 isometric paths and covering all vertices of S. Therefore, C′ contains an isometric path
that covers at least four vertices of S. But this contradicts Observation 5. ◀

Now consider the set C′ = C \ {P} where P ∈ C that covers both u and w. Observe that
C′ contains k paths that must cover all vertices of V (G′) \ {u, v, w}, i.e., of V (G). Due to
the facts that |V (G)| = 3k and any isometric path in G′ contains at most three vertices of
G′ (Observation 5), we have that C′ is a partition of V (G), and therefore G is a yes-instance
of Induced P3-Partition. ◀

3 An approximation algorithm for Isometric Path Cover

In this section, we will describe our approximation algorithm and prove Theorem 2. We will
need the following definitions. For a vertex r of G and a set S of vertices of G, the distance
of S from r, denoted as d (r, S), is the minimum of the distance between any vertex of S

and r. For a subgraph H of G, the distance of H w.r.t. r is d (r, V (H)). Formally, we have
d (r, S) = min{d (r, v) : v ∈ S} and d (r, H) = d (r, V (H)).

For a graph G and a vertex r ∈ V (G), consider the following operations on G. First,
remove all edges xy from G such that d (r, x) = d (r, y). Let G′

r be the resulting graph. Then,
for each edge e = xy ∈ E(G′

r) with d (r, x) = d (r, y) − 1, orient e from y to x. Let −→Gr be
the directed acyclic graph formed after applying the above operation on G′. Note that this
digraph can easily be computed in linear time using a Breadth-First Search (BFS) traversal
with starting vertex r.

In a digraph, a directed path is a path in the underlying undirected graph, such that all
arcs are oriented in the same direction. A directed path cover of −→Gr is a set of directed paths

ISAAC 2022
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Algorithm 1 An algorithm for Isometric Path Cover

Input : A graph G and a vertex v ∈ V (G).
Output : An isometric path cover of G.

1 Construct the graph −→Gv using a BFS starting at v;
2 Pv ← directed path cover of −→Gv with minimum cardinality, computed using the

reduction to bipartite matching;
3 return the set of paths obtained from Pv by removing all orientations.

such that each vertex of −→Gr belongs to at least one of the paths. We have the following
observation, which holds because any directed path of −→Gr is an isometric path in G.

▶ Observation 7. For any vertex r of a graph G, a directed path cover of −→Gr is an isometric
path cover of G.

The directed path cover problem in directed acyclic digraphs is the subject of Dilworth’s
theorem [9] (phrased in the equivalent language of partially ordered sets), which states
that the size of an optimal solution is equal to the maximum size of an antichain, that
is, a set of vertices in which no two vertices have a directed path connecting them. In a
constructive proof of this theorem, Fulkerson [16] showed that the problem can be reduced
to the maximum matching problem in a suitable bipartite graph, and thus, can be solved
optimally in polynomial time.

The pseudocode of our algorithm for Isometric Path Cover is given in Algorithm 1.
Even though our algorithm will remain the same for all the considered graph classes, the
analysis will differ. We will show that, depending on the graph class of the input graph G,
there exists a “favourable choice” of a vertex v such that a directed path cover of −→Gv is an
isometric path cover of G, whose cardinality is not too far away from the isometric path
number of G. To analyse the performance of our algorithm, we need the following definitions.

▶ Definition 8. For a graph G and a vertex r ∈ V (G), two vertices x, y ∈ V (G) are antichain
vertices if there are no directed paths from x to y or from y to x in −→Gr. A set X of vertices
of G is an antichain set if any two vertices in X are antichain vertices. The cardinality
of the largest antichain set in −→Gr will be denoted by β

(−→
Gr

)
. The cardinality of the largest

antichain set of G, is defined as

β (G) = min
{

β
(−→

Gr

)
: r ∈ V (G)

}
▶ Definition 9. Let r be a vertex of a graph G. For a path P , Ar (P ) shall denote the
maximum antichain set of P in −→Gr. The isometric path antichain cover number of −→Gr,
denoted by ipacc

(−→
Gr

)
, is defined as follows:

ipacc
(−→

Gr

)
= max {|Ar (P ) | : P is an isometric path}

The isometric path antichain cover number of graph G, denoted as ipacc (G), is defined as
the minimum over all possible antichain covers of its associated directed acyclic graphs:

ipacc (G) = min
{

ipacc
(−→

Gr

)
: r ∈ V (G)

}
We will use the next lemma that follows directly from Dilworth’s Theorem [9], Observa-

tion 7, and Definitions 8 and 9.
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▶ Lemma 10. Let G be a graph and P be any isometric path cover of G with minimum
cardinality. We have:

β (G)
ipacc (G) ≤ |P| ≤ β (G) .

