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Statics and dynamics of continuum robots based on Cosserat rods
and optimal control theories

Frederic Boyer, Vincent Lebastard, Member IEEE, Fabien Candelier, Federico Renda, Member IEEE, Mazen
Alamir.

Abstract—This paper explores the relationship between op-
timal control and Cosserat beam theory from the perspective
of solving the forward and inverse dynamics (and statics as
a subcase) of continuous manipulators and snake-like bio-
inspired locomotors. By invoking the principle of minimum
potential energy, and the Gauss principle of least constraint,
it is shown that the quasi-static and dynamic evolution of
these robots, are solutions of optimal control problems (OCPs)
in the space variable, which can be solved at each step (of
loading or time) of a simulation with the shooting method.
In addition to offering an alternative viewpoint on several
simulation approaches proposed in the recent past, the optimal
control viewpoint allows us to improve some of them while
providing a better understanding of their numerical properties.
The approach and its properties are illustrated through a set
of numerical examples validated against a reference simulator.

I. INTRODUCTION

The relationships between optimal control theory (OCT)
and statics of Cosserat rods are well known from the
geometric control community [1]. In particular, it has been
shown that the kineto-static model of a Cosserat rod con-
sists of the Euler-Lagrange equations of an optimal control
problem where the cost function is defined by its potential
energy, the time by its arc length, and the optimal trajectories
by the equilibrium configurations of the rod. Since the
configuration space of a Cosserat rod is defined as a space of
curves on SE(3), the optimal control theory of left-invariant
systems on Lie groups must be used to relate the two theo-
ries intrinsically [2]. As an illustration of this relationship,
the search for deformed configurations of a Cosserat rod
manipulated quasi-statically at both ends [3], is equivalent
to that of optimal trajectories of a space vehicle on SE(3)
between two time-varying pauses [4]. In OCT, once the
necessary first-order optimality conditions are deduced from
the maximum principle, they define a Boundary Value
Problem (BVP), whose solutions are the optimal trajectories
that can be computed by various numerical technics, such
as the shooting method [5]. Thus, once formulated as an
OCP, the kineto-statics of a Cosserat rod can be solved
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at each step of a quasi-static simulation by applying the
shooting method to its BVP. Beyond static modelling and
quasi-static simulation of rods, further stability issues related
to buckling [6], can be addressed with the second-order
(sufficient) conditions around the optimal configurations,
solutions of the first-order (necessary) ones [7].
With the emergence of continuous robotics, Cosserat rod
theory has progressively imposed itself as one of the
standards for modelling robots composed of rods actuated
at their boundaries, or along them in a distributed way [8],
[9], [10], [11], [12], [13]. In the first category, one finds
the concentric tube robots (CTR) and continuum parallel
robots (CPR), while the second includes tendon actuated
continuum robots (TACR) [12], soft robots equipped with
pressure chambers [14], or hyper-redundant swimming
robots inspired of slender animals such as snakes and fish
[8]. As an alternative to Lagrangian (variational) approaches
such as the geometrically exact FEM [15], the discrete rod
formulation [16], or the strain-based parametrization [17],
the vast majority of the continuous robotics community
simulates these systems by formulating their model as
BVPs in the spatial variable (arc length), which are then
solved at each step of the simulation by the shooting method.

OCT has been successfully applied to statics of CTRs and
CPRs to study the difficult problem of their stability with
second order conditions [18], [19]. However, to the best of
the authors’ knowledge, it has so far never been applied to
the dynamics of continuous robots, while it does not seem
to be mentioned in the statics of distributed actuated robots.
In particular, the BVPs addressed so far in these contexts
with the shooting method by the robotics community, seem
not to derive from optimal control problems (OCPs), but
rather to be deduced by an adhoc combination of equations
based on beam kinematics and Newton’s laws [20].

It is one of the main contributions of this paper, to show
how, and to what extent, it is possible to model and simulate
the statics and dynamics of continuous (possibly distributed
actuated) robots, by deriving their BVPs systematically with
the OCT, and solving them numerically with the shooting
method. To illustrate our point and initiate future work,
we will focus on the case of a one-piece robot which
can be a manipulator (fixed at one end and free at the
other) actuated by tendons, or a slender locomotor (free at
both ends) actuated internally by an idealized model of the
muscular activity of elongated vertebrates [21], a case never
approached before with this numerical method. In statics, the
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expected extension of OCT can be achieved by modeling the
distributed actuation as a stress field governed by an actuated
constitutive law, as proposed in [17]. In dynamics, we will
see that the forward dynamic problem of a continuous robot
(manipulator or locomotor), can be reformulated as an OCP
by invoking one of the founding principles of dynamics
originally introduced by Gauss [22], and integrated into
the framework of rational mechanics by Gibbs [23] and
Appell [24]. Nowadays known as Gauss’ Principle of least
constraint, the role of this principle in the dynamics of
rigid manipulators has been revealed in [25]. Remarkably,
for these discrete systems, the principle leads to a linear-
quadratic OCP (LQ-OCP), that once solved with the so-
called sweep method [26], provides Featherstone’s forward
dynamic algorithm of rigid multibody systems [27]. More
generally, it is possible to show that all Newton-Euler’s
(NE) dynamics of rigid discrete systems (from models to
algorithms), are, in fact, based on Gauss principle and OCT.
From this view point, a further conceptual contribution
of the article consists in relating OCT and Newton-Euler
dynamics in the context of continuum robotics. In particular,
we will show that, as in the case of discrete rigid systems,
the dynamic BVPs derived with OCT naturally contain a
continuous model of the accelerations as one of the Euler-
Lagrange equations, a model that is generally omitted in
previous work on the shooting-based approach, and yet plays
a non-negligible role in simulation.

In addition to these modeling contributions, the OC perspec-
tive will provide new insight into the numerical properties of
the shooting-based approaches applied to continuous robots.
In particular, we will see that the LQ-OCP underpinned
by the Gauss principle applied to a continuous robot is
singular, and that it can be regularized using an implicit time
integration scheme. Note that a similar numerical strategy
has been introduced in the ocean engineering community for
towed submarine cables [28] and more recently, to solve
the dynamics of continuous manipulators [20]. However,
the OC point of view will show that such a regularization
process is intrinsically limited by a certain critical value
of the time step below which, the singularity re-expresses
itself and the approach aborts, and that this critical value
increases as the robot becomes increasingly soft. These
numerical considerations and others are illustrated on a set
of numerical benches related to fixed and floating base rods,
for which an implicit geometric integration scheme on the
Lie group SO(3) × R3 is proposed. These benches are
compared to a reference simulator based on the Lagrangian
approach of [17]. Finally, the paper ends with the case of
the forward dynamics of a bio-inspired swimmer, and thus
completes the past results of the authors devoted to the
inverse dynamics of such systems [8], while opening new
perspectives for bio-inspired robotics and bio-mechanics of
swimming.

The article is structured as follows. We first remind in
section 2 some of the key concepts of Cosserat rods theory
used in the article. In section 3, the model of distributed

actuation (tendons, muscles) is also reminded and defined as
a field of internal stress of a generalized active constitutive
law. Based on this model, in section 4, the statics and
dynamics of a single piece continuum robot are formulated
in the framework of OCT, with the principle of minimum
potential energy, and the Gauss least constraint principle,
respectively. The BVPs provided by these different OCPs
are then solved with the shooting method in section 5. While
all these developments concentrate on the forward static
and dynamic problems, the inverse problem is addressed in
section 6 as a byproduct of the approach. In section 7, the
approach is illustrated through several numerical examples.

II. REMINDER OF COSSERAT ROD THEORY

1) Configuration and twists: We here consider an elliptic
cross-sectional1 elastic rod subject to finite displacements
and small strains2 (see Figure 1). In the Cosserat approach,
such a medium is modeled by a continuous set of rigid
cross sections stacked along a material line and labelled by
a coordinate X ∈ [0, 1]. To each X-cross section, a mobile
cross-sectional frame F(X) is attached. These frames are
located on the center of the cross sections with their first
vector normal to them and the two others aligned with the
elliptic axes. In this context, the beam configuration space
is naturally defined as:

C = {g : X ∈ [0, 1] 7→ g(X) ∈ SE(3)}, (1)

which stands for a functional space of curves in SE(3),
where g(X) = (R, r)(X) is represented by a 4 × 4
homogeneous transformation matrix (with R(X) ∈ SO(3),
and r(X) ∈ R3), parameterizing the pause of F(X) in
Fs. Throughout the article, we will consider continuum
manipulators or locomotors. In the first case, the proximal
cross section (X = 0) is clamped and g(0) = 14×4, while
in both cases, the tip cross-section (X = 1) is free to move.
Noting ∂./∂X and ∂./∂t by a ”prime” and a ”dot”, the field
g depending on both X and t, its space-time variations are
described by the two vector fields η and ξ from [0, 1] to
se(3) ∼= R6 (see [17] for standard Lie group notations):

η = (g−1ġ)∨ , ξ = (g−1g′)∨, (2)

where η = (Ω1,Ω2,Ω3, V1, V2, V3)
T = (ΩT , V T )T

stands for the field of the velocity twists of the
cross-sections in their mobile frames, while ξ =
(K1,K2,K3,Γ1,Γ2,Γ3)

T = (KT ,ΓT )T is the exact geo-
metrical counterpart of η when replacing t by X (see Figure
1). Since X is a material label, it is independent of t, and
we have by symmetry of derivatives of transformations:

(g′)� = (ġ)′ ⇒ ξ̇ = η′ + adξη. (3)

Replacing t in the definition of the velocity twist η, by any
real parameter ε, independent of t and X , allows defining

1This choice will allow to model continuous swimmers inspired from
fish as addressed in one of the numerical examples of section VII.

2This assumption which is systematically made in the Cosserat rod
theory typically means that the radius of curvature along the rod is of
the order of its length.
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Fig. 1: Twists (left) and wrenches (right) of a Cosserat rod.

what we name a variation δg = gδζ̂ of the rod configuration.
Such a δg generates on a functional f of g, a variation δf
defined for all X by:

δf(g(X)) =
d

dε

∣∣∣∣
ε=0

f
(
g(X) exp(εδζ̂(X))

)
. (4)

The parameter ε of a δ-variation being independent of X ,
a similar commutation relation to (3) holds where the time-
derivation ∂/∂t, is simply replaced by the variation δ:

δ(g′) = (δg)′ ⇒ δξ = δζ ′ + adξδζ. (5)

Relations (3) and (5) are due to Poincaré [29] and play
a key role in the modern Euler-Poincaré Lagrangian re-
duction theory [30]. In this context, they allow applying
Hamilton’s variational principle to Cosserat rods directly on
the configuration space (1), where δζ = (g−1δg)∨ are then,
some virtual displacements of the rod configuration [31]. In
section IV.A, devoted to statics, we adopt the view point
of optimal control theory. In this context, we will also use
configuration variations δζ, for which (5) holds. However,
in contrast to Lagrangian mechanics, these variations are
not directly applied to the configuration of the rod as this
is the case of virtual displacements, but are the indirect
consequences of some variations of its strain field.

