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Highlights: 

• Retinal function is relevant to study brain function in major depressive disorder 

• Retinal dysfunctions were observed with electroretinogram in major depressive disorder  

• Signal processing and machine learning tools were applied on electroretinogram data 

• Signal processing and machine learning tools can help clinical decision 
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ABSTRACT 

Background: Major depressive disorder (MDD) is a major public health problem. The retina 

is a relevant site to indirectly study brain functioning. Alterations in retinal processing were 

demonstrated in MDD with the pattern electroretinogram (PERG). Here, the relevance of 

signal processing and machine learning tools applied on PERG was studied.    

Methods: PERG – whose stimulation is reversible checkerboards – was performed according 

to the International Society for Clinical Electrophysiology of Vision (ISCEV) standards in 24 

MDD patients and 29 controls at the inclusion. PERG was recorded every 4 weeks for 3 

months in patients. Amplitude and implicit time of P50 and N95 were evaluated. Then, 

time/frequency features were extracted from the PERG time series based on wavelet analysis. 

A statistical model has been learned in this feature space and a metric aiming at quantifying 

the state of the MDD patient has been derived, based on minimum covariance determinant 

(MCD) mahalanobis distance. 

Results: MDD patients showed significant increase in P50 and N95 implicit time (p=0,006 

and p=0,0004, respectively, Mann–Whitney U test) at the inclusion. The proposed metric 

extracted from the raw PERG provided discrimination between patients and controls at the 

inclusion (p=0,0001). At the end of the follow-up at week 12, the difference between the 

metrics extracted on controls and patients was not significant (p=0,07), reflecting the efficacy 

of the treatment.   

Conclusions: Signal processing and machine learning tools applied on PERG could help 

clinical decision in the diagnosis and the follow-up of MDD in measuring treatment response.  

Keywords: major depressive disorder, retina, electroretinogram, wavelet analysis, machine 

learning, help for clinical decision 
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1. Introduction 

 Major depressive disorder (MDD) is a common public health issue, which concerns 

300 million people worldwide and has rapid kinetics (Smith, 2014). It is the leading cause of 

disability worldwide, with a notable impact on life quality, a higher risk of mortality and one 

of the main risk factors for suicide. Up to 30% of MDD patients do not respond to their 

antidepressant treatments and 50-60% do not achieve adequate response (Fava, 2003; Smith, 

2014). 

 MDD diagnosis and treatment are very challenging. There is no current objective 

tool to help practitioners in diagnosis as well as in evaluating and predicting the response to 

treatments in order to adjust individualized and personalized therapeutics for the patient. The 

diagnosis of MDD is currently made by medical interview. During this interview, the clinician 

can be helped by subjective scales such as the Hamilton Rating Scale for Depression (HRSD; 

HAM-D) but these tools are dependent on the patient's contribution (Bagby et al., 2004). 

There are no valid and reliable tools that can help medical practitioners in MDD in the choice 

of antidepressant and its effective dose. For precision psychiatry, there is an urgent need to 

improve diagnosis in the case of differential diagnosis, in detecting subgroups of patients or 

specific symptoms such as suicidal ideation in order to predict the better therapeutics for the 

patients.  

 One of the current challenges in neuropsychiatric research is to develop new 

investigative approaches, aided by the processing and analysis such as machine learning, to 

find tools that are reliable, objective, reproducible and easy to implement, and independent of 

the therapist and the patient. In this context, electrophysiological techniques are relevant and 

promising measurements (Cosker et al., 2020; Lavoie et al., 2014b; London et al., 2013; 

Schwitzer et al., 2015, 2017b). To the best of our knowledge, only one study has applied 
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machine learning to electroencephalograms (EEG) in MDD (Rajpurkar et al., 2020). In this 

study, a machine learning algorithm based on a decision tree was applied to the EEG data 

coupled with pre-treatment symptom scores to separate the populations of MDD according to 

their pharmacological treatments. Machine learning and discriminant analysis of EEGs proved 

to be useful in predicting the efficacy of antidepressants based on the main symptoms of 

depression and the characteristics of the pre-treatment EEG.  

