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We made a slight modification of the flat metric for a rotating observer, to keep track of the energy spent to generate the rotational motion. The source of curvature energy-momentum tensor represents an imperfect fluid and has constant components, depending on a parameter b which, for physical reasons, is taken equal to the angular velocity ω. The energy density and all pressures are non-negative in the first version of the model from Sec.4. The improved version (Sec.5) gives more realistic expressions of the main quantities of the physical system (though the dominant energy condition is not satisfied), with the help of a positive cosmological constant included in Einstein's equations.

Introduction

In a paper on a relativistic rotating disk [1], Weber presents the dominant view that one needs simply apply traditional relativistic concepts directly and all problems and paradoxes disappear. However, Klauber [2] considers that the issue is far from settled, with a lot of inconsistencies unresolved by the standard solution (see also [3]). Klauber emphasizes that the disk surface experiences no tidal stresses and this is true for any observer, an opinion which is at odds with the traditional point of view.

The Sagnac experiment [4,5] is a Michelson-Morley type experiment for rotating motion and it showed that the local speed of light in a circumferential direction on rotating frames is not invariant [3]. In Klauber's view [2], we have to start with Sagnac's results, not those of Michelson-Morley and rederive relativity theory for rotating frames, following the same steps Einstein did for rectilinear motion. In that case there is no Lorentz contraction along the disk rim, the disk surface is Minkowskian and the clock syncronization turns out to be exactly what one finds by using light rays from a clock located at the disk center.

Nikolic [6] remarked that each point of a rotating disk belongs to a different noninertial frame, although there is no relative motion among different points on the disk. This is similar with the situation faced by a static Rindler observer located at different points on a rotating platform. The author of [6] showed further that, contrary to the prediction of the standard approach, one finds that an observer on the rim of the disk will see equal lengths of other different moving objects as an inertial observer whose instantaneous position and velocity are equal to that of the observer on the rim. Moreover, he also note that the general accepted expression for the space line-element in a non-time-orthogonal frame is found sometimes inappropriate. One also remarks that, according to Debski et al. [7], only motion with constant velocity is relative: acceleration is absolute (and, in particular, rotation) and the principle of relativity does not apply to accelerating motion.

It is our purpose in this work to take advantage of this property of acceleration and look for a different (i.e. curved) geometry in a rotating reference system. That means the new spacetime cannot be obtained from the flat one by a coordinate transformation. In Sec.2 we present the curved metric proposed to be valid for a rotating observer. Sec.3 is devoted to the kinematical quantities associated to a static observer including the covariant acceleration, shear and vorticity tensors. Sec.4 investigates the properties of the source of curvature stress tensor, including the energy conditions. A new version with a cosmological constant gives more realistic results in Sec.5. The Sagnac effect is briefly analysed in Sec.6. The paper concludes in Sec.7 with few final remarks.

Throughout the paper we use geometrical units c = G = 1, unless otherwise specified.

Rotating curved metric

Let us consider the line element of Minkowski spacetime in cylindrical coordinates

ds 2 = -dT 2 + dR 2 + dZ 2 + R 2 dΦ 2 . (2.1)
The motion of a reference system, rotating with constant angular velocity ω is obtained by the coordinate transformation [5] 

t = T, r = R, z = Z, ϕ -ωt = Φ, (2.2) 
which yields

ds 2 = -(1 -ω 2 r 2 )dt 2 -2ωr 2 dtdϕ + dr 2 + dz 2 + r 2 dϕ 2 . (2.3)
The line-element (2.3) is the well-known Born metric. The time-time component of the metric g tt = -1 + ω 2 r 2 is vanishing at r = 1/ω, which is the radius of the light cylinder. ωr being a velocity, we have to take v = ωr < 1. In addition, one thus avoids the signature flip when r > 1/ω. The light cylinder is not a horizon because [8,9] 