2) Strains and stress: The Cosserat rod model can cap-
ture several rod sub-models (e.g. Kirchhoff) by allowing
only a subset of the components of ξ to be free. Referring
to [17], these allowed components are gathered in a na × 1
(na ≤ 6) vector field noted ξa, while the other components
(that are constrained to some constant values), defines a
complementary nc × 1 field, noted ξc, with nc = 6 − na.
With these definitions in hands, we have the partition of ξ:

ξ = Bξa + B̄ξc, (6)

where B and B̄ are two selection matrices of dimension
6× na and 6× nc, with entries equal to zero or one, while
ξc is a constant vector field whose components (zero or
constant), depend on the adopted rod kinematics (e.g. for a
Kirchhoff rod, B = (13×3, 03×3)

T , B̄ = (03×3, 13×3)
T , and

if X is the arc length along the rod ξc = (1, 0, 0)T ). If go
defines a reference stress-less configuration of the rod with
space-twist field ξo = (g−1

o g′o)
∨, a linear strain measure is

defined by the field:

ϵ = ξa − ξa,o = BT (ξ − ξo). (7)

Combining (6) and (7), one can express the field ξ and its
time derivatives, in terms of strains as:

ξ = B(ϵ+ ξa,o) + B̄ξc = Bϵ+ ξo,

ξ̇ = Bξ̇a = Bϵ̇ , ξ̈ = Bξ̈a = Bϵ̈. (8)

The stress state is described by a field of wrench Λ :
X ∈ [0, 1] 7→ Λ(X) = (CT , NT )T (X), where C =
(C1, C2, C3)

T , and N = (N1, N2, N3)
T , are the moment

and the resultant of the internal tension forces transmitted
from right (Y > X), to left (Y < X), across the X-cross
section, and expressed in its mobile frame (see Figure 1).
According to (6), one can partition Λ as:

Λ = BΛa + B̄Λc, (9)

where Λa = BTΛ, gathers the components of Λ acting
along the allowed internal d.o.f of ξa, while Λc defines a
set of Lagrange multipliers (internal forces and/or reaction
torques) in charge of forcing the internal stresses B̄T ξ = ξc.

3) Forces and energies: In statics, we only consider the
case of a manipulator subject to a density of wrench F̄ and a
tip wrench F+ applied along its length, and at its distal end
respectively. In all the subsequent developments, we assume
F̄ and F+ to be prescribed by some explicit functions of
time and/or defined by a state-dependent model, where the
state is g in statics, and (g, η) in dynamics. In statics, a force
F (g) exerted on a single cross section of pause g, is said
to be conservative if it derives from a potential, i.e. if there
exists a function Uext of SE(3) in R, such that:

δζTF (g) = −δUext, (10)

where δUext is defined by instantiating f by Uext in (4). In the
following developments on statics, F+ and F̄ are assumed
to be conservative, i.e. it exists Uext for the entire rod, such
that:

δUext =

∫ 1

0

δŪ dX + δU+, (11)

with:
δŪ = −δζT F̄ , δU+ = −δζ(1)TF+. (12)

Assuming the rod to be elastic, and subject to small strains,
its internal (potential) energy is defined as the integral over
the rod of a quadratic form of the strains:

Uint =

∫ 1

0

Uint dX =
1

2

∫ 1

0

ϵTHrϵ dX, (13)

where Hr = BT diag(GJ1, EJ2, EJ3, EA,GA,GA)B is
the reduced na×na Hooke matrix of the rod. Moreover, in
this case, the field of stress Λa is also conservative, and so
derives from the potential (13), i.e. we have:

Λa = BTΛ =
∂Uint

∂ϵ
= Hrϵ. (14)

Similarly, the kinetic energy of the rod is:

T =
1

2

∫ 1

0

ηTMη dX, (15)

where M = diag(ρJ1, ρJ2, ρJ3, ρA, ρA, ρA) =
diag(ρJ, ρA13×3), is the field of 6 × 6 inertia matrix
of its cross-sections.
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III. CONTINUUM ROBOTS AS INTERNALLY ACTUATED

COSSERAT RODS

We consider a continuum robot as an elastic slender body
equipped with some active devices able to exert some forces
on it. The body is modelled as a Cosserat rod, actuated
with ”external” or ”internal” actuators, depending whether
the forces they exert on the robot, are supported by the
external environment, or by the constitutive material of
the rod itself. As emblematic examples of each category,
rods equipped with magnetic dipoles in interaction with a
controlled external magnetic field are externally actuated.
On the other hand, a continuum manipulator consisting
of a rod made with a piezoelectric material controlled in
voltage is internally actuated. Beyond robotics, the muscles
contractions that bend the slender body of a snake or an
eel, define an internal actuation. To derive the model of a
continuum robot, it suffices to modify the model of (passive)
Cosserat rods in two different ways, depending on the nature
of actuation. If it is external, we add to the external wrenches
F̄ (gravity, contact..), a field of external actuation wrench
F̄d. If it is internal, we add to the field of elastic stress
BTΛ = Λa = Hrϵ, a further exogenous active component
Λad modelling the actuation. In this case, the passive consti-
tutive law (14) is changed into the active/passive one [17]:

BTΛ = Λad +Hrϵ. (16)

Physically, when the rod kinematics are not constrained (i.e.
B = 16×6), (16) simply means that if we (virtually) cut a
slender continuous robot into two parts at any point X along
its dominant length, the part of the robot Y > X exerts
on the part Y < X a wrench defined by (16) evaluated
in X , i.e., with two components, one (Hrϵ) modeling the
elastic restoring forces and torques of the structure, the other
(Λad) modeling the effects of any internal actuating device
transmitting forces along it. Remarkably, some continuous
manipulators such as TACRs can be classified in both
categories, i.e. the actuation forces can be modeled either
by modifying F̄ or by using a constitutive law of the form
(16). To illustrate this context, let us consider a TACR shape
controlled by pulling a set of N tendons of negligible inertia,
elasticity and friction. In the first view point (external),
Newton’s law are first applied to the tendons and the rod
alone, and action-reaction is then used to get the field of
external wrench exerted by each tendon onto the rod [12].
In the second (internal), the rod and tendons are considered
as a single system to which Newton [32], or Lagrangian
mechanics is applied [17]. In this later context, invoking
kinematic invariance of virtual works between the space
of tendon lengths and that of Cosserat strains, provides
the expression of the internal stress-wrench field Λad as a
function of the tensions Ti along the tendons (the subscript
”c” here means ”cable”):

Λad(X, t) =

N∑
i=1

BT

(
Di × Γc,i

Γc,i

)
Ti(t)

∥Γc,i∥
, (17)

where we introduced the notation Γc,i = Γ+K ×Di +D′
i,

with Di(X) the position of the intersection point of cable i
with the X-cross section of the rod, in the X-cross-sectional
frame. Note that although Λad depends on ϵ due to the
presence of K in Γc,i, more detailed computations show
that this dependence vanishes as soon as the routings of
the cables are parallel with the rod backbone, while due to
small radius of TACRs, they are very small otherwise. In the
following, the case of a TACR in which the ϵ-dependency
of Λad is neglected, is used as an emblematic example of
the approach. However, beyond this archetypal example, all
the subsequent results can be applied to any continuous
slender robot whose internal stress (elastic and actuated)
can be modeled by a nonlinear version BTΛ = f(ϵ, τ(t)) of
(16), with τ(t) a finite vector of control inputs (e.g., tendon
tensions, chamber pressures...). The key to extending the
approach to this broader context will be provided in a future
remark numbered 4, the goal of which is to capture the ϵ
dependence of (17) throughout the approach3. In summary,
apart from remark 4, a continuum robot will in the following
be considered as a Cosserat rod internally actuated by (16),
where Λad is a dependent function of (X, t) modeling a
technological action, or an idealization of the muscular
activity of a slender animal.

IV. FORWARD STATICS AND DYNAMICS OF CONTINUUM
ROBOTS AS OCPS

We now address the forward statics and dynamics of con-
tinuum robots as some optimal control problems (OCP). For
obvious reasons, the case of a locomotor is only considered
in dynamics. In statics, the cost functional is the potential
energy of the rod, in dynamics, it is the Gauss constraint.

A. Statics of a continuum robot

In statics, a material system subject to conservative forces
is governed by the principle of minimum potential energy,
which states that among all the configurations accessible
to the system, the equilibrium configuration it occupies
must make its potential energy stationary. In the case of
a continuum manipulator subject to external and internal
forces governed by (12) and (16) respectively, its potential
energy takes the form:

U = Uint+Uext =

∫ 1

0

1

2
ϵTHrϵ+ϵTΛad+Ū dX+U+. (18)

Now, giving to the strain ϵ the role of a control variable u,
and to g, that of a state variable, the principle of minimum
potential energy can be reformulated as the following OCP,
where the space variable X replaces the usual time in
control:

3Note that this context is also that of a certain class of fluid-actuated
continuous robots where tendons are replaced by radially incompressible
pressure-controlled tubular chambers [32].
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• OCP1: Find the optimal control u that makes stationary
the cost functional defined by the potential energy:

C(u) =
∫ 1

0

1

2
uTHru+ uTΛad + Ū dX + U+ (19)

under the constraints:

g′ = g(Bu+ ξo)
∧ ⇔ (g−1g′)∨ = (Bu+ ξo)

⇔ ξ = Bu+ ξo , (20)

with g(0) = 14×4, due to the fixed root cross-section •

While (19) defines the potential energy of the continuum
manipulator, (20) simply describes how the pause cross
sections evolve with X . In particular, (20) accounts for the
internal kinematic constraints imposed by the choice of the
selection matrix B, as its inextensibility or unshearibility.
Since the control is unbounded, the necessary conditions that
any optimal u needs to fulfill can be derived by applying
usual variational calculus on the Lie group SE(3), to the
augmented cost functional:

C+ =

∫ 1

0

1

2
uTHru+uTΛad+Ū+(ξ−ξo−Bu)TΛ dX+U+,

(21)
with Λ a field of Lagrange multipliers. This approach avoids
the (Hamiltonian) Lie-Poisson reduction, in favor of the
(Lagrangian) Euler-Poincaré one [33]. In this setting, the
optimal control must satisfy the stationarity condition of the
functional C+ :

δC+ =
∫ 1

0
δuT (Λad +Hru) dX+ (22)

+
∫ 1

0
δŪ+ (δξ −Bδu)TΛ dX + δU+ = 0,

where for any function f(g), variations δf are consequences
of variations δu in (20). Now, since these variations do not
affect X , they generate some pose variations δζ = (g−1δg)∨

which satisfy (5), and (22) can be rewritten:

δC+ =
∫ 1

0
δuT (Λad +Hru) + δŪ dX+∫ 1

0
(δζ ′T + δζTadTξ −Bδu)TΛ dX + δU+ = 0, (23)

which gives, after by-part integration and with the definition
of conservative external forces (12):

0 =
∫ 1

0
δuT (Λad +Hru−BTΛ)dX (24)

−
∫ 1

0
δζT (Λ′ − adTξ Λ + F̄ )dX + δζT (1)(Λ(1)− F+),

where we used the fact that the BC at X = 0, imposes
δζ(0) = (g−1δg)∨(0) = 0. It would be tedious to determine
the variation δζ produced by a given δu, so we choose Λ
to cause the coefficients of δζ in (24) to vanish [26]. After
this choice, (24) only imposes the coefficient of δu to be
zero, and the conditions of stationarity that any optimal
trajectory must satisfy are (remind that ξ = (g−1g′)∨):

• The two Euler-Lagrange equations :(
g′

Λ′

)
=

(
g(ξo +Bu)∧

adTξ Λ− F̄

)
, (25)

• The optimality condition:

BTΛ = Λad +Hru, (26)

• The transversality condition:

Λ(1) = F+. (27)

Once supplemented with the geometric BC: g(0) = 14×4,
this set of equations defines a closed formulation of
the statics of a continuum robot. Finally, solving this
formulation, or solving OCP1, is equivalent. Achieving
such a resolution, numerically at each loading step, i.e.
when the internal actuation stress, the density of external
wrench and the external wrench at the tip Λad, F̄ and
F+ are updated, provides a simulation algorithm of the
quasi-static evolution of a continuum manipulator.

