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Shape Representation and Modeling
of Tendon-Driven Continuum Robots

using Euler Arc Splines
Priyanka Rao1, Student Member, IEEE, Quentin Peyron1,2, Member, IEEE,

and Jessica Burgner-Kahrs1, Senior Member, IEEE

Abstract—Due to the compliance of tendon-driven continuum
robots, carrying a load or experiencing a tip force result in
variations in backbone curvature. While the spatial robot con-
figuration theoretically needs an infinite number of parameters
for exact description, it can be well approximated using Euler
Arc Splines which use only six of them. In this letter, we first
show the accuracy of this representation by fitting the Euler
Arc splines directly to experimentally measured robot shapes.
Additionally, we propose a 3D static model that can account
for gravity, friction and tip forces. We demonstrate the utility
of using efficient parameterization by analyzing the computation
time of the proposed model and then, using it to propose a hybrid
model that combines physics-based model with observed data.
The average tip error for the Euler arc spline representation
is 0.43% and the proposed static model is 3.25% w.r.t. robot
length. The average computation time is 0.56ms for nonplanar
deformations for a robot with ten disks. The hybrid model
reduces the maximum error predicted by the static model from
8.6% to 5.1% w.r.t. robot length, while using 30 observations for
training.

Index Terms—Modeling, Control, and Learning for Soft
Robots, Flexible Robotics, Kinematics.

I. INTRODUCTION

TENDON-DRIVEN continuum robots (TDCRs) have been
widely studied in recent literature due to their applica-

tions in medicine and industry. They are a class of continuum
robots actuated by the pull and release of tendons routed along
the backbone. Point of termination of these tendons marks
the end of a segment. Due to their slender flexible backbones
they can bend continuously in 3D space, allowing their use
in inspecting regions with constricted entry-points. They are
compliant as well, and undergo deformations when acted on
by external forces. Predicting and simulating their behaviour
in real-time is required for their design, planning, and control.

There are two main challenges that need to be taken
into consideration while modeling TDCRs. The first is their
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backbone representation. Theoretically, an infinite number of
parameters is required to represent the continuous backbone.
The second is estimating the mapping between the actuation
space to the resulting backbone shape. Both the challenges are
inter-dependent and influenced by the robots elastic properties,
friction interactions and acting forces.

A. Related Work
To address the first challenge, a common approach [1]

is to use a curve-based description based on differential
geometry. A moving frame along the backbone is used to
represent its pose at any arc-length, providing a so called
distributed parametrization which requires an infinite number
of parameters. The robot shape is then reconstructed from its
linear and angular strain using differential geometry, leading to
the resolution of differential equations with mixed boundary
conditions. While shown to be accurate [2], [3] and solved
analytically for simple scenarios [4], they require numerical
integration for the general case and can be computationally
complex. An alternative is provided by the lumped backbone
parameterization, where the backbone is approximated by a
discrete number of variables.

One of the most common lumped parameterization is the
constant curvature (CC) approach [5] where the entire segment
is assumed to have a constant bending curvature. Models using
the CC assumption use the minimum numbers of parameters
which lead to efficient kinematic and static models [6]. How-
ever, their simplicity limits their use and they can only account
for pure bending and not external forces. An extension to
the above is provided by the piece-wise constant curvature
assumption (PCCA) [7], [8] where the backbone is modelled
as a sequence of mutually tangent circular arcs that can
account for both twist and bending curvatures. In pseudo-rigid
body modeling (PRBM) [9], [10], the backbone is assumed
to be a series of rigid links connected by torsion springs.
The model in [11] can consider any modal approximation for
the backbone. In [12], the backbones curvature are modeled
as polynomial functions. It is shown in [13] and [14] that
Bezier and pythagorean hodograph curves respectively can be
used to accurately represent the backbone shape of a TDCR.
The challenge with the above representations is to select them
based on the required application [15] as there is a tradeoff
between accuracy and computational efficiency.

