Non-Robust Strong Knapsack Cuts for Capacitated Location-Routing and Related Problems

Pedro Liguori, Ali Ridha Mahjoub, Guillaume Marques, Ruslan Sadykov, Eduardo Uchoa

- To cite this version:

Pedro Liguori, Ali Ridha Mahjoub, Guillaume Marques, Ruslan Sadykov, Eduardo Uchoa. NonRobust Strong Knapsack Cuts for Capacitated Location-Routing and Related Problems. Première journée commune ROADEF-AIRO, Nov 2022, Virtual, France. hal-03899418

HAL Id: hal-03899418

https://hal.science/hal-03899418

Submitted on 14 Dec 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Non-Robust Strong Knapsack Cuts for Capacitated Location-Routing and Related Problems

Pedro Liguori ${ }^{1}$ Ridha Mahjoub ${ }^{1}$ Guillaume Marques ${ }^{2}$ Ruslan Sadykov ${ }^{2}$ Eduardo Uchoa ${ }^{3}$

Common day ROADEF/AIRO
Online, 30/11/2022

Capacitated Location-Routing Problem (CLRP)

Data

- I - set of potential depots with opening costs f_{i} and capacities $W_{i}, i \in I$
- J - set of customers with demands $d_{j}, j \in J$
- Set of edges $E=E_{J} \cup E_{I J}: E_{J}=J \times J, E_{I J}=I \times J$
- c_{e} - transportation cost of edge $e \in E \cup F$
- An unlimited set of vehicles with capacity Q.

The problem

- Decide which depots to open
- Assign every client to an open depot subject to depot capacity
- For every depot, divide assigned clients into routes subject to vehicle capacity
- Minimize the total depot opening and transportation cost

CLRP: an illustration

Figure: LRP instance: $G=\left(I \cup J, E_{J} \cup E_{I J}\right)$

CLRP: a solution

Figure: Location of depots must be jointly decided with vehicle routing.

Literature on the CLRP

- A combination of two central OR problems
- ≈ 3700 papers in Google Scholar with both "location" and "routing" in the title

Some recent works on the standard CLRP

- [Belenguer et al. 2011] — important valid inequalities \& Branch-and-Cut
- [Baldacci et al. 2011] - exact enumeration \& column generation approach
- [Contardo et al. 2014] ${ }^{1}$ - state-of-the-art exact algorithm
- [Arnold and Sörensen 2021; Schneider and Löffler 2019] -state-of-the-art heuristics
- [Schneider and Drexl 2017] - the latest survey

[^0]
Our study

- Recently, large improvement in exact solution of classic VRP variants [Pecin et al. 2017] [Pecin et al. 2017] [Pessoa et al. 2018] [Sadykov et al. 2021]
- A generic Branch-Cut-and-Price VRP solver [Pessoa et al. 2020] ${ }^{2}$ incorporates all recent advances

vrpsolver.math.u-bordeaux.fr

- This solver can be applied to the LRP, but problem-specific cuts are necessary for obtaining the state-of-the-art performance
- We propose a new family of non-robust cuts, which is shown to be useful for the LRP and some related problems

[^1]
Formulation

- $\lambda_{r}^{i}, i \in I, r \in R_{i}$, equals 1 iff route r is used for depot i
- $a_{e}^{r}, e \in E_{J} \cup E_{l J}, r \in \cup_{i \in I} R_{i}$, equals 1 iff edge e is used by r
- $b_{j}^{r}, j \in J, r \in \cup_{i \in I} R_{i}$, equals 1 iff client i is served by route r
- $y_{i}, i \in I$, equals 1 iff route depot i is open
- $z_{i j}, i \in I, j \in J$, equals 1 iff client j is assigned to depot i

$$
\begin{aligned}
\min \sum_{i \in I} f_{i} y_{i}+\sum_{i \in I} \sum_{r \in R_{i}} \sum_{e \in E \cup F} c_{e} a_{e}^{r} \lambda_{r}^{i} & \\
\sum_{i \in I} z_{i j} & =1,
\end{aligned} \quad \forall j \in J,
$$

