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DETERMINANTAL RANDOM SUBGRAPHS

ADRIEN KASSEL AND THIERRY LÉVY

Abstract. We define two natural families of determinantal random subgraphs of a finite con-
nected graph, one supported by acyclic spanning subgraphs (spanning forests) with fixed number
of components, the other by connected spanning subgraphs with fixed number of independent
cycles. Each family generalizes the uniform spanning tree and the generating functions of these
probability measures generalize the classical Kirchhoff and Symanzik polynomials. We empha-
size the matroidal nature of this construction, as well as possible generalisations.
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Introduction

Since the work of Kirchhoff [Kir47], algebraic properties of spanning trees on finite connected
graphs have kept fascinating and being rediscovered in various guises using a variety of tech-
niques. They are ubiquitous in large areas of the literature in combinatorics, mathematical
physics, probability, and linear algebra. Important foundational works of Whitney [Whi35] and
Tutte [Tut54], followed by many others, have shown how fundamental these objects are in com-
binatorics, and also how they can be seen in a broader context, notably that of matroids. This
point of view percolated in probability theory, notably through the work of Lyons [Lyo03].

It is known since the work of Burton and Pemantle [BP93, transfer current theorem] that
the uniform probability measure on the set of spanning trees of a finite connected graph is a
determinantal point process, a class of processes first introduced by Macchi [Mac75] and named
that way by Borodin and Olshanski at the turn of the century, see [Bor11]. This measure had
been studied earlier, in particular in relation to the Markov chain tree theorem (see [Ald90] and
references therein), and extended to infinite graphs in [Pem91, BLPS01]; see the textbook [LP16].
In the planar case, the study of its scaling limit led Schramm to the discovery of SLE, see [Sch00,
LSW04]. Analogs of uniform spanning trees on higher dimensional simplicial complexes were
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2 ADRIEN KASSEL AND THIERRY LÉVY

defined by Lyons [Lyo09], who also highlighted why the support of a determinantal probability
measure is the same thing as the set of bases of a linear matroid. Later, Kenyon [Ken11]
defined a determinantal probability measure on the set of cycle-rooted spanning forests of a
graph, determined by a 1-form on the graph. There are quaternion determinant analogs of these
probability measures [Kas15, KL19].

On a graph, spanning trees and cycle-rooted spanning forests are the set of bases of the circular
and bicircular matroids, respectively [Oxl11]. The circular case is the one from which the theory
of matroids arose in the first place, whereas the bicircular case was only discovered later in [SP72]
and further studied in [Mat77]. These are moreover the only matroids on the set of edges of a
graph for which the set of circuits consists in all subgraphs homeomorphic to a given family of
connected graphs [SP72].

The purpose of the present paper is to describe new families of determinantal probability
measures on graphs, yielding random subgraphs with more complicated topology than trees, and
an explicit geometric formula for the weight of each graph appearing in the associated partition
function. This is the content of Theorems 4.3 and 4.6. The partition functions of these probability
measures generalize the classical Symanzik and Kirchhoff polynomials (see Section 5). Moreover,
we generalize these results to the case of linear matroids in Theorem 6.17 and suggest some
possible further specializations of this theorem in Section 6.10.

Let us explain the content of Theorem 4.3. On a weighted graph (G, x), given an integer k ≥ 0,
we consider the set Ck(G) of connected spanning subgraphs with exactly k linearly independent
cycles. Let us choose linearly independent 1-forms θ1, . . . , θk which span a subspace that does not
contain any non-zero exact 1-form. For every K ∈ Ck(G), we choose an integral basis (γ1, . . . , γk)
of the free abelian group of cycles of K and assign to K the weight

w(K) =
∣∣ det (θi(γj))1≤i,j≤k

∣∣2 xK ,
where θ(γ) =

∑
e∈γ θe and xK is the product of the weights of the edges of K. We prove that the

corresponding probability measure is determinantal, associated with the orthogonal projection
on the direct sum of the space of exact 1-forms and the span of θ1, . . . , θk.

Our main tools for proving these results are an exterior algebra version of the matrix-tree
theorem (Propositions 2.1, 2.4, and 6.4), and consequences of it, and the mean projection theo-
rem for determinantal point processes (Theorem 3.2). The latter theorem was proven in [KL19,
Theorem 5.9] and another proof was given in [KL22a]; earlier instances of special cases of this
statement appeared in [NS61], [Mau76, Theorem 1], [Big97, Proposition 7.3], [Lyo03, Proposi-
tion 6.8], and [CCK13, CCK15, Theorem A].

Our approach allows us to unify the presentation of several statements concerning spanning
trees (Sections 1 and 2), the Jacobian torus (Section 2.3), duality (Section 4.5) and complexes
(Section 4.6), the Kirchhoff and Symanzik polynomials (Section 5), determinantal probability
measures (Sections 3 and 6), cycle-rooted spanning forests (Section 6.10) and matroids (Sec-
tion 6). Incidentally, it also yields a new formula for the probability density of a determinantal
process (Proposition 6.8) and its restrictions (Corollary 6.11), in addition to the description of
the above-mentioned families of examples of determinantal random subgraphs. In that respect,
this paper also provides yet another, almost self-contained, presentation of these classical topics,
expressed in the unifying language of exterior algebra.

The paper is organized as follows. In Section 1 we introduce some basic definitions about
graphs and associated objects (chains, cochains, cycles, cuts, and integral bases determined by
spanning trees). In Section 2, we review combinatorial multilinear identities involving spanning
trees. In Section 3, we introduce four independent tools from the theory of determinantal proba-
bility measures and determinant computations. In Section 4 we show the existence of noteworthy
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determinantal probability measures on two families of subgraphs of constrained Betti numbers,
which generalize the uniform measure on spanning trees. In Section 5, we make the connection to
multivariate homogeneous polynomials from theoretical physics and derive a few consequences.
Finally, in Section 6 we explain how the results presented extend from the circular matroid case
to the general case of linear matroids, which in particular encompasses the case of the bicircular
matroid, or ‘circular’ and ‘bicircular’ matroids on the set of cells of higher dimensional simplicial
complexes.

Acknowledgements. We thank Omid Amini for inspiring discussions during work visits in
Paris and Lyon on the topic of Symanzik polynomials and related structures. In particular, we
realized while completing this work, which was motivated by different considerations in [KL22b],
that the natural generalization of Symanzik polynomials we encounter here (see (50) in Section 5)
had already been imagined by him several years ago, in the guise of the determinantal expression
in the right-hand side of Proposition 4.5, based on the abstract construction of these polynomials
in [ABBGF16, Section 2.1]. This paper thus also provides an answer to the question of Omid
Amini of providing a concrete description and some properties of these polynomials. We also
thank Javier Fresán for conversations at ETH Zurich which introduced us to [ABBGF16] back
in 2015.

1. Spanning trees, cycles, and cuts

Most of what follows in this section is already known, but not presented exactly in that way;
see for instance [Big74, Big97, BdlHN97].

Throughout the paper we will perform computations in the exterior algebra. For definitions
and notations we refer to [KL19, Section 5].

1.1. Graphs and orientations. We denote by G = (V,E) a finite connected graph, where V is
the set of vertices, and E the set of edges, which we assume come with both possible orientations.
Given an edge e ∈ E, we let e and e be its starting and ending vertices, and let e−1 be its inverse.
We let [E] be the set of pairs [e] = {e, e−1}, which we call geometric edges.

For a subgraph S of G, we denote by V(S) and E(S) its set of vertices and edges respectively;
each edge of S appears with both orientations in E(S). A subgraph needs not be connected, and
can have isolated vertices.

A subgraph S is said to be spanning when V(S) = V. A spanning tree of G is a connected
spanning subgraph which is minimal for inclusion. We denote by T (G) the set of spanning trees
of G.

We fix an orientation of G, that is, a subset E+ of E containing exactly one element of each
pair {e, e−1}. Given a subgraph S of G, we will write E+ \S for E+(G) \E(S). Moreover, we will
write S+ for the directed graph whose vertex set is V and edge set is E+(S) = E+ ∩ E(S).

1.2. Chains and cochains. Let us denote by C0(G,Z) the free Z-module over the set V of
vertices of our graph, and by C1(G,Z) the quotient of the free Z-module over E by the submodule
generated by {e+ e−1 : e ∈ E}. The classes of the elements of E+ form a basis of C1(G,Z), that
we call the canonical basis, and we use this basis to identify C1(G,Z) with ZE+ .

In order to be able to write matrices, we pick once and for all an arbitrary total ordering of E+.
In particular, exterior products over sets of oriented edges will always be taken in this order.

The boundary operator ∂ : C1(G,Z) → C0(G,Z) is defined by ∂e = e − e and we define the
group of cycles as

Z1(G,Z) = ker ∂.
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The groups of cochains are defined by

C0(G,Z) = Hom(C0(G,Z),Z) and C1(G,Z) = Hom(C1(G,Z),Z).

We denote by (1v)v∈V the canonical basis of C0(G,Z) and by (e⋆)e∈E+ the canonical basis
of C1(G,Z). We have, for example, e⋆(e−1) = −1.

The pairing between chains and cochains is denoted by round brackets: for all chain a and
cochain α of the same degree, we write (α, a) = α(a).

The coboundary operator δ : C0(G,Z) → C1(G,Z) is the adjoint of the boundary operator,
given by

δ1v =
∑

e∈E:e=v

e⋆.

We define the group of cuts as
B1(G,Z) = im δ.

1.3. Integral bases from spanning trees. In this section, the bases we refer to are bases
of Z-modules. We call them integral bases to distinguish them from bases of vector spaces that
we consider later.

Let T be a spanning tree of G. To T , we associate two integral bases, respectively of Z1(G,Z)
and B1(G,Z). Given two vertices v, w of G, we denote by [v, w]T the unique simple path from v
to w in T , seen as an element of C1(G,Z).

Firstly, for each edge f , we define γ(T, f) = f + [f, f ]T ∈ Z1(G,Z) to be the unique cycle
created by adding f to T . This cycle is oriented by f , and it is zero if and only f belongs to T .
It is well known (see for instance [Big74, Theorem 5.2]) that the family

ZT = {γ(T, f) : f ∈ E+ \ T}

is a basis of Z1(G,Z). Indeed, we have, for every cycle c ∈ Z1(G,Z) written as c = ε1e1+. . .+εnen
with ε1, . . . , εn ∈ {−1, 1} and e1, . . . , en ∈ E+, the equality

(1) c = ε1γ(T, e1) + . . .+ εnγ(T, en),

which follows from the fact that for all vertices u, v, w, the equality [u, v]T + [v, w]T = [u,w]T
holds in C1(G,Z).

Secondly, for each edge e, we define U(T, e) as the set of vertices of G that are connected to e
in T \ e and set

κ(T, e) = δ(1U(T,e)) ∈ B1(G,Z).

The cut κ(T, e) is zero if and only if e does not belong to T and the family

BT = {κ(T, e) : e ∈ T+}

is a basis of B1(G,Z) (this is also known, see for instance [BdlHN97]). Indeed, given an element
b = m1e

⋆
1 + . . .+mne

⋆
n of B1(G,Z), we have

(2) b = m1κ(T, e1) + . . .+mnκ(T, en).

This is because the difference between the two sides of this equation is an element of B1(G,Z)
that is supported on E \ T . It is thus of the form δη for some η ∈ C0(G,Z) and since T connects
any two vertices of G, the values of η on any two vertices are equal. Thus, δη = 0.

Whenever an order of the bases ZT or BT is needed, it will be that inherited from the total
ordering on E+.
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1.4. Projections on submodules. A spanning tree T of G determines a splitting

(3) C1(G,Z) = C1(T,Z)⊕ Z1(G,Z),

according to the formula f = −[f, f ]T + γ(T, f) valid for each edge f . We denote by

(4) ZT : C1(G,Z) → Z1(G,Z), f 7→ γ(T, f)

the associated projection.
A spanning tree T also determines a splitting

(5) C1(G,Z) = B1(G,Z)⊕ C1(T c,Z),
according to the decomposition e⋆ = κ(T, e) + (e⋆ − κ(T, e)). We denote by

(6) BT : C1(G,Z) → B1(G,Z), e⋆ 7→ κ(T, e)

the associated projection.
For every subgraph S, let us denote by πS : C1(G,Z) → C1(S,Z) the projection corre-

sponding to the decomposition C1(G,Z) = C1(S,Z) ⊕ C1(S
c,Z). We use the same notation

for the projection πS : C1(G,Z) → C1(S,Z) corresponding to the decomposition C1(G,Z) =
C1(S,Z)⊕ C1(Sc,Z).

For every spanning tree T of G, a rewriting of (1) and (2) yields the following equalities of
endomorphisms, respectively of Z1(G,Z) and B1(G,Z):

ZT ◦ πT c = idZ1(G,Z),(7)
BT ◦ πT = idB1(G,Z).(8)

1.5. Inner products. Let us choose a base field K = R or C. We consider the spaces Ω0(G) =
C0(G,Z) ⊗ K and Ω1(G) = C1(G,Z) ⊗ K, consisting respectively in functions over the vertices,
also called 0-forms, and in antisymmetric functions over edges, also called 1-forms.

We endow Ω0(G) with the inner product

(9) ⟨⟨f, g⟩⟩ =
∑
v∈V

fvgv.

We consider a collection x = (xe)e∈E of positive real weights on the edges of our graph, such
that xe−1 = xe. We endow Ω1(G) with the inner product

(10) ⟨⟨α, β⟩⟩ =
∑
e∈E+

xe αeβe.

This definition is independent of the choice of orientation E+.
Note that the inner product (10) depends on x, whereas (9) does not. In the following, we

will not stress this dependence more explicitly, but it plays a key role in several proofs, where
identities between polynomials in x are considered, see in particular Sections 3.2, 4, 5, and 6.

Every 1-chain defines a linear form on Ω1(G), that can be represented, thanks to the inner
product on this space, by an element of Ω1(G) itself. We denote by

(11) Jx : C1(G,Z)⊗K → Ω1(G), e 7→ x−1
e e⋆

this antilinear isomorphism. A similar but simpler antilinear isomorphism

(12) J0 : C0(G,Z)⊗K → Ω0(G), v 7→ 1v

exists, that does not depend on the inner product structure. For all v ∈ V, e ∈ E, f ∈ Ω0(G)
and α ∈ Ω1(G), the following relations hold:

(13) ⟨⟨J0v, f⟩⟩ = (f, v) = f(v) and ⟨⟨Jxe, α⟩⟩ = (α, e) = α(e).
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In the following, we will sometimes use adjoints of maps, denote u∗ for a map u, and this will
be with respect to this weighted inner product (where the dependence on x will be implicit in
the notation).