Proof. Let r be a vertex of G such that β (G) = β
(−→

Gr

)
. Then, by Observation 7, we have

that |P| ≤ β
(−→

Gr

)
= β (G). Now, let r′ be a vertex of G such that ipacc (G) = ipacc

(−→
Gr′

)
.

Since any isometric path in P contains at most ipacc
(−→

Gr′

)
many elements of β

(−→
Gr′

)
, we

have
β
(−−→

Gr′
)

ipacc
(−−→

Gr′
) ≤ |P|. Finally, since β (G) ≤ β

(−→
Gr′

)
, we have β(G)

ipacc(G) ≤ |P|. ◀

In the next section, we will prove upper bounds on the isometric path antichain cover
number of various graph classes, implying the approximation ratios fulfilled by Algorithm 1.

3.1 Lemmas on the isometric path antichain cover number
We now prove some lemmas relating the isometric path antichain cover number with other
parameters. We begin by establishing a relationship between the length of an isometric path
P and the size of Ar (P ), which will be crucial for our analysis of Algorithm 1.

▶ Lemma 11. Let G be a graph and r, an arbitrary vertex of G. Consider the directed
acyclic graph −→Gr, and let P be an isometric path between two vertices x and y in G with
d (r, x) ≤ d (r, y). Then |P | ≥ d (r, y)− d (r, x) + |Ar (P ) | − 1.

Proof. Orient the edges of P from y to x in G. First, observe that P must contain a set E1 of
oriented edges such that |E1| = d (r, y)−d (r, x) and for any

−→
ab ∈ E1, d (r, a) = d (r, b)+1. Let

the vertices of the largest antichain set of P in −→Gr, i.e., Ar (P ), be ordered as a1, a2, . . . , at

according to their occurrence while traversing P from y to x. For i ∈ [2, t], let Pi be
the subpath of P between ai−1 and ai. Observe that for any i ∈ [2, t], since ai and ai−1

are antichain vertices, there must exist an oriented edge
−→
bici ∈ E(Pi) such that either

d (r, bi) = d (r, ci) or d (r, bi) = d (r, ci)− 1. Let E2 = {bici}i∈[2,t]. Observe that E1 ∩E2 = ∅
and therefore |P | ≥ |E1|+ |E2| = d (r, y)− d (r, x) + |Ar (P ) | − 1. ◀

Next, we shall relate isometric path antichain cover number with a parameter called
cluster diameter, introduced in [10]. Let G be a graph and r be an arbitrary vertex of G. For
a non-negative integer i, let Gi(r) denote the graph induced by the vertices whose distance
from r is at least i. Formally, Gi(r) = G[{u : d (r, u) ≥ i}]. A cluster is a set S of vertices
such that all vertices of S are at the same distance from r and any two vertices of S lie in
the same connected component of Gi(r), where i = d (r, S). The cluster diameter of G with
respect to r, denoted as ∆r (G), was defined in [10] as follows:

∆r (G) = max{d (u, v) : u, v lie in the same cluster with respect to r}

We shall use the following technical lemma to prove bounds on the isometric path antichain
cover number of graphs with bounded treelength and on graphs with bounded chordality in
Lemma 16 and Lemma 18, respectively.

▶ Lemma 12. Let G be a graph, r be an arbitrary vertex of G, and let P be an isometric
path such that |Ar (P ) | ≥ α in −→Gr. Then ∆r (G) ≥

⌈
α
2

⌉
− 1.

ISAAC 2022
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Proof. Let the two endpoints of P be u and v and, without loss of generality, assume
d (r, u) ≤ d (r, v). Let A = Ar (P ), and let a be a vertex of P such that d (r, a) = d (r, P ). Let
Pu (resp. Pv) denote the subpath of P between u and a (resp. between v and a). Observe
that there exists a path Q ∈ {Pu, Pv} such that Q contains an antichain set of cardinality⌈

α
2

⌉
. Notice that a is one of the endpoints of Q and d (r, Q) = d (r, a). Let c be the other

endpoint of Q. Let a1 be the first vertex of A which is encountered while traversing Q

starting from c and ending at a. If d (r, a1) = d (r, a), then let b = a1. Otherwise, consider
a vertex b such that d (r, b) = d (r, a) and there is an oriented path from a1 to b in −→Gr.
Clearly, a and b lie in the same cluster of G with respect to r. If d (a, b) ≤

(⌈
α
2

⌉
− 2

)
, then

d (a, a1) ≤ d (a, b)+d (b, a1) ≤
(⌈

α
2

⌉
− 2

)
+d (r, a1)−d (r, b) < |Ar (Q) |−1+d (r, a1)−d (r, a).