The second challenge of providing a mapping is interlinked
with the first - appropriate backbone representation is used
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to formulate a physics-based or data-driven model, or a
combination of the two. Physics-based models such as the ones
formulated using the Cosserat rod theory (CRT) or beam me-
chanics, use the Lagrangian formulation or Newton mechanics
to arrive at the static equilibrium equations. However, physical
prototypes experience several phenomena that are difficult to
model accurately such as manufacturing and assembly errors.
These result in deviations from the solutions of physics-based
models. It has been demonstrated that these errors can be
significant and require additional parameters like twist in the
backbone [16] to be accounted for.

An alternative to physics-based approaches is to use pure
data-driven models to learn the behaviour of these robots.
In [17], a data-driven model is developed to predict the
end-effector position and a PRBM representation is used to
estimate the rest of the backbone in 2D. A constant-curvature
representation is used in [18] to learn the inverse kinematics
of a multi-segment robot. While the above look at free space
behaviour of continuum robots, [19] use a spline curve to
represent a catheter experiencing contact forces in 2D and
use measurements to characterise force acting on the catheter
tip. Pure-data learning approaches require a large number of
training data, even when pre-trained by a physics-based model.
They cannot extrapolate as well as physics-based models,
requiring careful selection of training data [20]. When there
is a tip force, the required number of data points of the robot
in free space is compounded by an infinite combination of
possible magnitudes and direction of forces.

A compromise between physics-based and data-driven mod-
els can be obtained by combining them under hybrid modeling
approaches, where the latter is used to learn the error models of
physics based modeling. Its advantages are detailed in [20],
which state that the complexity of the error model is lower
since the analytical model captures essential behaviour, and
can avoid overfitting sparse data. The authors use the CC
representation for control of a TDCR and investigate different
data learning approaches. Model calibration is used in [21] to
account for the variations observed in a CC representation
based on experimental data. Data-driven models are used
to learn the position errors of a TDCR, while using a CC
representation in [22], [23]. All the above works assume
that the robot is operating in free space. The work in [12]
uses the PCCA combined with Gaussian process regression to
learn the direction of contact forces but ignores twist in the
backbone. A modal based representation is used in [24] for a
soft robot experiencing contact forces and uses experimental
data to estimate its parameters. However this is only done
for a 1-DOF system experiencing planar forces. Most of the
approaches in hybrid modeling are restricted to the no-twist
constant curvature assumption or the 1D case, and have not
been applied to 3D deformation caused by tip forces.

B. Our Contribution

All three approaches - physics-based, data-driven, and hy-
brid modeling benefit from using an efficient and accurate
backbone representation. This advantage is because the rep-
resentation can be used to estimate the backbone shape,

reduce model complexity, and reduce the number of unknown
parameters and output required to be estimated by data-driven
approaches. Both forward and inverse kinematics frameworks
can benefit from such an approach.

Recently, the use of Euler curves has gained traction as
a lumped parameterization approach, where the backbone
curvature is assumed to vary linearly along the backbone.
A linear curvature profile is typically obtained for cantilever
beams under small deformation, subject to external point
forces. As a result, the linear assumption works well for
continuum robots in several application scenarios, even for
large deformations. It has been used to represent the shape of
slender backbones affected by gravity [25], [26], contact forces
with the environment [27], and forces due to tools mounted
at the tip [28]. In our previous work [28], we provide a 2D
static model to model tip forces on a single segment using
Euler arc splines (EAS). While Euler curves require the use
of Fresnel integrals which can be computationally expensive,
the use of EAS to represent the backbone shape reduces the
computational complexity [29].

In this work, we extend our previous work and present
the use of EAS in the forward kinematics framework for
a TDCR experiencing 3D tip forces. First, we prove their
efficacy in representing TDCR shapes in experimental data,
whereas [28] only compared them in simulation. Next, we
extend the previously proposed 2D static model to 3D that
maps the input tendon tensions to corresponding backbone
curvatures and can account for gravity, friction, and tip forces.
The reduced model complexity is studied via an analysis of
the models computation time. Finally, we demonstrate the
advantage of the representation through the use of a hybrid
model approach that uses a data analytics approach to learn
the configuration space errors for the robot forward kinematics.