For instance, we define d = δ ⊗ idK : Ω0(G) → Ω1(G), the usual discrete differential, and its
adjoint d∗ = Ω1(G) → Ω0(G).

The operators ∂ and d∗ are related by the equation

(14) J0 ◦ ∂ = d∗ ◦ Jx.

Indeed, for all e ∈ E, f ∈ Ω0(G), we have ⟨⟨d∗Jxe, f⟩⟩ = ⟨⟨Jxe, df⟩⟩ = (df, e) = (f, ∂e) = ⟨⟨f, J0∂e⟩⟩.

1.6. Projections on subspaces. We have the orthogonal decomposition

(15) Ω1(G) = im d⊕ ker d∗ .

On one hand, it follows from (14) that Jx(Z1(G,Z) ⊗ K) = ker d∗. On the other hand, since
d = δ ⊗ idK, we simply have im d = B1(G,Z)⊗K.

Let T ∈ T (G) be a spanning tree. We have Jx(C1(T,Z) ⊗ K) = Ω1(T ), so that starting
from (3), tensoring by K and applying Jx, we find

(16) Ω1(G) = Ω1(T )⊕ ker d∗.

We denote by Pker d∗
T the associated projection on ker d∗. According to the way in which we

established the splitting, we have

(17) Pker d∗
T = Jx(ZT ⊗ idK)J

−1
x .

Starting from (5), we obtain simply by tensoring by K the splitting

(18) Ω1(G) = im d⊕ Ω1(T c).

Note that Ω1(T c) is the orthogonal of Ω1(T ), independently of the choice of x.
We denote by Pim d

T the associated projection on im d. We have

(19) Pim d
T = BT ⊗ idK.

1.7. Monomials and exterior powers. For any subgraph S of G and for any collection of
edges A ⊂ E(G), we define

xS =
∏

e∈E+(S)

xe and xA =
∏

e∈(A∪A−1)∩E+

xe.

For every subgraph S, or every subset of edges, we denote by eS the exterior product of the
positively oriented edges of S, taken in the order fixed in Section 1.2. Similarly, we denote by e⋆S
the exterior product of the elements of the dual canonical basis of C1(G,Z) associated to the
positively oriented edges of S, taken in the same order.

For every k ≥ 0, the family {e⋆S : S ⊆ E+, |S| = k} is orthogonal in
∧

kC1(G,Z)⊗K =
∧

kΩ1(G),
and for each S ⊆ E+,

(20) ∥e⋆S∥2 = xS .

It will be useful to observe that if S and S′ are two subsets of E+, then (πS)
∧|S′|(eS′) = eS′ if

S′ ⊆ S, and 0 otherwise.
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1.8. Edge weights and inner products: choice of convention. Let us make a comment
about our choice of conventions for edge weights and inner products. We choose in this paper
not to endow Ω1(G) = C1(G,Z) ⊗ K, nor Ω0(G) = C0(G,Z) ⊗ K with any inner product. If we
were to choose one, we would take the one which turns the maps Jx and J0 into isometries.

The case of Ω0(G) is of no surprise, since there is no dependency on x there. On Ω1(G) =
C1(G,Z)⊗K this would be the inner product for which the canonical basis is orthogonal and for
which ∥e∥2 = x−1

e for every edge e. This may seem surprising for some readers, but we believe
this is the most natural choice.1

Under this inner product, for every k ≥ 0, the family {eS : S ⊆ E+, |S| = k} is orthogonal in∧
kC1(G,Z)⊗K =

∧
kΩ1(G), and for each S ⊆ E+,

(21) ∥eS∥2 = (xS)−1.

2. Multilinear identities

Given two bases B1 and B2 of the same Z-module, we will denote by det(B1/B2) the deter-
minant of the change of basis between B1 and B2, which is an element of {−1, 1}. This element
can be computed as follows: if B1 = (v1, . . . , vr) and B2 = (w1, . . . , wr), then

v1 ∧ . . . ∧ vr = det(B1/B2)w1 ∧ . . . ∧ wr.

We will use several times the following elementary fact: if a subgraph of G has the same
number of edges as a spanning tree, that is, |V| − 1, without being a spanning tree itself, then
this subgraph has at least one non-trivial cycle, and at least two connected components.

2.1. The Symanzik cycle-tree identity. The content of this section is somewhat related to
a result of [ABKS14], although our statement and proof is different and elementary.

2.1.1. Spanning trees. Let us introduce the notation b1 = b1(G) for the rank of Z1(G,Z), called
the first Betti number of G. We have b1(G) = |E+| − |V|+ 1.

Proposition 2.1 (Cycle-tree identity). Let Z = (γ1, . . . , γb1) be a basis of Z1(G,Z). Then, in
the free abelian group

∧
b1C1(G,Z), we have

(22) γ1 ∧ . . . ∧ γb1 =
∑

T∈T (G)

det(Z /ZT ) eT c .

Proof. Let us decompose the element γ1 ∧ . . . ∧ γb1 of
∧

b1C1(G,Z) on the basis {eS : |S| = b1}:

γ1 ∧ . . . ∧ γb1 =
∑

S⊂E+:|S|=b1

aSeS .

Consider a subgraph S with b1 edges and assume that Sc is not a spanning tree. Then Sc

contains a non-trivial cycle. This means that there exists a non-zero linear combination of
γ1, . . . , γb1 , say η = n1γ1+. . .+nb1γb1 that is supported by Sc. By reordering γ1, . . . , γn if needed,
we make sure that n1 ̸= 0. Then 0 = (πS)

∧b1(η∧γ2∧. . .∧γb1) = n1(πS)
∧b1(γ1∧. . .∧γb1) = n1aSeS ,

so that aS = 0.
Consider now a spanning tree T of G. Using (7), we find that

γ1 ∧ . . . ∧ γb1 = (ZT ◦ πT c)∧b1(γ1 ∧ . . . ∧ γb1) =
∑

S⊂E+:|S|=b1

aS (ZT )
∧b1((πT c)∧b1(eS)

)
1We like to remember this convention, viewing xe as conductances, by the following invented rule of thumb

from electrical network theory: chains resist, cochains conduct.
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and the only non-zero term of the last sum is that corresponding to S = T c, so that

γ1 ∧ . . . ∧ γb1 = aT c (ZT )
∧b1eT c .

The result follows from the observation that (ZT )
∧b1eT c is the exterior product of the elements

of the basis ZT . This identifies the coefficient aT c as det(Z /ZT ) and concludes the proof. □

Corollary 2.2. For every spanning tree T of G, we have

(23) πT c(γ1) ∧ . . . ∧ πT c(γb1) = det(Z /ZT ) eT c = ±eT c .

Moreover, on
∧

b1Z1(G,Z),

(24)
∑

T∈T (G)

∧
b1πT c = id.

Proof. The first equality follows from applying
∧

b1πT c to (22) and using the fact that if S and T
are spanning trees, then

∧
b1πT c(eSc) = eSc if S = T and 0 otherwise.

The second equality follows from the first one, from (22), and the fact that
∧

b1Z1(G,Z) is a
module of rank 1 generated by γ1 ∧ . . . ∧ γb1 . □

2.1.2. Symanzik polynomial. It follows from an application of
∧

b1Jx to Proposition 2.1, Equa-
tion (20), and Pythagoras’ theorem in the Euclidean space

∧
b1C1(G,Z)⊗K that

(25) ∥Jxγ1 ∧ . . . ∧ Jxγb1∥2 =
∑

T∈T (G)

(x−1)T
c
= (xE

+
)−1

∑
T∈T (G)

xT .

This can alternatively be phrased as follows: let C = diag(xe : e ∈ E+) be the diagonal matrix
of weights xe and M the |E+|×b1 matrix formed by writing the cycles γ1, . . . , γb1 in the canonical
basis of C1(G,Z). Then

(26) det(tMC−1M) =
∑

T∈T (G)

(x−1)T
c
,

an equality which appears in [Ami19, Lemma 3.1].
In the theory of Feynman integrals of Euclidean quantum field theory and associated graph

polynomials [BW10], the right-hand side of (26) is called the first Symanzik polynomial (applied
here to x−1 because of our conventions, see Section 1.8), so we propose to call (22) the Symanzik
cycle-tree identity.

2.1.3. Connected subgraphs. Let us now turn to an application of Proposition 2.1. For each
k ∈ {0, . . . , b1(G)}, let Ck(G) be the subset of connected spanning subgraphs with Betti number k,
that is connected spanning subgraphs K such that Z1(K,Z) has rank k (i.e. K has an excess of k
edges compared to the |V| − 1 edges of a spanning tree). In particular, we have C0(G) = T (G)
and Cb1(G)(G) = {G}.
Proposition 2.3. Let K ∈ Ck(G) be a connected spanning subgraph. Let (γ1, . . . , γk) be a basis
of Z1(K,Z). Then in

(∧
kZ1(G,Z)

)⊗2, we have∑
T∈T (G)
T⊂K

∧
kZT (eK\T )⊗ eK\T = (γ1 ∧ . . . ∧ γk)⊗2.

In more concrete terms, if for every spanning tree T of K we let e1, . . . , ek be the positively
oriented edges of K \ T , then∑

T∈T (K)

(γ(T, e1) ∧ . . . ∧ γ(T, ek))⊗ (e1 ∧ . . . ∧ ek) = (γ1 ∧ . . . ∧ γk)⊗2.
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Proof. Let us compute the right-hand side of the equality to prove. We apply (24) on the graphK
to the second factor, and then the k-th exterior power of (7), also on the graph K, to each term
of the sum, to find

(γ1 ∧ . . . ∧ γk)⊗2 =
∑

T∈T (K)

(γ1 ∧ . . . ∧ γk)⊗
∧

kπT c(γ1 ∧ . . . ∧ γk)

=
∑

T∈T (K)

∧
kZT ◦

∧
kπT c(γ1 ∧ . . . ∧ γk)⊗

∧
kπT c(γ1 ∧ . . . ∧ γk).

For each spanning tree T of K, an application of (23) gives πT c(γ1 ∧ . . . ∧ γk) = ±eK\T and the
result follows. □

2.2. The Kirchhoff cut-tree identity. In this section, we consider the ‘dual case’ of the
preceding section, and as a byproduct we derive a more classical version of the matrix-tree
theorem by a similar strategy.

2.2.1. Spanning trees.

Proposition 2.4 (Cut-tree identity). Let B = (κ1, . . . , κ|V|−1) be an integral basis of B1(G,Z).
In

∧|V|−1C1(G,Z), we have

(27) κ1 ∧ . . . ∧ κ|V|−1 =
∑

T∈T (G)

det(B/BT ) e
⋆
T .

Proof. Let us decompose κ1 ∧ . . . ∧ κ|V|−1 ∈
∧|V|−1C1(G,Z) on the basis {e⋆S : |S| = |V| − 1} :

κ1 ∧ . . . ∧ κ|V|−1 =
∑

S⊂E+:|S|=|V|−1

bSe
⋆
S .

Consider a subgraph S with |V| − 1 edges that is not a spanning tree. Then S has at least
two connected components. Let S1 be one of them. Then δ(1V(S1)) is a non-zero element
of B1(G,Z) that is supported by Sc. Thus, there is non-zero linear combination of κ1, . . . , κ|V|−1,
say α = n1κ1 + . . .+ n|V|−1κ|V|−1, that is supported by Sc. Reordering κ1, . . . , κ|V|−1 if needed,
we assume that n1 ̸= 0. Then

0 = (πS)
∧(|V|−1)(α ∧ κ2 ∧ . . . ∧ κ|V|−1) = n1(πS)

∧|V|−1(κ1 ∧ . . . ∧ κ|V|−1) = n1bSe
⋆
S ,

so that bS = 0.
Consider now a spanning tree T of G. Using (8), we find that

κ1 ∧ . . . ∧ κ|V|−1 = (BT ◦ πT )∧(|V|−1)(κ1 ∧ . . . ∧ κ|V|−1) =
∑

S⊂E+:|S|=|V|−1

bS (BT ◦ πT )∧|V|−1(e⋆S)

and the only non-zero term of the last sum is that corresponding to S = T , so that

κ1 ∧ . . . ∧ κ|V|−1 = bT (BT )
∧(|V|−1)e⋆T .

The result follows from the observation that (BT )
∧(|V|−1)e⋆T is the exterior product of the elements

of the basis BT . This identifies the coefficient bT as det(B/BT ) and concludes the proof. □

Corollary 2.5. For every spanning tree T of G, we have

(28) πT (κ1) ∧ . . . ∧ πT (κ|V|−1) = det(B/BT ) e
⋆
T = ±e⋆T .

Moreover, on
∧|V|−1B1(G,Z),

(29)
∑

T∈T (G)

∧|V|−1πT = id.
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Proof. The first equality follows from applying
∧|V|−1πT to (27) and using the fact that if S

and T are spanning trees, then
∧|V|−1πT (e

⋆
S) = e⋆S if S = T and 0 otherwise.

The second equality follows from the first one, from (27), and the fact that
∧|V |−1B1(G,Z) is

a module of rank 1 generated by κ1 ∧ . . . ∧ κ|V|−1. □

2.2.2. Kirchhoff polynomial. Applying Pythagoras’ theorem, as in Section 2.1.2, to both sides of
the equality (27), we find

(30) ∥κ1 ∧ . . . ∧ κ|V|−1∥2 =
∑

T∈T (G)

xT .

The right-hand side of (30) is famously called the Kirchhoff polynomial and we hence propose
to call (27) the Kirchhoff cut-tree identity.

To recover the classical matrix-tree theorem (see for instance [KL20]), we apply Proposition 2.4
to a special basis of B1(G,Z). To this end, we need to choose an ordering of the set V of vertices
of G. Let us fix a reference vertex v0. Then Bv0 = {δ(1v) : v ∈ V \ {v0}} is a basis of B1(G,Z).
Then, using the notation D of the proof, the matrix tDCD is the principal submatrix of the
combinatorial Laplacian on C0(G,Z) where the row and column corresponding to v0 have been
erased. The equality (30) reads, in this case,

(31) det(tDCD) =
∑

T∈T (G)

xT ,

which is the most classical form of the matrix-tree theorem.

2.2.3. Spanning forests. As in Section 2.1, we now derive a consequence of Proposition 2.4.
For each k ∈ {1, . . . , |V|}, let Fk(G) denote the set of k-component spanning forests of G.

With this notation, note that F1(G) = T (G) and F|V|(G) = {(V,∅)}.
For F ∈ Fk(G), we will consider the quotient graph G/F obtained from G by contracting the

edges of F . This graph has one vertex for each connected component of F , and its edges are
the edges of G which join distinct connected components. Spanning trees of G/F are the sets of
edges of G which, when added to F , produce a spanning tree of G.