But this contradicts Lemma 11. Hence, d (a, b) ≥
⌈

α
2

⌉
− 1. ◀

Next, we state the following definition.

▶ Definition 13. For an integer t ≥ 1, a graph G is t-slender if there exists a vertex r ∈ V (G)
such that, for all vertices u, v ∈ V (G) with d (r, u) = d (r, v), we have d (u, v) ≤ t.

Observe that if a graph G is t-slender, then, there exists a vertex r ∈ V (G) such that
∆r (G) ≤ t. Lemma 12 then implies ipacc (G) ≤ 2t + 2. However, the following lemma will
help us prove better upper bounds for graphs that are t-slender.

▶ Lemma 14. Let G be a t-slender graph for some integer t ≥ 1. Then, ipacc (G) ≤ t + 1.

Proof. By definition, there exists a vertex r ∈ V (G) such that for any u, v ∈ V (G) with
d (r, u) = d (r, v), we have d (u, v) ≤ t. Let P be an isometric path between two vertices x and
y with, without loss of generality, d (r, x) ≤ d (r, y). If d (r, x) < d (r, y), then let y′ be a vertex
such that d (r, y′) = d (r, x) and there is a path between y to y′ in −→Gr. Otherwise, let y′ = y.
Since d (x, y′) ≤ t, d (x, y) ≤ t + d (r, y)− d (r, x). On the other hand, due to Lemma 11, we
have |P | = d (x, y) ≥ d (r, y)− d (r, x) + |Ar (P ) | − 1. Hence, |Ar (P ) | ≤ t + 1. ◀

In particular, we shall use the above lemma to prove better upper bounds for the isometric
anti chain path cover number of graphs containing a dominating shortest path, interval
graphs and proper interval graphs in Lemma 20, 21, and 22, respectively.

3.2 Upper bounds on the isometric path antichain cover number
In this section, we will first show that ipacc (G) can be bounded by a linear function of tl (G).
We will use the following result of Dourisboure & Gavoille [10], which was restated in the
following form by Abdulhakeem & Dragan [25].

▶ Proposition 15 ([10, 25]). Let r be an arbitrary vertex of a graph G with treelength at
most ℓ. Then ∆r (G) ≤ 3ℓ.

▶ Lemma 16. If G is a graph with treelength at most ℓ, then ipacc (G) ≤ 6ℓ + 2.

Proof. Assume that there exists a vertex r of G and an isometric path P of G such that
|Ar (P ) | ≥ 6ℓ + 3 in −→Gr. Then, by Lemma 12, there are two vertices a and b such that
d (r, a) = d (r, b), d (a, b) ≥

⌈ 6ℓ+3
2

⌉
− 1 ≥ 3ℓ + 1, and a, b lie in the same cluster with respect

to r. Hence, ∆r(G) ≥ 3ℓ + 1. This contradicts Proposition 15. ◀

Now, we will prove an upper bound for the isometric path antichain cover number of
k-chordal graphs. Note that the treelength of k-chordal graphs is at most k

2 [17]. Therefore,
Lemma 16 implies that the isometric path antichain cover number of a k-chordal graph is
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at most 3k + 1. To prove a better upper bound, we will also use the following result of
Dourisboure & Gavoille [10].

▶ Proposition 17 ([10]). Let r be any vertex of a k-chordal graph G. Then, ∆r (G) ≤ k
2 + 2.

▶ Lemma 18. If G is a k-chordal graph with k ≥ 4, then ipacc (G) ≤ k + 7.

Proof. Assume that there exists a vertex r of G and an isometric path P of G such that
|Ar (P ) | ≥ k + 8 in −→Gr. Then, by Lemma 12, there are two vertices a and b such that
d (r, a) = d (r, b), d (a, b) ≥

⌈
k+8

2
⌉
− 1 ≥ k

2 + 3, and a, b lie in the same cluster with respect
to r. This contradicts Proposition 17. ◀

Now, we will prove upper bounds on the isometric path antichain cover number of graphs
with a dominating shortest path. Recall that a shortest path P of a graph G is dominating
if any vertex of the graph is either in P or adjacent to at least one of the vertices of P . Note
that the class of graphs with a dominating shortest path is incomparable with the class of
k-chordal graphs for any fixed integer k. We can now prove the following lemma.

