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Capacitated Location-Routing Problem (CLRP)
Data
▶ I — set of potential depots with opening costs fi and

capacities Wi , i ∈ I
▶ J — set of customers with demands dj , j ∈ J
▶ Set of edges E = EJ ∪ EIJ : EJ = J × J, EIJ = I × J
▶ ce — transportation cost of edge e ∈ E ∪ F
▶ An unlimited set of vehicles with capacity Q.

The problem
▶ Decide which depots to open
▶ Assign every client to an open depot subject to depot

capacity
▶ For every depot, divide assigned clients into routes subject

to vehicle capacity
▶ Minimize the total depot opening and transportation cost
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CLRP: an illustration

depot ∈ I

client ∈ J

Figure: LRP instance: G = (I ∪ J,EJ ∪ EIJ)
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CLRP: a solution

Depot

Client

Figure: Location of depots must be jointly decided with vehicle
routing.
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Literature on the CLRP
▶ A combination of two central OR problems
▶ ≈3700 papers in Google Scholar with both “location” and

“routing” in the title

Some recent works on the standard CLRP
▶ [Belenguer et al. 2011] — important valid inequalities &

Branch-and-Cut
▶ [Baldacci et al. 2011] — exact enumeration & column

generation approach
▶ [Contardo et al. 2014]1 — state-of-the-art exact algorithm
▶ [Arnold and Sörensen 2021; Schneider and Löffler 2019] —

state-of-the-art heuristics
▶ [Schneider and Drexl 2017] — the latest survey

1Claudio Contardo, Jean-François Cordeau, and Bernard Gendron
(2014). “An Exact Algorithm Based on Cut-and-Column Generation for the
Capacitated Location-Routing Problem”. In: INFORMS Journal on
Computing 26.1, pp. 88–102.
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Our study

▶ Recently, large improvement in exact solution of classic
VRP variants [Pecin et al. 2017] [Pecin et al. 2017] [Pessoa
et al. 2018] [Sadykov et al. 2021]

▶ A generic Branch-Cut-and-Price VRP solver [Pessoa et al.
2020]2 incorporates all recent advances

vrpsolver.math.u-bordeaux.fr

▶ This solver can be applied to the LRP, but problem-specific
cuts are necessary for obtaining the state-of-the-art
performance

▶ We propose a new family of non-robust cuts, which is
shown to be useful for the LRP and some related problems

2Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, and
François Vanderbeck (2020). “A Generic Exact Solver for Vehicle Routing
and Related Problems”. In: Mathematical Programming 183, pp. 483–523.
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Formulation
▶ λi

r , i ∈ I, r ∈ Ri , equals 1 iff route r is used for depot i
▶ ar

e, e ∈ EJ ∪ EIJ , r ∈ ∪i∈IRi , equals 1 iff edge e is used by r
▶ br

j , j ∈ J, r ∈ ∪i∈IRi , equals 1 iff client i is served by route r
▶ yi , i ∈ I, equals 1 iff route depot i is open
▶ zij , i ∈ I, j ∈ J, equals 1 iff client j is assigned to depot i

min
∑
i∈I

fiyi +
∑
i∈I

∑
r∈Ri

∑
e∈E∪F

cear
eλ

i
r∑

i∈I

zij = 1, ∀ j ∈ J,∑
r∈Ri

br
j λ

i
r = zij , ∀ i ∈ I, j ∈ J

∑
j∈J

djzij ≤ Wiyi , ∀ i ∈ I,

zij ≤ yi , ∀ i ∈ I, j ∈ J,

(z, y , λ) ∈{0,1}K
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Nested knapsack structure
▶ λi

r , i ∈ I, r ∈ Ri , equals 1 iff route r is used for depot i
▶ br

j , j ∈ J, r ∈ ∪i∈IRi , equals 1 iff client i is served by route r
▶ zij , i ∈ I, j ∈ J, equals 1 iff client j is assigned to depot i

∑
j∈J

dj zij ≤ Wi , ∀ i ∈ I,

⇓∑
r∈Ri

∑
j∈J

∑
e∈δ(j)

br
j dj

 λi
r ≤ Wi , ∀ i ∈ I

depot capacity

first vehicle load second vehicle load

demand demand demand
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Master knapsack polytope

PMKP(W ) = conv

t ∈ ZW
+ :

W∑
q=1

q tq ≤ W

 .