 The retina is considered as a crucial and relevant site to indirectly investigate brain 

function in neuropsychiatric disorders (Bubl et al., 2010a; Lavoie et al., 2014a; London et al., 

2013; Schwitzer et al., 2017b). The retina is an anatomical and developmental extension of 

the central nervous system (CNS), which consists of a complex neural network constituted by 

specific neurons and interconnected by synapses (Hoon et al., 2014). Retinal neurons share 

similar anatomical and functional properties to brain neurons (Hoon et al., 2014). They emit 

electrical signals in the form of membrane potentials and action potentials, such as brain 

neurons. They are endowed with several complex neurotransmission signalling pathways, 

including the same pathways that are detected in the brain and involved in the 

pathophysiology of MDD – serotonin, dopamine, and glutamate, to name a few (Hoon et al., 

2014). Retinal function is altered in many neuropsychiatric disorders involving different 

pathophysiological mechanisms such as neurotransmission abnormalities, inflammation, and 

neurodegeneration, suggesting that brain abnormalities observed in these disorders may be 

detected at the level of the retina (Lavoie et al., 2014b, 2014a; London et al., 2013; Schwitzer 

et al., 2015). For example, retinal processing is impaired in depression, schizophrenia, 

Parkinson disease, Alzheimer disease, and substance use disorders, to name a few (Bernardin 

et al., 2017; Cosker et al., 2021, 2020; London et al., 2013; Lucas et al., 2018; Schwitzer et 

al., 2021, 2019, 2016; Youssef et al., 2019). Retinal function is easy to access and retinal 



6 

 

electrophysiological tests are relatively easy to achieve, rapid, inexpensive, and non-invasive 

(Bach et al., 2013).  

  Among all retinal neuronal stages, the ganglion cell layer is considered as the most 

relevant for studying brain functioning indirectly (Schwitzer et al., 2017b). The retinal 

ganglion stage is the final and most integrated retinal stage and acts as an anatomical and 

functional relay between the retina and the brain through the nerve optic formed by the axons 

of the ganglion cells. These cells are composed of cell body, axons, and dendrites and provide 

response in the form of action potentials, such as brain neurons. Ganglion cells’ functioning is 

altered in many neurologic, psychiatric and neurodegenerative disorders. Retinal ganglion 

cells’ electrical activity response is recorded with the pattern electroretinogram (PERG), 

which is an electrophysiological technique (Bach et al., 2013). PERG measurements use 

checkerboard stimuli such as visual evoked potentials (VEP) to record an electrical signal 

originating from central neurons. PERG measures have already allowed the differentiation of 

MDD patients and healthy subjects, the response to treatment to be followed, and a 

correlation with VEP, suggesting that visual retinal ganglion cells and cortical function are 

correlated (Bubl et al., 2015, 2012, 2010b). Schematic representation of the retina and of a 

PERG typical trace is presented Figure 1.  

 

 The assumption posed for this study was therefore that the extraction of PERG 

indicators could be an indirect measure reflecting a set of functional and behavioural 

alterations in the underlying neuronal cell biology. The objectives of this study were to 

evaluate amplitude and implicit time of P50 and N95 of the PERG in MDD patients and 

controls and to determine whether PERG holds relevant information in the diagnosis and 
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evaluation of treatment response in MDD using signal processing and machine learning 

techniques.  
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2. Methods and Materials  

2.1. Population and ethics statement  

Patients with MDD (n=24) were recruited from among psychiatric patients, hospitalized or 

not, with regular follow-up with a psychiatrist, via documentation or recommendation by their 

doctor. The data were collected from 16 January 2019 to 31 December 2019. The matching 

healthy controls (n=29) were recruited from two other cohorts: the CAUSA MAP study 

(NCT02864680), who were recruited among the general population via a special press 

campaign from 11 February 2014 to 30 June 2016; and the ERICA study (NCT0381897), 

who were recruited among the general population via a special press campaign from 

01 March 2019 to 30 April 2021. Prior to taking part in this study, MDD patients provided 

their detailed medical history and treatments (current and past), underwent a full psychiatric 

evaluation (Mini-International Neuropsychiatric Interview – MINI, Montgomery Asberg 

Depression Rating Scale – MADRS, Epworth Sleepiness Scale – ESS, HAMILTON-A, 

Pittsburg Sleep Quality Index – PSQI) and a cognitive evaluation, and signed consent forms 

detailing all aspects of the research. MDD participants received compensation in the form of 