We denote by C0(G/F ,Z) the submodule of C0(G,Z) consisting in the integer-valued functions
on V that are constant on each connected component of F . We denote its image by δ by
B1(G/F ,Z) ⊆ C1(G,Z).

Proposition 2.6. Let F ∈ Fk+1(G) be a spanning forest. Let (κ1, . . . , κk) be a basis of B1(G/F ,Z).
Then in

(∧
kB1(G,Z)

)⊗2, we have∑
T∈T (G)
T⊃F

∧
kBT (e

⋆
T\F )⊗ e⋆T\F = (κ1 ∧ . . . ∧ κk)⊗2.

In other words, if for every spanning tree τ of G/F we let e1, . . . , ek be its positively oriented
edges, then∑

τ∈T (G/F )

(κ(F ∪ τ, e1) ∧ . . . ∧ κ(F ∪ τ, ek))⊗ (e⋆1 ∧ . . . ∧ e⋆k) = (κ1 ∧ . . . ∧ κk)⊗2.

Proof. Let us compute the right-hand side of the equality to prove. We apply (29) in the
graph G/F to the second factor, and then the k-th exterior power of the identity (8) to each term
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of the sum, to find

(κ1 ∧ . . . ∧ κk)⊗2 =
∑

τ∈T (G/F )

(κ1 ∧ . . . ∧ κk)⊗
∧

kπτ (κ1 ∧ . . . ∧ κk)

=
∑

τ∈T (G/F )

∧
kBτ ◦

∧
kπτ (κ1 ∧ . . . ∧ κk)⊗

∧
kπτ (κ1 ∧ . . . ∧ κk).

For each spanning tree τ of G/F , applying (28) gives πτ (κ1 ∧ . . . ∧ κk) = ±e⋆τ = ±e⋆T\F and the
result follows. □

2.3. Real tori and finite abelian groups. Recall Equations (25) and (30), and let us use the
same notations. Using (30) and the fact that Jx(Z1(G,K)) = ker d∗ is orthogonal to B1(G,K) =
im d, we find

∥Jxγ1 ∧ . . . ∧ Jxγb1 ∧ κ1 ∧ . . . ∧ κ|V|−1∥2 = ∥Jxγ1 ∧ . . . ∧ Jxγb1∥2∥κ1 ∧ . . . ∧ κ|V|−1∥2

= (xE
+
)−1

( ∑
T∈T (G)

xT
)2

.

On the other hand, taking the exterior product of (22), to which we apply
∧

b1Jx, and (27), we
find

Jxγ1 ∧ . . . ∧ Jxγb1 ∧ κ1 ∧ . . . ∧ κ|V|−1 =
∑

T∈T (G)

±(xT
c
)−1 e⋆T c ∧ e⋆T = (xE

+
)−1

( ∑
T∈T (G)

±xT
)
e⋆E+ .

Comparing with the previous equality, we deduce that all signs in the sum are the same.2 Thus,
we have proved the following proposition.

Proposition 2.7. Let (γ1, . . . , γb1) be a basis of Z1(G,Z) and (κ1, . . . , κ|V |−1) a basis of B1(G,Z).
Then in the line

∧|E+|Ω1(G), we have

Jxγ1 ∧ . . . ∧ Jxγb1 ∧ κ1 ∧ . . . ∧ κ|V|−1 = ±(xE
+
)−1

( ∑
T∈T (G)

xT
)
e⋆E+ .

In particular,

∥Jxγ1 ∧ . . . ∧ Jxγb1 ∧ κ1 ∧ . . . ∧ κ|V|−1∥ = (xE
+
)−

1
2

∑
T∈T (G)

xT .

In the vector space Ω1(G), the elements Jxγ1, . . . , Jxγb1 , κ1, . . . , κ|V|−1 form a basis, and gen-
erate a lattice. This lattice, as a discrete abelian subgroup of Ω1(G), does not depend on our
choice of basis, indeed it is equal to Jx(Z1(G,Z))⊕B1(G,Z). The quotient

C1(G,R)/
(
Jx(Z1(G,Z))⊕B1(G,Z)

)
is a real torus, of which the second assertion of the proposition computes the volume. In the
case where all the weights xe are taken to be equal to 1, this volume is equal to the number of
spanning trees of G.

Still in the case where x is identically equal to 1, this volume is equal to the cardinal of the
finite group

C1(G,Z)/
(
J1(Z1(G,Z))⊕B1(G,Z)

)
.

2The fact that all signs are the same in the above formula is also a reflection of the fact that Jxγ1 ∧ . . .∧ Jxγb1
and κ1 ∧ . . . ∧ κ|V|−1 are Hodge dual of each other, up to a constant.
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Taking x identically equal to 1 blurs the distinction between chains and cochains and we can
identify them. Then, we can write the last group as

C1(G,Z)/
(
Z1(G,Z)⊕ δC0(G,Z)

)
.

The boundary map ∂ descends to an injective map on this quotient, and induces an isomorphism
with the group

∂C1(G,Z)/∂δC0(G,Z),
sometimes called the Jacobian group of the graph, itself isomorphic to the sandpile group

C0(G \ {v0},Z)/∂δC0(G \ {v0},Z),
where v0 is an arbitrarily chosen vertex, see [CP18, Corollary 13.15] and [BdlHN97, Big99].
Kotani and Sunada also define the Jacobian torus [KS00], see also [ABKS14].

3. Determinantal toolbox

In this section, we collect four useful and fairly independent properties of determinantal prob-
ability measures and determinants.

3.1. Determinantal measures on finite sets. Let (E, ⟨·, ·⟩) be a finite-dimensional Euclidean
space. Consider a linear subspace H of E and an orthonormal basis (ei)i∈S of E, indexed by
some finite set S.

A random subset X of S is determinantal associated to H in the basis (ei)i∈S if for all subset
J ⊆ S, we have

P(J ⊆ X) = det(ΠH)EJ
EJ

where ΠH is the orthogonal projection on H and (ΠH)EJ
EJ

its compression on the coordinate
subspace EJ = ⊕i∈JKei.

3.2. The routine construction lemma. The following lemma states that showing that a
random subset is determinantal associated with a self-dual projection is equivalent to showing a
matrix-tree type formula, as an equality of polynomial, where the name comes from the special
case (31).

For each set of non-zero positive weights x = (xi)i∈S , we twist the inner product on E by
setting, for all u, v ∈ E,

(32) ⟨u, v⟩x =
∑
i∈S

xiuivi

where (ui)i∈S and (vi)i∈S are the coefficients of u and v in the basis (ei)i∈S . Note that the
basis (ei)i∈S is still orthogonal with respect to the twisted inner product (which takes the most
general form of an inner product with this property).

Lemma 3.1. Let w : 2S → R∗
+ be a map that is not identically zero. Let a be an injective linear

map from some inner product space into E. Assume that for all x ∈ (0,∞)S, we have

(33) det(a∗a) =
∑
B⊆S

xB w(B) ,

where a∗ is the adjoint of a with respect to the twisted inner product (32) on E. Then, for any
x ∈ (0,∞)S, the probability measure on 2S which assigns B a probability

(34) P(B) ∝ xBw(B)

is determinantal, associated with the orthogonal projection on im a, where orthogonality is defined
with respect to the twisted scalar product (32).
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Proof. Let y ∈ (0,∞)S be another set of positive weights. Let cy be the endomorphism of E
defined by cy(ei) = yiei. Then the adjoint of a with respect to the xy-twisted inner product
is a∗cy where a∗ is the adjoint with respect to the x-twisted inner product.

If the assumption (33) holds, then the generating function of the probability measure (34) is

(35)
∑
B⊆S

yB P(B) =

∑
B⊆S y

BxBw(B)∑
B⊆S x

Bw(B)
=

det(a∗cya)

det(a∗a)
.

On the other hand, according to [Lyo03], or [KL19], the generating function of the determinantal
measure on 2S associated to Πim a = a(a∗a)−1a∗ is

det(id + (cy − id)Πim a) = det(id + (cy − id)a(a∗a)−1a∗)

= det(id + a∗(cy − id)a(a∗a)−1)

= det(a∗cya)/det(a
∗a),

and the second assertion is proved. □

3.3. A variant of the mean projection theorem. For a vector space E written as the direct
sum of two subspaces F and H, we write PF

∥H for the projection of E onto F parallel to H. We
however keep the notation ΠF when F is the orthogonal of H with respect to an inner product.

We use the notation
∧
a for the endomorphism of the exterior algebra

∧
E of E induced by an

operator a ∈ End(E) (see [KL19, Section 5.4]).
Let E be a finite-dimensional inner product space and (ei)i∈S be an orthonormal basis of E.

Theorem 3.2. Let H be a linear subspace of E. Let X be the determinantal random subset of S
associated with ΠH in the orthonormal basis (ei)i∈S, and let EX = ⊕x∈XKex. Then∧

ΠH⊥
= E

[∧
PH⊥

∥EX

]
.

Proof. We apply [KL19, Theorem 5.9] to the determinantal subset of S associated with ΠH⊥ and
use the fact, proved in [KL19, Proposition 4.2], that X is the complement of this determinantal
subset. □

3.4. Conditional probability measure. The following result will only be needed in Section
6.6, but we record it here for future reference.

Lemma 3.3. Let H be a linear subspace of E. Let X be the determinantal random subset of S
associated with ΠH in the orthonormal basis (ei)i∈S. Let K ⊂ S be such that P(X ⊂ K) > 0. Then
the random subset X conditioned on staying inside K is distributed according to the determinantal
probability measure on 2K associated with the orthogonal projection on the subspace ΠEK (H),
where EK = ⊕i∈KKei.

Note that the assumption P(X ⊂ K) > 0 is equivalent to EKc ∩H = {0}, or EK +H⊥ = E.

Proof. The gist of the proof is to use Pythagoras’ theorem in the n-th exterior power of E in
an associative way. More precisely, let us denote by ιH a normed Plücker embedding of H, that
is, the exterior product of the elements of an orthonormal basis of H. This vector is uniquely
defined only up to a sign (when K = R) or a phase (when K = C).

For all T = {i1, . . . , in}, set eT = ei1 ∧ . . . ∧ ein . Then, summing only over subsets of S of
cardinality n, we have

1 = ∥ιH∥2 =
∑
T

|⟨ιH , eT ⟩|2 =
∑
T⊂K

|⟨ιH , eT ⟩|2 +
∑

T∩Kc ̸=∅

|⟨ιH , eT ⟩|2 .
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The first sum of the above right-hand side is equal to P(X ⊂ K), which is positive by assumption.
It is also equal to ∥Π

∧
nEK (ιH)∥2. We also observe that ιKH = Π

∧
nEK (ιH)/∥Π

∧
nEK (ιH)∥ is a

normed Plücker embedding of ΠEK (H) in
∧

nEK .
Thus, for all T ⊂ K, we have

P
(
X = T

∣∣X ⊂ K
)
= |⟨ιKH , eT ⟩|2

which proves the claim. □

3.5. Schur complement. We use the following notation: for every subspace H of an inner
product space E, we denote by 1H the inclusion of H in E and 1H its adjoint, that is, the
orthogonal projection on H.

Lemma 3.4. Let u : E0 → E1 be an injective linear map between finite-dimensional inner
product spaces. Let H be a subspace of E0. Then

det(u∗u) = det
(
1H

⊥
u∗u1H⊥

)
det

(
1Hu∗Πker(1H

⊥
u∗)u1H

)
.

The determinant det(u∗u) is the square of the volume in E1 of the image by u of a unit
parallelotope in E0. This result expresses this volume as a product of two lower-dimensional
volumes corresponding to a decomposition of E0 in the sum of two orthogonal spaces.

Proof. Let us start by writing

u = u1H⊥ + u1H and u∗ = 1H
⊥
u∗ + 1Hu∗.

Using the Schur complement formula, we find

det(u∗u) = det
(
1H

⊥
u∗u1H⊥

)
det

(
1Hu∗u1H − 1Hu∗u1H⊥(1H

⊥
u∗u1H⊥)−11H

⊥
u∗u1H

)
= det

(
1H

⊥
u∗u1H⊥

)
det

(
1Hu∗

[
idE1 − u1H⊥(1H

⊥
u∗u1H⊥)−11H

⊥
u∗

]
u1H

)
.

Between the square brackets, we have an operator idE1 − p, where p is the orthogonal projection
on the range of u1H⊥ . Hence, this operator is the orthogonal projection on ker(1H

⊥
u∗). □

4. Random spanning connected or acyclic subgraphs

We now introduce two families of determinantal probability measures on the bases of matroids
obtained from the circular matroid either by adjoining k edges, or removing k edges. Later in
Section 6.10 we extend these to a family of determinantal measures on subgraphs with constrained
Betti numbers.

The random subgraphs are connected subgraphs or spanning forests with fixed Euler charac-
teristics, see Figure 1.

In general, our probability measures are not uniform. In fact, in view of the complexity
results stated below (see the last paragraph of Section 4.5), the uniform measure on Ck(G)
and Fk(G) cannot be determinantal in general (otherwise there would be a determinantal formula
for enumerating them, contradicting the #P -hardness). Studying the uniform measure would
be a more difficult task; on that matter, see [GW04] for conjectures about the uniform measure
on connected subgraphs, or spanning forests, without constraint on the Betti numbers.
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Figure 1. A random element of C4(G) (its 2-core is represented by thickened edges)
and a random element of F5(G) on a 15 × 15 square grid determined by 4 random 1-
forms. The sampling algorithm we used here, and for the other figures, is the classical
one of [HKPV06, Algorithm 18] for sampling determinantal probability measures.

4.1. Determinantal random subgraphs. The general idea we describe now is how from sub-
spaces of Ω1(G) or Ω1(G) it is possible to produce determinantal measures on [E] corresponding
to geometric-topological ‘Boltzmann weights’ on the families of subgraphs. The procedure in-
volves the pairing of K-valued 1-chains or 1-forms taken in theses subspaces with special Z-valued
1-chains or 1-cochains built from integral bases of Z-modules determined by the subgraph.

Specializing the definition of Section 3.1, we say that a random subset X of E+ is determinantal
if there exists a matrix K indexed by E+, called a kernel of the point process, such that for
all m ≥ 1 and e1, . . . , em ∈ E+, we have

(36) P(e1, . . . , em ∈ X) = det (K(ei, ej))1≤i,j≤m .

We view X alternatively as a subset of E+, a subset of [E], or a spanning subgraph of G.
Recall that if e ∈ E+, we let e⋆ be the 1-form which takes value 1 on e, and zero for e′ ∈ E+\{e}.