▶ Lemma 19. If a graph G has a dominating shortest path, then G is 4-slender.

Proof. Let r, s be the endpoints of a dominating shortest path P . Let x0 = r, x1, x2, . . . , xi =
s be the vertices of P ordered as they are encountered while traversing P from r to s. Let
a, b be two vertices of G such that d (r, a) = d (r, b). If d (r, a) = i + 1, then d (a, b) is at
most 2 as both a, b will be adjacent to xi. If d (r, a) = i, then d (a, b) is at most 3 since
{a, b} ⊂ N [xi] ∪N [xi−1]. Otherwise, 0 < d (r, a) ≤ i− 1. In this case, d (a, b) is at most 4
since {a, b} ⊂ N [xi−1] ∪N [xi] ∪N [xi+1]. ◀

Taken together, Lemmas 14 and 19 imply the following lemma which we will use again in
Section 3.3.

▶ Lemma 20. If a graph G has a dominating shortest path, then ipacc (G) ≤ 5.

We will prove an improved version of Lemma 20 for interval graphs.

▶ Lemma 21. For any interval graph G, we have ipacc (G) ≤ 3.

Proof. Due to Lemma 14, we will be done by showing that if G is an interval graph, then,
G is 2-slender. Let I = {[x−

u , x+
u ] : u ∈ V (G)} be an interval representation of G. Let

v be the vertex such that x+
v = min{x+

a : a ∈ V (G)}. In other words, v corresponds to
the interval with the leftmost right endpoint. For a vertex w, define rw = z such that
x+

z = max{x+
z′ : z′ ∈ N [z]}. In other words, z is the neighbour of w that has the rightmost

right endpoint. Observe that G has a dominating shortest path x0 = v, x1, x2, . . . , xi such
that for each 1 ≤ j ≤ i, xi = rxi−1 . Now, consider two vertices a, b with d (v, a) = d (v, b) = j.
Observe that {a, b} ⊂ N [xj−1]. Hence, d (a, b) ≤ 2 and therefore, G is 2-slender. ◀

Any proper interval graph G has a vertex v such that the spanning tree Tv obtained
from a BFS starting at v is 1-slender [19], and thus, G is 1-slender as well. An immediate
consequence of this result, due to Lemma 14, is the following.

▶ Lemma 22. If G is a proper interval graph, then ipacc (G) ≤ 2.

Interval graphs are a subclass of chordal graphs (i.e., graphs with chordality 3). Since
chordal graphs are exactly the graphs with treelength 1, Lemma 16 implies that the isometric
path antichain cover number of chordal graphs is at most 7. Below, we prove a better upper
bound using the two following properties of chordal graphs.
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▶ Observation 23. Let r be an arbitrary vertex of a chordal graph G. Let u, v ∈ V (G)
be two vertices such that d (r, u) = d (r, v) = i and there exists an (u, v)-path P such that
V (P − {u, v}) ⊆ V (Gi+1

r ). Then uv ∈ E(G).

Proof. If P has length one, the result is obvious, thus, we can assume that P has length
at least 2. Assume for contradiction that uv /∈ E(G). Let P1 be an isometric (u, v)-path
in the graph induced by V (G −Gi(r)) ∪ {u, v}. Consider another isometric (u, v)-path Q

such that d (r, Q− {u, v}) = d (r, u) + 1. Note that the existence of P guarantees that there
is at least one such path. For any two nonconsecutive vertices ui, uj ∈ Q, uiuj /∈ E(G).
Since uv /∈ E(G), note that P1 and Q are induced paths. Moreover, since, for any vertex
p ∈ V (P1 − {u, v}) and q ∈ V (Q − {u, v}), d (r, q) − d (r, p) ≥ 2, the paths P1 and Q are
internally disjoint. Therefore, P1 ∪Q induces a cycle of length at least 4, which contradicts
the fact that G is a chordal graph. ◀

▶ Observation 24. Let r be an arbitrary vertex of a chordal graph G, and let P be an
isometric path of G. Let u, v ∈ V (P ) be two distinct vertices of P such that d (r, u) = d (r, v).
Then, there cannot be any vertex w in the (u, v)-subpath of P such that d (r, w) > d (r, v).