€15 in gift vouchers, at the end of the study. The study protocol met the requirements of the 

Helsinki Declaration and was approved by the Ethics Committee of Nancy University 

Hospital. This preliminary study is part of a bigger project, LUMIDEP, which is evaluating 

complete retinal function and structure in MDD patients receiving active luminotherapy and 

treatment as usual or placebo luminotherapy and treatment as usual.  
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2.2. Inclusion criteria, clinical and biological assessments 

The main inclusion criterion for the depressive group was having a diagnosis of Major 

Depressive Disorder according to the DSM-IV criteria, assessed by the Mini-International 

Neuropsychiatric Interview (MINI) test. Other inclusion criteria were having received 

complete information about the clinical trial and signed a written informed consent. All 

participants were aged 18 to 60 years old, had no psychiatric disorder from the DSM-IV axes 

I, apart from depressive and anxiety disorder; no seasonal disorder; no previous or current 

bright light therapy treatment; no lack of follow-up with a psychiatrist; and no suicide risk. 

They should not have a retinal or neurological disease, be participating in another study 

(including exclusion period), have a disability, be pregnant or breastfeeding, be deprived of 

liberty by a judicial or administrative decision, be subject to psychiatric care under duress, be 

admitted to a health or social institution for purposes other than research, be an adult subject 

to a legal protection measure (guardianship, curatorship, safeguarding justice), or be unable to 

express consent. All subjects were covered by social security. 

The inclusion criteria for healthy control subjects were the same as those of the CAUSA MAP 

study, as described in previous studies (Dartois et al., 2021; Polli et al., 2020; Schwitzer et al., 

2020, 2018, 2017a) and the ERICA study (NCT0381897). 

All fared normally in an ophthalmic evaluation, which included visual acuity and a 

fundoscopic examination. Importantly, visual acuity measured with the Monoyer scale was at 

least 10/10 in each eye for all participants. None of the participants reported visual symptoms. 

If participants reported alcohol dependence based on their score in the Alcohol Use Disorders 

Identification Test (AUDIT) they were excluded from the study. The Mini-International 
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Neuropsychiatric Interview (MINI) was used to assess current and past history of psychiatric 

diseases and substance use. 

 

2.3. Experimental protocol 

PERG was performed according to the International Society for Clinical Electrophysiology of 

Vision (ISCEV) standards (Bach et al., 2013). We used the MonPackONE system 

(Metrovision, Pérenchies, France) for the stimulation and the recording. We collected 

electrical signals from both eyes, simultaneously. Averaged retinal responses were obtained 

from each eye. Electrical signals were collected on non-dilated pupils, with DTL (Dawson 

Trick Litzkow) electrodes placed at the bottom of the conjunctival sac. Ground and reference 

electrodes were fixed to the forehead and external canthi. A black and white contrast 

reversible checkerboard, with 0.8° check size, 93.3% contrast level, 100 candela/m² constant 

luminance white area, and 4 reversals per second was used. The participants were positioned 

one metre from the screen. In the case of participants with refractive disorders, an appropriate 

optic correction was provided. At least 220 responses were recorded for each participant, with 

constant ambient room lighting to achieve the best signal-to-noise ratio. PERG was performed 

at the inclusion (n=24), week 4 (n=16), week 8 (n=13) and week 12 (n=14) with the same 

protocol. Mean responses of left and right eyes are averaged, the analyzed signals contained 

240 samples between −16ms to 195.6ms around the instant of the visual stimuli (sampling 

rate 1024Hz). At each visit, patients completed MADRS, MADRS-self and HAMILTON 

scale.  
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2.4. Analysis  

The PERG data were analyzed using an ophthalmic monitor (Metrovision, 

Pérenchies, France). Two main components are usually described on a typical PERG trace: 

an electropositive component, P50, followed by an electronegative component, N95. N95 is 

believed to reflect the response of retinal cells. P50 reflects the response of the retinal 

ganglion cells and macular photoreceptors, and is used to evaluate macular function. Two 

main parameters are derived from P50 and N95, referred to as the amplitude, measured in 

microvolts (μV), and the implicit time, measured in milliseconds (ms). N95 amplitude is 