Remark 1: In the passive case of Kirchhoff rods straight
at rest, i.e. when Λad = 0, B = (13×3, 03×3)

T , and
ξ0 = (01×3, 1, 0, 0)

T , this formulation has been derived
from optimal control theory of left-invariant systems on Lie
groups in [2], and applied in robotics [3] with a second
geometric BC instead of (27), in order to address the difficult
problem of controlling the shape of a rod manipulated at its
two ends [34]. In continuum robotics it has been exploited in
[18] and [19], in order to analyse the stability of concentric
tubes robots (CTR), and continuum parallel robots (CPR)
respectively, i.e. continuum robots constituted of several
passive rods actuated by exerting localized torques and
forces on their boundaries. In these two cases, the above first
order optimality conditions are augmented of second order
Legendre-Clebsh conditions, which once supplemented with
a study of conjugate points (the so-called Jacobi conditions),
allow to analyse the stability of these systems [35]. In the
case of systems actuated in a distributed way, as TACRs,
a similar BVP is considered for static simulation, but with
actuation modelled as external forces (see section III), and
with no reference to OC [12].

B. Dynamics of a continuum robot
To extend the previous picture of statics to dynamics, we

must introduce a little known variational principle proposed
by Gauss in 1829 and known today as the ”principle of
least constraint”. In words this principle can be stated as
follows: Let us consider a constrained material system that
has reached at a given time t its current state, then, among
all the accelerations compatible with the constraints that the
system can have at t, that it will have is the closest to that it
would have if all the constraints would be instantaneously
removed at that time [36]. Remarkably, this principle can
ground dynamics as does Hamilton’s principle in Lagrangian
mechanics. However, in contrast to Hamilton’s principle, the
Gauss principle is not an extremal integral principle, but
rather a minimal differential principle, that can be formally
stated at any instant of the motion of a system subject to
constraints (holonomic or not), in the form:

a = argmin
ac

(
1

2
∥ac − af∥2K

)
, (28)
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where ac, af ∈ R3 stand for the acceleration field of the
system, with, and without constraints respectively, while a
stands for its actual acceleration field, and ∥.∥K is the norm
defined by its kinetic energy. The minimized functional is
named the ”Gauss constraint”. Going further into details,
consider a material system of volume element dv with mass
density ρ, applying (28) to this system leads to:

a = argminac

(
1
2

∫
D(ac − af )

2ρ dv
)

= argminac

(∫
D(

1
2ρ a

2
c − aTc f̄)dv

)
, (29)

where f̄ = ρ af denotes the volume density of all external
and internal forces, except for the ”reactive forces” produced
by the constraints4, while the term a2f can be ignored since
it does not depend on the optimization variable ac. In this
equivalent formulation, the first integral term is named the
”acceleration energy” by Gibbs and Appell [23], [24], and
here noted Tacc. By extension, the opposite of the second
term of (29) could be named the ”acceleration power of
external and internal non-reactive forces” and noted Pacc.
By ”non-reactive” forces we here mean those which do not
contribute to force the constraints. Practically, Tacc and Pacc
can be easily computed by replacing first, the velocities by
accelerations in the usual definitions of kinetic energy and
(non-reactive) power, and second, by removing the terms
that only depend on velocities, in the final expressions5.
Applying these computational rules to a continuum robot,
these definitions become (see Appendix 1):

Tacc =
1

2

∫
D
ρ a2cdv =

∫ 1

0

1

2
η̇TMη̇ − η̇T (adTη Mη)dX,

(30)
and:

Pacc =
∫
D aTc f̄dv =∫ 1

0
η̇T F̄ + ξ̈ T

a (Λad −Hrϵ) dX + η̇(1)TF+. (31)

if the robot is a manipulator, or:

Pacc =
∫
D aTc f̄dv =

∫ 1

0
η̇T F̄ + ξ̈ T

a (Λad −Hrϵ) dX+

+η̇(0)TF− + η̇(1)TF+, (32)

if it is a locomotor. Note here, that the constraints being
those imposed by the geometric BCs and the internal
rod kinematics (e.g., inextensibility and unshearability of
a Kirchhoff rod), the reactive forces they produce, do not
appear in Pacc. Applying the Gauss principle to the forward
dynamics of continuum robot, leads to find at each time t
of the robot motion, the strain acceleration ϵ̈ that minimizes
the functional:

1

2

∫
D
(ac − af )

2ρ dv = Tacc − Pacc, (33)

with Tacc and Pacc defined by (30) and (31,32), and where ac
being compatible with Cosserat kinematics (see Appendix

4In the Lagrangian terminology, these reactive forces are the Lagrange
multipliers in charge of forcing the constraints.

5These terms play no role in Gauss principle since they add meaningless
constants to the Gauss constraint.

1), η̇ needs to fulfill the constraints on accelerations deduced
by time-differentiating (3):

η̇′ = −adξη̇ − adξ̇η +Bϵ̈ , η̇(0) = 0, (34)

where ϵ̈ plays the role of a minimal set of accelerations
parameterizing any acceleration field compatible with the
internal constraints imposed by the rod model. Moreover,
interpreting this field of acceleration strain as a control
input u = ξ̈a = ϵ̈, the principle turns to be an optimal
control problem that can be stated as follows.

• OCP2: Find at each time t of the robot motion, the strain
acceleration u that minimizes:

C(u) =
∫ 1

0
1
2 η̇

TMη̇ − η̇T (F̄ + adTη Mη)dX

+
∫ 1

0
uT (Λad −Hrϵ)dX − η̇(1)TF+, (35)

if the robot is a manipulator, or:

C(u) =
∫ 1

0
1
2 η̇

TMη̇ − η̇T (F̄ + adTη Mη)dX

+
∫ 1

0
uT (Λad −Hrϵ)dX − η̇(0)TF− − η̇(1)TF+, (36)

if it is a locomotor. In all cases (manip. or locom.), this has
to be done under the constraint:

η̇′ = −adξη̇ − adξ̇η +Bu , (37)

and the further one:

η̇(0) = 0, (38)

if the robot is a manipulator •

Note that in this formulation, the mechanical state (g, η) of
the robot is frozen at the current time t, which means that
all the (g, η)-dependent functions of (35,36,37) (including
ϵ = BT (g−1g′)∨ − ξao), can be considered as some X-
dependent functions. As a result η̇ stands for the state vector
of an optimal linear-quadratic (LQ)-OCP, in which, like in
the static case, X plays the role of time. Using usual control
notations, the linear state system6 is defined by (37) and
takes the form:

ẋ = A(t)x+B(t)u+ c(t), (39)

with the correspondence between notations as indicated in
table 1, and where the state-independent drift vector c,
can be easily removed by a change of variable on the
accelerations η̇ as done in the discrete case in [25]. As
regards the quadratic cost (35) or (36), it is of the generic
Bolza form [26]:

C(u) =
∫ 1

0
1
2x

TM(t)x dt (40)

−
∫ 1

0
xTh(t) + uT f(t) dt+ ϕ(x(0), x(1)),

where we used the notations of table 1. The control variable
u being unbounded, one can still apply direct variational cal-
culus to obtain the first order necessary conditions that any

6Referring to OC, where the time replaces X , this is a ”time”-variant
linear system.



7OCP2 Gauss principle
u ξ̈a = ϵ̈
t X
h F̄ + adTη Mη
x η̇
f Λad −Hrϵ
M M
A −adξ
B B
ϕ (manip.) −η̇(1)TF+

ϕ (locom.) −η̇(0)TF− − η̇(1)TF+

TABLE I: Table of correspondences between the linear opti-
mal control problem OCP2 and the Gauss ”least constraint”
principle.

optimal control u needs to fulfill [37]. These conditions can
be expressed with the (control) Hamiltonian of a continuum
robot:

H(η̇,Λ, u) = L(η̇, u) + ΛT (−adξη̇ − adξ̇η +Bu), (41)

with L, the Lagrangian of the problem defined as the
function under the integral of (35) or (36), and where, as
in the static case, the stress field Λ defines the costate of
the optimal problem. Then, remarking that the state η̇ now
belongs to a vector space, usual variational calculus provides
the classical first order conditions [26]:

η̇′ =
∂H

∂Λ
, Λ′ = −∂H

∂η̇
,

∂H

∂u
= 0, (42)

as well as the transversality condition:

Λ(1) =
∂ϕ

∂η̇(1)
, (43)

for a manipulator, or:

Λ(0) = − ∂ϕ

∂η̇(0)
, Λ(1) =

∂ϕ

∂η̇(1)
, (44)

for a locomotor. From left to right, the two first equations
of (42) are two Euler-Lagrange ODEs governing the state
η̇ and costate Λ vectors, while the third stands for an
algebraic condition that an optimal control u must hold in
any point of an optimal (η̇,Λ) trajectory. Introducing (41)
into these formulas, and changing the orientation of the
stress, (i.e. Λ into −Λ and Λad into −Λad), which is a
matter of convention7, provides:

• The two Euler-Lagrange equations:(
η̇′

Λ′

)
=

(
−adξ 0
M adTξ

)(
η̇
Λ

)
+

(
−adξ̇η +Bu

−adT
η Mη − F̄

)
. (45)

• The optimality condition:

BTΛ = Λad +Hrϵ. (46)

7Conventionally, in Cosserat theory, Λ(X) represents the wrench of the
internal contact forces exerted by the piece of rod Y > X onto the piece
Y < X , across the X-cross section, while in Gauss principle this is the
opposite convention which holds.

• The transversality and geometric boundary conditions:

Λ(1) = F+ , g(0) = 14×4. (47)

for a manipulator, or:

Λ(0) = −F− , Λ(1) = F+. (48)

for a locomotor. Solving this formulation is equivalent to
solve OCP2, i.e. an optimal control problem, here based on
Gauss principle.

Remark 2: The above formulation (45-48) holds at any
fixed time. To use it continuously along a time interval,
we need to add a further set of equations. To introduce
this point, let us consider the problem of the dynamic
simulation of a manipulator. If at a given time t, one has
solved (45-47). Then u(t) = ϵ̈(t) = ξ̈a(t) is known and can
be time-integrated twice with an explicit scheme, to give
(ξa, ξ̇a)(t + ∆t). Then, to update (45-47) at t + ∆t (and
resume the process), we need to reconstruct (g, η)(t+∆t)
from the knowledge of (ξa, ξ̇a)(t+∆t). This is achieved by
X-integrating from X = 0 to 1, the continuum kinematic
models of transformations and velocities deduced from
(2) and (3) respectively, and initialised with (g, η)(0) =
(14×4, 0): (

g′

η′

)
=

(
gξ̂

−adξη + ξ̇

)
, (49)

where remind that ξ = Bξa + B̄ξc and ξ̇ = Bξ̇a. As a
result, to be used in a simulation time-loop, the above set
of equations (45-48) needs to be supplemented with the
reconstruction equations (49). This is in contrast to OCP1
where the Euler-Lagrange equations contained all the
information required by a (static) simulation, and can be
explained by the fact that, while in statics the mechanical
state and the control state are identical (and coincide with
g), in dynamics, the control state is defined by the pose
acceleration η̇, while the mechanical state is (g, η).