g tt - g 2 tϕ g ϕϕ = -1 ̸ = 0. (2.4)
Our main conjecture is that any accelerating observer finds in a curved spacetime, generated by the agent who creates the acceleration. That should be valid both for linear and for rotating systems. In other words, the geometry in a rotating frame cannot be obtained by a coordinate transformation from the flat metric. Therefore, we propose the following spacetime, supposed to be valid for a rotating observer

ds 2 = -(1 -ω 2 r 2 )dt 2 -2ωr 2 dt dϕ + dr 2 1 -b 2 r 2 + dz 2 + r 2 dϕ 2 , ( 2.5) 
where b a positive constant (an inverse length) and r < 1/b. We take again r < 1/ω, to get a positive -g tt . It is worth noting that for ωr << 1, b • r << 1 the metric (2.5) acquires a Minkowskian form, in cylindrical coordinates. Same is valid if ω = b = 0 (no rotation).

As far as the curvature invariants (the scalar curvature and the Kretschmann scalar) are concerned, the geometry (2.5) yields 

R a a = 2b 2 , K = 4b 4 , ( 2.6) 
G t t = G z z = -b 2 , G ϕ t = -b 2 ω. (2.7)
As for the curvature invariants, we see that all the above components are constants, being zero for b = 0.

Kinematical quantities

We now consider a static observer in the geometry (2.5), having a velocity vector field, irrespective of the value of b

u b = ( 1/ √ 1 -ω 2 r 2 , 0, 0, 0 ) , u b = ( - √ 1 -ω 2 r 2 , 0, 0, - ωr 2 √ 1 -ω 2 r 2 ) , (3.1)
where u b u b = -1 and the Latin indices take the values (t, r, z, ϕ). The only nonzero component of the covariant acceleration

a b = u a ∇ a u b is a r = - 1 -b 2 r 2 1 -ω 2 r 2 • ω 2 r, (3.2)
which leads to the proper acceleration

A ≡ √ a b a b = √ g rr |a r | = (1-b 2 r 2 )ω 2 r/(1- ω 2 r 2 ) 3/2
). Because a r is always negative, an observer at rest at r = const. should push oneself to the axis of rotation for to maintain the static position, an effect of the centrifugal force. We know from experiments that, for a rotating observer with ωr << 1, (2.4) gives us a r = -ω 2 r. Therefore, we will consider b = ω from now on, such that Eq.(2.5) becomes

ds 2 = -(1 -ω 2 r 2 )dt 2 -2ωr 2 dt dϕ + dr 2 1 -ω 2 r 2 + dz 2 + r 2 dϕ 2 , ( 3.3) 
Consequently, the source of curvature comes directly from the angular velocity.

In other words, the agent who generates the rotational motion creates the energy leading to curvature. It is worth noting that the value of a r given by (2.5) is valid for any ωr < 1, in contrast with a r = -ω 2 r given by (2.4), that is valid for ωr << 1.

The velocity vector given by (3.1) leads to the vanishing of the scalar expansion Θ = ∇ a u a = 0 and of the shear tensor of the particles worldlines

σ a b = 1 2 (h ac ∇ c u b + h c b ∇ c u a ) - 1 3 Θh a b + 1 2 (a a u b + a b u a ), (3.4) 
where h a b = g a b + u a u b is the projection tensor onto the direction perpendicular to u a and σ a b expresses the distorsion of the worldlines in shape without change in volume. As far as the vorticity tensor

Ω a b = 1 2 (h ac ∇ c u b -h c b ∇ c u a ) - 1 2 (a a u b -a b u a ) (3.5)
is concerned, the only nonzero components are

Ω t r = ω 2 r (1 -ω 2 r 2 ) 3/2 , Ω r ϕ = ωr √ 1 -ω 2 r 2 , Ω ϕ r = - ω r √ 1 -ω 2 r 2 , ( 3.6) 
with the modulus

Ω ≡ √ Ω a b Ω b a = √ 2 ω √ 1 -ω 2 r 2 . ( 3.7) 
In contrast, the vorticity vector ω a has only one nonzero component:

ω z = Ω/ √ 2.