Theorem ([Aráoz 1974]3)
Each non-trivial facet of PMKP(W ) can be described by an
inequality of format ξt ≤ 1 such that ξ ∈ RW

+ is an extreme point
of the following system of linear constraints:

ξ1 = 0, ξW = 1,
ξq + ξW−q = 1, ∀1 ≤ q ≤ W/2,

ξq + ξq′ ≤ ξq+q′ , ∀q + q′ ≤ W .

3J. Aráoz (1974). “Polyhedral neopolarities”. PhD thesis. University of
Waterloo, Department of Computer Science.
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Route Load Knapsack Cuts (RLKC)
θi

q ∈ Z+ — # of routes in Ri with a total load of exactly q units.

Theorem
ξt ≤ 1 defines a non-trivial facet of PMKP(Wi) if and only if
ξθ ≤ yi defines a non-trivial facet of
conv

{
(θi , yi) ∈ ZWi

+ × {0,1} :
∑Wi

q=1 q θq ≤ Wiyi

}
.

Definition
Given a depot i ∈ I and a vector ξ ∈ RWi

+ satisfying ξ1 = 0,
ξWi = 1, and ξq + ξq′ ≤ ξq+q′ , ∀q + q′ ≤ Wi , the inequality

Wi∑
q=1

ξq θ
i
q ≤ yi

is known as a Route Load Knapsack Cut (RLKC).

Theorem
A Route Load Knapsack Cut is valid for the location-routing
formulation.
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Separation of RLKCs by Chvàtal-Gomory rounding

For any depot i ∈ I and any multiplier β ∈ R such that
β ≥ 1/Wi , the constraint

Wi∑
q=1

⌊β q⌋
⌊β Wi⌋

θi
q ≤ yi

is a Route Load Knapsack Cut: superadditivity follows from
⌊r⌋+ ⌊r ′⌋ ≤ ⌊r + r ′⌋ for all r , r ′ ∈ R+.

Separation by enumeration
We consider all multipliers β = p/q, such that θ̄q > 0 and
p = 1, . . . ,q − 1.
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Separation of 1/k−facets

Definition
A master knapsack facet ξx ≤ 1 is called a 1/k -facet if k is the
smallest possible integer such that

ξq ∈ {0/k ,1/k ,2/k , . . . , k/k} ∪ {1/2}.

Separation by enumeration
We enumerate all possible 1/6−, 1/8−, and 1/10−inequalities
using the algorithm from [Chopra et al. 2015]4.

Remark
An 1/k ′-inequality is also an 1/k -inequality if k ′ is a divisor of k .
So, 1/2-, 1/3-, 1/4-, and 1/5-inequalities are also separated.

4Sunil Chopra, Sangho Shim, and Daniel E. Steffy (2015). “A few strong
knapsack facets”. In: Modeling and Optimization: Theory and Applications.
Ed. by Boris Defourny and Tamás Terlaky. Cham: Springer International
Publishing, pp. 77–94.
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Route Load Knapsack Cuts: an example
Data (depot index i is omitted)
Q = 70, W = 140, θ̄38 = 1/14, θ̄53 = 1/2, θ̄65 = 16/14,
θ̄70 = 1/2, and ȳ = 277/280.

Best RLKC obtained by rounding
Multiplier β = 1/53 gives a RLKC with violation of ≈ 0.082:

105∑
q=53

1
2
θq +

140∑
q=106

θq ≤ y

A better facet-defining 1/6−inequality

52∑
q=38

1
6
θq +

87∑
q=53

3
6
θq +

102∑
q=88

5
6
θq +

140∑
q=103

6
6
θq ≤ y

with violation ≈ 0.094.
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Route Load Knapsack Cuts: an example

1
6

1
3

1
2

2
3

5
6

1

0 38 53 88 106 140

1/6−inequality

Ch.-G. rounding inequality

1
14

1
2

16
14

1
2
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RLKCs and the pricing: label domination

▶ Pricing problem: Resource Constrained Shortest Path

▶ It is solved by a labelling algorithm, each label L is
(jL, c̄L,qL)

▶ Dominance relation

L ≻ L′ if jL = jL
′
, c̄L ≤ c̄L′

, qL ≤ qL′

▶ Let µ̄(q) be the contribution of RLKCs to the reduced cost
of a route variable with load q

▶ The same dominance relation is still valid, as µ̄(q) is
non-decreasing:

c̄L ≤ c̄L′
,qL ≤ qL′ ⇒ c̄L + µ̄(qL) ≤ c̄L′

+ µ̄(qL′
).
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RLKCs and the pricing: completion bounds

▶ A completion bound B(j , ⃗L) is valid if c̄L⃗ + µ̄(qL⃗) + B(j , ⃗L)
gives a lower bound on the total reduced cost of paths
obtained by concatenation of L⃗ and any ⃗L ∈ ⃗L at node j .