Remark 3: In bio-robotics, the formulation (45-49) with the
reduced stiffness matrix Hr = 0, has been used as a con-
tinuous Newton-Euler (NE) model, to inverse the dynamics
of hyper-redundant locomotors inspired from fish [8] and
snakes [38]. As for discrete rigid multibody systems (MBS),
such a model consists of the NE equations of the rigid bodies
(here the cross sections), and of recursions (here ODEs) on
their pauses, velocities and accelerations8. In Section VI, a
new solution to the inverse dynamics of continuous robots
will be given. In [20], a slightly different formulation is
extensively used for the simulation of continuum robots.
This formulation differs from the one derived above in that
the model of η̇ accelerations (the upper ODE of (45)) is
ignored, while distributed actuation (e.g., by tendons) is
not modeled by Λad, but rather by F̄ , as discussed in
Section III. Inherited from the ocean engineering community

8One can deduce this continuous NE model from that of a rigid
multibody system, by taking an infinite number of infinitely small bodies.
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interested in submarine cables [39], this alternative dynamic
formulation does not derive from an OCP.

OCP Statics: OCP1 Dynamics: OCP2
Cost funct. Potential energy (19) Gauss constraint (35) or (36)
State g ∈ SE(3) η̇ ∈ se(3) ∼= R6

Costate Λ ∈ se(3)⋆ ∼= R6 Λ ∈ se(3)⋆ ∼= R6

State-eq. (25.top) (45.top)
Costate-eq. (25.bottom) (45.bottom)
Optim.-cond. (26) (46)
BVP (25-27) (45-48)

TABLE II: Table of correspondences between the static and
dynamic OCPs.

Before addressing the resolution of OCP1 and OCP2, the
role of mathematical relations and objects from the point of
view of optimal control, are listed in statics and dynamics in
Table 2, which thus allows the two contexts to be compared.

V. RESOLUTION OF THE OCPS FOR SIMULATION OF
CONTINUUM ROBOTS

Using indirect methods for solving OCPs [5], the reso-
lution progresses in two stages. The first consists in using
the optimality condition to remove u from the state and
costate equations. Once this is achieved, these two equa-
tions define an autonomous BVP, which can be solved by
different numerical technics (collocation, shooting method,
finite differences...). This numerical resolution defines the
second stage of the resolution of the OCP. In fine, the
optimality condition can be reused in an inverse way in order
to compute u. We are now going to see how this resolution
method can be applied to static and dynamic simulation of
continuum robots. In section V.A and V.B we first apply
the first stage of the approach in order to produce some
autonomous BVPs for OCP1 and OCP2, whose numerical
resolution is addressed with shooting method in section V.C.

A. Autonomous BVP for OCP1

In the static case, the above approach can be applied with
no difficulty. Indeed, using the condition (26) provides the
elimination relation:

BTΛ = Λad +Hru ⇒ u = H−1
r (BTΛ− Λad), (50)

which once introduced in (25) provides the autonomous
BVP:(

g′

Λ′

)
=

(
g(BH−1

r (BTΛ− Λad) + ξo)
∧

adTξ Λ− F̄

)
, (51)

with BCs:
g(0) = 14×4 , Λ(1) = F+. (52)

Finally, to achieve the resolution of OCP1 governing
statics of a manipulator, this nonlinear BVP needs to
be numerically solved, e.g. with the shooting method as
detailed in the section V.C.

Remark 4: When Λad depends on u = ϵ, the optimality
condition (50) becomes an implicit relation and one cannot
directly use it to eliminate u in the BVP. In such a case, one
could use a further implicit solver, or more simply, reexpress
the BVP (25-27) in terms of strains ϵ, instead of stress Λ,
by directly introducing the full constitutive law (9,16):

Λ = B(Λad +Hrϵ) + B̄Λc, (53)

in the Euler-Lagrange equations (25). Then, remarking that
Λad depends on X both explicitly and implicitly through ϵ,
we have:

Λ′
ad = (∂ϵΛad)ϵ

′ + ∂XΛad. (54)

Using this relation as well as the complementarity relations
on selection matrices BT B̄ = (B̄BT )T = 0na×nc

, BTB =
1na×na

, B̄T B̄ = 1nc×nc
, simple projections on the spaces

of allowed and constrained stress, change (25-26) into the
alternative equivalent form: g′

Λ′
c

ϵ′

 =

 g(ξo +Bϵ)∧

B̄T (adTξ Λ− F̄ )

H̆−1
r (BT (adTξ Λ− F̄ )− F̆ )

 , (55)

where H̆r = (Hr+∂ϵΛad), F̆ = H′
rϵ+∂XΛad, ξ and Λ are

given by (8) and (53) respectively, while (27) now becomes:

ϵ(1) = Hr(1)
−1(BTF+ − Λad(1)) , Λc(1) = B̄TF+.

Finally, note that (55) is now an explicit differential system
with respect to (g,Λc, ϵ), and that such a process can be used
for any continuous manipulator governed by an actuated
nonlinear constitutive law of the form BTΛ = f(ϵ, τ(t)),
where ∂f/∂ϵ is invertible, and τ(t) defines a set of time-
varying control inputs.

B. Autonomous BVP for OCP2

1) Application of LQ optimal control theory to OCP2:
A first approach, strictly consistent with Gauss principle,
would consist in addressing the problem (35-38) as a LQ
optimal control problem. However, it is worth noting that
although C is quadratic with respect to the control state, it
is only linear with respect to u. As a result, (46) does not
provide the expression of u, and this LQ-OCP is said to be
singular (see Appendix 2). Indeed, the expected dependence
requires to differentiate the optimality condition of (42)
twice w.r.t. to X which gives:

u = M−1
aa [(Λad +Hrϵ)

′′ −BT (Dη̇ + EΛ + I)], (56)

where Maa, D, E, and I are X-dependent matrices defined
in Appendix (see eq.(107)). Using (56) in (45) provides an
autonomous BVP. In contrast to the static case, this BVP is
linear with respect to (η̇,Λ) and it could be solved with some
specific methods as the sweep method [26], which avoids
the iterations of the shooting method by postulating the
existence of a linear relationship between state and costate:

∀X ∈ [0, 1] : Λ(X) = S(X)η̇(X) + s(X), (57)
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where S and s define a field of 6 × 6 matrix and 6 × 1
vector respectively, both solutions of a set of Riccati
ODEs given in Appendix 2. In spite of its apparent
simplicity (due to linearity), this approach suffers from
several drawbacks. First, the singular nature of the OCP
requires further derivations of the constitutive law, which
can be numerically difficult to implement. Second, (56) is
ill-conditioned which makes the Riccati equations unstable.
At last, the approach provides ξ̈a, which then would require
to be integrated with an explicit time-integrator (see remark
5), i.e. with integration schemes that are known to be
less stable (than implicit schemes), when applied to the
simulation of nonlinear structural dynamics.

Remark 5: D’Eleuterio and Damaren have shown in [25]
that the Newton-Euler forward dynamics algorithm of Feath-
erstone [40], which allows to find the joint accelerations of
a rigid multibody system from the knowledge of its joint
state and torque variables, is the solution of a LQ problem
similar to the above one, but discrete instead of continuous.
This is in fact not surprising, since as mentioned earlier
(remark 3), a Cosserat rod can be seen as a continuous
multibody system with an infinite number of rigid bodies
(the cross-sections), connected by ”infinitesimal” joints (the
usual vector q of joint angles being replaced by the field
ξa). Usually, the NE forward dynamics algorithm of MBS is
not deduced from optimal control, but rather by proving by
induction, that a sweep-factorization of the type (57), holds
from the tip body to the basis. To go a little further into
details, in the discrete case, (57) becomes Λj = Sj η̇j + sj
where the bodies index j replaces X , and where in the NE
terminology [27], Sj and sj denote the inertia matrix and the
”bias-vector” of the ”articulated body”, whose ”handle” is
the body j. Based on this correspondence, one could expect
to recover in S(X) and s(X) the continuous counterparts of
these discrete concepts. Unfortunately, this is not the case
because of the singular nature of OCP2. In contrast, we
will see in section VI, that the resolution of the inverse
dynamic problem does not suffer of the same difficulties,
and that in this case, the correspondence between the NE
inverse dynamic algorithm of MBS and that provided by
the resolution of (45-48) when ξa is imposed through a
prescribed time-law, is entirely preserved.

2) Regularisation of OCP2 by using an implicit time-
integrator: In order to circumvent the difficulties raised by
the singularity, one can directly use an implicit integration
scheme from the beginning. Such an integration scheme is
applied to the field ξa, and takes the generic form:

ξa,n+1 = a ξ̈a,n+1 + fn , ξ̇a,n+1 = b ξ̈a,n+1 + hn, (58)

where a, b are two time-step dependent scalars, while fn
and hn are some functions of the values of (ξa, ξ̇a, ξ̈a) at
past steps tn, tn−1..., all these scalars and functions being
defined by the specific scheme adopted. Now, reminding that
ξ̈a = u in OCP2, the integrator (58) imposes to any (ξa, ξ̇a)

possibly solution of the dynamic balance at tn+1, to fulfil
the constraints:

ξa = au+ fn , ξ̇a = bu+ hn,

Moreover, thanks to the relations (8) between strains and
the allowed X-rate ξa, one has:

ϵ = au+ fn − ξao , ϵ̇ = bu+ hn , ϵ̈ = u. (59)

Therefore, ϵ now depends on u, and the problem becomes
regular since the optimality condition (46) can be explicitly
used to express u= ϵ̈:

BTΛ− Λad = Hr(au+ fn − ξao) ⇒
u = 1

a (H
−1
r (BTΛ− Λad)− fn + ξao). (60)

Finally, thanks to the implicit integration and the constitutive
law, the OCP becomes solvable. However, in contrast to the
previous case, since ξ = Bϵ+ ξo and ξ̇ = Bϵ̇, now depend
on u through (59), the continuum kinematics (49) loose their
status of reconstruction equations, to join those of the BVP
(45), which is no longer linear, but takes the full nonlinear
form:

g′

η′

η̇′

Λ′

 =


gξ̂

−adξη + ξ̇

−adξη̇ − adξ̇η + ξ̈

adTξ Λ +Mη̇ − adTη Mη − F̄

 , (61)

with BCs:

(g, η, η̇)(0) = (14×4, 0, 0) , Λ(1) = F+. (62)

for a manipulator, or:

Λ(0) = −F− , Λ(1) = F+. (63)

for a locomotor. In all cases, note that ξ, ξ̇ and ξ̈ are removed
from (61), by using the elimination relations:

ξ= Bϵ+ ξo = BH−1
r (BTΛ− Λad) + ξo,

ξ̇= Bϵ̇ = B( ba (H
−1
r (BTΛ− Λad)− fn + ξao) + hn),

ξ̈= Bϵ̈ = 1
aB(H−1

r (BTΛ− Λad)− fn + ξao), (64)

which are directly deduced from (8) and (59,60). Note that
as this is expected, when removing all the velocities and
accelerations from this formulation applied to a manipulator,
the autonomous dynamic BVP (61,62) is changed into the
static BVP (51,52). In the case of a locomotor, there are
not enough BCs to fix the solutions of (61) and in this
primary formulation, the BVP is undetermined. However,
we shall see in section 3 how this indetermination can be
removed with an implicit time-integration scheme of the
net motion dynamics. Finally, as in the static case, these
nonlinear BVPs will be solved with the shooting method
in the next section.