II. EFFICACY OF THE 3D EAS REPRESENTATION

In this section, we evaluate the EAS representation on exper-
imental data. First, we evaluate the efficacy of the proposed 3D
EAS representation on collected experimental data. For given
discrete measured position coordinates a method for fitting an
Euler curve is proposed. Second, the experimental setup used
to collect data and finally, the accuracy of the EAS curves
compared to the data is reported.

A. 3D Euler Arc Splines

A single segment is represented by Euler arc splines (EAS)
by dividing it into a series of arcs with constant curvature and
torsion. The consecutive arcs have equal lengths and common
tangents, forming a G1 continuous curve, with curvatures
varying in arithmetic progression [30]. A Bishop frame is
attached to the base of each arc, resolving the curvature into
bending and torsional components.

Consider a continuum backbone of constant length ℓ, rep-
resented as an Euler curve in 3D. The EAS approximation
in [30] is extended to 3D, by applying the linear curvature
assumption to the bending and torsional components. The
bending curvature components along the x and y axes are
denoted by κx and κy and the torsional component about the
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z axis, representing the twist about the backbone is denoted
by τ . The backbone is divided into n arcs of equal length,
where ℓi = ℓ/n for all i = 1, 2..n. The vector ui represents
the curvature components for arc i.

ui = u1 + (un − u1)
(i− 1)

(n− 1)
(1)

ui =
[
κi,x, κi,y, τi

]⊤
(2)

The x and y components of bending curvature can be alterna-
tively expressed in terms of curvature κ and angle ϕ made by
the bending plane with the x axis

κi =
√
κ2
i,x + κ2

i,y (3)

ϕi = atan2(κi,y, κi,x) (4)

Following the convention in [5] and [8], a local reference
frame Ri is attached to the base of each arc at Oi, with the
local z-axis always tangent to the backbone. The homogeneous
transformation from Ri to Ri−1 is given by the transformation
matrix T i

i−1 ∈ SE(3).

Ti−1
i =

[
Rz(ϕi)Ry(κiℓi)Rz(τiℓi − ϕi) pi

0 1

]
(5)

pi =


cosϕi

κi
(1− cos(κiℓi))

sinϕi

κi
(1− cos(κiℓi))
1
κi
sin(κiℓi)

 (6)

where Rh(δ) represents rotation about axis h by δ. The
corresponding points and coordinate frames are depicted in
Fig. 3. We can obtain the transformation matrix between the
reference frames at disk i and j, where i > j, as

Tj
i =

i

Π
l=j+1

Tl−1
l (7)

Discretizing the backbone into CC arcs avoids the calculation
of Fresnel integrals for backbone reconstruction and simplifies
the configuration to task space mapping, reducing its compu-
tational complexity as it only requires matrix multiplications.

B. Experimental Setup and Data Collection

Two sets of data were collected from two differently ori-
ented prototypes, shown in Fig. 1. A Nitinol rod of length
134mm and diameter 0.99mm acts as the central backbone
for both prototypes. Each consists of nine 3D printed disks
with a spherical cap in their center. Three tendons are placed
around the backbone at a distance of 7mm. Braided ropes
(KastKing, New York , USA) of diameter 0.17mm are used
as tendons. A FARO Edge ScanArm (FARO Technologies,
Florida, USA), of accuracy ±0.041mm is used to scan the
point-cloud of each disk and spheres of diameter 7mm are
fit manually to the spherical cap using the FARO CAM2®
software. The centers of these spheres are returned as the
coordinates of each disk. For set 1, two additional metallic
spheres, shown in Fig. 1, are scanned to measure the direction
of the external force Fe.

In set 1, the robot is oriented vertically, such that the local
z-axis at the base of the robot is parallel to the direction of

T1

T3

Fe

Metallic spheres
Pulley

Laser scanner

T2

Fe

T2

T1

T3

Fig. 1. Experimental setup for the data collection of set 1 (left) and set 2
(right). The base of the prototypes are oriented perpendicular and parallel to
the direction of gravity respectively. The FAROArm is used to scan the 3D
point cloud of the disks. Two metallic spheres are scanned in addition in set 1
to determine the direction of external force Fe. Tendon tensions (T1, T2, T3)
are applied by hanging calibrated weights.