Let ωe = e⋆/
√
xe be the corresponding orthonormal basis of Ω1(G). If H is a subspace of Ω1(G),

then the matrix K =
(
⟨⟨ωe,Π

Hωe′⟩⟩
)
e,e′∈E+ defines a determinantal measure on E+.

4.2. Random spanning trees. It is well known, since the work of Burton and Pemantle [BP93],
that the probability measure on spanning trees of G which assigns a spanning tree T a probability

P(T ) ∝ xT

is determinantal, with kernel given by the matrix of the orthogonal projection on im d in the
orthonormal basis (ωe)e∈E+ of Ω1(G). To prove this fact, it suffices to combine the classical
matrix-tree formula (31) with Lemma 3.1. See Figure 2 for a sample of this measure in an
example.

In the following, we let

(37) TG(x) =
∑

T∈T (G)

xT

be the generating polynomial of spanning trees of G. By the classical matrix-tree theorem (31),
combined with a routine calculation, summing over all choices of vertex v0 and writing the
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Figure 2. A random spanning tree on an 15× 15 square grid.

non-zero coefficient of the characteristic polynomial of d∗d, we have

(38) TG(x) = |V|−1 det(d∗d)
(ker d)⊥

(ker d)⊥
.

It follows from the mean projection theorem ([KL19, Theorem 5.9]) and its variant (The-
orem 3.2 above), applied to the random spanning tree determinantal measure, that for any
integer k ≥ 1, we have

(39)
∑

T∈T (G)

xT
∧

kPim d
T = TG(x)

∧
kΠim d

and

(40)
∑

T∈T (G)

xT
∧

kPker d∗
T = TG(x)

∧
kΠker d∗ .

4.3. The Symanzik case: connected spanning subgraphs. Given a subgraph S of G with
first Betti number k ≥ 0, we denote by ±zS ∈ Z1(G,Z)∧k the exterior product of the elements
of an integral basis of Z1(S,Z). This element is defined only up to a sign.

To a subgraph S of G with rkZ1(S,Z) = k, and an element ϑ ∈ Ω1(G)∧k, we associate the
weight |(ϑ, zS)|2. A case of interest is that where ϑ = θ1 ∧ . . . ∧ θk for some θ1, . . . , θk ∈ Ω1(G),
in which case for any choice of an integral basis (γ1, . . . , γk) of Z1(S,Z), we have

(41) |(ϑ, zS)|2 =
∣∣ det (θi(γj))1≤i,j≤k

∣∣2.
We let

(42) C
(k)
G (ϑ, x) =

∑
K∈Ck(G)

|(ϑ, zK)|2 xK

be the generating polynomial of weighted connected spanning subgraphs with k independent
cycles.

Proposition 4.1. Let k ≥ 1 be an integer. Let ϑ be an element of Ω1(G)∧k. Then

(43)
C
(k)
G (ϑ, x)

TG(x)
=

∥∥∧kΠker d∗(ϑ)
∥∥2.

Let us note that this proposition also makes sense when k = 0.
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Proof. Let us denote by ϑ the element of Ω1(G)∧k that is conjugated to ϑ with respect to the
basis induced by the basis (e⋆)e∈E+ of Ω1(G). Since zS has real (indeed integer) coefficients in
the basis of Z1(G,Z)∧k induced by the canonical basis E+ of Z1(G,Z), we have (ϑ, zK) = (ϑ, zK).

We can thus start by writing

C
(k)
G (ϑ, x) =

∑
K∈Ck(G)

(
ϑ⊗ ϑ, zK ⊗ zK

)
xK =

(
ϑ⊗ ϑ,

∑
K∈Ck(G)

xKzK ⊗ zK

)
.

By Proposition 2.3 and (17), we have

zK ⊗ zK =
∑

T∈T (K)

∧
kZT (eK\T )⊗ eK\T =

∑
T∈T (K)

∧
k(J−1

x Pker d∗
T Jx)(eK\T )⊗ eK\T .

We now replace the duality pairing by evaluations of the inner product, using the equalities

(ϑ, eK\T ) = (xK\T )−1⟨⟨e⋆K\T , ϑ⟩⟩,

and
(
ϑ,

∧
k(J−1

x Pker d∗
T Jx)eK\T

)
= (xK\T )−1

〈〈∧
kPker d∗

T e⋆K\T , ϑ
〉〉
.

Combining the previous equations, we find

C
(k)
G (ϑ, x) =

〈〈 ∑
K∈Ck(G)

∑
T∈T (K)

xT (xK\T )−1
∧

kPker d∗
T (e⋆K\T )⊗ e⋆K\T , ϑ⊗ ϑ

〉〉
.

Exchanging sums, and relaxing a constraint which yields only additional zero coefficients, we
find

C
(k)
G (ϑ, x) =

〈〈 ∑
T∈T (G)

∑
F⊂E+\T :|F |=k

xT (xF )−1
∧

kPker d∗
T (e⋆F )⊗ e⋆F , ϑ⊗ ϑ

〉〉
=

〈〈 ∑
T∈T (G)

∑
F⊂E+:|F |=k

xT (xF )−1
∧

kPker d∗
T (e⋆F )⊗ e⋆F , ϑ⊗ ϑ

〉〉

=
〈〈 ∑

F⊂E+:|F |=k

(xF )−1

[ ∑
T∈T (G)

xT
∧

kPker d∗
T

]
(e⋆F )⊗ e⋆F , ϑ⊗ ϑ

〉〉
.

We now apply the variant of the mean projection theorem (40) for the random spanning tree mea-
sure to compute the sum between the square brackets. Using also the self-adjointness of Πker d∗ ,
and the fact that its matrix in the canonical basis of Ω1(G) has real entries, so that it commutes
to complex conjugation, we find

C
(k)
G (ϑ, x) = TG(x)

〈〈 ∑
F⊂E+:|F |=k

(xF )−1
∧

kΠker d∗(e⋆F )⊗ e⋆F , ϑ⊗ ϑ
〉〉

= TG(x)
∑

F⊂E+:|F |=k

(xF )−1
〈〈∧

kΠker d∗(e⋆F ), ϑ
〉〉
⟨⟨e⋆F , ϑ⟩⟩

= TG(x)
∑

F⊂E+:|F |=k

(xF )−1
〈〈
e⋆F ,

∧
kΠker d∗ϑ

〉〉
⟨⟨e⋆F , ϑ⟩⟩

= TG(x)
〈〈∧

kΠker d∗ϑ, ϑ
〉〉
,

where for the last equality we used the fact that {(xF )−1/2e⋆F : F ⊂ E+, |F | = k} is an orthonor-
mal basis of Ω1(G)∧k. □



18 ADRIEN KASSEL AND THIERRY LÉVY

Let us choose θ1, . . . , θk ∈ Ω1(G). Define the map ωθ : Ck → Ω1(G,C) by (α1, . . . , αk) 7→
α1θ1+ . . .+αkθk. We endow Ck with |V| times the usual inner product, where |V| is the number
of vertices of our graph.3 On the orthogonal direct sum im d∗⊕Ck, we define the linear operator
d⊕ ωθ, taking its values in Ω1(G), and we set

∆θ = (d⊕ ωθ)
∗(d⊕ ωθ) .

Proposition 4.2. Set ϑ = θ1 ∧ . . . ∧ θk. We have

C
(k)
G (ϑ, x) = |V|k−1 det∆θ .

For k = 0, this proposition reduces to the classical matrix-tree theorem.

Proof. Let us apply the Schur complement formula, under the form given by Lemma 3.4, with
E0 = im d∗ ⊕ Ck, E1 = Ω1(G), H = Ck and u = d⊕ ωθ. We find

det∆θ = det(d∗d)im d∗
im d∗ det

(
ω∗
θΠ

ker d∗ωθ

)
.

The first factor is equal to |V|TG(x) by (38). Let us compute the second. For this, let us observe
that the adjoint of ωθ is given, for all β ∈ Ω1(G), by

ω∗
θ(β) = |V|−1(⟨⟨θ1, β⟩⟩, . . . , ⟨⟨θk, β⟩⟩).

It follows that the matrix in the canonical basis of Ck of ω∗
θΠ

ker d∗ωθ is |V|−1
(
⟨⟨θi,Πker d∗θj⟩⟩

)
1≤i,j≤k

and its determinant is
det

(
ω∗
θΠ

ker d∗ωθ

)
= |V|−k

∥∥∧kΠker d∗ϑ
∥∥2.

The sought-after identity follows directly from Proposition 4.1. □

Theorem 4.3. Let k ≥ 1 be an integer. Let Θ be a k-dimensional linear subspace of Ω1(G) such
that Θ ∩ im d = {0}. Let ϑ be the exterior product of the elements of a basis of Θ. The measure
on Ck(G) which assigns to a subgraph K the weight

xK |(ϑ, zK)|2

is not zero and the corresponding probability measure is determinantal, associated with the or-
thogonal projection on the subspace im d⊕Θ.

See Figure 1 (left) for an exact sample of this measure in an example.

Proof. Let θ1, . . . , θk be a basis of Θ. The assumption that Θ ∩ im d = {0} implies that the
operator d⊕ ωθ has full rank |V| − 1 + k, so that det∆θ > 0. In particular, by Proposition 4.2,
the generating polynomial of the weights considered, and hence the measure, is not zero.

By Lemma 3.1, the induced probability measure is determinantal, associated with the orthog-
onal projection on the range of d⊕ ωθ, that is im d⊕Θ. □

It follows from Theorem 4.3 that the support of the measure (which is contained in Ck(G) and
coincides with Ck(G) for a generic Θ) is the set of bases of a matroid [Lyo03]. The fact that Ck(G)
is the set of bases of a matroid is immediate from the fact that the corresponding matroid is the
union of the circular matroid and the uniform matroid on k elements [Oxl11].

3The reason for this normalisation is that we identify C with the space of constant functions on G, that is, ker d,
which inherits the inner product of Ω0(G). See [KL22b] for more details.
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4.4. The Kirchhoff case: acyclic spanning subgraphs (spanning forests). Given a sub-
graph S of G with k+1 ≥ 1 connected components, we denote by ±bS ∈ B1(G,Z)∧k the exterior
product of the elements of an integral basis of B1(G/S ,Z). This element is defined only up to a
sign.

To a subgraph S of G with rkB1(G/S ,Z) = k, and an element φ ∈ Ω1(G)
∧k, we associate the

weight |(φ, bS)|2. A case of interest is that where φ = ϕ1 ∧ . . .∧ ϕk for some ϕ1, . . . , ϕk ∈ Ω1(G),
in which case for any choice of an integral basis (κ1, . . . , κk) of B1(G/S ,Z), we have

(44) |(φ, bS)|2 =
∣∣det ((ϕi, κj))1≤i,j≤k

∣∣2.
We let

(45) A
(k)
G (φ, x) =

∑
F∈Fk+1(G)

|(φ, bF )|2 xF

be the generating polynomial of weighted acyclic spanning subgraphs with k connected compo-
nents.

Proposition 4.4. Let k ≥ 1 be an integer. Let φ be an element of C1(G,K)∧k. Then

(46)
A
(k)
G (φ, x)

TG(x)
=

∥∥∧kΠim d(Jxφ)
∥∥2.

Proof. Just as in the proof of Proposition 4.1, let us denote by φ the element of Ω1(G)
∧k that is

conjugated to φ with respect to the basis E+. Since bS has real (indeed integer) coefficients in the
basis of B1(G,Z)∧k induced by the canonical basis E+ of B1(G,Z), we have (φ, bK) = (φ, bK).

We can thus start by writing

A
(k)
G (φ, x) =

∑
F∈Fk+1(G)

(
φ⊗ φ, bF ⊗ bF

)
xF =

(
φ⊗ φ,

∑
F∈Fk+1(G)

xF bF ⊗ bF

)
.

By Proposition 2.6 and (19), we have

bF ⊗ bF =
∑

T∈T (G):T⊃F

∧
kBT (e

⋆
T\F )⊗ e⋆T\F =

∑
T∈T (G):T⊃F

∧
kPim d

T (e⋆T\F )⊗ e⋆T\F .

We now replace the duality pairing by evaluations of the inner product, using the equalities

(φ, e⋆T\F ) = ⟨⟨Jxφ, e⋆K\T ⟩⟩ and
(
φ,

∧
kPim d

T (e⋆K\T )
)
=

〈〈
Jxφ,

∧
kPim d

T (e⋆K\T )
〉〉
.

Combining the previous equations, we find

A
(k)
G (φ, x) =

〈〈
Jxφ⊗ Jxφ,

∑
F∈Fk+1(G)

∑
T∈T (G):T⊃F

xF
∧

kPim d
T (e⋆T\F )⊗ e⋆T\F

〉〉
.

Exchanging sums, and relaxing a constraint which yields only additional zero coefficients, we
find

A
(k)
G (φ, x) =

〈〈
Jxφ⊗ Jxφ,

∑
T∈T (G)

∑
τ⊂T :|τ |=k

xT\τ∧kPim d
T (e⋆τ )⊗ e⋆τ

〉〉
=

〈〈
Jxφ⊗ Jxφ,

∑
T∈T (G)

∑
τ⊂E+:|τ |=k

xT\τ∧kPim d
T (e⋆τ )⊗ e⋆τ

〉〉

=
〈〈
Jxφ⊗ Jxφ,

∑
τ⊂E+:|τ |=k

(xτ )−1

[ ∑
T∈T (G)

xT
∧

kPim d
T

]
(e⋆τ )⊗ e⋆τ

〉〉
.
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We now apply the mean projection theorem (39) for the random spanning tree measure to
compute the sum between the square brackets. Using also the self-adjointness of Πim d, and the
fact that its matrix in the canonical basis of Ω1(G) has real entries, so that it commutes to
complex conjugation, we find

A
(k)
G (φ, x) = TG(x)

〈〈
Jxφ⊗ Jxφ,

∑
τ⊂E+:|τ |=k

(xτ )−1
∧

kΠim d(e⋆τ )⊗ e⋆τ

〉〉
= TG(x)

∑
τ⊂E+:|τ |=k

(xτ )−1
〈〈
Jxφ,

∧
kΠim d(e⋆τ )

〉〉
⟨⟨Jxφ, e⋆τ ⟩⟩

= TG(x)
∑

τ⊂E+:|τ |=k

(xτ )−1⟨⟨e⋆τ , Jxφ⟩⟩
〈〈
e⋆τ ,

∧
kΠim dJxφ

〉〉
= TG(x)

〈〈
Jxφ,

∧
kΠim dJxφ

〉〉
,

where for the last equality we used the fact that {(xτ )−1/2e⋆τ : τ ⊂ E+, |τ | = k} is an orthonormal
basis of Ω1(G)∧k. □

Let m : Z1(G,K) → Ω1(G) be the inclusion map.
We endow Z1(G,K) with the unique scalar product for which any integral basis of Z1(G,Z)

has volume 1. Let us choose ϕ1, . . . , ϕk ∈ Ω1(G). Define the map ωϕ : Ck → Ω1(G,C) by
(α1, . . . , αk) 7→ α1ϕ1+. . .+αkϕk. We endow Ck with the usual inner product. On the orthogonal
direct sum Z1(G,K)⊕ Ck, we define the linear operator (Jxm)⊕ ωϕ, taking its values in Ω1(G),
and we set

□ϕ = (Jx(m⊕ ωϕ))
∗(Jx(m⊕ ωϕ)) .