measured from the trough of N95 to the peak of P50. P50 amplitude is measured from the 

trough of the inconstant N35—or from the baseline—to the peak of P50. Implicit time 

denotes the time taken to reach the maximum N95 and P50 amplitudes. Besides the 

analysis of these well known characteristics, we considered a more global analysis of the 

signal based on wavelet decomposition, which consists in a time/frequency analysis of the 

signal summing up the main characteristics of the signal dynamics to a few number of 

coefficients. A feature selection has been applied on these coefficients to retain only those 

with the highest discrimination power, defined here as these having a distribution differing 

the most from a normal distribution (Lilliefors test). Finally, by means of Principal 

Component Analysis (PCA), we reduced this coefficient space to preserve the components 

holding most of the energy (i.e. most of the information). Two components were preserved, 

and a distance to normality was defined in this two-dimensional space as a Mahalanobis 

distance based on minimum covariance determinant (MCD-Mahalanobis) estimated on the 

control data. For each PERG acquisition this distance was computed (after left/right eyes 

averaging). More details on these different methodological steps are given in 

supplementary material. 
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2.5. Statistical Analysis 

Depending on the non-parametric distribution of the quantitative variables included 

in the analyses, a Mann–Whitney U test and Chi-square test were used when appropriate. 

An alpha risk of 0.05% was used. Statistical analyses were performed using IBM SPSS 

Statistics 22.0 (IBM corp.). More details on the analysis of the signal based on wavelet 

decomposition are given in supplementary material.  
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3. Results 

 

 

The demographic, substance use, clinical and PERG data of the participants at the 

inclusion and during the follow-up are described in Table 1. At the inclusion, differences 

were noted between the controls and MDD patients in terms of gender (p<0.05), age 

(p<0.05) and years of education (p<0.05), but no relevant differences were observed 

between the groups in terms of alcohol use (p=0.78 for average alcohol consumption/week, 

p=0.46 for AUDIT score). MDD patients showed significant increase in P50 and N95 

implicit time (p=0,006 and p=0,0004, respectively; Mann–Whitney U test). Scores at the 

MADRS hetero assessment, MADRS self-assessment and Hamilton Depression scales 

were significantly decreased between week 12 and the inclusion (p=0,0002; 0,0005 and 

0,00001 respectively, Mann–Whitney U test).  

 

Our model and the derived MCD-Mahalanobis distance are based on a hypothesis of 

multivariate normality for the control data projected in the selected feature space. The 

validity of this hypothesis has been evaluated using Mardia's multivariate normality test, 

considering skewness (corrected for small data, p=0,16) as well as kurtosis (p=0,84) of the 

control data distribution. Hence, the H0 normal hypothesis could not be rejected at 0.05 risk 

level for both statistics, confirming the validity of the proposed model. 

 

The proposed MCD-Mahalanobis distance was also able to discriminate between 

controls and patients at inclusion (p=0,0002) (Figure 2). This distance at week 4 and 8 

tends to reduce as the treatment progresses but remains significantly different from controls 
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(p=0,0029 and p=0,0021 respectively) (Figure 2). At week 12, no significant difference was 

found at this stage of the treatment when compared with the controls (p=0.23) (Figure 2). 

We compared this distance extracted from the PERG data with the MADRS/MADRSself 

data collected at inclusion and at week 4, 8 and 12. There is at the inclusion of participants 

significantly higher scores than for week 4 (p=0,0078 for MADRS and p=0,0197 for 

MADRSself) , followed by a sharp decline to mild to non-existent depression scores in 

week 8 and 12 (scores all below 15 and 10 respectively, p=0,0002 and p=0,0001 for 

MADRS between inclusion and week 8 and 12 respectively; p=0,0014 and p=0,0005 for 

MADRSself )(Figure 3). 
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4. Discussion 

Here, we observed that: 1- MDD patients showed an increase in P50 and N95 implicit 

time of the PERG at the inclusion. 2- PERG can help to distinguish a healthy population from 

a population of MDD subjects, with the help of a machine learning algorithm and MCD-

Mahalanobis distance. 3- PERG can also be used to assess the course of MDD during 

treatment. Indeed, the MCD-Mahalanobis distance tends to reduce as the treatment progresses 

and normalizes with remission. In MDD patients who were treated for 12 weeks and who 

have observed a regression of depressive symptoms objectified by MADRS, MCD-

Mahalanobis distance was reduced and there was no significant difference at week 12 

between patients and controls. 4- Clinical features of MDD evaluated by the MADRS scale 

and retinal electrophysiological properties evaluated by PERG analyzed by an artificial 

intelligence algorithm share a similar evolution, suggesting that subjective and objective 

measures are linked. 