gravity. In this set, 40 measurements are made both with no-
load and load acting on the tip. For loaded measurements,
both the force magnitude (0 − 50 g) and direction is varied
randomly. The force is applied by hanging a mass over a
pulley by a tendon fixed at the tip. A mass of 50 g induces
significant backbone out-of-plane tip deflections of 45°. The
direction is varied by vertically moving the rail on which the
pulley is placed as well as by moving the entire rail in random
coordinates. In addition, the tensions in the tendons are varied
randomly as well. Set 2 consists of loaded measurements
only, each of constant magnitude 30 g and was collected to
reflect the case where the TDCR is bearing a load. The robot
is oriented horizontally such that the local z-axis is parallel
to the ground. In each reading, the load at the tip is simply
left hanging such that the direction is always parallel to the
direction of gravity. Due to the lower number of varying
factors, 30 measurements were taken.

C. Shape Reconstruction Method

The input to the reconstruction method is the set of points
P = {xk|k ∈ M}, where M denotes the set of indices of the
measured disks. The measured index can be replaced by the
set of arc lengths along which measurements are made if disk
positions are not used. For these positions are measured along
the backbone, the objective function needs to minimize their
Euclidean distance with the positions obtained from the EAS
representation. We take inspiration from [31] and [32] that use
minimal energy curves to represent stable curves in 3D. To do
so, we minimize both curvature and torsion along with the
Euclidean distances. The corresponding objective function is

min
(u1,un)

M∑
k

(||xk −Ok||)2 + λ
(
u⊤
1 u1 + u⊤

nun

)
(8)

where λ is a weighting factor.
The values are calculated by optimising the objective func-

tion (8) using Nelder-Mead Simplex method implemented in
MATLAB’s fminsearch function.
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D. Evaluation of the reconstructed curves
To evaluate the efficacy of 3D EAS, we calculate the

optimum u1 and un values for 70 ground truth measurements.
The errors are measured as the Euclidean distance between the
measured data points and the corresponding positions along
the EAS defined by u1 and un. We consider here that the
number of EAS used is equal to the number of disks, such that
the portion of the backbone between two disks corresponds
to a constant curvature arc. The value of λ is set as 10−7

empirically since the measurements are in the mm range and
all quantities are expressed in meters.

The position of the nine disks along the fitted curves, such
that M = {1, 2..9} are plotted against the measured data
points in Fig. 2(a) and (b) for set 1 and 2 respectively. The
initial guess is assumed to be a constant curvature arc whose
tip coincides with the end-effector disk [5]. The corresponding
average and standard deviation of the errors in the two sets
are plotted in Fig. 2(c). The average tip error of the end
disk over the 70 observations is 0.43± 0.21% w.r.t length or
0.58± 0.28mm. The error in tip position remains well within
1% for both sets. We see that the errors are consistently high
for disk 2, even though higher indices have lower error. This
error can be explained by the inaccuracies in the tool used
to align and assemble the disks on the backbone, resulting in
unequal inter-disk distances.

E. Discussion
We observe experimentally that 3D EAS can be used to

accurately represent the shape of a one segment TDCR subject
to tip forces with straight tendon routing while using six
parameters. In comparison, the average error in reconstruction
using Bézier curves for loaded configurations is reported as
2.24% w.r.t. length [13] and requires at least nine parameters
per segment. Use of quintic Pythagorean Hodograph curves
require the determination of six control points. Since the base
and its orientation is fixed, four control points, each with
three parameters, need to be estimated. An average shape
error of 4mm is reported [14] for configurations of around
300mm length for an extensible robot. The linear curvature
assumption is a simplified case of the PCCA representation.
However, the linear curvature assumption restricts and reduces
the configuration space of the continuous backbone from 3n to
six curvature parameters [u1,un]. Its dimensionality reduction
offers advantages for design optimisation or machine-learning
approaches. In our case, it motivates the development of an
efficient 3D static model of a TDCR.