Nested knapsack structure

- $\lambda_{r}^{i}, i \in I, r \in R_{i}$, equals 1 iff route r is used for depot i
- $b_{j}^{r}, j \in J, r \in \cup_{i \in I} R_{i}$, equals 1 iff client i is served by route r
- $z_{i j}, i \in I, j \in J$, equals 1 iff client j is assigned to depot i

$$
\begin{gathered}
\sum_{j \in J} d_{j} z_{i j} \leq W_{i}, \quad \forall i \in I, \\
\Downarrow \\
\sum_{r \in R_{i}} \sum_{\left(\sum_{j \in J} \sum_{e \in \delta(j)} b_{j}^{r} d_{j}\right)} \lambda_{r}^{i} \leq W_{i}, \quad \forall i \in I
\end{gathered}
$$

demand demand demand

Master knapsack polytope

$$
\mathcal{P}_{\mathrm{MKP}}(W)=\operatorname{conv}\left\{t \in \mathbb{Z}_{+}^{W}: \sum_{q=1}^{W} q t_{q} \leq W\right\}
$$

Theorem ([Aráoz 1974] ${ }^{3}$)
Each non-trivial facet of $\mathcal{P}_{M K P}(W)$ can be described by an inequality of format $\xi t \leq 1$ such that $\xi \in \mathbb{R}_{+}^{W}$ is an extreme point of the following system of linear constraints:

$$
\begin{aligned}
\xi_{1}=0, \quad \xi_{W} & =1 \\
\xi_{q}+\xi_{W-q} & =1, \quad \forall 1 \leq q \leq W / 2 \\
\xi_{q}+\xi_{q^{\prime}} & \leq \xi_{q+q^{\prime}}, \forall q+q^{\prime} \leq W
\end{aligned}
$$

[^2]
Route Load Knapsack Cuts (RLKC)

$\theta_{q}^{i} \in \mathbb{Z}_{+}$- \# of routes in R_{i} with a total load of exactly q units.
Theorem
$\xi t \leq 1$ defines a non-trivial facet of $\mathcal{P}_{M K P}\left(W_{i}\right)$ if and only if
$\xi \theta \leq y_{i}$ defines a non-trivial facet of
$\operatorname{conv}\left\{\left(\theta^{i}, y_{i}\right) \in \mathbb{Z}_{+}^{W_{i}} \times\{0,1\}: \sum_{q=1}^{W_{i}} q \theta_{q} \leq W_{i} y_{i}\right\}$.
Definition
Given a depot $i \in I$ and a vector $\xi \in \mathbb{R}_{+}^{W_{i}}$ satisfying $\xi_{1}=0$, $\xi_{w_{i}}=1$, and $\xi_{q}+\xi_{q^{\prime}} \leq \xi_{q+q^{\prime}}, \forall q+q^{\prime} \leq W_{i}$, the inequality

$$
\sum_{q=1}^{W_{i}} \xi_{q} \theta_{q}^{i} \leq y_{i}
$$

is known as a Route Load Knapsack Cut (RLKC).

Theorem

A Route Load Knapsack Cut is valid for the location-routing formulation.

Separation of RLKCs by Chvàtal-Gomory rounding

For any depot $i \in I$ and any multiplier $\beta \in \mathbb{R}$ such that
$\beta \geq 1 / W_{i}$, the constraint

$$
\sum_{q=1}^{W_{i}} \frac{\lfloor\beta q\rfloor}{\left\lfloor\beta W_{i}\right\rfloor} \theta_{q}^{i} \leq y_{i}
$$

is a Route Load Knapsack Cut: superadditivity follows from $\lfloor r\rfloor+\left\lfloor r^{\prime}\right\rfloor \leq\left\lfloor r+r^{\prime}\right\rfloor$ for all $r, r^{\prime} \in \mathbb{R}_{+}$.

Separation by enumeration
We consider all multipliers $\beta=p / q$, such that $\bar{\theta}_{q}>0$ and
$p=1, \ldots, q-1$.