Proof. Assume for contradiction that such a path P and vertices u, v, and w exist, and
let d (r, u) = d (r, v) = i. Consider the (u, v)-subpath Q of P , and let u = v1, . . . , vℓ = v

be the ordering of vertices of Q, along the path Q. Moreover, let the alias of the vertex
w in this ordering be vb. Then, observe that there exist two vertices va, vc ∈ V (Q), where
1 ≤ a < b < c ≤ ℓ, such that d (r, va) = d (r, vc) = i, vavc /∈ E(G), and there is a
(va, vc)-subpath Q′ of Q such that V (Q′ − {va, vc}) ⊆ V (Gi+1

r ). However, this contradicts
Observation 23. ◀

▶ Lemma 25. If G is a chordal graph, then, ipacc (G) ≤ 4.

Proof. Let r be an arbitrary vertex of G. Now, assume by contradiction that there is
an isometric path P in G with endpoints u and v, such that |Ar (P ) | ≥ 5 in −→Gr. Let
a1, . . . , a5 ∈ Ar (P ) be five antichain elements, that appear in this order while traversing
P from u to v. We will eventually show that the existence of P implies that ∆r(G) ≥ 4,
contradicting Proposition 17. Let d (r, P ) = i and xu (resp. xv) be a vertex such that
d (r, xu) = i (resp. d (r, xv) = i) and there is an oriented path from u (resp. v) to xu (resp.
xv) in −→Gr (possibly, u = xu or v = xv). Observe that xu and xv lie in the same cluster with
respect to r. First, we prove the following claim.

▷ Claim 26. d (r, P ) = d (r, a3).

Proof. Assume by contradiction that d (r, P ) < d (r, a3). Refer to Figure 2 for an illustration
of the different notations for this proof. Let top ∈ V (P ) be a vertex such that d (r, top) =
d (r, P ). Recall that d (r, top) = i. Now, let Pu be the (u, top)-subpath of P , and let Pv be
the (v, top)-subpath of P . Observe that either a3 ∈ V (Pu) or a3 ∈ V (Pv). Without loss of
generality, assume that a3 ∈ V (Pu).

Let P ′ be the (top, a3)-subpapth of Pu, and let top = u1, . . . , uℓ = a3 be the ordering of
vertices of V (P ′), along the path P ′. Let uj , for j ≥ 1, be the vertex with minimum index j

such that d (r, uj) = i and d (r, uj+1) = i + 1. Note that uj is distinct from a3, and uj can
be the same as top.

(+) The (uj , u)-subpath of Pu, say Pj , satisfies V (Pj − {uj}) ⊆ V (Gi+1
r ).
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Figure 2 Proof of Claim 26. Path P ′ is dotted, and path Pj is red.

To prove (+), assume by contradiction that there is a vertex w ∈ V (Pj−{uj}) with d (r, w) = i.
Then, due to the definition of uj , uj+1 is in the (uj , w)-subpath, with d (r, w) = d (r, uj) = i

and d (r, uj+1) = i + 1. But this contradicts Observation 24 and completes the proof of (+).

Let q be a vertex such that d (r, q) = i and there is an oriented path −→Q in −→Gr from u to q.
Due to (+), q is distinct from u. Let Q be the path obtained after removing the orientation
of −→Q . Note that Q is an isometric (q, u)-path in G. Also, note the following:

(++) V (Q− {q}) ⊆ V (Gi+1
r ).

Now, let us consider the (uj , u)-subpath Pj of Pu defined above. Combining (+) and (++),
we have that V (Q)∪ V (Pj) forms a (uj , q)-path, say T , such that V (T −{uj , q}) ⊆ V (Gi+1

r ).
Due to Observation 23, ujq ∈ E(G). This implies that d (u, uj) ≤ d (r, u)− d (r, q) + 1. But,
since Pj is an isometric (uj , u)-path and |Ar (Pj) | ≥ 3 (indeed a3, a2, a1 lie in Pj), due to
Lemma 11, we have d (u, uj) ≥ d (r, u) − d (r, uj) + 2 = d (r, u) − d (r, q) + 2, which is a
contradiction. ◀

Using Claim 26, we can now prove that d (xu, xv) ≥ 4. Since P is an isometric (u, v)-path
and a3 ∈ V (P ), we have:

d (u, v) = d (u, a3) + d (a3, v) (1)