III. PROPOSED 3D EAS MODEL

The static model is used to obtain the curvatures u1 and
un, composed of parameters [κ1,x, κ1,y, τ1, κn,x, κn,y, τn], for
given tendon tensions and applied external force. A subseg-
ment i consists of the portion of backbone between disks i−1
and i, including disk i. The static equilibrium equations are
written for each subsegment, i w.r.t the frame of reference of
disk i − 1. We assume that the backbone is inextensible and
that the tendon is always pulled unidirectionally. Therefore, the
experienced shear and hysteresis are assumed to be negligible.
The disks are assumed to have negligible thickness.

(a)

(b)

(c)

Fig. 2. Plot of the fitted curve shown in color, against the experimental data
denoted by black points, for (a) Set 1 and (b) Set 2. The corresponding frame
attached to the end-effector of each configuration is plotted with red, blue,
green denoting the local x, y and z axis respectively. (c) Plot of the mean
(solid line) and standard deviation (marked by ’x’) of the Euclidean distance
between measured and fitted EAS curve, expressed w.r.t. backbone length,
plotted for each of the 9 disks in the two sets

A. Tendon interactions and acting forces

The m tendons are distributed equidistantly around the
backbone at a distance of rd. The position vector of tendon k
at disk i, iPi,k, expressed w.r.t. the reference frame attached
to the disk i are given by

ipt,(i,k) =
−−−−−→
iOi

iPi,k = rd
[
cos (σk) sin (σk) 0

]⊤
(9)

where k ∈ [1, 2, ..m] and the angle σk is measured with
respect to the x axis and is equal to 2π(k − 1)/m. The
unit vector between two tendon positions in the ith frame,
(
−−−−−−−−→
iPi,k

iPi−1,k)/||
−−−−−−−−→
iPi,k

iPi−1,k|| is denoted by it̂k,(i−1,i). We
assume that the tendons are partially constrained [15]. The
forces and moments due to tendon k at disk i are given by

i−1Fi,k = Fi,k
i−1t̂k,(i−1,i) + Fi+1,k

i−1t̂k,(i+1,i) (10)
i−1Mi,k = i−1pt,(i,k) × i−1Fi,k (11)

When i is equal to n, the above force equation reduces to
n−1Fn,k = Fi,k

n−1t̂k,(n−1,n) (12)
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x0

y0

z0

xi−1

yi−1

zi−1

xi

yi
zi

O0

On

Fe

fg

Fi,k

Fi+1,k

r
i =

1/κ
i

Oi−1

Oi Pi,1

τiℓi − ϕi

ϕi

Pi−1,m

Fig. 3. Diagrammatic representation of the TDCR structure on the left,
consisting of n disks. External force Fe acts on disk n. Some of the local
forces acting on subsegment i are marked - Fi,k and Fi+1,k denote the
magnitudes of the tendon force on tendon k. The weight of disk i is denoted
by fg . The inset marks the subsegment i kinematics, with the base at disk
positions Oi−1 and tip at Oi, with corresponding frames attached to them.
The m tendons are arranged in an anti-clockwise manner, with Pi,k denoting
the position of the kth tendon at disk i.

The variables Fi,k and Fi+1,k represent the magnitude of
tension experienced by the tendon. This tension varies along
the backbone due to the friction between the tendons and the
disks. As done in [7], we assume that the frictional force
can be estimated using the Coulomb friction model. The net
normal force acting on the disk due to the tendon forces can be
obtained by subtracting the component of force along the zi-
axis. We also consider the tendon sliding direction to always
be from i+1 to the ith disk. The resulting tension magnitude
Fi+1,k can be calculated as

Fi+1,k = Fi,k − µ|i−1Ni,k| (13)
i−1Ni,k = i−1Fi,k −

(
i−1F⊤

i,k
i−1zi

)
i−1zi. (14)

Following the above, we calculate the force due to gravity
of disk i by transforming the weight 0fg of the disk to the
local frame, and the corresponding moment as

i−1Fg,i =
i−1 T0

0fg (15)
i−1Mg,i =

i−1pi ×i−1 Fg,i (16)

Similarly, the forces and moments due to the external force
can be written as

n−1Fext =
n−1 T0

0Fe (17)
n−1Mext =

n−1pn ×n−1 Fe (18)

where Fe denotes the external vector expressed in the global
frame. The net force and moment at each subsegment is given
by

i−1Fi =

m∑
k

i−1Fi,k +i−1 Fg,i +
i−1 Fi+1 (19)

i−1Mi =

m∑
k

i−1Mi,k +i−1 Mg,i +
i−1pi ×i−1 Fi+1 (20)

When i = n, n−1Fext and n−1Mext must be added to the
equilibrium equations.