Separation of $1 / k$-facets

Definition

A master knapsack facet $\xi x \leq 1$ is called a $1 / k$-facet if k is the smallest possible integer such that

$$
\xi_{q} \in\{0 / k, 1 / k, 2 / k, \ldots, k / k\} \cup\{1 / 2\} .
$$

Separation by enumeration
We enumerate all possible $1 / 6-, 1 / 8-$, and $1 / 10$-inequalities using the algorithm from [Chopra et al. 2015] ${ }^{4}$.

Remark
An $1 / k^{\prime}$-inequality is also an $1 / k$-inequality if k^{\prime} is a divisor of k. So, 1/2-, 1/3-, 1/4-, and 1/5-inequalities are also separated.

[^3]
Route Load Knapsack Cuts: an example

Data (depot index i is omitted)
$Q=70, W=140, \bar{\theta}_{38}=1 / 14, \bar{\theta}_{53}=1 / 2, \bar{\theta}_{65}=16 / 14$,
$\bar{\theta}_{70}=1 / 2$, and $\bar{y}=277 / 280$.
Best RLKC obtained by rounding
Multiplier $\beta=1 / 53$ gives a RLKC with violation of ≈ 0.082 :

$$
\sum_{q=53}^{105} \frac{1}{2} \theta_{q}+\sum_{q=106}^{140} \theta_{q} \leq y
$$

A better facet-defining 1/6-inequality

$$
\sum_{q=38}^{52} \frac{1}{6} \theta_{q}+\sum_{q=53}^{87} \frac{3}{6} \theta_{q}+\sum_{q=88}^{102} \frac{5}{6} \theta_{q}+\sum_{q=103}^{140} \frac{6}{6} \theta_{q} \leq y
$$

with violation ≈ 0.094.

Route Load Knapsack Cuts: an example

RLKCs and the pricing: label domination

- Pricing problem: Resource Constrained Shortest Path
- It is solved by a labelling algorithm, each label L is $\left(j^{L}, \bar{c}^{L}, q^{L}\right)$
- Dominance relation

$$
L \succ L^{\prime} \quad \text { if } j^{L}=j^{L^{\prime}}, \bar{c}^{L} \leq \bar{c}^{L^{\prime}}, q^{L} \leq q^{L^{\prime}}
$$

- Let $\bar{\mu}(q)$ be the contribution of RLKCs to the reduced cost of a route variable with load q
- The same dominance relation is still valid, as $\bar{\mu}(q)$ is non-decreasing:

$$
\bar{c}^{L} \leq \bar{c}^{L^{\prime}}, q^{L} \leq q^{L^{\prime}} \quad \Rightarrow \quad \bar{c}^{L}+\bar{\mu}\left(q^{L}\right) \leq \bar{c}^{L^{\prime}}+\bar{\mu}\left(q^{L^{\prime}}\right)
$$

RLKCs and the pricing: completion bounds

- A completion bound $B(j, \overleftarrow{\mathcal{L}})$ is valid if $\vec{c}^{\vec{L}}+\vec{\mu}\left(q^{\vec{L}}\right)+B(j, \overleftarrow{\mathcal{L}})$ gives a lower bound on the total reduced cost of paths obtained by concatenation of \vec{L} and any $\overleftarrow{L} \in \overleftarrow{\mathcal{L}}$ at node j.
- A weak completion bound

$$
B_{1}(j, \overleftarrow{\mathcal{L}})=\min _{\bar{L} \in \overline{\mathcal{L}}}\left\{\bar{c}^{\overleftarrow{L}}\right\}
$$

- A tighter completion bound

$$
B_{2}(j, \grave{\mathcal{L}})=\min _{\bar{L} \in \overline{\mathcal{L}}}\left\{\bar{c}^{\bar{L}}+\bar{\mu}\left(q^{\bar{L}}\right)\right\}
$$

is valid due to super-additivity of $\bar{\mu}(q)$.