Proposition 4.5. Set φ = ϕ1 ∧ . . . ∧ ϕk. We have

A
(k)
G (φ, x) = (xE

+
)−1 det□ϕ .

Proof. Let us apply the Schur complement formula, under the form given by Lemma 3.4, with
E0 = Z1(G,K)⊕ Ck, E1 = Ω1(G), H = Ck and u = (Jxm)⊕ ωϕ. We find

det□ϕ = det(m∗(Jx)
∗Jxm) det

(
ω∗
ϕ(Jx)

∗Πker(m∗(Jx)∗)Jxωϕ

)
.

Let Z be an integral basis of Z1(G,Z). The first factor of the right-hand side is the determinant
of the Gram matrix of the images by Jx of the elements of Z . By (25), this is equal to

det(m∗(Jx)
∗Jxm) = (xE

+
)−1TG(x).

For the second, observe that
ker(m∗(Jx)

∗) = im d.

Let us compute the second. For this, let us observe that the adjoint of ωϕ is given, for all
β ∈ Ω1(G), by

ω∗
ϕ(β) = (⟨⟨ϕ1, β⟩⟩, . . . , ⟨⟨ϕk, β⟩⟩).

It follows that the matrix in the canonical basis of Ck of ω∗
ϕ(Jx)

∗Πker(m∗(Jx)∗)Jxωϕ is(
⟨⟨Jxϕi,Πim dJxϕj⟩⟩

)
1≤i,j≤k

,

and its determinant is
det

(
ω∗
ϕΠ

kerm∗
ωϕ

)
=

∥∥∧kΠim d(Jxφ)
∥∥2.

The sought-after identity follows directly from Proposition 4.4. □
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Theorem 4.6. Let k ≥ 1 be an integer. Let Φ be a k-dimensional linear subspace of Ω1(G) such
that Φ ∩ Z1(G,K) = {0}. Let φ be the exterior product of the elements of a basis of Φ. The
measure on Fk+1(G) which assigns to a subgraph F the weight

xF |(φ, bF )|2

is not zero and the corresponding probability measure is determinantal, associated with the or-
thogonal projection on the subspace (ker d∗ ⊕ JxΦ)

⊥ = im d ∩ (JxΦ)
⊥.

See Figure 1 (right) for an exact sample of this measure in an example.4

Proof. Let ϕ1, . . . , ϕk be a basis of Φ. The assumption that Φ ∩ Z1(G,K) = {0} implies that
the operator m ⊕ ωϕ has full rank, so that det□ϕ > 0. In particular, by Proposition 4.5, the
generating polynomial of the weights considered, and hence the measure, is not zero.

By Lemma 3.1, the induced probability measure is determinantal, associated with the orthog-
onal projection on the range of Jx(m⊕ ωϕ), that is (ker d∗ ⊕ (JxΦ))

⊥ = im d ∩ (JxΦ)
⊥. □

It follows from Theorem 4.6 that the support of the measure (which is contained in Fk+1(G) and
coincides with Fk+1(G) for generic Φ) is the set of bases of a matroid. The fact that Fk+1(G) is
the set of bases of a matroid is immediate from the fact that the corresponding matroid is the dual
of the union of the dual of the circular matroid and the uniform matroid on k elements [Oxl11].

4.5. Planar duality. Let us conclude this section by discussing the relation between connected
spanning subgraphs and spanning forests in the case where G is the 1-dimensional skeleton of a
2-dimensional complex.

Let us start by assuming that G is a graph embedded in an oriented sphere. Let G† be the
dual graph. On a set-theoretic level, the orientation of the sphere induces a bijection between
the oriented edges of G and those of G†, and we denote simply by e† the oriented edge associated
to e. This bijection determines two isomorphisms

♯ : C1(G,Z) −→ C1(G†,Z) and ♭ : C1(G,Z) −→ C1(G
†,Z)

e 7−→ e♯ = (e†)⋆ e⋆ 7−→ (e⋆)♭ = e†

which are related by (c♯, α♭) = (α, c), for all c ∈ C1(G,Z) and α ∈ C1(G,Z).
The first isomorphism sends Z1(G,Z) to B1(G†,Z), and the second sends B1(G,Z) to Z1(G

†,Z).
Extending the scalars to K yields isomorphisms from Ω1(G) to Ω1(G†), and from Ω1(G) to Ω1(G

†).
Let us consider an integer k ≥ 0 and choose φ ∈ Ω1(G)

∧k. Let us consider ϑ = φ♯ ∈ Ω1(G†)
the tensor associated to φ by the k-th exterior power of the first isomorphism.

Let F ∈ Fk+1(G) be a spanning forest of G with k + 1 components. Then K = (F c)† belongs
to Ck(G

†) and, with the notation of the previous sections, zK = ±(bF )
♭. Then,

(ϑ, zK) = ±(φ♯, b♭F ) = ±(φ, bF ).

Let x be a set of positive weights associated with the edges of our graphs. The following
proposition is then a consequence of the definitions (45) and (42) of the generating polynomials.

4Note that this random subgraph (which has a fixed total number of edges) is not the same thing as the
often considered determinantal probability measure on spanning forests (with no restriction on the number of
components) which assigns to each spanning forest F = {Ti}1≤i≤b0(F ) a weight proportional to xF ∏b0(F )

i=1 q(V(Ti)),
where q : V → R+ is a nonzero function over vertices, and we have defined q(V(Ti)) =

∑
v∈V(Ti)

q(v) for all i. The
latter probability measure is simply the restriction to G of the classical random spanning tree measure defined
on an augmented graph with vertex set V ⊔ {w}, where w is a new vertex, and with additional edges connecting
each vertex v ∈ V to w, endowed with the weight q(v) ≥ 0.
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Proposition 4.7. For all φ ∈ Ω1(G)
∧k, we have the equality of polynomials

(47) A
(k)
G (φ, x) = xE

+
C
(k)

G† (φ
♯, x−1) .

It follows from (47) that the determinantal measures described in Theorem 4.3 on Fk+1(G)
and in Theorem 4.6 on Ck(G†) correspond, via the map S 7→ (Sc)†, up to the replacement of the
subspace Φ of Ω1(G) by the subspace Θ = Φ♯ of Ω1(G†), and of the positive weights by their
inverses.

Equation (47) can also be seen as a consequence of Propositions 4.2 and 4.5, using a relation
of conjugation between the operators □φ on G† and ∆θ on G.

Incidentally, while enumerating elements in Fk(G) can be done in polynomial time, using a
combination of determinants (see [LC81], further simplified by [Myr92] and [KW16]), we do
not know if elements of Ck(G) can be enumerated in polynomial time. In the case where G is
planar, this can be done by the duality discussed in this section. However, the enumerations
of ∪k≥0Fk(G) and ∪k≥0Ck(G) are known to be impossible in polynomial time, as they are #P -
hard evaluations of the Tutte polynomial of G, see [Wel93, PB83]. In particular, the uniform
measure on these sets is not determinantal in general. It is nevertheless conjectured that they
satisfy a form of negative dependence, see [GW04].

4.6. Two-dimensional simplicial complexes. Assume now that G = (X0, X1) is the 1-
skeleton of a simplicial complex X = (X0, X1, X2) of dimension 2. Let d′ : Ω1(X) → Ω2(X),
be the coboundary map from 1-forms to 2-forms. Since d′ ◦ d = 0, we have im d ⊂ ker d′. Let
H1(X,Z) = kerZ d

′/ imZ d. Then dimH1(X,Z)⊗K = b1(X), the first Betti number of X.
Applying Theorem 4.3 with Θ = H1(X,Z) ⊗ K (or more precisely with a supplementary

subspace of im d in ker d′) yields a determinantal probability measure on Cb1(X)(G) supported
on the set H1(X) of all K ∈ Cb1(X)(G) such that the natural map Z1(K,Z) → H1(X,Z) is an
isomorphism. In particular, H1(X), which is the support of this measure, is the set of bases of
a matroid. This case was considered by Lyons in [Lyo09, Section 3], under the name P1.

Let σ1, . . . , σb1(X) be an integral basis of H1(X,Z) and set ς = σ1 ∧ . . .∧ σb1(X). Then for any
K ∈ H1(X), we have (ς, zK) = ±1 and our construction yields the uniform measure on H1(X).

For example, take X to be a 2-cellulation of a closed surface Σ of genus g ≥ 1. Then b1(X) =
2g and H1(X,Z) ≃ H1(Σ,Z) ≃ Z2g. Elements of the support of our measure, H1(X), are
then sometimes called g-quasitrees of the map X in the combinatorics literature. Along with
lower genera quasitrees, they appear in the definition of the Bollobás–Riordan polynomial of
the cellulation [CKS11], which is known to fit in the general framework of Tutte polynomials of
matroids [MS18].

Our construction can be generalized to higher dimensional complexes, following [Lyo09], see the
brief discussion in Section 6.10. The above duality is then Poincaré duality X 7→ X† between k-
cells and (d− k)-cells in a d-dimensional complex.

4.7. Choice of convention. Note that we could have given alternative definitions for the poly-
nomials AG(ϑ, x), replacing the terms xF by xF c , like in the definition of Symanzik polynomials.
This would have had the advantage of simplifying certain formulas, notably those that make
use of the planar duality, such as (47). However, we have chosen to endow only cochains (that
is, 0-forms and 1-forms) with inner products (see Section 1.8) and we also prefer to define deter-
minantal processes on the set of edges with respect to subspaces of Ω1(G) (not of Ω1(G)), so as
to compare more easily with the classical cases of the uniform spanning tree. Defining the poly-
nomials so as they would be generating functions for these determinantal probability measures
(and not their dual determinantal probability measures) was a further argument in favor of this
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choice. This choice will also be apparent in the way we treat with the matroid generalisation in
Section 6.

5. Multivariate homogeneous real stable polynomials

In this short section, we derive a few consequences about the multivariate polynomials C(k)
G (ϑ, x)

and A
(k)
G (φ, x), and emphasise the link with the Symanzik polynomials of theoretical physics.

5.1. Real stability. Since the multivariate polynomials C
(k)
G (ϑ, x) and A

(k)
G (φ, x) are the gen-

erating functions of determinantal probability measures, which are strongly Rayleigh measures,
these polynomials are real stable, which means that they (have real coefficients and) do not vanish
when all the variables xe have strictly positive imaginary part, from [BBL09, Definitions 2.9–2.10,
and Proposition 3.5].

Corollary 5.1. The real multivariate polynomials C
(k)
G (ϑ, x) and A

(k)
G (φ, x) defined in (42)

and (45), respectively, are real stable.

Proof. This is a corollary of Propositions 4.2 and 4.5 using [BBL09, Definition 2.9, 2.10, and
Proposition 3.5]. □

Homogeneous stable polynomials as above are a special case of Lorentzian polynomials, a
family of polynomials with deep connections to matroid theory [BH20].

5.2. Symanzik and Kirchhoff polynomials. Symanzik polynomials appear in Feynman in-
tegrals associated with finite graphs. We refer to the introduction of [ABBGF16] for a math-
ematical presentation of these integrals. Combining the (slightly modified) notations of these
authors with ours, the amplitude associated with an unweighted graph G endowed with external
momenta #»q ∈ (RD)V is the real number defined by

(48) IG(
#»q ) =

∫
(R+)E+

exp

−i
Ψ

(2)
G, #»q (x)

Ψ
(1)
G (x)

 ∏
e∈E+ dxe√
ψG(x)

where

Ψ
(1)
G (x) =

∑
T∈T (G)

xE
+\T and Ψ

(2)
G, #»q (x) =

∑
F={T,T ′}∈F2(G)

−⟨ #»q (V(T )), #»q (V(T ′))⟩ xE+\F ,

and ⟨·, ·⟩ is a Minkowski bilinear form on RD. Here we used the notation
#»q (V(T )) =

∑
v∈V(T )

#»q (v) ∈ RD .

As already alluded to in Section 2.1.2, these polynomials are called the first and second Symanzik
polynomials in the literature, see [BW10].

In physical terms, D represents the dimension of space-time, so that the case D = 1 that
we will now consider seems to have little physical relevance. When D = 1 and considering the
usual norm on K instead of a Minkowski bilinear form, taking q ∈ (ker d)⊥ = im d∗ and writing
it q = d∗Jxφ for some φ ∈ Ω1(G), we readily find that the second Symanzik polynomial is

(49) Ψ
(2)
G,q(x) =

∑
F={T,T ′}∈F2(G)

|q(V(T ))|2 xE+\F = xE
+
A
(1)
G (φ, x−1) ,

where the polynomial in the right-hand side is defined in (45).
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This suggests the following generalization. Let k ≥ 2 be an integer. Let (ϕ1, . . . , ϕk) be
elements of Ω1(G) and set qi = J0∂ϕi = d∗Jxϕi for all i ∈ {1 . . . , k}. For all F ∈ Fk+1(G)
we choose T1, . . . , Tk an enumeration of the trees of F except one, and consider the integral
basis of B1(G/F ,Z) consisting in the set of cuts {κi = δ(1V(Ti)) : 1 ≤ i ≤ k}. Thus, for all
j ∈ {1, . . . , k}, (

κj , ϕi
)
=

〈〈
Jxϕi, d(1V(Tj))⟩⟩ =

〈〈
d∗Jxϕi,1V(Tj)

〉〉
=

∑
v∈V(Tj)

qi(v)

a quantity which we denote by qi(V(Tj)). The weight of the forest F given by (44) is then∣∣ det ((ϕi, κj))1≤i,j≤k

∣∣2 = ∣∣det (qi(V(Tj)))1≤i,j≤k

∣∣2 .
We may thus consider the polynomial

(50)
∑

F∈Fk+1(G)

∣∣det (qi(V(Tj)))1≤i,j≤k

∣∣2 xE+\F ∈ R[x]

as a natural generalization of the second Symanzik polynomial (49) to higher order k + 1 ≥ 3.
This polynomial is simply xE+

A
(k)
G (φ, x−1) defined in (45) above, where φ = ϕ1 ∧ . . . ∧ ϕk.5

Symanzik polynomials, and their ‘duals’, Kirchhoff polynomials, have also been generalized
to higher order and matroids by Piquerez [Piq19], where a link to determinantal (and even
hyperdeterminantal) probability measures is also briefly mentioned in the introduction. Along
with the family of polynomials A(k)

G (φ, x), another natural generalization of these polynomials is
the family of polynomials C

(k)
G (ϑ, x) defined in (42).