Remark 6: In the wake of works on simulation of towed
cables and rods [28], a similar but different approach
was proposed to address the issue of continuum robots
simulation in [20]. In this alternative approach, the
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continuous model of accelerations, i.e. the third ODE
(top-down) of (61) being ignored (see remark 3), η̇ in the
costate ODE of (61), is removed with an implicit scheme
of the form η̇ = c η + fη,n (with c and fη,n, a scalar and
a past-dependent function of (η, η̇), fixed by the choice
of the scheme). Otherwise, ξ̇ is removed from the second
ODE of (61) as above. This integration is hybrid since it
involves strain (relative) and pause (absolute) accelerations,
and hides the nature of the configuration space on which
the model is based. In contrast, the above formulation
based on Gauss principle, is consistently based on the
strain configuration variables. Beyond these modeling
considerations, we will see later that these two alternatives
are not totally equivalent numerically.

Remark 7: In mechanics, an extensively used one-step
implicit scheme is the Newmark implicit scheme. It has been
originally developed for systems governed by Newtonian
second order ODEs, and enriched along time of several
adaptations (HHT, α-methods...), to tackle different issues
related to nonlinear structural dynamics [41]. It is defined
for any vector of generalized coordinates q ∈ Rn, by (58),
in which ξa is replaced by q and where we impose:

a = β∆t2 , b = γ∆t,

fn = qn +∆tq̇n +∆t2
(
1
2 − β

)
q̈n,

hn = q̇n +∆t(1− γ)q̈n, (65)

with ∆t is the time step, and (β, γ) are two constant
parameters tuning stability and dissipation respectively,
while (β, γ) = (1/4, 1/2) ensures second order accuracy
with no damping, a choice that will be systematically
adopted in the following.

Remark 8: Finally, the above regularization of OCP2 is
based on the inversion of the constitutive law and the use of
an implicit integrator of strain accelerations. Now, one can
easily reflect the consequences of these two ingredients on
the starting cost function. To this end, it suffices to introduce
the first of the relations (59) in the term ϵ̈THrϵ of (35) or
(36), to realize that this regularization consists in adding to
the Gauss cost functional, a quadratic term with respect to
control of the form:

Cr = auTHru, (66)

where a is proportional to ∆t2 (for the Newmark scheme
a = β∆t2). Therefore, as soon as Hr = 0, as for a
continuous rigid chain, the problem becomes again singular
and the approach aborts. For similar reasons, decreasing ∆t
also put the approach in trouble, and there exists a lower
bound of ∆t, noted ∆tc (”c” for ”critical”), beyond which
the method becomes unfeasible. From the point of view of
optimal control, in such cases, the cost does not penalize
enough the control which can take infinite values. This
limit of the approach depends on the numerical methods
used to solve the OCP, the machine accuracy, and the

physical parameters of the rod as this will be illustrated later.

3) Implicit time-integration of a locomotor: In the case
of a locomotor, the root cross-section X = 0 is free
to move in space and the BVP (61,63) is undetermined,
since it consists of 4 × 6 = 24 independent ODEs for
2× 6 = 12 BCs. To remove this indetermination, it suffices
to time integrate the dynamic of g(0) that we note g0, with
an implicit time-integrator. As in the case of strains (see
(58)), such an integrator allows the poses and velocities
(g, η)(0) = (g0, η0) to be deduced from the accelerations
η̇(0) = η̇0, and so the 3×6 kinematic ODEs of (61) require
only 6 BCs. Then, since the remaining ODEs on Λ require
6 BCs, the 12 BCs (63) are sufficient in number to ensure
BVP resolution. This integrator can be designed without
resorting to any coordinate chart of SO(3). To that end,
we first replace the root cross-section pauses g0 of SE(3),
by their orientation and position (R0, r0) ∈ SO(3) × R3,
considered as a Lie group with internal composition law
◦, such that (R1, r1) ◦ (R2, r2) = (R1R2, r1 + r2). Then,
we use the usual Newmark scheme on linear spaces for the
positional component r0, i.e.:

r0,n+1 = a r̈0,n+1 + fn , ṙ0,n+1 = b r̈0,n+1 + hn, (67)

with a, b, fn, hn defined by formulas (65) in which q is
replaced by r0, while for R0, we use an extension of the
same scheme on SO(3) originally proposed in [15]:

Θ0,n+1 = aΩ̇0,n+1 + kn , Ω0,n+1 = bΩ̇0,n+1 + ln, (68)

with (a, b) given by (65), and:

kn = ∆tΩ0,n +∆t2( 12 − β)Ω̇0,n, (69)

ln = Ω0,n +∆t(1− γ)Ω̇0,n ,

and where the vector Θ0,n+1 is defined at any time step by:

R0,n+1 = R0,n exp(Θ̂0,n+1), (70)

with ”exp” denoting the exponential map of SO(3). Note
that this scheme can be simply deduced from the usual
Newmark integrator in vector space defined by (67) and
(65). To that end, it suffices to make appear the dis-
placement r0,n+1 − r0,n between two steps in the first
of the relations (67), and then when shifting from R3 to
SO(3), to change this displacement into the translation
along the one-parameter subgroup of SO(3) defined by (70),
while keeping all velocities and accelerations expressed in
the mobile frame, consistently with left-invariance of rigid
body dynamics on SO(3) [42]. Now, removing the index
n+1, we have the kinematic relations between SE(3) and
SO(3)× R3:

g0 =

(
R0,n exp(Θ̂0) r0

01×3 1

)
, (71)

η0 =

(
Ω0

RT
0 ṙ0

)
, η̇0 =

(
Ω̇0

RT
0 r̈0 + (RT

0 ṙ0)× Ω0

)
.

Finally, introducing (67) and (68) in these relations, allows
expressing (g0, η0, η̇0) at any time beyond tn, as some
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functions of ν0 = (ΘT

0 , r
T
0 )

T ∈ R6 only (the past values
of pause, velocity and accelerations being fixed):

η0 = A(ν0) , η̇0 = B(ν0) , g0 = C(ν0), (72)

where the third of these relations is simply given by (71),
while the two others are detailed in Appendix 3. Note that,
as with any implicit scheme, these relations can be used to
transform the differential equations of motion (here the net
motions), into nonlinear algebraic equations of positional
variables only, that can be treated at each time-step of a
simulation, with an iterative root-finder as the Levenberg-
Marquardt (LM) algorithm.

C. Shooting method for OCP1 and OCP2

To solve the autonomous BVPs (51,52) and (61-64), we
apply the shooting method, which allows to solve a BVP
through a sequence of initial value problems (IVPs) whose
solution converges toward that of the BVP. Practically, one
applies an initial guess of the unknown BCs at X = 0
(proximal end) that is corrected until the integrated solution
of the ODEs of the BVP initialized with these proximal BCs
(which so defines an IVP), matches with the known (distal)
BCs at X = 1. This is achieved in the correction loop of
the LM algorithm that formally reads, with σ the adaptive
damping:

xk+1 = xk +
(
(JJT )(xk) + σ1

)−1
JT (xk)res(x

k), (73)

where k stands for the index of the iteration, x is the vector
of the unknown proximal BCs, res(x) the residual vector of
the known distal BCs, J = (∂res/∂x) its Jacobian, x and
res being both related by the numerical forward integration
(i.e. from X = 0 to 1), of the X-ODEs of the BVP.

Subsequently, the method is applied to the BVP of OCP1,
as well as to that of OCP2 for a manipulator and for
a locomotor. Analysing the known and unknown BCs of
each of these cases, and using the Newmark scheme on
SO(3) × R3 for a locomotor, allows to instantiate x and
res(x) according to table 3. Going into further details, to

OCP Statics: OCP1 Dynamics: OCP2 (manip.)
Unknown BCs x = Λ(0) x = Λ(0)
Residual vector res = Λ(1)− F+ res = Λ(1)− F+

OCP Dynamics: OCP2 (locom.)
Unknown BCs x = ν0
Residual vector res = Λ(1)− F+

TABLE III: Table of instantiation of the shooting method
for our three OCPs.

calculate the residual vector of OCP1, one first integrates
(51) from X = 0 to 1, starting with initial conditions:

(g,Λ)(0) = (14×4, x), (74)

and then compute res(x) = Λ(1)−F+. The residual of OCP2
(manip.) is calculated by integrating (61,64) from X = 0 to
1, starting from:

(g, η, η̇,Λ)(0) = (14×4, 0, 0, x), (75)

and compute res(x) = Λ(1)− F+. For the OCP2 (locom.),
we do the same, but starting with initial conditions com-
patible with the constraints (72) imposed by the implicit
integrator (67-70), i.e.:

(g, η, η̇,Λ)(0) = (C(x), A(x), B(x),−F−), (76)

and computing at the distal end: res(x) = Λ(1) − F+.
Finally, at any time-step (or ”loading-step” in statics),
once the LM loop has converged (i.e. ∥res∥ is below a
given threshold), ξ in statics, and (ξ, ξ̇, ξ̈) in dynamics, are
updated with (64). In dynamics, they are stored for the next
step, in fn and hn of (65). The ”loading” or time-step is
then incremented, and the shooting algorithm resumes. The
initial guess of this algorithm can be defined as follows.
For a manipulator, x = Λ(0) is initialized by its value at
the previous loading or time-step, while for a locomotor,
one can use one of the usual predictors of the Newmark
scheme as the inertial (ballistic) one, which consists in
choosing (r0,n+1, ṙ0,n+1) and (Θ0,n+1,Ω0,n+1) such that
r̈0,n+1 and Ω̇0,n+1 are forced to zero in (67) and (68)
respectively.

To complete the picture, the LM loop (73) needs the
Jacobian of the residual vector J = (∂res/∂x), to be
calculated. This can be achieved by first linearizing each of
the IVP, to get their tangent IVP, that we note here TIVP.
We now give these TIVP for OCP1, OCP2 (manip.) and
OCP2 (locom.). The first one is given by the linearization
(or second variation ∆) of (25-27), the second and the
third by that of (61-64). Note that all these TIVPs are fed
with different initial perturbative conditions at X = 0 that
do not affect X in any case (i.e. ∆X = 0). Therefore,
the second variation ∆ behaves as the first one δ, and
fulfills the commutation relation (5). Defining ∆ζ such that
∆g = g∆ζ̂, the TIVPs are defined as follows:

• The TIVP of OCP1 is defined by gathering (51) and:(
∆ζ ′

∆Λ′

)
=

(
−adξ∆ζ +∆ξ

adTξ ∆Λ+ adT∆ξΛ−∆F̄ext

)
, (77)

where from (64), and since ∆Λad = 0:

∆ξ = BH−1
r BT∆Λ, (78)

and with ICs given by (74), and:

(∆ζ,∆Λ)(0) = (0,∆x). (79)

• The TIVP of OCP2 is defined by gathering (61) and:
∆ζ ′

∆η′

∆η̇′

∆Λ′

 =


−adξ∆ζ +∆ξ

−adξ∆η − ad∆ξη +∆ξ̇
−adξ∆η̇ − adξ̇∆η

M∆η̇ − adTη M∆η
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+


0
0

−ad∆ξ̇η − ad∆ξη̇ +∆ξ̈

−adT∆ηMη + adTξ ∆Λ+ adT∆ξΛ−∆F̄ext

 , (80)

with ∆ξ, ∆ξ̇, and ∆ξ̈, given by the variation of (64):

∆ξ = BH−1
r BT∆Λ , ∆ξ̇ =

b

a
∆ξ , ∆ξ̈ =

1

a
∆ξ. (81)

And with ICs given by (75), and:

(∆ζ,∆η,∆η̇,∆Λ)(0) = (0, 0, 0,∆x). (82)

in the case of a manipulator, and by (76) and:

(∆ζ,∆η,∆η̇,∆Λ)(0) = (83)
((∂C/∂x)∆x, (∂A/∂x)∆x, (∂B/∂x)∆x,−∆F−).

in the case of a locomotor, where we used the tangent
maps (Jacobian matrices) to (72) detailed in Appendix
3. Finally, integrating these linearized systems of ODEs
from X = 0 to 1, and keeping only the variation of the
known BCs in X = 1, provides ∆res = ∆Λ(1) − ∆F+,
for each of them, where ∆F+, like ∆F− and ∆F̄ , can
be calculated from the variation (4) of a possibly state
dependent model of the tip wrench F+ (resp. F− and F̄ ).
By simple identification of this numerical computation with
the explicit matrix relation ∆res = (∂res/∂x)∆x, one can
infer the following computational process of J = (∂res/∂x).
Feeding the above linear ODEs with unit initial conditions
∆x = δi, i = 1, 2, ..., 6, with δi a vector of zero entries,
except the ith which is fixed to 1, allows the ith column
of the Jacobian to be computed. Thus resuming this process
column after column, completely fills the matrix.