B. Constitutive equations

Using Hooke’s law, the constitutive equation for subsegment
i can be calculated by relating the resultant moment to the
corresponding material properties as

i−1Mi = Rz(ϕi)Ry(κiℓi)

EI 0 0
0 EI 0
0 0 GJ

 0
κi

τi

 (21)

where I denotes the second area moments, J the polar
second moment of cross sectional area, and E and G the
Youngs and shear modulus. The values κi and ϕi can be
obtained from (3) and (4). Isolating the bending and torsional
components of moment, we can express the bending moment
of each subsegment using (21) as 0

EIκi

GJτi

 = R−1
i

(
i−1Mi

)
(22)

Ri = Rz(ϕi)Ry(κiℓi) (23)

Since the left hand side of the equation is composed
of linear curvature components, we need to project the
components of moments in the right hand side of the
equation to be linear as well. As done in [28], we use
closed form solution of least squares linear regression to
obtain the vector of linearly varying component of the
experienced moment. Assembling the moment vectors
for n subsegments in (22) into a matrix gives us M =[
R−1

1

(
0M1

)
... R−1

i

(
i−1Mi

)
... R−1

n

(
n−1Mn

)]
,

which is a n× 3 matrix. The linearized components are given
by M

M = AB (24)

[A]i, =
[
1 i

]
(25)

B = (ATA)−1ATM (26)

where A is a n × 2 matrix and B is a 2 × 3 matrix of
coefficients. Using the rows 1 and n, m1 and mn of M, we
obtain the 6 nonlinear equations we need to solve.[

m⊤
1 m⊤

n

]
=

[
0 EIκ1 GJτ1 0 EIκn GJτn

]
(27)

C. Numerical Solution and Computation Time

The EAS model is implemented in C++ using the frame-
work in [15] on an Intel Core i5-9600 CPU running at 3.10
GHz. The computation time is compared with the models
proposed in [7] (PCCA) and [2] (CRT). The average values
over 500 configurations is computed for varying number of
subsegments in a robot of length 0.134m. For each config-
uration, a random value of tension T1 is applied such that
the robot bends in the xz plane. The computation time is
observed for two cases - planar and non-planar external forces.
For the planar case, a force is applied along the z-axis with
a randomly selected magnitude. For the non-planar case, a
random magnitude of force is applied along the y-axes.

The observed computation times are plotted in Fig. 4 (a) and
(b) for the planar and non-planar case for the three models.
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Fig. 4. Evolution of computation time of three models- EAS (red), CRT
(black), and PCCA (blue) with number of disks, n for (a) planar and (b)
non-planar deformations. Values for n = 10 are reported in the insert boxes.

The computation times for the planar case are lower than the
non-planar as the twist component remains zero.

The partially constrained tendons in PCCA and EAS result
in increase in the computation time with increasing number
of disks, while the fully constrained model considered in CRT
result in constant values. Additionally, PCCA requires the
longest time with 3n unknowns. The increase in EAS model
is due to the force equilibrium equations written at each disk.
Nonetheless, the constant number of six unknowns effectively
results in lower computation time. The model reports lower
computation time than CRT even when considering 50 disks,
and can be applied to model longer designs.

IV. HYBRID DATA-DRIVEN AND ANALYTICAL APPROACH

In this section, we propose a hybrid model that combines the
analytical static model proposed in the previous section with
a data-driven error model. Since the EAS have been shown
to accurately represent the shape of the backbone, we use an
error model that predicts the error between the values of um

predicted by the analytic model and the values observed in
experimental data ue.