5.3. Ratios of Symanzik polynomials and Amini’s strong stability theorem. The first
and second Symanzik polynomials are known to have interesting analytic properties. In partic-
ular, Omid Amini has shown in [Ami19, Theorem 1.1] that the ratio of the two first Symanzik
polynomials, seen as a rational function of the weights x, which appears in the computation of
the Feynman integral (48), has bounded variation at infinity. This has applications to tropical
geometry [ABBGF16].

We may rewrite this ratio of polynomials, for all q ∈ im d∗ = J0(im ∂), using our notations
and considering φ ∈ Ω1(G) such that q = J0∂φ, as

(51)
Ψ

(2)
G,q(x)

Ψ
(1)
G (x)

=
A
(1)
G (φ, x−1)

TG(x−1)
=

∥∥Πim d(Jyφ)
∥∥2
y
,

where, to prove the second equality, we used Proposition 4.4 with k = 1 and y = x−1.
Let us define the discrete Green function

Gy =
((

∆y

)im d∗

im d∗

)−1
∈ End(Ω0(G))

to be the inverse of the compression of the Laplacian ∆y = (d∗d) on the orthogonal of its kernel
(here the adjoint it with respect to the inner product determined by y). Since Πim d = dG−1d∗,
and since d∗(Jyφ) = J0∂φ by (14), we can simplify (51) further to

(52)
Ψ

(2)
G,q(x)

Ψ
(1)
G (x)

= ⟨⟨q,Gyq⟩⟩ .

5Although the choice of nomenclature is not perfectly consistent with our choice of attributes to Kirchhoff and
Symanzik.
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Note that ∆yf(v) =
∑

e:e=v ye(f(v) − f(w)) for each f ∈ Ω0(G) and vertex v. Moreover, since
both im d∗ = J0 im ∂ and the inner product on Ω0(G) are independent of y = x−1, the dependence
in x of the right-hand side of (52) is only via its dependence inside ∆y.

The expression (52) seems to be a discrete analog of the archimedean height-pairing considered
in [ABBGF16], in view of its expression in terms of the Green function of the Riemann surface
whose ‘dual graph’ (in the sense of algebraic geometry, not of graph theory) is G ([ABBGF16,
Lemma 6.3]). This archimedean height pairing is shown in that paper to be equal to the ratio
of Symanzik polynomials in a certain limit, which suggests from the above it has to do with the
continuous Green function converging in that limit to the discrete Green function.

Corollary 5.2. For all q ∈ Ω0(G) such that
∑

v∈V q(v) = 0, and all set of positive weights x0,
the rational function Fq : (R∗

+)
E+ → R+, x 7→

〈〈
q,Gx−1q

〉〉
satisfies Fq(x+ x0)− Fq(x) = Ox(1)

as x→ ∞.

Proof. We combine (52) above and a special case of [Ami19, Theorem 1.1]. □

In view of the expression (52) for the ratio of polynomials in terms of the Green function, one
may wonder if there is an alternative proof of (this special case of) Amini’s stability theorem
based on the study of variations of the Green function when changing edge weights, and if his
stability result extends to other ratios of multivariate polynomials, such as the ones appearing
in Proposition 4.4 and Proposition 4.1.

6. Measured matroids

The link between matroids and determinantal probability measures on discrete sets was ex-
plicited by Lyons [Lyo03, Section 2]. The goal of this section is to generalize the content of the
previous sections, which was concerned with the circular matroid and its dual, to a general linear
matroid on a finite set.

In particular we wish to emphasize that both the Kirchhoff and Symanzik identities (Propo-
sitions 2.4 and 2.1) are two specializations of the same general identity for linear matroids (see
Proposition 6.4 below).

For background on matroids (also known as combinatorial geometries6) we refer to the text-
book [Oxl11] and the short introductory paper [Ard18]. Let us recall the definition: a matroid
M = (S, I) on a finite set S is a non-empty collection I of subsets of S, called independent
subsets, such that

• if J ⊂ I and I ∈ I, then J ∈ I,
• for all I, J ∈ I with |J | < |I|, there exists i ∈ I \ J such that J ∪ {i} ∈ I.

6.1. Linear matroids. Consider a matroid M = (S, I) on a finite (ordered) set S. For con-
creteness, we will take S = {1, . . . , d}. We assume the matroid to be representable on K (see the
definition just below).

6.1.1. Bases. Let B0 = B(M) be the set of bases of M, that is, maximal elements of I. Let n
be the rank of this matroid, that is, the common cardinality of any of its bases.

For each k ∈ {0, . . . , d− n}, let Bk = Bk(M) be the collection of elements of 2S of cardinality
n+k which contain an element of B0. Then Bk is the set of bases of a matroid denoted by Mk, and
that is the union of the matroid M and the uniform matroid of rank k on S [Oxl11, Section 11.3].

6This terminology was proposed by Gian-Carlo Rota to replace the term matroid introduced by Hassler Whit-
ney (1935) in his seminal study (independently carried out by Takeo Nakasawa). See [Ard18].



26 ADRIEN KASSEL AND THIERRY LÉVY

6.1.2. Representing map and kernel. Let K be R or C and let E be a d-dimensional vector space
on K. Let (e1, . . . , ed) be a basis of E indexed by S. To say that the matroid is representable
means that there exists a linear map R from E to some target space F , such that the elements
of I are those I ⊂ S for which the family {R(ei) : i ∈ I} is linearly independent. Thus, the
subspace Z = kerR encodes the linear dependence of the matroid.

Let b be the dimension of Z. By the rank theorem in linear algebra, the rank of the matroid
is thus n = dim imR = dimE − dimZ = d− b.

For all J ⊂ S, we define EJ = Vect(ej : j ∈ J).

6.1.3. Restriction of a matroid. Given a subset K of S, we define a matroid MK = (K, IK)
on K by taking the collection of its independent sets IK to be the set of those I ∈ I which are
included in K. This construction is called the restriction of the matroid M to K, see [Oxl11,
Section 1.3].

The linear map R representing M, when restricted to EK , also linearly represents the restricted
matroid MK . Its kernel is ZK = kerR ∩ EK .

We will only consider the case where K contains at least one basis of M. In this case, the set
of bases of MK is B(MK) = {T ∈ B0 : T ⊂ K}. In particular, the rank of the matroid MK is
equal to n, the rank of M.

Thus, for any k ∈ {0, . . . , d − n}, when K ∈ Bk, the dimension of ZK is dimEK − rkMK =
(n+ k)− n = k, again by the rank theorem of linear algebra.

6.2. Fundamental circuits and bases. Let T ∈ B0 be a basis of the matroid M. For any
j ∈ S \ T , the subset T ∪ {j} /∈ I is dependent, hence there is a linear combination of {et : t ∈
T} ∪ {ej} which lies in Z. By independence of {R(et) : t ∈ T}, there is a unique such linear
combination giving coefficient 1 to ej .

Call γ(T, j) this uniquely defined element of Z. Its support, defined as those i ∈ S for which ei
has a non-zero coefficient in the decomposition of γ(T, j) in the basis (ei)i∈S , is, in the language
of matroids, the fundamental circuit associated with T and j, see Corollary 1.2.6 of [Oxl11] and
the paragraph after it.

Lemma 6.1. The family {γ(T, j) : j ∈ S \ T} is a linear basis of Z.

Proof. If j′ ̸= j are both in the complement of T in S, then γ(T, j) has zero coefficient on ej′ .
This shows independence. Moreover, the family has cardinality d− n = b = dimZ. □

We denote by ZT the family {γ(T, j) : j ∈ S \ T}, and call it the fundamental basis of Z
associated with T .

Let ZT : E → Z be the linear map defined by setting ZT (ej) = γ(T, j) for all j ∈ S \ T and
ZT (ei) = 0 for all i ∈ T .

Lemma 6.2. The linear map ZT : E → Z is the projection associated to the splitting

E = ET ⊕ Z.

Proof. For all j ∈ S \ T , we have ej − γ(T, j) ∈ ET = kerZT , so that ZT (γ(T, j)) = γ(T, j).
Thus, ZT is the projection on Z parallel to ET . □

For all J ⊂ S, let us denote by πJ : E → EJ the projection parallel to EJc . It follows from
this lemma that

(53) ZT ◦ πT c = idZ .

This is the analog of (7).
Let us consider k ∈ {0, . . . , d− n} and K ∈ Bk such that T ⊂ K.
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Lemma 6.3. The subfamily Z K
T = {γ(T, j) : j ∈ K \ T} of ZT is a linear basis of ZK .

Proof. Since T ⊂ K, each element of Z K
T belongs to EK . The family Z K

T is linearly independent
as a subfamily of ZT which is a basis of Z by Lemma 6.1. Finally, the cardinality of Z K

T is k,
equal to the dimension of ZK . □

6.3. The circuit-basis identity for linear matroids. The following proposition generalizes
both Proposition 2.1 and Proposition 2.4. For all J = {i1 < . . . < ik} ⊂ S, we define eJ =
ei1 ∧ . . . ∧ eik ∈ E∧k.

For any two bases B1 and B2 of the same space, we denote by det(B1/B2) the determinant
of the matrix of the vectors of B1 in B2.

Proposition 6.4 (Circuit-basis identity). Let Z = (γ1, . . . , γb) be a basis of Z. Then in E∧b,

(54) γ1 ∧ . . . ∧ γb =
∑
T∈B0

det(Z /ZT ) eT c ,

where ZT is the fundamental basis of Z associated with T .

Proof. Let us decompose the element γ1 ∧ . . . ∧ γb of E∧b on the basis {eJ : |J | = b}:

γ1 ∧ . . . ∧ γb =
∑

J⊂S:|J |=b

aJeJ .

Consider a subset J of cardinality b and assume that S \ J is not a basis of M. Then ES\J
intersects Z in a non-trivial way. This means that there exists a non-zero linear combination
η = u1γ1+ . . .+ubγb that belongs to ES\J . By reordering γ1, . . . , γn if needed, we make sure that
u1 ̸= 0. Then 0 = (πJ)

∧b(η ∧ γ2 ∧ . . . ∧ γb) = u1(πJ)
∧b(γ1 ∧ . . . ∧ γb) = u1aJeJ , so that aJ = 0.

Consider now a basis T of M. Using (53), we find

γ1 ∧ . . . ∧ γb = (ZT ◦ πT c)∧b(γ1 ∧ . . . ∧ γb) =
∑

J⊂S:|J |=b

aJ (ZT )
∧b((πT c)∧b(eJ)

)
and the only non-zero term of the last sum is that corresponding to J = T c, so that

γ1 ∧ . . . ∧ γb = aT c (ZT )
∧beT c .

The result follows from the observation that (ZT )
∧beT c is the exterior product of the elements of

the basis ZT . This identifies the coefficient aT c as det(Z /ZT ) and concludes the proof. □

Corollary 6.5. Let Z = (γ1, . . . , γb) be a basis of Z. For every basis T of M, we have, in E∧b,

(55) πT c(γ1) ∧ . . . ∧ πT c(γb) = det(Z /ZT ) eT c .

Moreover, on Z∧b,

(56)
∑

T∈B(M)

∧
bπT c = idZ∧b .

Proof. The first equality follows from applying
∧

bπT c to (54) and using the fact that if S and T
are bases of M, then

∧
bπT c(eSc) = eSc if S = T and 0 otherwise.

The second equality follows from the first one, from (54), and the fact that Z∧b is a line
generated by γ1 ∧ . . . ∧ γb. □

The following proposition generalizes Proposition 2.3.
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Proposition 6.6. Let k ∈ {0, . . . , b} and K ∈ Bk. Let Z K = (γ1, . . . , γk) be a basis of ZK .
Then in

(∧
kZK

)⊗2, we have∑
T∈B0
T⊂K

det(Z K/Z K
T )2

∧
kZT (eK\T )⊗ eK\T = (γ1 ∧ . . . ∧ γk)⊗2.

In more concrete terms, if for every basis T of MK we let i1, . . . , ik be the elements of K \ T ,
then ∑

T∈B(MK)

det(Z K/Z K
T )2 (γ(T, i1) ∧ . . . ∧ γ(T, ik))⊗ (ei1 ∧ . . . ∧ eik) = (γ1 ∧ . . . ∧ γk)⊗2.

Proof. Let us compute the right-hand side of the equality to prove. We apply (56) on K to the
second factor, and then the k-th exterior power of (53), also on K (noting that ZT , when applied
on EK , acts as the projection on ZK parallel to ET ), to each term of the sum, to find

(γ1 ∧ . . . ∧ γk)⊗2 =
∑

T∈B(MK)

(γ1 ∧ . . . ∧ γk)⊗
∧

kπT c(γ1 ∧ . . . ∧ γk)

=
∑

T∈B(MK)

∧
kZT ◦

∧
kπT c(γ1 ∧ . . . ∧ γk)⊗

∧
kπT c(γ1 ∧ . . . ∧ γk).

For each basis T of MK , an application of (55) gives πT c(γ1 ∧ . . . ∧ γk) = det(Z K/Z K
T )eK\T

and the result follows. □

6.4. Euclidean setting and determinantal probability measure on bases. We keep con-
sidering a linear matroid M = (S, I) on S = {1, . . . , d}, with a representation R : E → F , where
a basis (ei)i∈S of E is fixed. Let D : F ∗ → E∗ be the transposed linear map of R, where E∗

and F ∗ are the dual spaces of E and F .
Let us endow E∗ with the dual basis (e⋆i )i∈S and with an inner product for which this dual

basis is orthogonal. Thus, there exist a collection of positive weights {xi : i ∈ S} such that this
scalar product is given, with a natural notation, by

(57) ⟨⟨u, v⟩⟩ =
∑
i∈S

xiuivi .

Let us also assume that the target space F of R is Euclidean. Then F ∗ inherits a Euclidean
structure from that of F , and we can consider the adjoint operator D∗ : E∗ → F ∗.

Then to each subset T ⊂ S of cardinality n, we associate the subspace E∗
T = Vect(e⋆i : i ∈ T )

and the non-negative weight

(58) w(T ) = det(DD∗)
E∗

T
E∗

T

which is positive if and only if T is a basis of M. These weights thus define a measure on B0, and
in this situation where the linear data representing our matroid M is endowed with Euclidean
structures, we speak of a measured matroid.

Proposition 6.7. The probability measure on 2S given by normalizing (58) is supported by B0

and is the determinantal measure associated with the orthogonal projection on imD.