Observe that the (u, a3)-subpath of P contains at least three antichain elements of −→Gr.
Lemma 11 then implies d (u, a3) ≥ d (r, u)− d (r, a3) + 2 = d (r, u)− d (r, xu) + 2. Since xu

belongs to an isometric (r, u)-path, we have d (xu, u) = d (r, u)− d (r, xu), and therefore:

d (u, a3) ≥ d (xu, u) + 2 (2)

By symmetry, we have:

d (v, a3) ≥ d (xv, v) + 2 (3)

Combining that d (u, v) ≤ d (u, xu) + d (xu, xv) + d (xv, v) with Equations 1-3, we get
d (xu, xv) ≥ 4. Thus, ∆r(G) ≥ 4, contradicting Proposition 17. This completes the proof. ◀
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Figure 3 A tight-approximation example for chordal graphs

3.3 Proof of Theorem 2 and tightness of our analysis
We now complete the proof of Theorem 2. Recall that Algorithm 1 takes as input a graph G

and a vertex v and constructs the directed acyclic graph −→Gv and a directed path cover of −→Gv.
First, we will prove Theorem 2(a). Let G be a proper interval graph. Then, due to

Lemma 22, G has a vertex v such that for any isometric path P of G, the cardinality of
Av (P ) in −→Gv is at most two. Let Pv be the isometric path cover returned by Algorithm 1
with G and v as input. Let A be the largest antichain set of −→Gv and OPT be a minimum
cardinality isometric path cover of G. Due to Lemma 10, we have |Pv| ≤ |A| ≤ 2|OPT |.
This completes the proof.

Proofs of Theorem 2(b)-(f) follow from similar arguments. In particular, by combining
Lemmas 10 and 21 we have the proof of Theorem 2(b). Combining Lemmas 10 and 25
we have the proof of Theorem 2(c). Combining Lemmas 10 and 20 we have the proof of
Theorem 2(d). Combining Lemmas 10 and 18 we have the proof of Theorem 2(e). Combining
Lemmas 10 and 16 we have the proof of Theorem 2(f).

In the following observations, we show that our analysis of Algorithm 1 is essentially tight
for proper interval graphs, interval graphs and chordal graphs.

▶ Observation 27. There exist chordal graphs whose isometric path antichain cover number
is 4. Moreover, for any c < 4, Algorithm 1 cannot guarantee an approximation ratio of c for
chordal graphs.

Proof. For integers ℓ and k, consider the following construction for graph Gℓ
k. Let V (Gℓ

k) =
{w} ∪ {ui, vi : i ∈ [ℓ]} ∪ {ai

j , bi
j , ci

j , di
j : i ∈ [ℓ], j ∈ [k]} and E(Gℓ

k) = {wui, wvi : i ∈ [ℓ]} ∪
{uiai

j , uibi
j , uici

j , vibi
j , vici

j , vidi
j : i ∈ [ℓ], j ∈ [k]} ∪ {ai

jbi
j , bi

jci
j , ci

jdi
j : i ∈ [ℓ], j ∈ [k]}. See

Figure 3 for reference. Note that Gℓ
k is a chordal graph and ipacc

(
Gℓ

k

)
= 4. Observe that

the isometric path cover number of G is at most ℓk + ℓ + 1. Indeed one such isometric path
cover can be constructed as follows. For i ∈ [ℓ] and j ∈ [k], consider the isometric paths
P i

j = ai
j bi

j ci
j di

j . Also consider, for i ∈ [ℓ], the isometric paths Qi = ui vi. Observe that

P = {w}
⋃

i∈[ℓ]

Qi

⋃
i∈[ℓ]
j∈[k]

P i
j

is an isometric path cover of Gℓ
k of size ℓk+ℓ+1. Moreover, Algorithm 1 will return a solution

of size at least 4k(ℓ−1) for Gℓ
k. Indeed if Algorithm 1 has Gℓ

k and w as the input, then it will
return a solution of size 4ℓk. Otherwise, there exists a i ∈ [ℓ], j ∈ [k] such that Algorithm 1
has Gℓ

k and z as the input where z ∈ {ui, vi} ∪ {ai
j , bi

j , ci
j , di

j}. In this case, Algorithm 1 will
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Figure 4 A tight-approximation example for interval graphs

return a solution of cardinality at least 4k(ℓ− 1). This gives us an approximation ratio of
4k(ℓ−1)

ℓ(k+1)+1 . Now, for any c < 4, we can set k and ℓ such that the approximation ratio is greater
than c. ◀

▶ Observation 28. There exist interval graphs whose isometric path antichain cover number
is 3. Moreover, for any c < 3, Algorithm 1 cannot guarantee an approximation ratio of c for
interval graphs.