There are multiple sources of errors in the predicted values
in a system model. A major factor is parameter uncertainty,
where the exact value of some of the input parameters to
the above static model are unknown. For example, some
parameters can be subject to significant variability w.r.t. their
nominal value, such as the Young modulus of Nitinol, or the
friction coefficient which can vary depending on the material
used, surface quality and the environment (temperature, hu-
midity, etc). A common approach [2] is to optimise for these
parameters using observed experimental data. Calibration pa-
rameters consist of values that are not directly measured in
the experiment but are constant throughout the duration of
the experiments [33]. Another source of errors is the model
discrepancy, which accounts for errors in the model predictions
due to unmodeled phenomena, like errors in assembly and
manufacturing. A third source is the error in the measurement
system. The system is represented by [34]

ue = um + δ(v) + ϵ (28)
um = f(g,Θ) (29)

TABLE I
AVERAGE ERROR AND STANDARD DEVIATION OF THE END-EFFECTOR
POSITION ERROR AS % W.R.T. LENGTH FOR THE EAS, PCCA [7] AND

CRT-BASED MODEL [2]

EAS model PCCA model CRT model
Set 1 3.59 ± 3.36 3.68 ± 3.08 5.46 ± 4.02
Set 2 2.75 ± 1.64 2.15 ± 1.02 3.27 ± 2.14

where um is a function of input parameters g and calibration
parameters Θ. The function f(g,Θ) denotes the proposed
EAS model in the previous section for input values g of
different tensions and applied forces. Variable ϵ represents the
noise in the system. The vector v represents the inputs to the
discrepancy function, δ independent of g.

We first report the errors for the above model, assuming
model discrepancy is negligible. This calibration approach is
being followed by majority of works in literature and the
corresponding error of the proposed model is reported and
compared to state-of-the-art. Next, we consider that the model
discrepancy is a linear function of input features for simplicity.
We then report the method and errors for the hybrid model
that considers model discrepancy in addition to calibration.
While any physics-basics model can be used, the efficient EAS
backbone representation allows for fewer number of unknown
parameters.

A. Calibration

In addition to the Youngs modulus and coefficient of fric-
tion, we calibrate the base of the robot frame as it is not exactly
oriented with that of the measurement system. To align the two
correctly, we rotate the observed experimental data about the
x, y, and z axes, by pre-multiplying the coordinates by Rc,
where Rc = Rx(θx)Ry(θy)Rz(θz). To simplify the process,
we perform standard calibration by estimating Θ assuming
there is no discrepancy [34]. The corresponding problem can
be solved as a least-squares optimization, minimizing the
Euclidean distance between the predicted and measured disk
coordinates as

min
Θ

n∑
i=1

(||xi −Oi||)2 (30)

Θ =
[
E θx θy θz µ

]
(31)

The resulting optimization was solved using the Nelder-Mead
Simplex Method.

B. Experimental results with Calibrated model

The error performance of the EAS model, using the cali-
brated parameters is tabulated in Table I. The average error
over the 70 measurements is 3.25± 2.77% w.r.t. robot length
for the ninth disk. The average for set 1 is slightly higher than
set 2 and can be explained by the fact that set 1 has a wider
variation in force magnitude and direction, while set 2 consists
of unidirectional constant force, allowing better calibration.
The lesser number of varying factors is reflected in the lower
standard deviation of set 2.
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We also compare our model with CRT [2] which does
not consider friction. The same calibration is performed by
excluding µ from θ. The reported errors are on the higher
range as friction plays a significant role in these experiments.
The prototype experiences high tensions and large non-planar
bending, resulting in larger deviations from predicted shapes
due to friction. In addition, we compare the performance of the
proposed model with a PCCA model [7], which accounts for
friction. Here, the backbone is similarly divided into arcs of
equal length but each of them is allowed to vary individually
without constraints. We do so to investigate the influence of
the linear approximation on the error statistics, since the force
equilibrium equations remain the same. The model is again
calibrated using (30). Both EAS and PCCA models provide
similar accuracy. Consequently, the linear approximation does
not introduce large errors in the static model.