Proof. The determinantal measure is supported by subsets of S of cardinality equal to the rank
of D, that is, codim(kerR) = n. Let T be a subset of S with |T | = n. Let us compute the
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weight w(T ) and show that it is proportional to the probability of T for the determinantal
measure. Using the fact that D = ΠimDD, we have

det(DD∗)
E∗

T
E∗

T
= det

(
ΠimDDD∗ΠimD

)E∗
T

E∗
T

=
〈〈∧

nΠimDe⋆T ,
∧

n(DD∗)
∧

nΠimDe⋆T
〉〉
/∥e⋆T ∥2.

The range of
∧

nΠimD is the line (imD)∧n, on which
∧

n(DD∗) acts by multiplication by the scalar
det(DD∗)imD

imD. Thus, denoting by ιimD the exterior product of the elements of an orthonormal
basis of imD,

w(T ) = det(DD∗)imD
imD

∥∥∧nΠimD(e⋆T /∥e⋆T ∥)
∥∥2

= det(DD∗)imD
imD

∣∣⟨⟨ιimD, e
⋆
T /∥e⋆T ∥⟩⟩

∣∣2.
According to the general theory of determinantal point processes (see for instance [KL19, Propo-
sition 5.8]), the second factor is exactly the probability P(X = T ), where X is the determinantal
random subset of S associated with ΠimD. □

Note that w(T ) can also be written as w(T ) = det(1imD∗
D∗ΠE∗

TD1imD∗) and that under this
form, the Cauchy–Binet formula gives the expression

(59)
∑
T∈B0

w(T ) = det(D∗D)imD∗
imD∗

for the normalisation constant, that is also equal to det(DD∗)imD
imD.

The natural pairing between E∗ and E extends to exterior powers: for each k ∈ {0, . . . , d},
we have, with natural notations,

(60) (α1 ∧ . . . ∧ αk, e1 ∧ . . . ∧ ek) = det((αi, ej))1≤i,j≤k .

We define the antilinear isomorphism

(61) Jx : E → E∗, ei 7→ x−1
i e⋆i .

Thus, for all α ∈ E⋆ and e ∈ E, we have

(62) (α, e) =
∑
i∈S

α(ei)e
⋆
i (e) = ⟨⟨Jxe, α⟩⟩ .

More generally, we have

(63) (α1 ∧ . . . ∧ αk, e1 ∧ . . . ∧ ek) =
〈〈
Jxe1 ∧ . . . ∧ Jxek, α1 ∧ . . . ∧ αk

〉〉
.

The endomorphism

(64) PT = JxZT J
−1
x

of E∗ is the projection on Jx(Z) = kerD∗ parallel to Jx(ET ) = Vect(e⋆i : i ∈ T ) = E∗
T .

6.5. Probability density. Let X be the random determinantal subset of S associated with the
orthogonal projection on imD. This is the random subset of S considered in Proposition 6.7.

Let us give an alternative expression of the probability P(X = T ), which involves the basis ZT

of Z.

Proposition 6.8. Let Z be a basis of Z. For all T ∈ B0, we have

P(X = T ) ∝ |det(Z /ZT )|2 xT .
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Proof. Let us write Z = (γ1, . . . , γb) and define the linear map a : Kb → E∗ by setting
a(r1, . . . , rb) = r1Jyγ1 + . . . + rbJyγb. Endowing Kb with the usual scalar product ⟨·, ·⟩, and
denoting by (k1, . . . , kb) the canonical basis, we have, for all i, j ∈ {1, . . . , b},

⟨ki, a∗akj⟩ = ⟨⟨aki, akj⟩⟩ = ⟨⟨Jyγi, Jyγj⟩⟩x,

so that
det(a∗a) = ∥Jyγ1 ∧ . . . ∧ Jyγb∥2x.

Applying Jy and Pythagoras’ theorem to Proposition 6.4 yields

det(a∗a) =
∑
T∈B0

| det(Z /ZT )|2 (yS\T )−2xS\T .

Lemma 3.1 applied to the linear map a, of which the range is Jy(Z), implies that the de-
terminantal measure associated with the orthogonal projection, with respect to the x-weighted
scalar product, on Jy(Z) gives to the complement of every basis T a probability proportional to
|det(Z /ZT )|2 (yS\T )−2xS\T .

Specializing this result to y = x, the determinantal measure associated with the orthogonal
projection on Jx(Z) gives to the complement of every basis T a probability proportional to
|det(Z /ZT )|2 xT . The result follows from the fact that the complementary random subset of S
is determinantal associated with the orthogonal projection on Jx(Z)

⊥ = imD (see for instance
[KL19, Proposition 4.2]). □

For the record, the normalizing constant is

(65)
∑
T∈B0

|det(Z /ZT )|2 xT = xS∥Jxγ1 ∧ . . . ∧ Jxγb∥2.

For totally unimodular matroids such as the circular matroid, the numbers | det(Z /ZT )|2 are
independent of T , and the probability measure considered here turns out to be almost uniform,
proportional to xT .

Let us express in this framework the mean projection theorem.

Corollary 6.9. Let Z be a basis of Z. For each k ∈ {0, . . . , b}, we have

(66)
∑
T∈B0

xT | det(Z /ZT )|2
∧

kPT =

( ∑
T∈B0

xT |det(Z /ZT )|2
) ∧

kΠkerD∗
.

Proof. We combine Theorem 3.2 and Proposition 6.8. □

6.6. Conditional probability measures. We now compute the probability density of the de-
terminantal measure conditioned on staying inside a subset K of S. It turns out to be the
determinantal measure on the set of bases of the restricted matroid MK (see Section 6.1.3)
measured by the same linear map R into the Euclidean space F .

Proposition 6.10. Let K ∈ Bk. Let X be a random subset under the determinantal probability
measure on 2S associated with the orthogonal projection on H = imD. The determinantal random
subset X of S conditioned on being included in K is the determinantal probability measure on 2K

associated with the orthogonal projection on ΠE∗
K (H) in E∗

K . Moreover,

(67) (ΠE∗
K (H))⊥ ∩ E∗

K = JxZK ,

and this space is the range of the transposed linear map of the restriction of R to EK .
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Proof. The first assertion is a specialisation of Lemma 3.3. To prove the second equality, we
observe the general identity ΠG(H) = G ∩ (G ∩H⊥)⊥, that holds for any two linear subspaces
of a Euclidean space, and follows from the fact for all x ∈ G and y ∈ H, we have

⟨⟨x, y⟩⟩ = ⟨⟨ΠGx, y⟩⟩ = ⟨⟨x,ΠGy⟩⟩.
Thus, (ΠE∗

K (H))⊥ ∩ E∗
K = H⊥ ∩ E∗

K = kerD∗ ∩ E∗
K = JxZK . □

Corollary 6.11. For any basis Z K of ZK , and all T ∈ B(MK), we have

(68) P
(
X = T

∣∣X ⊂ K
)
∝ xT |det(Z K/Z K

T )|2 .

Proof. We combine Propositions 6.8 and 6.10. □

We use these preliminary observations to show the following property.

Lemma 6.12. Let Z = (η1, . . . , ηb) be a basis of Z. Let k ∈ {0, . . . , b} and let K ∈ Bk. Let
Z K = (γ1, . . . , γk) be a basis of ZK . The ratio

|det(Z /ZT )|2

| det(Z K/Z K
T )|2

does not depend on T ∈ B(MK).

Proof. In view of Proposition 6.8 and Corollary 6.11, the ratio is equal, up to a constant that
may depend on K but not on T , to

P(X = T )

P(X = T |X ⊂ K)
= P(X ⊂ K)

and is thus independent of T . □

In view of Lemma 6.12, we define

(69) r(Z : Z K) =
|det(Z /ZT )

2|
| det(Z K/Z K

T )2|
for any choice of T ∈ B(MK). Let us record an alternative expression for this ratio, manifestly
independent of T .

Lemma 6.13. Let Z = (η1, . . . , ηb) be a basis of Z. Let k ∈ {0, . . . , b} and let K ∈ Bk. Let
Z K = (γ1, . . . , γk) be a basis of ZK . Then

r(Z : Z K) = xK
c ∥(JxπKc)∧b(η1 ∧ . . . ∧ ηb)∥2

∥(Jx)∧k(γ1 ∧ . . . ∧ γk)∥2
.

Proof. We use Proposition 6.4, applied to K and Pythagoras’ theorem to find∑
T ′∈B(MK)

(xK\T ′
)−1| det(Z K/Z K

T ′ )|2 = ∥Jxγ1 ∧ . . . ∧ Jxγk∥2 .

Moreover, by applying Proposition 6.4 to S, applying πKc , and using Pythagora’s theorem again,
we find ∑

T ′∈B(MK)

(xS\T
′
)−1| det(Z /ZT ′)2| = ∥(JxπKc)∧b(η1 ∧ . . . ∧ ηb)∥2 .

The result follows by taking the ratio of the second equation by the first, and replacing each
term |det(Z /ZT ′)|2 of the numerator in the left-hand side by r(Z : Z K)|det(Z K/Z K

T ′ )|2. □

Using (69), we can recast Proposition 6.6 in the following form.
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Corollary 6.14. Let Z be a basis of Z. Consider k ∈ {0, . . . , b} and K ∈ Bk. Let Z K =
(γ1, . . . , γk) be a basis of ZK . Then in (Z∧k)⊗2, we have

(70)
∑
T∈B0
T⊂K

|det(Z /ZT )|2
∧

kZT (eK\T )⊗ eK\T = r(Z : Z K)(γ1 ∧ . . . ∧ γk)⊗2 .

6.7. Dual perspectives on the measured matroid and review of the approach. In the
following it will be handy to view the weights x as variables of multivariate polynomials. This
will help us to prove Theorem 6.17 based on an application of Lemma 3.1.

We have seen two ways of describing the density of the determinantal probability measure
associated with a measured matroid (M,R) (see Propositions 6.7 and 6.8). One is based on
the direct Pythagora’s approach to defining a determinantal point process from a subspace imD
where D is the transposed linear map of R. The other corresponds to the fact that the natu-
ral circuit-basis identity (Proposition 6.4) determined by the representing map R gives rise to
the dual probability measure on the complement of the first process (as is apparent from the
expansion (54), and as we further saw in the proof of Proposition 6.8).

We use these dual perspectives below to define two natural generating polynomials: BM,R(x)
and KM,R(Z , x). The first is somewhat more canonical than the second, since the latter also
takes into argument an arbitrary basis of Z. The two are related by (74) so that we can play with
both polynomials equally well. From the first, we establish the correspondence to the operator D
and find a practical determinantal expression for the partition function L

(k)
M,R(Z , ϑ, x) of the

determinantal measures on Bk in 6.16. Thanks to the second, we are able to use our preparatory
computations, notably Corollaries 6.14 and 6.9 to prove Proposition 6.15, which computes the
ratio of the polynomials L(k)M,R(Z , ϑ, x) and KM,R(Z , x). This result is instrumental for proving
Proposition 6.16 and is of independent interest in the light of Section 5.3.

6.8. Partition functions. Let us hence define the following multivariate polynomial

(71) BM,R(x) =
∑
T∈B0

w(T ) = det(D∗D)imD∗
imD∗

where w(T ) was defined in (58), and the second equality is (59).
This is indeed a polynomial, seen as a function of x. Indeed, note that D∗Jx = J0R, where

J0 : F → F ∗ is the isomorphism determined by the Euclidean structure on F . For each T ∈ B0,
we may rewrite the weight w(T ) as

w(T ) = det
(
DJ0R(Jx)

−1
)E∗

T

E∗
T
.

Writing this determinant in the canonical basis of E∗
T , and using the canonical basis of ET , we

see that it is a scalar multiple of xT , with a scalar that does not depend on x.
Let us define, for each basis Z of Z, the polynomial

(72) KM,R(Z , x) =
∑
T∈B0

xT | det(Z /ZT )|2 .

Recall that an expression of this polynomial was given in (65).
Given two bases Z and Z ′ of Z, and for all x, we have

(73) KM,R(Z , x) = | det(Z /Z ′)|2 KM,R(Z
′, x).

By Proposition 6.7 combined with the observation made in the paragraph following (71) that
w(T ) is a monomial proportional to xT , and Proposition 6.8, we can write the generating function
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of our determinantal probability measure on B0 in two ways as a ratio of polynomials: for all z,
we have

E[zT ] =
BM,R(xz)

BM,R(x)
=

KM,R(Z , xz)

KM,R(Z , x)
.

Taking z = x−1, we thus find

(74) KM,R(Z , x)BM,R(1) = BM,R(x)KM,R(Z , 1) .

Let Z0 be a basis of Z such that

(75) BM,R(1) = KM,R(Z0, 1) .

This exists in view of (73). Then, for all x, we have

(76) BM,R(x) = KM,R(Z0, x) .

We now define the generating polynomial of weighted bases of Mk. For all bases Z of Z and
all ϑ ∈ (E∗)∧k, define

(77) L
(k)
M,R(Z , ϑ, x) =

∑
K∈Bk

xK r(Z : Z K) |(ϑ, zK)|2

where for each K, we have chosen a basis Z K = (γ1, . . . , γk) of ZK and have defined zK =
γ1 ∧ . . . ∧ γk ∈ Z∧k to be the exterior power of its elements.

In the definition of L(k)M,R(Z , ϑ, x), the summand indexed by K does not depend on the choice
of the basis Z K of ZK . Indeed, let W K be another basis. Then wK = det(W K/Z K)zK and,
by Lemma 6.13, r(Z : W K) = | det(W K/Z K)|−2r(Z : Z k).

Given two bases Z and Z ′ of Z, and for all x, we have

(78) L
(k)
M,R(Z , ϑ, x) = | det(Z /Z ′)|2 L(k)M,R(Z

′, ϑ, x).

The following proposition generalizes Proposition 4.1.

Proposition 6.15. For each basis Z of Z and all ϑ ∈ (E∗)∧k, we have

(79)
L
(k)
M,R(Z , ϑ, x)

KM,R(Z , x)
= ∥

∧
kΠkerD∗

(ϑ)∥2 .

Proof. First of all, for each K ∈ Bk, we have

|(ϑ, zK)|2 =
(
ϑ⊗ ϑ, (γ1 ∧ . . . ∧ γk)⊗2

)
.