Proof. To see this, consider the following graph. Let Pk be a path on k vertices v1, . . . , vk

(where k is a multiple of 3). Let G be the graph obtained by adding a universal vertex
v to Pk (i.e., V (G) = V (Pk) ∪ {v} and E(G) = E(Pk) ∪ {vvi : i ∈ [k]}). See Figure 4 for
reference. Note that G is an interval graph and ipacc (() G) = 3. Moreover, isometric path
cover number of G is k

3 + 1, and Algorithm 1 returns an isometric path cover of size at least
k−3. Now, for any c < 3, we can set k such that the approximation ratio

(
3(k−3)

k+1

)
is greater

than c. ◀

▶ Observation 29. There exist proper interval graphs whose isometric path antichain cover
number is 2. Moreover, for any c < 2, Algorithm 1 cannot guarantee an approximation ratio
of c for proper interval graphs.

Proof. Let G be the complete graph on k vertices (where k is even). Note that G is a
proper interval graph. Moreover, isometric path cover number of G is k

2 , and Algorithm 1
returns an isometric path cover of size k − 1. Now, for any c < 2, we can set k such that the
approximation ratio

(
2(k−1)

k

)
is greater than c.

◀

4 An FPT algorithm for solution size on chordal graphs

In this section, we prove Theorem 3 using dynamic programming on tree decompositions.
As the problem deals with shortest paths, it seems difficult to generally solve it on graphs
of bounded treewidth, as it is not straightforwardly expressible in monadic second-order
logic. Certain related problems like Geodetic Set are in fact W-hard for treewidth [20].
For chordal graphs however, we can exploit the structural properties of shortest paths to
design such an algorithm. As a corollary, we show that this yields an FPT algorithm for the
parameter solution size alone.

Indeed, we will prove the first part of Theorem 3 that Isometric Path Cover can be
solved in time 2O(2kw2) · n on chordal graphs of order n and treewidth w, where k is the
solution size. To obtain the running time 22O(k) · n as a corollary, note first that for chordal
graphs, the treewidth w is equal to the clique number minus one (and the latter can be
determined in polynomial time on this class). However, an isometric path can cover at most
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two vertices of any clique. Thus, if k < (w + 1)/2, then we can return NO. Otherwise, the
running time follows from the first running time.

We will use nice tree decompositions, a well-known tool for designing dynamic programming
algorithms for graphs of bounded treewidth, that can be constructed optimally in linear time
on chordal graphs, see [4, Section 4].

▶ Definition 30. A nice tree decomposition of a chordal graph G is a rooted tree T where
each node v is associated to a subset Xv of V (G) called a bag, and each internal node has
one or two children, with the following properties.

1. The nodes of T containing a given vertex of G form a nonempty connected subtree of T .
2. Any two adjacent vertices of G appear in the bag of a common node of T .
3. For each node v of T , Xv is a clique.
4. Each node of T belongs to one of the following types: introduce, forget, join or leaf.
5. A join node v has two children v1 and v2 such that Xv = Xv1 = Xv2 .
6. An introduce node v has one child v1 such that Xv \ {x} = Xv1 , for some vertex x ∈ Xv.
7. A forget node v has one child v1 such that Xv = Xv1 \ {x}, for some vertex x ∈ Xv1 .
8. A leaf node v is a leaf of T with Xv = {x} for some vertex x of G.
9. The tree T is rooted at a leaf node r.

For a nice tree decomposition and a node v, we define G≤v as the subgraph of G induced
by the vertices of the subtree of the decomposition rooted at v. We can similarly define
G<v = G≤v −Xv, G≥v = G−G<v, and G>v = G−G≤v.

Note that for a clique X and a vertex y, X can be partitioned into two (not necessarily
both nonempty) sets of vertices according to their distances to y, as y has at most two
distinct distance values to the vertices of X, with a difference of at most 1 between these
values. Based on this, we give the following definition, inspired from [6].

▶ Definition 31. For a clique X and a vertex y of G, we denote by close(X, y) the set of
vertices of X that have minimal distance to y among the vertices of X, that is, for every
vertex z of X, d (y, z) = d if z is in close(X, y), and d (y, z) = d + 1 otherwise. We say that
y is close to the set close(X, y).