C. Hybrid model (Model Discrepancy)

We see that even with model calibration, there remain
errors in the system due to reasons such as misalignment in
disks leading to twist in the backbone [21] or manufacturing
errors. These errors can be further compensated by learning
the discrepancy from experimental data. When calibration
and model discrepancy is accounted for in addition to the
model predictions, we refer to it as the hybrid EAS model
in the following. We use a data-driven approach to model the
discrepancy. While a variety of data analytic approaches can
be chosen, for simplification we assume that the error between
the curvatures is a linear combination of the input features.

ue = um +

p∑
j=1

wjxj (32)

where xj is an input feature vector of N observations and wj

is the corresponding weight associated with it. The objective
function (30) is chosen to minimise the position error for all
disks. Using the predicted value of the curvature the function
(30) is then minimized using nonlinear least squares. The
experiments are divided into training and test sets, such that
the calibration and training is performed on the former. The
training data sets are of size 30 and 20 for sets 1 & 2.

The three components of the applied tension and external
force are selected as the input features along with the torsional
curvature component predicted by the static model. We do
so because it has been shown that twist plays a significant
role in deviations from model predictions [16], [35] and is
an indicator of out-of-plane deformations which in result in
larger deviations from the model. The input feature vectors for
set 1 are selected as [τm1 , (τm1 )2, τmn , (τmn )2,F⊤

e , F1, F2, F3],
where Fk represents the applied tension on the kth tendon.
For set 2, the external force components are removed from
the input vector since it remains constant. Matlab’s trust-
region-reflective least-squares method is used to perform the
optimisation.

D. Experimental Results with Hybrid EAS model

With the calibrated parameters, we train the discrepancy
model on the training data. The resulting errors of the test

(a)

(b)

Fig. 5. Box plots of disk position errors over the test set for calibrated model
(red) and hybrid model for (a) set 1 (purple) and (b) set 2 (green), reporting
the 25th and 75th percentiles.

TABLE II
ERROR STATISTICS OF THE END-EFFECTOR POSITION ERROR FOR THE

CALIBRATED AND HYBRID EAS MODEL FOR 10 CONFIGURATIONS

Set 1, % w.r.t. length Set 2, % w.r.t. length
Calibrated Hybrid Calibrated Hybrid

Average 3.37 2.72 2.44 1.59
Standard deviation 2.64 1.63 2.05 1.10

Minimum 0.05 0.34 0.61 0.96
Maximum 8.60 5.10 6.65 4.8

data is presented in Fig. 5 and Table II for both sets. We see
that even with the simple model chosen, the maximum error
for the last disk reduces by 3.5% w.r.t length (4.69mm) for
set 1 using only 30 observations for training and by 1.85%
w.r.t length (2.46mm) for set 2 with 20 observations.

The proposed model is a first step towards combining
the proposed static model with observed data. While there
is error reduction, using a larger dataset combined with a
more sophisticated discrepancy model might result in larger
improvements. Investigating the above thoroughly is beyond
the scope of this letter and will be investigated in future works.
An important factor in learning the forward kinematics with
applied external forces is to have sufficient samples that reflect
the true nature of the workspace, accounting for different di-
rection and magnitudes of forces. Doing so efficiently without
the need to collect an exhaustive amount of data is a challenge
to be addressed in future works.

V. CONCLUSIONS

In this letter, we presented an EAS based 3D static model
for TDCRs experiencing forces at the tip. First, the efficacy
of EAS in representing backbone shapes was shown through
experimental data, with an average tip error of 0.43± 0.21%.
Second, a physics-based 3D static model was presented that
models the physical phenomena of the deforming TDCR with
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an accuracy of 3.25±2.77% w.r.t. length. Third, a formulation
was proposed to improve the model accuracy by combining
the proposed model with observed data. The proposed hybrid
model resulted in a reduction in the maximum error by 3.5%
w.r.t. length. The average computation time is 0.56ms if the
segment has ten disks.

The EAS representation offer the advantage of dimensional-
ity reduction that could be useful for design optimisation, path
planning, and control. It can be used in data-driven approaches
for both forward and inverse kinematics. While this letter looks
at only tip forces, extending it to multiple forces along the
backbone can be performed using a combination of linear
curves, as done in [27]. In addition, we show their efficacy
only for straight routing and assume that the tendon is always
pulled, which does not account for hysteresis [36]. The above
constitutes an interesting topic for future work.
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