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MIP Solvers: one of the most useful contribution of
Operations Research to the society.
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Progress of MIP solvers

1991-2008 progress

Progress (independently from the computer power) 1991-2015 :
1.1M X – 1.8X/year
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Sequential decision making: problems which “resist”
▶ Vehicle routing problems

▶ Packing/cutting problems
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Models with a very large number of variables
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Illustration: Capacitated Vehicle Routing Problem
(CVRP) (Dantzig and Ramser 1959)
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capacity Q

▶ Clients i ∈ V with
demand di

▶ Cost matrix c
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▶ Depot

▶ Identical vehicles of
capacity Q

▶ Clients i ∈ V with
demand di

▶ Cost matrix c

Minimize the total
travelling cost

▶ such that every
client is served

▶ total demand of
clients served by the
same vehicle does
not exceed its
capacity
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Route-based (extended) formulation
▶ Variable xa — arc a ∈ A is used in the solution or not
▶ Variable λp — feasible route p ∈ P is used in the solution

or not
▶ hp

a = 1 if and only if path p contains arc a, otherwise 0
▶ δ−(v) — set of arcs in A incoming to v ∈ V

Min
∑
a∈A

caxa

S.t.
∑

a∈δ−(v)

xa = 1, v ∈ V ,

xa =
∑
p∈P

hp
aλp, a ∈ A,

∑
p∈P

λp ≤ K ,

xa ∈ {0,1}, a ∈ A,
λp ∈ {0,1}, p ∈ P.
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▶ Variable xa — arc a ∈ A is used in the solution or not
▶ Variable λp — feasible route p ∈ P is used in the solution

or not
▶ hp

a = 1 if and only if path p contains arc a, otherwise 0
▶ δ−(v) — set of arcs in A incoming to v ∈ V

Min
∑
a∈A

caxa

S.t.
∑

a∈δ−(v)

xa = 1, v ∈ V ,

xa =
∑
p∈P

hp
aλp, a ∈ A, (πa)∑

p∈P

λp ≤ K , (µ)

0 ≤ xa ≤ 1, a ∈ A,
0 ≤ λp ≤ 1, p ∈ P.
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Column and cut generation: illustration
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the Elementary
Resource
Constrained
Shortest Path
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11 / 38



Column and cut generation: illustration

38%

2%

48%

16%

24%

8%

16%

48%

48%

4%

40%

30%

4%

28%

18%
# of times vehicles enter
this set of clients ≥ 2

One continuous
variable per feasible
route.

Pricing problem is
the Elementary
Resource
Constrained
Shortest Path
problem.

Additional
constraints (cuts)
are added to reduce
the number of
feasible non-integer
solutions
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A generic extended formulation

▶ x — a vector of original (natural) variables
▶ λ — a vector of extended variables (feasible sequences of

decisions)
▶ H — mapping between natural and extended variables

Min cx
S.t. Ax ≥ a,

x = Hλ,

L ≤ 1λ ≤ U,

x ∈ Zn
+ × Rm

+,

λ ∈ Zk
+.
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A generic extended formulation
▶ x — a vector of original (natural) variables
▶ λ — a vector of extended variables (feasible sequences of

decisions)
▶ H — mapping between natural and extended variables

Min cx
S.t. Ax ≥ a,

Bx ≥ b, ← robust1cuts
x = Hλ,

L ≤ 1λ ≤ U,

x ∈ Zn
+ × Rm

+,

λ ∈ Zk
+.

1Marcus Poggi de Aragão and Eduardo Uchoa (2003). “Integer program
reformulation for robust branch-and-cut-and-price”. In: Annals of
Mathematical Programming in Rio. Ed. by Laurence A. Wolsey. Búzios,
Brazil, pp. 56–61
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A generic extended formulation
▶ x — a vector of original (natural) variables
▶ λ — a vector of extended variables (feasible sequences of

decisions)
▶ H — mapping between natural and extended variables

Min cx
S.t. Ax ≥ a,

Bx ≥ b, ← robust cuts
x = Hλ,

Dλ ≥ d , ← non-robust2cuts
L ≤ 1λ ≤ U,

x ∈ Zn
+ × Rm

+,

λ ∈ Zk
+.

2Mads Jepsen, Bjorn Petersen, Simon Spoorendonk, and David Pisinger
(2006). A Non-Robust Branch-And-Cut-And-Price Algorithm for the Vehicle
Routing Problem with Time Windows. Technical report 06/03. Dept. of
Computer Science, University of Copenhagen
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Non-robust cuts: literature review I
(Nemhauser and Park 1991) Odd-circuit cuts for the Edge

Colouring Problem
(Belov and Scheithauer 2002, 2006) Gomory cuts for the 1D and

2D Cutting Stock Problems
(Jepsen, Petersen, Spoorendonk, and Pisinger 2006, 2008)

Subset-row cuts for Vehicle Routing Problems
(Baldacci, Christofides, and Mingozzi 2008) Strong k -path

(rounded capacity) inequalities, clique inequalities
for Vehicle Routing Problems

(Petersen, Pisinger, and Spoorendonk 2008)
(Pecin, Pessoa, Poggi, Uchoa, and Santos 2017) General

Chvátal-Gomory rank-1 cuts for Vehicle Routing
Problems

(Dabia, Ropke, and Woensel 2019) Cover inequalities based on
the knapsack constraint for the VRPTW with Shifts

(Dabia, Lai, and Vigo 2019) Generalized subset-row cuts for
VRPs with Private Fleet and Common Carrier
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Non-robust cuts: literature review II

(Liguori, Mahjoub, Marques, S., and Uchoa 2021) Strong knapsack
cuts for the Location-Routing and other problems
with the nested knapsack structure