Stress tensor properties

We look now for the source of curvature of the geometry (3.3), namely we need the components of the stress tensor to be inserted on the r.h.s. of Einstein's equations for to get (3.3) as an exact solution. From (2.7) we immediately get the nonzero components

8πT t t = 8πT z z = -ω 2 , 8πT ϕ t = -ω 3 . (4.1)
It is clear that we are dealing with an imperfect fluid, with different transversal pressures. Therefore, we start with the general form [10,11,12]

T a b = (p r + ρ)u a u b + p r g a b + (p ϕ -p r )n a n b + (p z -p r )s a s b + u a q b + u b q a , (4.2)
where ρ is the energy density of the fluid, p r , p ϕ , p z , q a are, respectively, the radial pressure, the pressure along the ϕ-direction, the pressure along the zdirection and the flux density vector. In addition,

s a = (0, 0, 1, 0), n a n a = s a s a = 1, u a n a = u a s a = n a s a = 0. (4.3)
From the conditions u a n a = 0, n a n a = 1 and the velocity vector from (3.1), one obtains

n a = ( - ωr √ 1 -ω 2 r 2 , 0, 0, √ 1 -ω 2 r 2 r ) , n a = ( 0, 0, 0, r √ 1 -ω 2 r 2 , ) , (4.4) 
Once we acquired the above informations of the kinematical quantities we proceed solving the Einstein equations for to obtain the energy density, pressures and the flux density. By means of T a b from (4.1) and (4.4), we have

8πρ = 8πT a b u b u a = ω 2 1 -ω 2 r 2 , p r = T r r = 0, 8πp z = 8πT z z = -ω 2 . (4.5)
The pressure on the ϕ-direction is obtained from the trace 8πT

a a = -R a a = -2ω 2 8πT a a = 8π(-ρ + p r + p z + p ϕ ) = -2ω 2 , ( 4.6) 
whence we have

8πp ϕ = ω 2 r 2 8πρ = ω 4 r 2 1 -ω 2 r 2 .
(4.7)

The flux density q a (with q a u a = 0) results from a multiplication of (4.2) with the velocity vector

q a = -T a b u b -ρu a , ( 4.8) 
and we find that

q a = ( - ω 4 r 2 (1 -ω 2 r 2 ) 3/2 , 0, 0, ω 3 √ 1 -ω 2 r 2 ) , q a = ( 0, 0, 0, ω 3 r 2 (1 -ω 2 r 2 ) 3/2
) , (4.9) with q ≡ √ q a q a = ω 3 r/(1 -ω 2 r 2 ). One could check that all the other Einstein equations (when the Einstein tensor is vanishing) are satisfied identically.

As long as the energy conditions for T a b are concerned, one observes that the weak energy condition (WEC) (ρ > 0, ρ + p r > 0, ρ + p t > 0), the null energy condition (NEC) ( ρ + p r > 0, ρ + p t > 0), the strong energy condition (SEC) (ρ+p r > 0, ρ+p t > 0, ρ+p r +2p t > 0) and the dominant energy condition (DEC) (ρ > |p r |, ρ > |p t |) are satisfied. That is very clear from the expressions (4.5) and (4.7) for the energy density and pressures, all being non-negative excepting p z .

Let us make few general observations on the above results. The negative (and very high) value of p z = -ω 2 seems to be unrealistic. In addition, the expression of ρ from (4.5) leads to huge values for ρ. The fact that p r = 0 is also not believable. For those reasons, we look for a more convincing version.