- Completion bounds are used to speed-up labels concatenation and prune labels by bound

Rounded Capacity Cuts (RCC) ${ }^{5}$

Given a subset of clients $C \subset J$,

$$
\sum_{i \in l} \sum_{r \in R_{i}} \sum_{e \in \delta(C)} a_{e}^{r} \lambda_{r}^{i} \geq 2 \cdot\left\lceil\frac{\sum_{i \in C} d_{i}}{Q}\right\rceil
$$

Separation

Heuristic algorithms by [Lysgaard et al. 2004]: connected components, max-flow based, greedy construction, local search on previously separated cuts (CVRPSEP reimplemented by us)

[^4]
Depot Capacity Cuts (DCC) ${ }^{6}$

If a subset of clients $C \subset J$ cannot be served by a subset of depots $S \subset I$,

$$
\sum_{j \in C} d_{j}>\sum_{i \in S} W_{i},
$$

then at least one vehicle from a depot $i \in \Lambda \backslash S$ should visit C :

$$
\sum_{i \in \Lambda \backslash S} \sum_{r \in R_{i}} \sum_{e \in \delta(C)} a_{e}^{r} \lambda_{r}^{i} \geq 2
$$

Separation

A greedy construction heuristic starting from different seed vertices
${ }^{6}$ José-Manuel Belenguer, Enrique Benavent, Christian Prins, Caroline Prodhon, and Roberto Wolfler Calvo (2011). "A Branch-and-Cut method for the Capacitated Location-Routing Problem". In: Computers \& Operations Research 38.6, pp. 931-941.

COVer inequalities for depots (COV)

Given a subset $J^{\prime} \subset J$ of customers, such that $\sum_{j \in J^{\prime}} d_{j}>W_{i}$, the following inequality is valid

$$
\sum_{j \in J^{\prime}} z_{i j} \leq\left(\left|J^{\prime}\right|-1\right) y_{i}
$$

Separation

We solve the MIP for each $i \in I$ such that $\bar{y}_{i}>0$

$$
\begin{aligned}
\min \sum_{j \in J}\left(\bar{y}_{i}-\bar{z}_{i j}\right) w_{j} & \\
\sum_{j \in J} d_{j} w_{j} & \geq W_{i}+1 \\
w_{j} & \in\{0,1\}, \quad \forall j \in J
\end{aligned}
$$

to check if its solution is less than \bar{y}_{i}.

Fenchel Cuts over y variables (FC) ${ }^{7}$

\hat{Y} is the set set of feasible depot configurations

$$
\hat{y}=\left\{\hat{y} \in\{0,1\}^{\mid / I}: \sum_{i \in I} W_{i} \hat{y}_{i} \geq \sum_{j \in J} d_{j}\right\} .
$$

Separation of $\bar{y} \in \operatorname{conv}(\hat{Y})$
We try to find $\alpha_{i} \in \mathbb{R}_{+}^{|I|}$ such that $\sum_{i \in 1} \alpha_{i} \bar{y}<1$, and $\sum_{i \in I} \alpha_{i} \hat{y} \geq 1$ for all $\hat{y} \in \hat{Y}$, by solving the LP.

$$
\begin{aligned}
\min \sum_{i \in I} \bar{y}_{i} \alpha_{i} \\
\sum_{i \in I} \hat{y}_{i} \alpha_{i} \geq 1, \quad \forall \hat{y} \in \hat{Y}, \\
\alpha_{i} \geq 0, \quad \forall i \in I .
\end{aligned}
$$

[^5]
Chvátal-Gomory Rank-1 Cuts [Jepsen et al. 2008]

Each cut is obtained by a Chvátal-Gomory rounding of a set $C \subseteq J$ of set packing constraints using a vector of multipliers ρ
$\left(0<\rho_{j}<1, j \in C\right)$:

$$
\sum_{i \in I} \sum_{r \in R_{i}}\left\lfloor\sum_{j \in C} \rho_{j} \sum_{e \in \delta(j)} \frac{1}{2} a^{r}\right\rfloor \lambda_{r}^{i} \leq\left\lfloor\sum_{j \in C} \rho_{j}\right\rfloor
$$

All non-dominated vectors ρ of multipliers for $|C| \leq 5$ are given in [Pecin et al. 2017].

Non-robust in the terminology of [Pessoa et al. 2008]

Separation

Enumeration for $|C| \leq 3$ and a local search heuristic for each non-dominated vector of multipliers for $|C|=\{4,5\}$.