The fact that PERG analyzed by machine learning techniques can help to distinguish a 

healthy population from a population with MDD is very promising since the diagnosis 

constitutes a real prospect in MDD. Making a diagnosis of MDD is relatively easy. However, 

the differential diagnosis -with bipolar depression for example- as well as the identification of 

sub-groups of MDD remain critical perspectives. Our findings open the way for these issues 

to be resolved. In young people, some psychiatric diseases can share similar symptoms with 

MDD but do not share similar treatment, leading to inadequate care for the patient. In young 

people without medical history, it is really complicated to affirm with an absolute certainty 

whether the first depressive episode is linked to MDD or to bipolar disorder. Previous studies 

support our findings and have already highlighted the usefulness of retinal electrophysiology 
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in the differential diagnosis of mental disorders (Hébert et al., 2020). In this study, the authors 

showed similarities and significant differences between flash ERG (fERG) recordings of 150 

patients with schizophrenia and 151 patients with bipolar disorder. In both disorders, they 

observed reduced cone a-wave amplitude, prolonged b-wave latency, and reduced mixed rod-

cone a- and b-wave amplitudes. Interestingly, reduced cone b-wave amplitude was detected 

only in subjects with schizophrenia. Taken together, these findings support that mental 

disorders have specific retinal characteristics. In this context, the help of machine learning 

could strengthen the accuracy and reliability of these findings. Another critical perspective in 

caring for patients is the early detection of at-risk subjects. MDD, once installed, has a very 

negative impact on the quality of life of patients, supporting early detection, objective and 

intervention in high-risk subjects. A previous study performed a detailed analysis of the 

interaction between depressive symptom severity, functioning, and quality of life (QOL) in 

319 patients with MDD using the Quality of Life - Enjoyment, and Satisfaction Questionnaire 

(Q-LES-Q) (Ishak et al., 2013). The authors showed that the quality of life is significantly 

impaired in MDD, with a mean Q-LES-Q score for this study population of 39.8% (SD = 

16.9), whereas the community norm average is 78.3%. Interestingly, previous studies have 

already evoked the usefulness of ERG in detecting patients at risk of developing mental 

illnesses. As an example, Hébert et al. (2010) studied, several years before the first symptoms 

of the disease appeared, fERG in 29 medication-free subjects, descendants of 

multigenerational families affected by schizophrenia or bipolar disorder (Hébert et al., 2010). 

In these subjects, they observed a diminution of rod b-wave Vmax amplitude, a trend for 

lower cone a-wave amplitude, and a trend for a longer rod b-wave implicit time at Vmax. 

fERG rod and cone abnormal responses in adult patients having schizophrenia, bipolar 

disorder or MDD have also been reported. We suppose that some ERG anomalies observed in 

subjects with schizophrenia or bipolar disorder would emerge in at risk young subjects and 
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that ERG abnormalities have a neurodevelopmental origin. Gagné et al. compared the fERG 

of 99 offspring of patients having schizophrenia, bipolar disorder or MDD and the fERG of 

223 healthy controls balanced for sex and age (Gagné et al., 2020). Compared to the healthy 

controls, the fERG of offspring were characterized by an increase in cone b-wave latency, a 

decrease in rod b-wave amplitude, and an increase in rod b-wave latency. As previously 

described, fERG rod and cone responses of adult patients having schizophrenia, bipolar 

disorder or MDD share similar characteristics and could be detectable in genetically high-risk 

offspring (Gagné et al., 2015; Hébert et al., 2020). These results give the possibility of using 

ERG to detect early electrophysiological features in subjects at risk of developing a mental 

disorder. Future studies will apply artificial intelligence algorithms on ERG measures, with 

the help of machine learning, to enhance the powerfulness of retinal measurements in 

detecting populations of patients at risk of developing mental disorders.  