▶ A weak completion bound

B1(j , ⃗L) = min
⃗L∈ ⃗L

{
c̄

⃗L
}

▶ A tighter completion bound

B2(j , ⃗L) = min
⃗L∈ ⃗L

{
c̄

⃗L + µ̄(q
⃗L)
}

is valid due to super-additivity of µ̄(q).

▶ Completion bounds are used to speed-up labels
concatenation and prune labels by bound
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Rounded Capacity Cuts (RCC)5

Given a subset of clients C ⊂ J,∑
i∈I

∑
r∈Ri

∑
e∈δ(C)

ar
eλ

i
r ≥ 2 ·

⌈∑
i∈C di

Q

⌉
.

Separation
Heuristic algorithms by [Lysgaard et al. 2004]: connected
components, max-flow based, greedy construction, local search
on previously separated cuts (CVRPSEP reimplemented by us)

5G. Laporte and Y. Nobert (1983). “A branch and bound algorithm for the
capacitated vehicle routing problem”. In: Operations-Research-Spektrum 5.2,
pp. 77–85.
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Depot Capacity Cuts (DCC)6

If a subset of clients C ⊂ J cannot be served by a subset of
depots S ⊂ I, ∑

j∈C
dj >

∑
i∈S

Wi ,

then at least one vehicle from a depot i ∈ I \ S should visit C:∑
i∈I\S

∑
r∈Ri

∑
e∈δ(C)

ar
eλ

i
r ≥ 2.

Separation
A greedy construction heuristic starting from different seed
vertices

6José-Manuel Belenguer, Enrique Benavent, Christian Prins,
Caroline Prodhon, and Roberto Wolfler Calvo (2011). “A Branch-and-Cut
method for the Capacitated Location-Routing Problem”. In: Computers &
Operations Research 38.6, pp. 931 –941.

18 / 29



COVer inequalities for depots (COV)
Given a subset J ′ ⊂ J of customers, such that

∑
j∈J′ dj > Wi ,

the following inequality is valid∑
j∈J′

zij ≤ (|J ′| − 1)yi .

Separation
We solve the MIP for each i ∈ I such that ȳi > 0

min
∑
j∈J

(ȳi − z̄ij)wj∑
j∈J

djwj ≥ Wi + 1,

wj ∈ {0,1}, ∀ j ∈ J,

to check if its solution is less than ȳi .
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Fenchel Cuts over y variables (FC)7

Ŷ is the set set of feasible depot configurations

Ŷ =

ŷ ∈ {0,1}|I| :
∑
i∈I

Wi ŷi ≥
∑
j∈J

dj

 .

Separation of ȳ ∈ conv(Ŷ )

We try to find αi ∈ R|I|
+ such that

∑
i∈I αi ȳ < 1, and∑

i∈I αi ŷ ≥ 1 for all ŷ ∈ Ŷ , by solving the LP.

min
∑
i∈I

ȳi αi∑
i∈I

ŷi αi ≥ 1, ∀ ŷ ∈ Ŷ ,

αi ≥ 0, ∀ i ∈ I.

7Maurizio Boccia, Antonio Sforza, Claudio Sterle, and Igor Vasilyev
(2008). “A Cut and Branch Approach for the Capacitated p-Median Problem
Based on Fenchel Cutting Planes”. In: Journal of Mathematical Modelling
and Algorithms 7.1, pp. 43–58. 20 / 29



Chvátal-Gomory Rank-1 Cuts [Jepsen et al. 2008]

Each cut is obtained by a Chvátal-Gomory rounding of a set
C ⊆ J of set packing constraints using a vector of multipliers ρ
(0 < ρj < 1, j ∈ C):

∑
i∈I

∑
r∈Ri

∑
j∈C

ρj
∑

e∈δ(j)

1
2

ar
e

λi
r ≤

∑
j∈C

ρj


All non-dominated vectors ρ of multipliers for |C| ≤ 5 are given
in [Pecin et al. 2017].