Positive cosmological constant

To get rid of the above inconsistencies, we assume a cosmological constant is generated by rotation, besides the above stress tensor. In this case, the Einstein equations are given by

G a b + λδ a b = 8πT a b , λ > 0. ( 5.1) 
The new expressions of the energy density and pressures appears as

8πρ = ω 2 1 -ω 2 r 2 -λ, 8πp r = λ, 8πp z = -ω 2 +λ, 8πp ϕ = ω 4 r 2 1 -ω 2 r 2 +λ (5.2)
(Noting that the expression of the flux density does not depend on λ). We impose a value of the cosmological constant such that p z = 0, a condition leading to λ = ω 2 . In that situation the new values from (5.2) acquire the form

8πρ = ω 4 r 2 1 -ω 2 r 2 , 8πp r = ω 2 , p z = 0, 8πp ϕ = ω 2 1 -ω 2 r 2 (5.3) 
We see that 8πρ equals the proper acceleration of our static observer (in the rotating frame). A comparison of the energy conditions validity (with the previous ones from Sec.4) shows that all the energy conditions for the stress tensor are obeyed, excepting the DEC, because in this case ρ < |p ϕ |. Let us consider a numerical example. Take a cylinder with height ∆z and radius r = 1cm, rotating around its central axis with angular velocity ω = 100rad/s. Taking care of all fundamental constants and consider ωr << c, we have, for a rotating observer inside the cylinder at r = 1cm from the axis, ρ ≈ (c 4 /8πG) • ω 4 r 2 /c 4 = ω 4 r 2 /8πG = (a r ) 2 /8πG = 6 • 10 15 ergs/cm 3 , which is a reasonable value. The fact that ρ ∝ (a r ) 2 is a well-known property of a Newtonian gravitational field [13] or of the electrostatic field. The above value of ρ corresponds to a radial acceleration a r ≈ 100 • g, g being the Earth gravity on its surface.

Sagnac effect

Let us consider now two light beams counter-propagating on a circular trajectory (using a system of mirrors) in a rotating reference frame, in flat spacetime [5,14,15]. Due to the rotation of the source of light, we know that a phase shift (with respect to the interference pattern when the device is at rest) and, from here, a time delay is measured (Sagnac effect) between the two counterpropagating beams. Using an analogy with the expressions for the Coriolis and Lorentz forces, Rizzi and Ruggiero [14] showed that the effect is also valid for matter beams : Cooper pairs, charged particles, etc.

Classically, he predicted the following phase shift, for monochromatic light waves in vacuum, counter-propagating along a closed circular path in a rotating interferometer, with radius r 0 and z = const..

∆Φ = 4ωS λc , ( 6.1) 
where ω is the angular velocity of the turntable, S = πr 2 0 is the area enclosed by the light path, and λ is the wavelength of light in vacuum. The corresponding time difference will be given by ∆t = λ∆Φ = 4ωS. (6.2)

Noting that the Eq.( 6.2) could be derived from (2.3) where we place r = r 0 = const., z = const. and ds 2 = 0. Solving the equation obtained [16], we get

dϕ dt = ω ± 1 r 0 , ( 6.3) 
where (±) refers to the two counter-propagating beams. Integrating the above equation for a complete rotation, (

= 4ωπr 2 0 1 -ω 2 r 2 0 , ( 6.3) yields ∆t 
which is (6.2) with the approximation used by Sagnac (ωr << 1). We observe that our metric (2.5) is different from (2.3) only at the term dr 2 /(1 -ω 2 r 2 ). This term does not contribute in the Sagnac experiment, where one considers r = r 0 = const.. Therefore, our geometry (2.5) is not in contradiction with the results of the Sagnac experiment.

Conclusions

We take into account in this short paper the energy spent to generate the rotational motion, on the geometry of the spacetime. As a reward of that energy consumption, the metric becomes curved, with constant curvature invariants and constant components of the energy-momentum tensor. Because of an out of diagonal component, the selected static observer is not comoving with the imperfect fluid.

In the 1st version of the model from Sec.4, an unrealistic value of the energy density of the fluid is obtained, together with a negative pressure along the z-direction. Therefore, a better version is proposed in Sec.5, with reasonable values of the main physical quantities, by means of a cosmological constant (related to the angular velocity of rotation), introduced in Einstein equations. That would be a proof of a local role played by the cosmological constant.

  which have positive constant values. Of course, when b = 0, they are vanishing because the metric becomes flat. With the help of the Maple software package one may compute the components of the Einstein tensor from Einstein's equation G ab = 8πT ab . The only nonzero components of the Einstein tensor look as