In a chordal graph, every maximal clique forms a clique cutset, and that clique will be
associated to some node of the tree decomposition. As in most treewidth-based dynamic
programming schemes, we will compute the potential solutions by bottom-up traversal of
the tree decomposition. For this, we will define some types of solutions of Isometric Path
Cover, depending on how they interact with a given bag. The number of types will be
bounded by a function of k and w. We must then show how local solutions of a given type
(if they exist) can be computed using the already computed information from the children.

Let us first give the key ideas needed for the dynamic programming scheme. We name
the k paths P1, . . . , Pk. A partial solution for Isometric Path Cover with respect to a
bag Xv of a node v of T , consists of k (possibly empty) subsets P v

1 , . . . , P v
k of Xv of size at

most 2, each representing the intersection of a path Pi with Xv, whose union equals Xv.
Making sure that an existing partial solution is extended so as to give an induced path

cover is not too difficult, indeed, since the graph is chordal, if a path has a chord, that
would give a cycle and thus there would be a triangle consisting of three vertices of the path.
Necessarily, this triangle would be included in some bag, a contradiction. However, to make
sure that the computed path is isometric is less trivial, but can be done due to the above
definition of closeness. Indeed, we have the following lemma (due to space constraints, the
proof is omitted: see the full version of the paper).



D. Chakraborty, A. Dailly, S. Das, F. Foucaud, H. Gahlawat, and S. Ghosh 46:15

▶ Lemma 32. Let G be a chordal graph and P be a path in G. The path P is isometric
if and only if, for every clique X of G intersecting P and for every vertex y of P , there is
exactly one vertex of V (P ) ∩X in close(X, y).

Thus, following Lemma 32, for every bag Xv and for every subset X of Xv, we will keep
track of whether each path Pi contains a vertex y with close(Xv, y) = X in the previously
computed partial solutions that can lead to the current partial solution. We will also keep
track of whether the future partial solutions contain such a vertex. This information can
be propagated along the bottom-up dynamic programming, together with the fact that the
computed solutions must form a path cover. By Lemma 32, it will then be enough to check
whether two partial solutions are compatible with respect to this information, to make sure
they form a valid partial solution to Isometric Path Cover.

For a partial solution of node v, we define its type by the following information.

The partial solution on Xv (i.e. the intersection of the k paths with Xv).
For each path Pi and each vertex y of Pi in the partial solution of Xv, whether y is an
endpoint of Pi, has a neighbour in Pi in G<v, or in G>v (one can check that there are
six distinct possibilities).
For each path Pi, if Pi is not represented in the partial solution, a bit indicating whether
Pi has been present in G<v or not (if yes, it can never be used in a future partial solution).
For each path Pi, for each subset X of Xv, whether Pi has a vertex y in G<v with
close(Xv, y) = X.
For each path Pi, for each subset X of Xv, whether Pi has a vertex y in G>v with
close(Xv, y) = X.

Note that the number of possible types for a node v is at most kO(w2) × 6kw × 2k ×
k2O(w) × k2O(w) , which is dominated by 2k2O(w) .

The algorithm will consist of computing all tables in a bottom-up manner, and return
YES if and only if the root node has an admissible partial solution type. To compute the
table of a node, for each possible type, we need only to consider all (pairs of) types of the
children nodes, and check their compatibility. We give all details in the full version.

5 Conclusion

We have studied the problem Isometric Path Cover in many subclasses of graphs of
bounded treelength. Our main contribution is a polynomial-time algorithm to solve the
problem that provides a constant-factor approximation on a very large class of graphs. It
remains an interesting open question whether, for general graphs, there exists a polynomial-
time constant-factor approximation algorithm for Isometric Path Cover, and whether
Isometric Path Cover is FPT for solution size or treewidth. We also leave the complexity
of Isometric Path Cover on interval graphs open. Other interesting classes on which to
study Isometric Path Cover, and which seem challenging, can be found in Figure 1, for
example split graphs or proper interval graphs.

Finally, we remark that some of our results also hold for the partition version of Isometric
Path Cover, called Isometric Path Partition [23], where the isometric paths must
be pairwise vertex-disjoint. This is the case for our NP-hardness proof for chordal graphs
(indeed, all considered isometric path covers are in fact isometric path partitions), and the
FPT algorithm for treewidth (indeed, it is not difficult to include in the constraints that
the paths must form a partition). However, our approximation algorithm does not return a
feasible solution for Isometric Path Partition, since it can produce overlapping paths.
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