Other components of the BCP (through VRPSolver)

- Bucket graph-based labelling algorithm for the RCSP pricing [Righini and Salani 2006] [Sadykov et al. 2021]
- Partially elementary path (ng-path) relaxation [Baldacci et al. 2011]
- Automatic dual price smoothing stabilization [Wentges 1997] [Pessoa et al. 2018]
- Reduced cost fixing of (bucket) arcs in the pricing problem [lbaraki and Nakamura 1994] [lrnich et al. 2010] [Sadykov et al. 2021]
- Enumeration of elementary routes [Baldacci et al. 2008]
- Multi-phase strong branching [Pecin et al. 2017]
- On number of open depots in a subset of size at most 4 (largest priority)
- On number of vehicles starting in a depot
- On the total number of vehicles
- On number of clients served from a depot
- On assignment of clients to depots
- On edges of the graph

Computational results: impact of cuts

"Classic" CLRP test instances by [Prins et al. 2006] ${ }^{8}$ with $5-10$ depot locations and 50-200 clients. Time limit is 12 hours.
BCP_{0} - "pure" VRPSolver (without problem-specific cuts)

	Root			Geomean						
Variant	Gap						Time (s)	Nodes	Time (s)	Solved
BCP $_{0}$	4.46%	57.9	19.2	758.7	$24 / 26$					
BCP $_{\text {all-GUB }}$	3.08%	99.0	9.0	481.0	$25 / 26$					
BCP $_{\text {all-DCC }}$	0.85%	101.0	9.1	504.6	$24 / 26$					
BCP $_{\text {all-FC }}$	0.67%	111.4	4.4	283.9	$25 / 26$					
BCP $_{\text {all-RLKC }}$	0.52%	114.7	4.1	264.0	$25 / 26$					
BCP $_{\text {all-Cov }}$	0.49%	114.4	4.6	273.4	$25 / 26$					
BCP $_{\text {all }}$	0.48%	115.0	4.1	265.5	$25 / 26$					

[^6]
Computational results: modified instances

$$
\rho=\sum_{\sum_{i \in I} W_{i} / \| \mid}^{Q} \text { "vehicle capacity / depot capacity" ratio }
$$

		Root			3	Geomean
Variant	ρ	Gap	Time (s)	Nodes	Time (s)	Solved
BCP_{0}	0.3	2.14%	32.1	18.6	344.7	$19 / 20$
$\mathrm{BCP}_{\text {all-DCC }}$	0.3	0.74%	41.0	12.7	260.9	$19 / 20$
$\mathrm{BCP}_{\text {all-RLKC }}$	0.3	0.51%	48.2	6.1	174.1	$19 / 20$
BCP $_{\text {all }}$	0.3	0.46%	49.3	5.8	162.9	$19 / 20$
BCP_{0}	0.5	3.33%	42.9	76.7	2513.6	$13 / 17$
BCP $_{\text {all-DCC }}$	0.5	2.09%	108.4	35.0	1979.7	$13 / 17$
BCP $_{\text {all-RLKC }}$	0.5	1.73%	69.8	24.3	1059.3	$14 / 17$
BCP $_{\text {all }}$	0.5	1.26%	120.3	13.2	813.6	$15 / 17$
BCP $_{0}$	0.7	5.94%	51.6	255.3	10511.0	$6 / 17$
BCP $_{\text {all-DCC }}$	0.7	2.49%	247.7	58.1	4531.6	$12 / 17$
BCP $_{\text {all-RLKC }}$	0.7	3.91%	83.0	89.4	5438.7	$10 / 17$
BCP $_{\text {all }}$	0.7	1.53%	284.6	18.9	1734.7	$14 / 17$

Cut generation statistics

\# of generated cuts (\# of active cuts at the end of the root)