VI. INVERSE STATICS AND DYNAMICS OF CONTINUUM
ROBOTS

In the above development, we addressed the forward static
and dynamic models, which can be formally defined as
the input-output maps: ξa = FSM(state,Λad) and ξ̈a =
FDM(state,Λad) respectively, where in statics the state of
the rod is defined by g or ξa (through integration of g′ = gξ̂),
and in dynamics by (ξa, ξ̇a), or equivalently (g, η) thanks
to the reconstruction equations (49). Inverting the role of
inputs and outputs defines the inverse static and dynamic
models: Λa = ISM(state, ξad) and Λa = IDM(state, ξ̈ad)
respectively. Solving these inverse problems is much more
simple than solving their forward counterparts. Indeed, in
this case, u = ϵ is known in (25), and u = ϵ̈ is known in
(45), which so directly define two autonomous BVPs.

A. Inverse statics of a continuum manipulator

In the static case, it suffices to impose ξa = ξad in
the state ODE of (25) that is integrated forward, and to
reintroduce g (which appears in F̄ (g) and F+(g)) in the co-
state equation which is integrated backward from X = 1,
where Λ(1) = F+(g), to X = 0. This provides the field
Λ along the entire rod, which is then used to calculate

Λad = BTΛ − Hrϵ. Note that this algorithm in two
passes is the continuum version of the Luh computed torque
algorithm (here in statics) of rigid manipulators [43].

B. Inverse dynamics of continuum robots

In the dynamic case, we need to find the two fields
(η̇,Λ) solution of the system of ODEs (45) with BCs (47)
or (48) where u = ξ̈a = ξ̈ad while other state-dependent
fields are considered as functions of X only (e.g. updated
at each time t of a time loop fed by a prescribed motion
t 7→ (ξad, ξ̇ad, ξ̈ad)(t)). This problem defines an autonomous
linear BVP with state and costate (η̇,Λ) in the generic
form (108) of Appendix 2. As introduced in section V.B,
one can then apply the backward sweep method, which in
both cases (manipulator or locomotor), consists in exploiting
the factorization (57). Then, using the identification and
elimination process introduced in Appendix 2, one obtains
that S and s are solutions of the Riccati ODEs:

S′ = M+ adTξ S + Sadξ,

s′ = adTξ s− F̃ + S(adξ̇η −Bξ̈ad), (84)

where we introduced the notation F̃ = F̄ +adTη Mη. These
two ODEs need to be X-integrated backward with initial
conditions S(1) = 0 and s(1) = Λ(1) = F+. Once S and s
known in X = 0, if the robot is a locomotor, η̇(0) = η̇0 is
an unknown of the problem that one has to compute from
(57) in X = 0 and the first of the BCs of (48):

Λ(0) = −F− = S(0)η̇0 + s(0)

⇒ η̇0 = −S(0)−1(s(0) + F−). (85)

If the robot is a manipulator, the same process can be
applied but directly with η̇(0) = 0. Finally, this resolution
can be implemented through the following (inverse)
algorithm which proceeds in three passes. First integrate
forward (from 0 to 1) the reconstruction equations (49),
then integrate backward (from 1 to 0) the two Riccati’s
ODEs (84), starting with initial conditions S(1) = 0 and
s(1) = Λ(1) = F+. Once S and s known over [0, 1], one
can calculate η̇ by forward integrating the state equation
of (45) initialised with η̇(0) = 0, for a manipulator,
and (85), for a locomotor. While integrating the state,
calculate the costate field Λ with (57) an the actuated stress
Λad = BTΛ − Hrϵ, which is the output of the inverse
dynamics.

Remark 9: This inverse algorithm is new, and in particular
different from, though equivalent to, the one in [8]. When
Hr = 0na×na

, it is nothing more than a continuous version
of the inverse algorithm of MBS based on the composite
bodies [27]. As its discrete homologous, it is structured
into similar functional steps, where the 3 (2 forward and
1 backward) recursions on body indices of the discrete
case, are replaced by 3 ODEs (2 forward and 1 backward)
on the continuous label X . In the terminology of MBS
[27], S(X) and s(X), solutions of (84), are the exact
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continuous counterpart of the inertia matrices and external-
inertia wrenches of the composite bodies of a MBS, i.e.,
they define the inertia matrix and wrench with respect to the
X-cross-sectional frame, of a composite beam constituted of
all the cross-sections included into [X, 1] and frozen in their
current configuration. Going further, using standard relations
between ad and Ad operators [44], allows integrating (84),
which yields:

S(X) =
∫X

1
Ad−T

h MAd−1
h dY , s(X) = Ad−T

h(1)F+

−
∫X

1
Ad−T

h (F̃ + S(Bξ̈ad − adξ̇η))dY, (86)

where h = g−1(X)g(Y ) here represents the transformation
mapping the X-cross-sectional frame onto the Y -one
(Y ∈ [X, 1]). Examining (86) confirms that S(X) and
s(X) represent the sum of all the cross-sectional inertia
matrices and external-inertia wrenches along the rigid
piece of beam [X, 1], consistently carried from their local
Y -frame to the X-frame.

Remark 10: As formulated above, the inverse problem is
related to the input-output map Λad → ξa in statics, and
Λad → ξ̈a in dynamics. In practise, these inverse static and
dynamic models need to be supplemented with the inversion
of the map τ → Λad, where τ is a finite set of actuation
inputs that depends on the technology of the actuation.
For example, in the case of TACRs, τ = (T1, T2, ...TN )T

represents the vector of tendon tensions in the equation
(17), and this additional map can be inverted by generalized
inversion as illustrated in [17].

VII. NUMERICAL APPLICATIONS

To illustrate the above simulation approach, we consider
four tests. We start with a tendon-actuated continuum manip-
ulator statically bent by pulling one tendon (test 1), and sud-
denly released in gravity (test 2). In addition to providing a
validation against other simulators, this second test allows to
discuss the behavior of the dynamic simulator. The third test
is inspired of the bench of the flying beam initially proposed
by Simo to validate the model of rigid overall motions in
his geometrically exact FEM (GE-FEM) [15]. This third test
allows to validate our geometric integrator on SO(3)× R3

as well as the OC-based shooting method applied to a rod
free at both ends. In a last example (test 4), the approach is
applied to the simulation of an undulatory swimmer at high
Reynolds numbers internally actuated with a torque field.
All the results are compared to those provided by another
(totally different) simulator recently validated against GE-
FEM in [17]. In this simulator, the strains are projected
on a truncated basis of Legendre polynomials (modes),
whose coefficients are governed by Lagrangian dynamics
coupled to those of the pause of the root (parameterized
with quaternions), all being explicitly time-integrated with
ODE45 of Matlab. The same integrator (ODE45) is here
used to X-integrate the IVPs and TIVPs of the shooting
method. As regards time-integration, we use the previously

Fig. 2: A rod is deformed by pulling one tendon of a conver-
gent (a) and spiral (b) pair. Snapshots of static equilibrium
configurations obtained by solving OCP1 with the shooting
method applied to the BVP (51,52).

introduced Newmark schemes with (β, γ) = (1/4, 1/2)
which ensures second order accuracy and no damping.

A. Test 1: a TACR statically deformed

We consider a single piece TACR of length l = 0.4m
and disk diameters 2Rd = 0.04m, equipped with a pair of
convergent and spiraled tendons [17]. Initially aligned with
gravity (i.e. with the vertical), it is deformed by pulling
one of the two tendons (indexed by 1, 2), in the quasi-static
regime. Simulations are carried out by applying the shooting
method to the autonomous BVP (51,52) of OCP1 with the
actuation model (17) in which Γ = E1 = (1, 0, 0)T , the in-
fluence of ϵ is neglected, while D1 = (0, Rd(1−(X/l)), 0)T

and D1 = (0, Rd cos(2πX/l), Rd sin(2πX/l))T (1st con-
vergent and spiral routing). Figure 2 displays the converged
equilibrium configurations when incrementing the pulling
force T1 step by step from 0 to 67.5N. The arm is modelled
by a rod with ρ = 8000kg.m−3 and E = 207GPa, which are
typical of continuum robots [20]. In these examples, which
are representative of all others here not reported, the two
simulators fit exactly in the first case, and very well (error
at the tip ≃ 1.4%), in the second. Numerically, the shooting
method just requires a few iterations of the LM algorithm
of Matlab fsolve.

B. Test 2: TACR bent and released in gravity

We reconsider the TACR of test 1 in static equilibrium
under the effect of a convergent tendon with a tension
T1. At t = 0s, the tendon is instantly cut and the rod
is released under the effect of its stiffness and gravity.
Solving the OCP2 of this manipulator at each time step,
allows to simulate its temporal evolution. Figure 3(a) shows
the time plots of the tip of the rod, here released from
a weakly deformed static configuration (T1 = 15N). The
simulation is performed over 1s, with ∆t = 1ms. Once
again, the results obtained with the shooting method (in
blue), here applied to the BVP (61,62), are very close to
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Fig. 3: Rod of test 1 pulled and released from a weakly de-
formed configuration: (a) Time-evolution of the tip position
obtained with the shooting method applied to the BVP of
OCP2 with (blue), and without acceleration equation (red),
and with the reference simulator (green). (b) Snapshots
illustrating the numerical instability due to ∆t < ∆t⋆c .

those provided by the Lagrangian simulator of [17] (green)
which here needs 5 modes to achieve convergence. Beyond
validation, the same example was tested under many other
conditions in order to obtain an overview of the approach,
which can be summarized as follows. First, we remarked
that the shooting method is much more difficult to apply in
dynamics than in statics and requires good initial guesses to
converge. Otherwise, the IVPs defined by (61) can blow up
before reaching the distal end. These difficulties increase in
the regime of finite deformations and/or strong transients,
and the method cannot generally be applied in a single
shoot, but rather in several ones using the ”multiple” or
”modified shooting method” of [45]. In all that follows, we
have used a non adaptive version of the latter approach with
10 intermediate shoots. Second, as mentioned in remark 8,
decreasing the time-step ∆t tends to degrade the numerical
convergence of the LM algorithm. Calculating the Jacobian
of the residual vector with the TIVPs as explained in section
V.C, contributes to delay divergence, but there always exists
a critical time-step ∆tc below which the method fails. In
order to estimate the value of ∆tc, we started by considering
the rod of test 1. For the sake of concision, we use the
notations (EI, ρA, l) = (k, µ, l), while any quantity related
to this reference rod is indicated with a star. Based on
successive numerical trials and errors, we noticed that the
numerical instability of the simulator is not a threshold
instability, as can be a standard CFL condition [46], but
rather an instability with a ”transitional” regime. After a
finer analysis, we obtained that 0.5ms ≲ ∆t⋆c ≲ 1ms. From
this first result, we tried to determine how ∆tc varies when
the physical parameters (k, µ, l) change. The results of this
study led us to the following scaling relationships:

∆tc
∆t⋆c

∼
√

k⋆
k
,

∆tc
∆t⋆c

∼
√

µ

µ⋆
,

∆tc
∆t⋆c

∼
(

l

l⋆

)2

, (87)

which suggest that ∆tc follows a law of the form:

∆tc ∝ χ l2
√

ρA

EI
, (88)

where χ is a dimensionless pre-factor. It seems quite natural
that ∆tc evolves in this way because we recognize in

Fig. 4: Rod of test 1 with k = k⋆/100, pulled with
an horizontal force and released from a highly deformed
configuration: Snapshots (a), and time-evolution of the tip
coordinates (b). The color code is the same as in figure 3.a.

the factor of χ, the characteristic time of a linear Euler-
Bernoulli beam [47]. In this regard, note that such a result
could also have been obtained by a dimensional analysis
involving only the parameters k, µ and l. It can be seen,
however, that the pre-factor χ seems to depend on other
physical factors as the conditions of the test (imposed forces
and motions), and also non-physical ones as the adopted
numerical solver, and the machine accuracy. For example,
in the conditions of the test considered here, the χ factor
can be estimated at 1/100. It is also worth noting that the
method proposed here is based on an OCP which tends
to be singular when the matrix aHr of (66) becomes ill-
conditioned (see remark 8). In the present context aHr is
of the order of EI∆t2, which suggests once again that ∆tc
evolves inversely with the square root of k = EI , as the first
relation (87) does. We also noted that ∆tc is little influenced
by the amplitude of the deformations. Figure 3(b) shows
a few snapshots (every 15ms), of a simulation of the star
rod released from a weakly deformed configuration with
∆t = 0.5ms< ∆t⋆c . Around 0.18s, the rod seems loosing its
stiffness and some fast undulations appear at its distal tip and
increase up to destabilize simulation. Based on remark 6,
we also applied the same shooting approach but to the BVP
defined by removing from (61) the continuous model of
accelerations (the third ODE from top to bottom). To achieve
comparison in equivalent conditions of time-integration, we
used a one-step Newmark-like implicit approximation of
time-derivatives as proposed in [28], i.e., we approximate
ϵ̇ and η̇ in (61) by:

ϵ̇ = c ϵ+ fϵ,n , η̇ = c η + fη,n, (89)

where c = (α∆t)−1, fz,n = α(α − 1)−1żn − c zn, for
z = ϵ and z = η, and with α a parameter that tunes
numerical damping. In the results here reported we took
α = 1/2, which ensures no damping [28], as this is the case
of the Newmark-integrator (58,65). Note that in this case,
(89) also coincides with the trapezoidal approximation of
[20], which has a second order accuracy like our Newmark
integrator. In Figure 4, we have plotted the results of a 1s
simulation (snapshots and time plots of the tip position),
performed with both simulators based on shooting, and
with the Lagrangian approach of [17]. The rod is the
reference (star) rod with a material one hundred times softer
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(k = k⋆/100). It is initially bent with a horizontal tip force
of 0.4N, and released at t = 0s. As observed in these
plots (which are representative of all others performed in the
regime of finite deformations), the full BVP-based shooting
approach fits perfectly with the Lagrangian simulator, while
the second one (based on the BVP without the acceler-
ations model) shows small discrepancies. Note that such
differences also appear in the small deformation regime,
but after many beats (see red plots of figure 3(a)). Despite
this, the deformations of both approaches remain in good
agreement with the reference simulator. Another key point
of comparison between the two approaches is that they are
constrained by critical time steps of almost identical values,
suggesting that the interpretation of ∆tc based on Gauss
least constraint principle and OCT also holds for the second
shooting approach.

C. Test 3: a flexible flying stick

This test is directly inspired by the GE-FEM bench of the
flying rod, recently simulated by applying the Lagrangian
approach of [17]. In this test, a straight rod is initially
tilted as illustrated in figure 5.a. Gravity is ignored, and
at t = 0s, a force and a torque are applied to one of its tips
(X = 1) according to the time-profiles of figure 5.a, which
are entirely quantified by c2,max. The stick is thus catapulted
in space in a complex three-dimensional movement. The rod
here considered has the material properties of the slender
swimmer tested in the next example (1m length, 0.1m
diameter, ρ = 103kg.m−3, E = G = 106Pa). In Figures 5.b
and c, we plotted the time evolution of the coordinates of
the center of mass of the stick and a sequence of snapshots
every 0.2s for a 5s simulation with c2,max = 10.7Nm.
It is obtained with the shooting method applied to the
BVP (61,63) with the Kirchhoff rod model. As shown in
these graphs, the results obtained with the shooting-based
approach (here with ∆t = 10ms > ∆tc ≃ 3ms) are in very
good agreement with those of the simulator of [17], which
thus confirms its applicability to three-dimensional floating
basis systems, time-integrated with our implicit Newmark-
scheme on SO(3)× R3.

D. Test 4: a continuum bio-inspired swimmer

We now apply the approach to a bio-inspired locomotor,
namely a continuum swimmer mimicking a fish. The fish
body is modelled as a neutrally buoyant 1m length Kirchhoff
rod composed of elliptical cross sections as detailed in
[48] and illustrated in figure 6. The hydrodynamic forces
are modelled with Lighthill’s theory [49], in the geometric
setting of [48],[50]. In this context, we use the change of
variable on stress:

Λ⋆ = V1Maη −
(

03×1

TfE1

)
, Tf =

1

2
ηTMaη, (90)

where V1 is the first (axial) component of ṙ in the cross-
sectional frame, E1 = (1, 0, 0)T , while Ma stands for the
6× 6 added mass matrix of the elliptic cross-sections, and

  

Fig. 5: Flying stick: (a) Conditions of the test. (b) Mass cen-
ter coordinates vs time. (c) Snapshots over 5s. Blue/green:
shooting/Lagrangian based simulator.

Fig. 6: (a) Morphology of the swimmer. (b) V1(t) given by
the FDM (red/shooting) and the IDM (blue/Riccati ODEs).

Tf is the corresponding density of kinetic energy along
the body. With these notations, the dynamic model of the
swimming fish is given by that of a Cosserat rod (in
vacuum) in which Λ needs to be replaced by Λ⋆, M by
M⋆ = M+Ma, and with the BCs:

Λ⋆(0) = 0 , Λ⋆(1) =

[
V1Maη −

(
03×1

TfE1

)]
(1). (91)

To generate a swimming gait, we take an active constitutive
law (16) in the form of the distributed proportional control:

Λa = Λa,d +Hrξa = Hr(ξa − ξa,d), (92)

where (X, t) ∈ [0, 1] × R+ 7→ ξa,d(X, t) ∈ Rna defines a
desired time-evolution of the shape. In the test here reported,
we consider a planar swimming gait defined by ξa,d(X, t) =
(0,Kd,2, 0)(X, t) with:

Kd,2(X, t) = fr(t)fw(X, t), (93)

where we used two functions. One is a sinusoid ramp time-
function fr of the form:

fr(t) = 0 , 0 ≤ t < ti , fr(t) = 1 , t ≥ tf , (94)

fr(t) =
t− ti
tf − ti

− 1

2π
sin

(
2π

t− ti
tf − ti

)
, ti ≤ t < tf,
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Fig. 7: Snapshots of a continuum undulatory swimmer
torque-controlled with an active constitutive law.

which is twice continuously differentiable and thereby guar-
antees smooth time transitions. The second, is a space-time
(backward) wave function fw defined ∀(X, t) ∈ [0, 1]×R+:

fw(X, t) = (a0+a1X+a2X
2) sin

[
2π

(
X

λ
− t

T

)]
, (95)

in which λ is the wave length, T is the period, and a0, a1
and a2 are the coefficients of a second order polynomial
amplitude envelop. To simulate this swimmer, we applied
the shooting algorithm to the BVP (61,63) in which Λ is
replaced by Λ⋆ and F± defined by (91). We assume the fish
has no stiffness except that of the control law (92). Noting
from (90) and B = (13×3, 03×3)

T (the fish is modelled by a
Kirchhoff rod), that BTΛ = BTΛ⋆, the elimination relations
are still (64), in which Λad = −Hrξa,d(t), ξa,o = 03×1.
To illustrate the approach on a representative example,
we reported in figures 6(b) and 7, the time evolution of
the head axial velocity V1(X = 0) (first component of
ṙ(0) in the mobile frame of the cross-section X = 0),
and a sequence of snapshots obtained with the shape law
(93-95) with (a0, a1, a2) = (1, 0.5, 2), (ti, tf ) = (0, 1),
(λ, T ) = (1, 1) (SI Units). The time-step of the test is
∆t = 10ms > ∆tc ≃ 1ms. The control stiffness along the
body is Hr = diag(0, 50, 0), which is enough to ensure ξa
to perfectly track ξad. Hence, as illustrated in figure 6(b), the
motion of figure 7 matches with that obtained by directly
shape-controlling the swimmer with the inverse algorithm
of section VI.B, i.e. by time-integrating (85) with ODE45,
where S(0) and s(0) are computed at each time step, by
X-integrating the Riccati ODEs (84).

VIII. CONCLUSION

In this paper, we have studied the relationship between
modeling and simulation of continuous robots and optimal
control theory. Based on the Cosserat model, we have shown
that beyond the static case of passive rods actuated by ex-
ternal forces, one can integrate in the optimal control theory
the modeling and simulation of continuous robots actuated
in a distributed manner, both in the quasi-static and dynamic
regimes. In statics, this extension is based on the minimum
potential energy principle applied to a Cosserat rod in which
the actuation is modeled by an internal stress field through
an extended active constitutive law. In dynamics, it is
achieved by invoking Gauss’s principle of least constraint, a
variational principle rarely used in rational mechanics, more
oriented towards Hamilton’s and D’Alembert’s principle.
Using these two principles, the statics and dynamics of

continuous manipulators and bioinspired locomotors have
been formulated into OCP based BVPs that have been
solved at each step of a simulation loop with the shooting
method, as this is generally done in the continuum robotics
community. Remarkably, the OC perspective has shown that
while the static optimal control problem is well-posed, the
dynamic problem is inherently singular. In the context of
numerical simulation, this singularity can be circumvented
by using an implicit time integrator and the invertibility of
the constitutive law. However, this regularization process
imposes a certain limit to the time-step, below which the
approach fails. Although this phenomenon has been noticed
as one of the major difficulties of the shooting-based ap-
proach applied to dynamics, it has so far been interpreted
as a numerical artifact of the method due to the rounding
errors of the machine. On the contrary, the OC viewpoint
shows that this limitation of the method is in fact due to
the intrinsic structure of the dynamic OCP. In addition, OC
also shows that the dynamic BVP must contain the con-
tinuous acceleration model, which is systematically omitted
in the shooting-based approaches used so far to solve the
forward dynamics of Cosserat rods. As our numerical tests
show, adding this model to the dynamic BVP improves the
accuracy of the simulations. Moreover, as a by-product of
this improvement, the full BVP provided by OC turns to be
a continuous version of the Newton-Euler model of rigid
robots, thus linking the practices of continuous robotics
with the discrete dynamics of rigid robots. Beyond the
case of manipulators, the entire approach was extended to
locomotors and applied to a continuum swimmer inspired
by slender fish. In the context of bio-inspired robotics and
biomechanics, this simulator is a first step towards studying
the interactions of musculoskeletal and nervous systems
with the ambient flow, on which is based the emergent
synchronization of undulatory swimming [51]. Finally, let’s
end this article with some practical tips for the users. In
statics, the shooting-based approach is efficient and always
gives satisfaction. However, in dynamics, it is much more
fragile and fails when the time-step is smaller than a critical
value defined by (88). As shown in this relationship, this
limitation becomes more and more restrictive as the robot
becomes softer and softer, and for this reason we could
not recommend using it (at least in its current state of
the art) in soft robot dynamics. Despite this limitation, the
shooting-based approach has several advantages. First, it
does not require any reduction of the configuration space
and, from this point of view, should be very accurate.
Second, it is conceptually simple to program, at least for
simple architectures (like those simulated in the paper).
Third, the dimension of its residual vector is very small and
independent of the space discretization, and when it works,
the method is very time-efficient.