In MDD, medical practitioners are confronted with partial or no response to 

pharmacotherapy. One goal is to find the most adapted and personalized pharmacological 

treatment according to characteristics – kind of symptoms, suspected neurotransmitter 

deficits, etc. – of each patient. In MDD, pharmacotherapy is a long treatment that takes 

several weeks to be effective, and needs to be regularly adjusted depending on the patient’s 

response and according to the stage of the disease. Currently, it is adjusted to the symptoms 

alleged by the patients and those found by therapists. As a result, therapeutic adjustments 

remain highly subjective. The risk is to give a reduced dosage of treatment, reducing the 

chances of efficacy. Contrarily, giving high-dose treatment as well as treating for too long 

while the depressive state is resolved, increases the risk of side effects. In this context, the 

retinal function has given interesting indicators. Hébert et al. recorded fERG in 100 patients 

with MDD – of whom 17 were drug-free – and 100 healthy controls (Hébert et al., 2017). A 

sizable decrease in the cone a- and b- wave amplitudes at Vmax was observed in drug-free 
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patients, which was not present in medicated patients. These results suggest a possible 

normalization of ERG parameters in medicated patients. These are promising findings in 

favour of the relevance of ERG in the follow-up of pharmacological treatment and in the 

evaluation of their efficacy. This is supported by the fact that the retina is endowed with 

complex neurotransmission signalling pathways –serotoninergic, dopaminergic, among others 

– targeted by antidepressants in the CNS. Here, we showed similar results suggesting that 

PERG measures analyzed with the help of machine learning algorithms can separate MDD 

subjects in the course of treatment from healthy subjects or depressive subjects in early 

illness.  

This study has limitations and implied several perspectives. Our results are extracted 

from a preliminary analysis with a low number of subjects.  Further investigations with a high 

number of subjects and with sub-groups of MDD patients are required to achieve consolidated 

statistics and conclude on the relevance of this technique to both helping diagnosis and the 

evaluation of treatment response in MDD. The use of tobacco in MDD patients does not 

affect the N95 implicit time (Dartois et al., 2021). The differences in gender and age between 

groups are not sufficient to explain alterations in P50 and N95 observed in patients since 

gender seems to be not involved in PERG modulations and the between groups difference in 

age is relatively low to explain the results presented here (Celesia et al., 1987; Corîci et al., 

2015; Porciatti et al., 1992). These measures and signal analysis should be replicated in other 

neuropsychiatric pathological conditions –bipolar disorders, schizophrenia, neurodegenerative 

disorders, autism spectrum disorder – to refine the sensitivity and the specificity of these 

measures in the diagnosis of main neuropsychiatric disorders. This technique also should be 

able to help clinicians in the differential diagnosis of specific pathological conditions such as 

the differential diagnosis between unipolar and bipolar depression. Here, patients received 

different types of treatments and we evaluated the efficacy of the global treatment and not the 



19 

 

efficacy of the isolated treatment. Various sub-groups of patients, with specific and isolated 

treatment, would be required in future studies to evaluate the relevance of this technique in 

the evaluation of the response of each treatment. In routine clinical evaluation, these measures 

should also be able to detect patients who will develop treatment resistance, in order to adjust 

pharmacotherapy at an early stage. This technique should in the future be able to detect and 

separate responder and no-responder patients. Finally, in order to be used in clinical practice, 

these measures should be easy to use, mobile, automatized with remote analysis and usable in 

ambulatory centres and in centres which are situated in remote areas, and not only usable in 

specific care centres.  
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Table: 

Table 1: Demographic, substance use, clinical and pattern electroretinogram data of the participants 

at the inclusion and during the follow-up of the patients 
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Figures: 

Figure 1: Schematic representation of the retina and of a pattern electroretinogram’s (PERG) typical 

trace with two main components named P50 and N95 waves 
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Figure 2: Tracking of the MCD-Mahalanobis distance along the 4 stages of the treatment. Little 

change in distributions up to week 8, a sharper (albeit not statistically significant, p>0,05) decrease in 

week 12. The differences between healthy controls and patients at inclusions, week 4 and week 8 

respectively are significant (p< 0.01), but not those between healthy controls and week 12, p>0,05). 
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Figure 3: Inclusion with significantly higher scores of MADRSself than for the next steps (p<0,05), 

then a sharp decline to mild to non-existent depression scores in week 8 and 12 (scores all below 15 

and 10 respectively), with a transition in week 4. 