	Original	Modified instances	
Cut family	instances	$\rho=0.3$	$\rho=0.7$
RCC	$492.5(11.6)$	$349.5(7.2)$	$254.9(1.9)$
Im-R1C	$7044.0(215.4)$	$22405.5(153.0)$	$35610.9(236.2)$
COV	$30.8(0.2)$	$28.1(0.1)$	$30.7(0.1)$
FC	$4.0(0.7)$	$3.9(0.6)$	$4.4(0.5)$
GUB	$338.5(78.4)$	$282.4(30.0)$	$203.2(12.9)$
DCC	$488.4(9.9)$	$1135.1(10.1)$	$1636.1(11.4)$
RLKC (total)	$53.4(1.2)$	$325.1(3.9)$	$12785.2(29.6)$
RLKCround	$26.8(0.7)$	$296.1(3.7)$	$109.9(0.8)$
RLKC1/2	$0.7(0.0)$	$0.5(0.0)$	$1401.8(7.7)$
RLKC1/3	$0.7(0.0)$	$0.8(0.0)$	$675.7(1.6)$
RLKC1/4	$1.2(0.0)$	$1.4(0.1)$	$418.2(0.9)$
RLKC1/5	$1.8(0.0)$	$1.5(0.0)$	$1738.4(3.8)$
RLKC1/6	$2.6(0.0)$	$3.2(0.1)$	$843.4(1.7)$
RLKC1/8	$5.7(0.1)$	$5.0(0.1)$	$2611.1(4.9)$
RLKC1/10	$13.8(0.3)$	$16.6(0.1)$	$4986.7(8.2)$

Computational results: comparison with the literature

Time limit is 30 hours

	BCP $_{\text {all }}$		[Contardo et al. 2014]	
Instances	Solved	Time	Solved	Time
PPW06	$24 / 26$	518	$16 / 26$	836
TB99	$9 / 9$	945	$6 / 9$	5589

Instances by [Schneider and Löffler 2019] ${ }^{9}$				
$\|I\|$	$\|J\|$	Solved	Improved BKS	Improvement
5	100	$14 / 14$	$7 / 14$	0.05%
10	100	$14 / 14$	$5 / 14$	0.11%
10	200	$11 / 14$	$13 / 14$	0.08%
15	200	$15 / 20$	$18 / 20$	0.12%
15	300	$6 / 20$	$11 / 20$	0.29%
20	300	$4 / 20$	$8 / 20$	0.91%

${ }^{9}$ Michael Schneider and Maximilian Löffler (2019). "Large Composite Neighborhoods for the Capacitated Location-Routing Problem". In:
Transportation Science 53.1, pp. 301-318.

VRP-CMD instances

Instances from [Ben Mohamed et al. 2022] ${ }^{10}$, occur when solving the 2-echelon stochastic multi-period CLRP.
50 customers, 3-5 already opened depots

[^7] Research.

VRP with Time Windows and Shifts ${ }^{11}$

Instances with 25-100 customers and 3 shifts
Solved 421 from 504 instances in 30 min . ([Dabia et al. 2019] solved 280)

[^8]
Conclusions

- A new family of non-robust strong knapsack cuts for the problems
- Exploited monotonicity and superadditivity properties of cuts to limit their impact on the pricing time
- These cuts make the BCP algorithm more robust (more harder instances can be solved)
- First exact algorithm for the CLRP which can scale to instances with many depot locations
- Good results for different problems with the nested knapsack structure.
- The paper has been accepted (subject to a minor revision) to the OR journal.

References I

Aráoz, J. (1974). "Polyhedral neopolarities". PhD thesis. University of Waterloo, Department of Computer Science.

Arnold, Florian and Kenneth Sörensen (2021). "A progressive filtering heuristic for the location-routing problem and variants". In: Computers \& Operations Research 129, p. 105166.
Baldacci, Roberto, Nicos Christofides, and Aristide Mingozzi (2008). "An exact algorithm for the vehicle routing problem based on the set partitioning formulation with additional cuts". In: Mathematical Programming 115, pp. 351-385.
Baldacci, Roberto, Aristide Mingozzi, and Roberto Roberti (2011). "New Route Relaxation and Pricing Strategies for the Vehicle Routing Problem". In: Operations Research 59.5, pp. 1269-1283. Method for the Capacitated Location-Routing Problem". In: Operations Research 59.5, pp. 1284-1296.