By Corollary 6.14, interverting sums and removing a constraint on indices which adds only zero
terms, we find∑
K∈Bk

xK r(Z : Z K) |(ϑ, zK)|2 =
(
ϑ⊗ ϑ,

∑
K∈Bk

xKr(Z : Z K) (γ1 ∧ . . . ∧ γk)⊗2
)

=
(
ϑ⊗ ϑ,

∑
K∈Bk

xK
∑

T∈B(MK)

| det(Z /ZT )|2
∧

kZT (eK\T )⊗ eK\T

)
=

∑
T∈B0

(
ϑ⊗ ϑ,

∑
J⊂S\T :|J |=k

|det(Z /ZT )|2xJxT
∧

kZT (eJ)⊗ eJ

)
=

∑
T∈B0

(
ϑ⊗ ϑ,

∑
J⊂S:|J |=k

| det(Z /ZT )|2xJxT
∧

kZT (eJ)⊗ eJ

)
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Further, by Equation (64) and (62), and recognizing an expansion over the orthonormal basis
{(xJ)−1/2e⋆J : J ⊂ S, |J | = k} of E∧k, we thus find

L
(k)
M,R(Z , ϑ, x) =

∑
J⊂S:|J |=k

(xJ)−1
〈〈[ ∑

T∈B0

xT | det(Z /ZT )|2
∧

kPT

]
(e⋆J)⊗ e⋆J , ϑ⊗ ϑ

〉〉
=

〈〈[ ∑
T∈B0

xT | det(Z /ZT )|2
∧

kPT

]
ϑ, ϑ

〉〉
.

Using now the mean projection theorem, in the guise of Corollary 6.9, and noting that the
coefficient for which we use antilinearity of the inner product is in fact real, we find〈〈[ ∑

T∈B0

xT | det(Z /ZT )|2
∧

kPT

]
ϑ, ϑ

〉〉
=

( ∑
T∈B0

xT |det(Z /ZT )|2
) 〈〈∧

kΠkerD∗
ϑ, ϑ

〉〉
,

which is equal to KM,R(Z , x)
〈〈
ϑ,

∧
kΠkerD∗

ϑ
〉〉
. □

Let us pick θ1, . . . , θk ∈ E∗. Define the linear map ωθ : Kk → E∗, (α1, . . . , αk) 7→
∑k

i=1 αiθi.
Its adjoint is given, for all β ∈ E∗, by

ω∗
θ(β) = (⟨⟨θ1, β⟩⟩, . . . , ⟨⟨θk, β⟩⟩).

The following proposition generalizes Proposition 4.2.

Proposition 6.16. Set ϑ = θ1 ∧ . . . ∧ θk. Let Z0 be such that (75) holds. Then

L
(k)
M,R(Z0, ϑ, x) = det

(
(D + ωθ)

∗(D + ωθ)
)
.

Proof. By the Schur complement formula, in the guise of Lemma 3.4, and (71), we have

det
(
(D + ωθ)

∗(D + ωθ)
)
= det(D∗D)imD∗

imD∗ det
(
ω∗
θΠ

kerD∗
ωθ

)
= BM,R(x)

∥∥∧kΠkerD∗
ϑ
∥∥2 .

Since BM,R(x) = KM,R(Z0, x) by (76), the conclusion follows from Proposition 6.15. □

6.9. A family of determinantal probability measures. The following theorem generalizes
Theorems 4.3 and 4.6. It describes a family of determinantal probability measures on the set of
bases Bk of the matroid Mk, with explicit weight.

Theorem 6.17. Let Z be a fixed basis of Z. Let k ≥ 1 and Θ be a k-dimensional subspace
of E∗ such that Θ ∩ kerD∗ = {0}. Let (θ1, . . . , θk) be a basis of Θ and set ϑ = θ1 ∧ . . . ∧ θk. For
each K ∈ Bk, let Z K = (γ1, . . . , γk) be a basis of ZK and set zK = γ1 ∧ . . . ∧ γk. The measure
on Bk which assigns to each K the weight

xK r(Z : Z K) |(ϑ, zK)|2

is not zero and the induced probability measure is determinantal associated with the orthogonal
projection on the subspace imD⊕Θ in the orthogonal basis (e⋆i )i∈S.

Proof. Under the hypothesis Θ ∩ kerD∗ = {0}, the map D + ωθ is injective. Therefore, the
determinant of (D + ωθ)

∗(D + ωθ) is positive.
Without loss of generality, we may assume that Z is the basis Z0 from above, satisfying (75).

We now combine Proposition 6.16 and Lemma 3.1, noting that im(D+ωθ) is equal to imD+Θ. □

6.10. Examples. In this concluding section, we record a few examples giving rise to interesting
determinantal probability measures.
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6.10.1. Subspaces. As is well known [Lyo03], and as we have recalled in Section 3.1 and in
Section 6.4, any subspace H of a finite-dimensional Euclidean E, coming with an orthogonal
basis (ei)i∈S , defines a determinantal probability measure on S whose support is the set of bases
of a matroid.

This probabilistic point of view implies the following interpretation of the matroid stratification
of the Grassmannian of [GGMS87]. It can be understood as partitioning Grn(E) by assigning
to each matroid M on S of rank n, the set GM of subspaces H ∈ Grn(E) whose associated
determinantal measure PH in the basis (ei)i∈S has support equal to the set of bases B(M) of M.

On the complex Grassmannian, there is a natural action of the torus (C∗)d/C∗ on Grn(E) by
scaling in each direction of the basis (ei)i∈S , modulo global scaling. This action is Hamiltonian
with respect to the natural symplectic structure of the Grassmannian and gives rise to a moment
map, which turns out to be a vectorial form of the incidence measure µH , restricted to singletons,
of the corresponding determinantal measure:

µ : Grn(E) → Rd, H 7→
∑

T∈B(M)

PH(X = T )
(∑
i∈T

ei
)
=

d∑
i=1

PH(i ∈ X)ei =
d∑

i=1

µH({i})ei .

Furthermore, for each matroid M of rank n, the closure of the image of GM by the moment
map µ is the matroid polytope of M, defined to be the convex hull in Rn of the collection
{
∑

i∈T ei : T ∈ B(M)}, see [GGMS87, Ard21].

6.10.2. Random subgraphs. Let us stress that any subspace of H of Ω1(G), or more generally any
self-dual operator k ∈ End(Ω1(G)) satisfying 0 ≤ k ≤ 1, gives rise to a determinantal random
subgraph by means of the general theory [Lyo03].

For example, independent bond percolation, with the probability of an edge e being open equal
to pe, corresponds to k(ωe) = peωe, for e ∈ E+ (where ωe was defined in Section 4.1). However
some of these determinantal random subgraphs are more interesting or tractable than others.
We give a few examples of interest in what follows.

It is well known that the circular and bicircular matroids of a graph are the only two matroids
such that their sets of circuits are homeomorphism classes of connected graphs [SP72]. We
consider now other examples of matroids on graphs.

6.10.3. Subgraphs with fixed Euler characteristic. For each (k, ℓ) ∈ {0, . . . , |V|−1}×{0, . . . , b1(G)},
there is a matroid Mk,ℓ(G) on the set of edges of G whose set of bases Bk,ℓ(G) is the collection
of subgraphs B of G satisfying

• χ(B) = k − ℓ+ 1
• max(0, ℓ− k) ≤ b1(B) ≤ ℓ

where χ(B) = b0(B) − b1(B) = |V(B)| − |E(B)| is the Euler characteristic of B. We recover
the previously considered families of subgraphs: B0,0(G) = T (G), B0,ℓ(G) = Cℓ(G) and Bk,0(G) =
Fk+1(G). The elements of Bk,ℓ(G) are the subgraphs obtained by taking any spanning tree,
adding ℓ edges, and then removing k edges. See Figure 3.

The existence of these matroids, simply obtained by taking unions with the uniform matroid,
or duals, starting from the circular matroid, does not contradict the result of [SP72] mentioned
above. Indeed the circuits of Mk,0 consist in simple cycles and spanning forests with k compo-
nents; because of the spanning assumption this is not the class of subgraphs homeomorphic to a
fixed subclass of connected graphs. Similarly, the circuits of M0,ℓ(G) are the minimal subgraphs
with ℓ+1 independent cycles; because these subgraphs are not necessarily connected, this is not
the class of subgraphs homeomorphic to a fixed subclass of connected graphs.
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Figure 3. A determinantal random element of B4,4(G) on a 15 × 15 grid. Note that
this subgraph also belongs to B3,3(G), and indeed to Bk,k(G) for any k ≥ 3.

For all (k, ℓ) in the above range, one can define natural determinantal probability measures
whose supports are included in Bk,ℓ(G) by taking a subspace of the form im d ∩ (Jx(Φ))

⊥ ⊕ Θ,
with Φ ⊂ Ω1(G) a k-dimensional subspace such that Φ ∩ Z1(G,K) = {0} and Θ ⊂ Ω1(G) an ℓ-
dimensional subspace such that Θ ∩ im d ∩ (Jx(Φ))

⊥ = {0}. Repeated uses of Theorem 6.17 can
in principle allow us to describe explicitly these measures via geometric-topological weights on
subgraphs.

6.10.4. Cycle-rooted spanning forests. The bicircular matroid of a graph G is the matroid on its
set of unoriented edges [E], the set of bases of which is the set U(G) of cycle-rooted spanning
forests. Its collection of circuits is the set of connected subgraphs with one more edge than
vertices, that is the subgraphs with Betti numbers (b0, b1) = (1, 2). Forman [For93] proved a
matrix-tree type formula for U(G) and this implies the existence of a determinantal probability
measure on U(G) according to Lemma 3.1, a fact first proved by Kenyon [Ken11] who rediscovered
Forman’s result, and extended it to the quaternion case. See Figure 4.

This determinantal probability measure is determined by an element θ ∈ Ω1(G), and the
weight assigned to a cycle-rooted spanning forest is xF

∏
c cycle |1 − holh(c)|2 where holh(c) =

eiθ(c) is the holonomy of the cycle c. The corresponding subspace of Ω1(G) is the range of
a discrete covariant derivative dh, a twisted analog of the coboundary operator d, where h
is a connection which represents θ in the sense that he = exp(iθe) (for detailed definitions,
see [Ken11, Kas15, KL19, KL22b]).

As in the circular case above, we may define, for all (k, ℓ) ∈ {0, . . . , |V|} × {0, . . . , b1(G)− 1},
variants Mbicirc

k,l (G), where Mbicirc
0,0 (G) is the bicircular matroid of G. The collection of bases

of Mbicirc
k,l (G) is obtained as the collection of subgraphs of G built by adding k edges to any

element of U(G), and then removing ℓ edges.
For all (k, ℓ) in the above range, we can define natural determinantal probability measures

whose support is included in Bbicirc
k,ℓ (G), by considering a subspace of the form im dh∩(Jx(Φ))⊥⊕Θ

with assumptions similar to those in the circular case. The description of weights can in principle
be obtained using Theorem 6.17 but we have not worked this out.

As proved by Kenyon in [Ken11, Theorem 3], when we consider εθ in place of θ, then, letting ε
tend to 0, we have a family of determinantal measures on U(G) converging to a determinantal
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Figure 4. A determinantal random cycle-rooted spanning forest, that is a random
basis of the bicircular matroid of a 15× 15 grid. Its cycles are represented by thickened
edges. Note incidentally that this subgraph also belongs to B3,4.

measure on C1(G), which is precisely the measure described in Theorem 4.3 for the line Θ = Kθ.
We generalize this convergence result to higher rank in [KL22b].

Incidentally, let us record the following interesting fact. Finding the number of elements
of U(G) is known to be #P -hard [GN06, Section 3]7, and thus there can be no polynomial time
computable formula for it.8 In particular, the uniform measure on U(G) cannot be determinantal,
by Lemma 3.1, or by [Lyo03, Corollary 5.5]. However, the uniform measure on U(G) may be
sampled exactly in polynomial time, see [KK17, Theorem 1], [Kas15, Section 2.4], and [GJ21].9
This yields a fully-polynomial approximation scheme (FPRAS) for enumerating U(G), as shown
in [GJ21].

Further note, that the bicircular is not unimodular (otherwise there would be a determinantal
expression for its number of bases [Mau76]), hence it is not regular [Whi87, Theorem 3.1.1],
and hence, by a theorem of Tutte, it is not representable both on F2 and F3. However as any
transversal matroid, bicircular matroids are representable over any infinite field. The question
of finding over which finite fields they are representable has been studied partially by Zaslavsky.

6.10.5. Quantum spanning forests. In [KL19, Section 1.5] and [KL22b], we consider higher rank
vector bundles on graphs, following our work [KL21]. We consider a subspace im dh of Ω1(G,KN )
where dh is a U(N,K)-twisted discrete covariant derivative. Here, U(N,K) is the unitary group
of KN . The quantum spanning forest is the determinantal linear process [KL19, Definition 3.1]
associated with the subspace im dh and the natural splitting of Ω1(G,KN ) as sums of blocks KN ,
where the sum is over E+. It is a certain random subspace Q of the form Q = ⊕e∈E+Qe which is
h-acyclic in the sense that Q ∩ ker d∗h = {0} and which is maximal for these properties.

Viewing Ω1(G) as a linear subspace of Ω1(G,KN ) by picking a line over each edge, we then
consider the compression on that subspace of the orthogonal projection onto im dh. It is an
element of End(Ω1(G)), which defines a determinantal random subgraph, which we call a marginal

7The authors of that paper use a short two-step reduction to the counting problem of perfect matchings of a
graph, which is known to be #P-hard by a celebrated work of Valiant [Val79], where this computational complexity
class was in fact introduced.

8Bounds on the cardinality of U(G) in terms of that of T (G) were obtained in [GdMN05].
9Similar variations on Wilson’s algorithm [Wil96] were proposed in [BBGJ07, GP14]. A general theory of

partial rejection sampling was developped recently in [Jer21] which encompasses these as special cases.
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of the quantum spanning forest. See Figure 5. If we take a full orthogonal basis of each block KN

over each edge, we then obtain a collection of N correlated marginal subgraphs, which are the
marginals of the quantum spanning forest.

Figure 5. The marginals of a rank-2 quantum spanning forest on a 15× 15 grid.

By [KL19, Proposition 6.13], in the case where holonomies of loops are in SU(2), the law of the
total occupation number of the marginals of the quantum spanning forest (like those in Figure 5)
is equal to the occupation number of the union of two independent samples of the associated
Q-determinantal measure on U(G) (like that in Figure 4).

6.10.6. Higher dimensional random simplicial complexes. Instead of the circular or bicircular
matroids and their variants on graphs, one can consider matroids on the cells of higher dimen-
sional simplicial complexes such as the ones defined in [Lyo09] (see also [Kal83, CCK15, DKM15]),
which could be called ‘circular’ or ‘co-circular’, and those mentioned in [KL19, Section 1.5] which
are associated to twisted coboundary maps, and could be called ‘bicircular’. The correspond-
ing partition functions would generalize the Kirchhoff and Symanzik polynomials, and might be
related to those of [Piq19].
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