IX. APPENDIX 1: CALCULUS OF THE GAUSS
CONSTRAINT FOR A CONTINUUM ROBOT

To calculate the acceleration energy of a continuum robot,
we calculate the contribution dTacc of a single rigid cross-
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section noted S(X), and add all these contributions along
the rod axis. Any material point of the rod is localized by
its material coordinates (X,Y, Z) where X is the label of
the cross-section containing the particle, and (Y, Z) are its
coordinates in the plane of the cross-section. Then using the
definition (30), we have:

dTacc =
1

2

∫
S(X)

ρ a2c dY dZ, (96)

where dY dZ is the area element of the section S(X),
and ac : (X,Y, Z) ∈ R3 7→ ac(X,Y, Z) ∈ R3 is the
acceleration field of the material points of the rod. For the
sake of concision, we introduce the vector X⊥ = (0, Y, Z)T

such that (X,Y, Z)T = (X, 0, 0)T + X⊥. According to
Gauss principle, ac needs to be compatible with the Cosserat
kinematics, i.e., it can be detailed as:

ac(X,Y, Z) = φ̈(X,Y, Z) = (97)

R(X)(V̇ (X) + ˆ̇Ω(X)X⊥ + Ω̂(X)(V (X) + Ω̂(X)X⊥)),

where φ̈ is deduced by time-differentiating twice the
Cosserat kinematics φ(X,Y, Z) = r(X) + R(X)X⊥. In
these conditions, one has:

dTacc =
1
2

∫
S(X)

ρ φ̈2dA = (98)

1
2

∫
S(X)

ρ((V̇ + ˆ̇ΩX⊥) + Ω̂(V + Ω̂X⊥))
2dY dZ,

which can be developed as:

dTacc =
1
2

∫
S(X)

ρ(V̇ + ˆ̇ΩX⊥)
2dY dZ

+ 1
2

∫
S(X)

ρ(Ω̂(V + Ω̂X⊥))
2dY dZ

+
∫
S(X)

ρ(V̇ + ˆ̇ΩX⊥)
T (Ω̂(V + Ω̂X⊥))dY dZ

= C1 + C2 + C3. (99)

We now compute each of the integrals of (99), noted C1, C2

and C3. Regarding C1, let us remark that the ordinary kinetic
energy of a cross-section being defined by:

dT = 1
2

∫
S(X)

ρ φ̇2dY dZ =

1
2

∫
S(X)

ρ(V + Ω̂X⊥)
2dY dZ = 1

2η
TMη, (100)

we have for the same reasons (i.e. using the same calcula-
tions but with accelerations instead of velocities):

C1 =
1

2
η̇TMη̇. (101)

Regarding C2, one can ignore it, since it only depends on
velocities and brings no contribution to dTacc. It remains to
calculate the double product C3. It can be detailed first as:

C3 =

∫
S(X)

ρ(V̇ + ˆ̇ΩX⊥)
T (Ω̂(V + Ω̂X⊥))dY dZ. (102)

Once more, developing this expression while ignoring the
terms that only depend on velocities, and assuming that the
cross-sectional frame is centered on the mass-center of the
cross-section (i.e.

∫
S(X)

ρX⊥dY dZ = 0), one finds:

C3 =
∫
S(X)

ρ V̇ T (Ω̂V )dY dZ+∫
S(X)

ρ( ˆ̇ΩX⊥)
T (Ω̂(Ω̂X⊥))dY dZ. (103)

where using the definition of the mass ρA =∫
S(X)

ρ dY dZ and inertia matrix of the cross section
ρJ =

∫
S(X)

ρX̂⊥X̂
T
⊥dY dZ, one can show that:

C3 = V̇ T (Ω× ρAV ) + Ω̇T (Ω× ρJΩ)

= −η̇T (adTη Mη), (104)

where we used the definition of adη and M =
diag(ρJ, ρA13×3). Finally, accounting for (101) and (104),
with C2 = 0, in (99), and integrating dTacc along the robot,
provides the expression (30) of its ”energy of acceleration”.
To calculate the acceleration power of non reactive force
Pacc, we first remark that these forces are: the external forces
applied on the two tips (F−, F+) and inside the domain of
the rod (F̄ ), those generated by the exogenous activation
(Λad), and finally the internal restoring forces. Summing the
usual definitions of power of all these forces, and changing
velocities into accelerations, gives (31,32), where remind
that the usual (velocity) power of internal restoring forces
is Pint = − d

dt

(
1
2

∫ 1

0
ϵTHrϵdX

)
= −

∫ 1

0
ϵ̇T (Hrϵ)dX .

X. APPENDIX 2: SINGULAR LQ-OCP2

Even if the LQ optimal problem of the forward dynamics
is singular and indeed numerically unfeasible due to the ill-
conditioning of the Riccati equations (see section V.B.1),
we here ignore these numerical considerations and formally
address this problem. When applied to a cost functional
quadratic w.r.t. state and control, the optimality condition
(42-c) directly provides the expected expression of the
control and the optimal control is said to be regular. In
contrast, in our case, the optimal cost C is only linear
w.r.t. the control, and our problem is singular. To derive
the expected expression of ξ̈a = u, we need to differentiate
(42-c) further w.r.t. to X , up to make appear explicitly the
control [26]. As proved in [52], the number of derivation
required is even and noted 2p, where p defines the order of
the singular arcs along which the state and costate evolve.
Applying this process to our problem, gives for the zero and
first order X-derivatives of (42-c):(

∂H
∂u

)
= 0 ⇒ BTΛ = Λad +Hrϵ ,(

∂H
∂u

)′
= 0 ⇒ BTΛ′ = Λ′

ad + (Hrϵ)
′, (105)

which does not make appear the control, since from (45.b):
Λ′ = Mη̇ + adTξ Λ − F̃ . In contrast, because Λ′′ makes
appear η̇′, and finally ξ̈a = u through the state ODE (45.a),
the second order X-derivative does provide the expected
dependence:(

∂H
∂u

)′′
= 0 ⇒ BTΛ′′ = Λ′′

ad + (Hrϵ)
′′ =

Maau+BT (Dη̇ + EΛ + I), (106)

where we introduced the notations:

Maa = BTMB , D = M′ + adTξ M−Madξ ,

E = adTξ′ + adTξ ad
T
ξ , I = −F̃ ′ − adTξ F̃ −Madξ̇η,

F̃ = F̄ + adTη Mη. (107)
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As a result, the singular arcs are of degree one, and the
expression of u provided by inverting (106), is defined by
(56). Then, using (56) in (45) provides the autonomous BVP
(indexes s and c mean ”state” and ”costate” respectively):(

η̇′

Λ′

)
=

(
Pss Psc

Pcs Pcc

)(
η̇
Λ

)
+

(
ps
pc

)
, (108)

where we introduced the notations:

P =

(
Pss Psc

Pcs Pcc

)
=

(
−adξ −GD −GE

M adTξ

)
,

p =

(
ps
pc

)
=

(
BM−1

aa (Λad +Hrϵ)
′′ − adξ̇η −GI

−F̃

)
,

with G = BM−1
aaB

T . But all the entries of P and p, only
depend on (ξ, ξ̇) and not of the state η̇. As a result, they
can be considered as X-dependent functions, and this BVP
is linear with respect to (η̇,Λ). As such, it can be solved
with the ”sweep method” [26], which postulates the linear
relationship between state and costate (57). Now, identifying
Λ′ = (Sη̇ + s)′ with the costate equation of (108), and
introducing into this identity, the state equation of (108), as
well as the sweep relation (57), one finds:

S′η̇ + S(Pssη̇ + Psc(Sη̇ + s) + ps) + s′

= Pcsη̇ + Pcc(Sη̇ + s) + pc. (109)

But such a relation needs to be true for any η̇ ̸= 0, which
provides the Riccati ODEs for S(.) and s(.):

S′ = Pcs − SPss + PccS − SPscS,

s′ = Pccs+ pc − SPscs− Sps. (110)

Finally, the LQ resolution of OCP2 would progress as
follows. First integrate forward (from 0 to 1) the recon-
struction equations (49), then integrate backward (from 1 to
0) the two Riccati’s ODEs, starting with initial conditions
S(1) = 0 and s(1) = Λ(1) = F+. Once S and s known
over [0, 1], one can calculate η̇ by forward integrating the
state equation of (108), while calculating the costate field Λ
with (57). For a manipulator, this last integration is merely
initialised with η̇(0) = 0, while for a locomotor, we use
η̇(0) = S−1(0)(Λ(0)−s(0)) = −S−1(0)(F−+s(0)), which
requires the invertibility of S(0).

XI. APPENDIX 3: EXPRESSIONS OF C(ν0), A(ν0), B(ν0)
AND THEIR JACOBIANS

While C(ν0) is directly given by (71), A(ν0), B(ν0) can
be detailed as (remind that ν0 = (ΘT

0 , r
T
0 )

T ):

A(ν0) =

(
Ω0

V0

)
=

(
ãΘ0 + k̃n

RT
0 (ãr0 + f̃n)

)
, (111)

B(ν0) =

(
Ω̇0

V̇0

)
=

(
b̃Θ0 + l̃n

RT
0 (b̃r0 + h̃n) + V0 × Ω0

)
where RT

0 = exp(Θ̂0)
TRT

0,n, and b̃ = a−1, ã = bb̃,
h̃n = −b̃fn, f̃n = hn − ãfn, l̃n = −b̃kn, k̃n = ln − ãkn.

Differentiating the above expressions as well as (71), one
can show that:

∂C

∂ν0
=

(
T (Θ0) 03×3

03×3 RT
0

)
, (112)

∂A

∂ν0
=

(
ã13×3 03×3

V̂0T (Θ0) ãRT
0

)
, (113)

∂B

∂ν0
=

(
b̃13×3 03×3

(Â0 − Ω̂0V̂0)T (Θ0) + ãV̂0 (b̃13×3 − ãΩ̂0)R
T
0

)
,

where A0 = V̇0 +Ω0 ×V0, and (RT
0 ∆R0)

∨ = T (Θ0)∆Θ0,
is the differential of the exponential of SO(3) [15].
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