Belenguer, José-Manuel, Enrique Benavent, Christian Prins, Caroline Prodhon, and Roberto Wolfler Calvo (2011). "A Branch-and-Cut method for the Capacitated Location-Routing Problem". In: Computers \& Operations Research 38.6, pp. 931 -941.
Ben Mohamed, Imen, Walid Klibi, Ruslan Sadykov, Halil Şen, and François Vanderbeck (2022). "The two-echelon stochastic multi-period capacitated location-routing problem". In: European Journal of Operational Research.

References II

国
Boccia，Maurizio，Antonio Sforza，Claudio Sterle，and Igor Vasilyev（2008）．＂A Cut and Branch Approach for the Capacitated p－Median Problem Based on Fenchel Cutting Planes＂．In：Journal of Mathematical Modelling and Algorithms 7．1， pp．43－58．
Chopra，Sunil，Sangho Shim，and Daniel E．Steffy（2015）．＂A few strong knapsack facets＂．In：Modeling and Optimization：Theory and Applications．Ed．by Boris Defourny and Tamás Terlaky．Cham：Springer International Publishing， pp．77－94．
品
Contardo，Claudio，Jean－François Cordeau，and Bernard Gendron（2014）．＂An Exact Algorithm Based on Cut－and－Column Generation for the Capacitated Location－Routing Problem＂．In：INFORMS Journal on Computing 26．1，pp．88－102．
國 Dabia，Said，Stefan Ropke，and Tom van Woensel（2019）．＂Cover Inequalities for a Vehicle Routing Problem with Time Windows and Shifts＂．In：Transportation Science 53．5，pp．1354－1371．
18 Ibaraki，Toshihide and Yuichi Nakamura（1994）．＂A dynamic programming method for single machine scheduling＂．In：European Journal of Operational Research 76．1，pp．72－82．
a
Irnich，Stefan，Guy Desaulniers，Jacques Desrosiers，and Ahmed Hadjar（2010）． ＂Path－Reduced Costs for Eliminating Arcs in Routing and Scheduling＂．In： INFORMS Journal on Computing 22．2，pp．297－313．

References III

国
Jepsen，Mads，Bjorn Petersen，Simon Spoorendonk，and David Pisinger（2008）． ＂Subset－Row Inequalities Applied to the Vehicle－Routing Problem with Time Windows＂．In：Operations Research 56．2，pp．497－511．
R－Laporte，G．and Y．Nobert（1983）．＂A branch and bound algorithm for the capacitated vehicle routing problem＂．In：Operations－Research－Spektrum 5．2， pp．77－85．
五
Lysgaard，Jens，Adam N．Letchford，and Richard W．Eglese（2004）．＂A new branch－and－cut algorithm for the capacitated vehicle routing problem＂．In：
Mathematical Programming 100．2，pp．423－445．
家 Pecin，Diego，Claudio Contardo，Guy Desaulniers，and Eduardo Uchoa（2017）． ＂New Enhancements for the Exact Solution of the Vehicle Routing Problem with Time Windows＂．In：INFORMS Journal on Computing 29．3，pp．489－502．
Pecin，Diego，Artur Pessoa，Marcus Poggi，and Eduardo Uchoa（2017）．＂Improved branch－cut－and－price for capacitated vehicle routing＂．In：Mathematical Programming Computation 9．1，pp．61－100．
國 Pecin，Diego，Artur Pessoa，Marcus Poggi，Eduardo Uchoa，and Haroldo Santos （2017）．＂Limited memory Rank－1 Cuts for Vehicle Routing Problems＂．In： Operations Research Letters 45．3，pp．206－209．

References IV

Pessoa, Artur, Marcus Poggi de Aragão Marcus, and Eduardo Uchoa (2008).
"Robust Branch-Cut-and-Price Algorithms for Vehicle Routing Problems". In: The Vehicle Routing Problem: Latest Advances and New Challenges. Ed. by Bruce Golden, S. Raghavan, and Edward Wasil. Vol. 43. Operations Research/Computer Science Interfaces. Springer US, pp. 297-325.
Pessoa, Artur, Ruslan Sadykov, and Eduardo Uchoa (2018). "Enhanced Branch-Cut-and-Price Algorithm for Heterogeneous Fleet Vehicle Routing Problems". In: European Journal of Operational Research 270.2, pp. 530-543.