 

 

 

 

 

 

 

 

 

 

 



Gender 

(male/female) 
a,d

Age (years) 

b,c

Education 

(years) b,c

Average 

number of 

alcohol 

uses/week 

b,c

Alcohol Use 

Disorders 

Identification 

Test (AUDIT) 

scores b,c

Fagerströ

m Test 

scores b 

Average 

number 

of 

cigarette

s/day b 

Average 

number 

pack-

years of 

cigarettes 

b 

P50 Implicit 

Time (ms) b,c 

(n=21 for MDD)

P50 Amplitude 

(µV) b,c (n=21 

for MDD)

N95 Implicit Time 

(ms) b,c (n=21 for 

MDD)

N95 amplitude 

(µV) b,c (n=21 for 

MDD)

Patients with major 

depressive disorder 

(n= 24) 6  /  18 41,5 (32 - 49)13 (11,5 - 14) 1(0 – 4,5) 3,5 (1 – 7,5) 0,5 (0 - 5) 3,5 (0 -15)3,7 (0 – 17)51,75 (50,85:53,95) 2,25 (1,80:2,70) 95,10(91,60:99,20) -3,20(-3,80:-2,40)

Controls (n=29) 21  /  8 25 (23 – 27) 15 (14 - 16) 1 (0 – 3) 3 (1 – 4) - - - 48,65 (47,30:50,40) 2,35 (2,15:2,65) 88,95 (84,50:91,10) -3,75 (-4,60:-3,15)

P-value p<0,05 p<0,05 p<0,05 p=0,78 p=0,46 - - - p=0,006 p=0,640 p= 0,0004 p=0,131

Categorical variable  represented as frequencies 
a

Quantitative variable represented as median and interquartile range 
b

Mann-Whitney U test 
c

Chi-Square test d

MDD Group

 Montgomery-

Asberg 

Depression 

Rating Scale 

(MADRS) 

Hetero 

assessment 

Score

Montgomery-

Åsberg 

Depression 

Rating Scale 

(MADRS) self 

assessment 

Score

Hamilton 

Depression 

Scale Score

P50 Implicit Time (ms)P50 Amplitude (uV)N95 Implicit Time (ms)N95 Amplitude (uV)

Inclusion a (n=24) 26 (18,5-32) 13,25 (11-17,75)14 (11,5-18,5)51,75 (50,85-55,7)2,5 (1,9-3,35)95,88 (91,8-106)-3,1 (-3,8;-2,15)

Week 4 a (n=17) 13   (7,5-26,25)8 (5,75-13,88)9 (3,75-13,75)54,4 (50,63-56,6)2,75 (1,83-3,58)102,85 (94,34-106,5)-3,2 (-4,06;-2,36)

Week 8 a (n=15) 10 (3,5-13,75) 5,5 (2,6-10,4) 6 (3-7) 54,4 (51,98-56,04)2,45 (2,26-3,99)100,8 (92,04-112,88)-2,95 (-4,31:-2,44)

Week 12 a (n=15) 11 (-5,25-16) 6 (4,1-8,6) 4 (2,25-6,75)53,05 (49,95-56,39)2,45 (1,75-2,75)98,2 (92,01-102)-3,25 (-3,91:-2,85)

P-value P-value P-value P-value P-value P-value P-value

Incl.-W04 b 0.0078 0.0197 0.0108 0.18 0.46 0.11 0.89 @

Incl.-W08 b 0.0001 0.0014 0.00001 0.26 0.52 0.28 0.79

Incl.-W12 b 0.0002 0.0005 0.00001 0.32 0.89 0.41 0.92

W04-W08 b 0.281 0.2121 0.0635 0.66 0.93 0.62 0.98

W04-W12 b 0.3348 0.1558 0.0427 0.82 0.2 0.24 0.87

W08-W12 b 0.787 0.7712 0.617 0.89 0.61 0.68 0.85

Quantitative variable represented as median and interquartile range 
a

Mann-Whitney U test 
b