Non-robust in the terminology of [Pessoa et al. 2008]

Separation
Enumeration for |C| ≤ 3 and a local search heuristic for each
non-dominated vector of multipliers for |C| = {4,5}.
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Other components of the BCP (through VRPSolver)
▶ Bucket graph-based labelling algorithm for the RCSP

pricing [Righini and Salani 2006] [Sadykov et al. 2021]
▶ Partially elementary path (ng-path) relaxation [Baldacci

et al. 2011]
▶ Automatic dual price smoothing stabilization [Wentges 1997]

[Pessoa et al. 2018]
▶ Reduced cost fixing of (bucket) arcs in the pricing problem

[Ibaraki and Nakamura 1994] [Irnich et al. 2010] [Sadykov et al.
2021]

▶ Enumeration of elementary routes [Baldacci et al. 2008]
▶ Multi-phase strong branching [Pecin et al. 2017]

▶ On number of open depots in a subset of size at most 4
(largest priority)

▶ On number of vehicles starting in a depot
▶ On the total number of vehicles
▶ On number of clients served from a depot
▶ On assignment of clients to depots
▶ On edges of the graph
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Computational results: impact of cuts
“Classic” CLRP test instances by [Prins et al. 2006]8 with 5-10
depot locations and 50-200 clients. Time limit is 12 hours.

BCP0 — “pure” VRPSolver (without problem-specific cuts)

Root Geomean
Variant Gap Time (s) Nodes Time (s) Solved
BCP0 4.46% 57.9 19.2 758.7 24/26
BCPall−GUB 3.08% 99.0 9.0 481.0 25/26
BCPall−DCC 0.85% 101.0 9.1 504.6 24/26
BCPall−FC 0.67% 111.4 4.4 283.9 25/26
BCPall−RLKC 0.52% 114.7 4.1 264.0 25/26
BCPall−COV 0.49% 114.4 4.6 273.4 25/26
BCPall 0.48% 115.0 4.1 265.5 25/26

8Christian Prins, Caroline Prodhon, and Roberto Wolfler Calvo (2006).
“Solving the capacitated location-routing problem by a GRASP
complemented by a learning process and a path relinking”. In: 4OR 4.3,
pp. 221–238.
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Computational results: modified instances

ρ = Q∑
i∈I Wi/|I| — “vehicle capacity / depot capacity” ratio

Root Geomean
Variant ρ Gap Time (s) Nodes Time (s) Solved
BCP0 0.3 2.14% 32.1 18.6 344.7 19/20
BCPall−DCC 0.3 0.74% 41.0 12.7 260.9 19/20
BCPall−RLKC 0.3 0.51% 48.2 6.1 174.1 19/20
BCPall 0.3 0.46% 49.3 5.8 162.9 19/20
BCP0 0.5 3.33% 42.9 76.7 2513.6 13/17
BCPall−DCC 0.5 2.09% 108.4 35.0 1979.7 13/17
BCPall−RLKC 0.5 1.73% 69.8 24.3 1059.3 14/17
BCPall 0.5 1.26% 120.3 13.2 813.6 15/17
BCP0 0.7 5.94% 51.6 255.3 10511.0 6/17
BCPall−DCC 0.7 2.49% 247.7 58.1 4531.6 12/17
BCPall−RLKC 0.7 3.91% 83.0 89.4 5438.7 10/17
BCPall 0.7 1.53% 284.6 18.9 1734.7 14/17
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Cut generation statistics
# of generated cuts (# of active cuts at the end of the root)

Original Modified instances
Cut family instances ρ = 0.3 ρ = 0.7
RCC 492.5 ( 11.6) 349.5 ( 7.2) 254.9 ( 1.9)
lm-R1C 7044.0 (215.4) 22405.5 (153.0) 35610.9 (236.2)
COV 30.8 ( 0.2) 28.1 ( 0.1) 30.7 ( 0.1)
FC 4.0 ( 0.7) 3.9 ( 0.6) 4.4 ( 0.5)
GUB 338.5 ( 78.4) 282.4 ( 30.0) 203.2 ( 12.9)
DCC 488.4 ( 9.9) 1135.1 ( 10.1) 1636.1 ( 11.4)
RLKC (total) 53.4 ( 1.2) 325.1 ( 3.9) 12785.2 ( 29.6)
RLKCround 26.8 ( 0.7) 296.1 ( 3.7) 109.9 ( 0.8)
RLKC1/2 0.7 ( 0.0) 0.5 ( 0.0) 1401.8 ( 7.7)
RLKC1/3 0.7 ( 0.0) 0.8 ( 0.0) 675.7 ( 1.6)
RLKC1/4 1.2 ( 0.0) 1.4 ( 0.1) 418.2 ( 0.9)
RLKC1/5 1.8 ( 0.0) 1.5 ( 0.0) 1738.4 ( 3.8)
RLKC1/6 2.6 ( 0.0) 3.2 ( 0.1) 843.4 ( 1.7)
RLKC1/8 5.7 ( 0.1) 5.0 ( 0.1) 2611.1 ( 4.9)
RLKC1/10 13.8 ( 0.3) 16.6 ( 0.1) 4986.7 ( 8.2)
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Computational results: comparison with the literature
Time limit is 30 hours