掏

Pessoa, Artur, Ruslan Sadykov, Eduardo Uchoa, and François Vanderbeck (2018). "Automation and combination of linear-programming based stabilization techniques in column generation". In: INFORMS Journal on Computing 30.2, pp. 339-360.
Pessoa, Artur, Ruslan Sadykov, Eduardo Uchoa, and François Vanderbeck (2020). "A Generic Exact Solver for Vehicle Routing and Related Problems". In: Mathematical Programming 183, pp. 483-523.

Prins, Christian, Caroline Prodhon, and Roberto Wolfler Calvo (2006). "Solving the capacitated location-routing problem by a GRASP complemented by a learning process and a path relinking". In: 4OR 4.3, pp. 221-238.
Righini, Giovanni and Matteo Salani (2006). "Symmetry helps: Bounded bi-directional dynamic programming for the elementary shortest path problem with resource constraints". In: Discrete Optimization 3.3, pp. 255-273.

References V

Sadykov, Ruslan, Eduardo Uchoa, and Artur Pessoa (2021). "A Bucket Graph-Based Labeling Algorithm with Application to Vehicle Routing". In: Transportation Science 55.1, pp. 4-28.

Schneider, Michael and Michael Drexl (2017). "A survey of the standard location-routing problem". In: Annals of Operations Research 259.1, pp. 389-414.

Schneider, Michael and Maximilian Löffler (2019). "Large Composite Neighborhoods for the Capacitated Location-Routing Problem". In: Transportation Science 53.1, pp. 301-318.
居
Wentges, Paul (1997). "Weighted Dantzig-Wolfe Decomposition for Linear Mixed-integer Programming". In: International Transactions in Operational Research 4.2, pp. 151-162.

[^0]: ${ }^{1}$ Claudio Contardo, Jean-François Cordeau, and Bernard Gendron (2014). "An Exact Algorithm Based on Cut-and-Column Generation for the Capacitated Location-Routing Problem". In: INFORMS Journal on Computing 26.1, pp. 88-102.

[^1]: ${ }^{2}$ Artur Pessoa, Ruslan Sadykov, Eduardo Uchoa, and François Vanderbeck (2020). "A Generic Exact Solver for Vehicle Routing and Related Problems". In: Mathematical Programming 183, pp. 483-523.

[^2]: ${ }^{3}$ J. Aráoz (1974). "Polyhedral neopolarities". PhD thesis. University of Waterloo, Department of Computer Science.

[^3]: ${ }^{4}$ Sunil Chopra, Sangho Shim, and Daniel E. Steffy (2015). "A few strong knapsack facets". In: Modeling and Optimization: Theory and Applications. Ed. by Boris Defourny and Tamás Terlaky. Cham: Springer International Publishing, pp. 77-94.

[^4]: ${ }^{5}$ G. Laporte and Y. Nobert (1983). "A branch and bound algorithm for the capacitated vehicle routing problem". In: Operations-Research-Spektrum 5.2, pp. 77-85.

[^5]: ${ }^{7}$ Maurizio Boccia, Antonio Sforza, Claudio Sterle, and Igor Vasilyev (2008). "A Cut and Branch Approach for the Capacitated p-Median Problem Based on Fenchel Cutting Planes". In: Journal of Mathematical Modelling and Algorithms 7.1, pp. 43-58.

[^6]: ${ }^{8}$ Christian Prins, Caroline Prodhon, and Roberto Wolfler Calvo (2006). "Solving the capacitated location-routing problem by a GRASP complemented by a learning process and a path relinking". In: 4OR 4.3, pp. 221-238.

[^7]: ${ }^{10}$ Imen Ben Mohamed, Walid Klibi, Ruslan Sadykov, Halil Şen, and François Vanderbeck (2022). "The two-echelon stochastic multi-period capacitated location-routing problem". In: European Journal of Operational

[^8]: ${ }^{11}$ Said Dabia, Stefan Ropke, and Tom van Woensel (2019). "Cover Inequalities for a Vehicle Routing Problem with Time Windows and Shifts". In: Transportation Science 53.5, pp. 1354-1371.