BCPall [Contardo et al. 2014]
Instances Solved Time Solved Time
PPW06 24/26 518 16/26 836
TB99 9/9 945 6/9 5589

Instances by [Schneider and Löffler 2019]9

|I| |J| Solved Improved BKS Improvement
5 100 14/14 7/14 0.05%
10 100 14/14 5/14 0.11%
10 200 11/14 13/14 0.08%
15 200 15/20 18/20 0.12%
15 300 6/20 11/20 0.29%
20 300 4/20 8/20 0.91%

9Michael Schneider and Maximilian Löffler (2019). “Large Composite
Neighborhoods for the Capacitated Location-Routing Problem”. In:
Transportation Science 53.1, pp. 301–318.
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VRP-CMD instances
Instances from [Ben Mohamed et al. 2022]10, occur when solving
the 2-echelon stochastic multi-period CLRP.

50 customers, 3-5 already opened depots

30m 1h 1h30m 2h 2h30m
0

50

100

150

200

solution time

nu
m

be
ro

fs
ol

ve
d

in
st

an
ce

s

BCP0
BCP0+DCC
BCP0+RLKC
BCPall

10Imen Ben Mohamed, Walid Klibi, Ruslan Sadykov, Halil Şen, and
François Vanderbeck (2022). “The two-echelon stochastic multi-period
capacitated location-routing problem”. In: European Journal of Operational
Research. 27 / 29



VRP with Time Windows and Shifts11

Instances with 25-100 customers and 3 shifts

Solved 421 from 504 instances in 30 min. ([Dabia et al. 2019]
solved 280)

30m 1h 1h30m 2h 2h30m
0

50

100

150

solution time

#
of

so
lv

ed
in

st
.

w
ith

10
0

cl
ie

nt
s BCP0

BCP0+DCC
BCP0+RLKC
BCPall

11Said Dabia, Stefan Ropke, and Tom van Woensel (2019). “Cover
Inequalities for a Vehicle Routing Problem with Time Windows and Shifts”. In:
Transportation Science 53.5, pp. 1354–1371.
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Conclusions

▶ A new family of non-robust strong knapsack cuts for the
problems

▶ Exploited monotonicity and superadditivity properties of
cuts to limit their impact on the pricing time

▶ These cuts make the BCP algorithm more robust (more
harder instances can be solved)

▶ First exact algorithm for the CLRP which can scale to
instances with many depot locations

▶ Good results for different problems with the nested
knapsack structure.

▶ The paper has been accepted (subject to a minor revision)
to the OR journal.

29 / 29



References I
Aráoz, J. (1974). “Polyhedral neopolarities”. PhD thesis. University of Waterloo,
Department of Computer Science.

Arnold, Florian and Kenneth Sörensen (2021). “A progressive filtering heuristic for
the location-routing problem and variants”. In: Computers & Operations Research
129, p. 105166.

Baldacci, Roberto, Nicos Christofides, and Aristide Mingozzi (2008). “An exact
algorithm for the vehicle routing problem based on the set partitioning formulation
with additional cuts”. In: Mathematical Programming 115, pp. 351–385.

Baldacci, Roberto, Aristide Mingozzi, and Roberto Roberti (2011). “New Route
Relaxation and Pricing Strategies for the Vehicle Routing Problem”. In: Operations
Research 59.5, pp. 1269–1283.

Baldacci, Roberto, Aristide Mingozzi, and Roberto Wolfler Calvo (2011). “An Exact
Method for the Capacitated Location-Routing Problem”. In: Operations Research
59.5, pp. 1284–1296.

Belenguer, José-Manuel, Enrique Benavent, Christian Prins, Caroline Prodhon,
and Roberto Wolfler Calvo (2011). “A Branch-and-Cut method for the Capacitated
Location-Routing Problem”. In: Computers & Operations Research 38.6, pp. 931
–941.
Ben Mohamed, Imen, Walid Klibi, Ruslan Sadykov, Halil Şen, and
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