(Rivera Letelier, Clautiaux, and S. 2022) Positive cycle inequalities
for the Bin Packing Problem with Time Lags

(Clausen, Lusby, and Ropke 2022) General consistency cuts
(work well for the Temporal Knapsack Problem)

This ROADEF
▶ (Dupont-Bouillard, Fouilhoux, Grappe, and Lacroix 2022)

Gomory cuts for the Vertex Colouring Problem
▶ (Prunet, Absi, Borodin, and Cattaruzza 2022) Operational

Storage Location Assignment Problem
▶ (Balster, Bulhoes, Munari, and S. 2022) Subset-row covering

cuts for the Split-Delivery Vehicle Routing

15 / 38



Subset-row cuts3

▶ Replacing arc variables x in the set-partitioning constraints
and relaxing to inequality:∑

a∈δ−(v)

∑
p∈P

hp
aλp ≤ 1, v ∈ V . (1)

▶ Aggregating (1) for a set C ⊂ V , |C| = 3, with multiplier 1
2 :∑

p∈P

1
2

∑
v∈C

∑
a∈δ−(v)

hp
aλp ≤

3
2
, (2)

▶ Performing Chvátal-Gomory rounding of (2):

∑
p∈P

1
2

∑
v∈C

∑
a∈δ−(v)

hp
a

λp ≤ 1,

3Mads Jepsen, Bjorn Petersen, Simon Spoorendonk, and David Pisinger
(2008). “Subset-Row Inequalities Applied to the Vehicle-Routing Problem
with Time Windows”. In: Operations Research 56.2, pp. 497–511.
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Subset-row cuts: example of violation
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Arbitrary cuts of Chvátal-Gomory rank 1

Chvátal-Gomory rounding using a vector p of multipliers:

∑
p∈P

∑
v∈C

∑
a∈δ−(v)

pv hp
a

λp ≤
⌊∑

v∈C

pv

⌋

All best possible multiplier vectors p for Chvátal-Gomory
rounding of up to 5 constraints were found by (Pecin, Pessoa,
Poggi, Uchoa, and Santos 2017):

▶ |C| = 1, p = { 1
2}

▶ |C| = 3, p = { 1
2 ,

1
2 ,

1
2}

▶ |C| = 4, p = { 2
3 ,

1
3 ,

1
3 ,

1
3}

▶ |C| = 5, p = { 1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3}

▶ |C| = 5, p = { 2
4 ,

2
4 ,

1
4 ,

1
4 ,

1
4}

▶ |C| = 5, p = { 3
4 ,

1
4 ,

1
4 ,

1
4 ,

1
4}

▶ |C| = 5, p = { 3
5 ,

2
5 ,

2
5 ,

1
5 ,

1
5}

▶ |C| = 5, p = { 1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2}

▶ |C| = 5, p = { 2
3 ,

2
3 ,

1
3 ,

1
3 ,

1
3}

▶ |C| = 5, p = { 3
4 ,

3
4 ,

2
4 ,

2
4 ,

1
4}
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Arbitrary cuts of Chvátal-Gomory rank 1
Chvátal-Gomory rounding using a vector p of multipliers:

∑
p∈P

∑
v∈C

∑
a∈δ−(v)

pv hp
a

λp ≤
⌊∑

v∈C

pv

⌋

All best possible multiplier vectors p for Chvátal-Gomory
rounding of up to 5 constraints were found by (Pecin, Pessoa,
Poggi, Uchoa, and Santos 2017):

18 / 38



Covering cuts

General idea
Take a subset of elements, and calculate the minimum number
of “decision sequences” (columns) that should cover it.

Odd-circuit cuts (Nemhauser and Park 1991)
Edge in an odd circuit in a graph should be covered by at least
3 matchings.

Strong k -path inequalities (Baldacci, Christofides, and Mingozzi
2008)
A set C of customers should be visited by at least ⌈∑i∈C di/Q⌉
routes. Let V (p) be the set of customers visited by p, then

∑
p∈P:

V (p)∩C ̸=∅

λp ≥
⌈∑

i∈C di

Q

⌉
.

19 / 38



Strong k -path inequalities4: illustration
An exact algorithm for the vehicle routing problem 357

i1

20

i2

20

i6

70

i3

70

i5

20

i4

20

Fig. 1 Example of a set S that satisfies constraint (12) but violates constraint (13)

S = {i1, i2, i3, i4, i5, i6}. We have k(S) = !220/100" = 3 and ρ1(S) = 4,
ρ2(S) = · · · = ρ5(S) = 2 and let R1 ∩ S = {i1, i2, i4, i5}, R2 ∩ S = {i2, i3},
R3 ∩ S = {i1, i6}, R4 ∩ S = {i5, i6} and R5 ∩ S = {i4, i3}.
Customer demands are reported in Fig. 1 next to each customer. This solution
satisfies constraint (12) for S since:

2y1 + y2 + y3 + y4 + y5 = 3 = k(S),

but it violates the corresponding constraint (13) since:

y1 + y2 + y3 + y4 + y5 = 2.5 ! k(S).

Constraints (13) are separated as follows. We convert the L S P solution y into a
L F solution x using Eq. (11) and we use the heuristic separation procedures of
package CVRPSEP [31] to find any subset S whose constraint (3) is violated by
x. Then, for any such S, we add to L S P the corresponding constraint (13).

(b) Other CVRP inequalities
Any other CVRP inequalities designed for L F , such as comb, extended comb,
framed capacity and hypotour that are violated by the L F solution x associated
to the L S P solution y can be added to L S P to improve the lower bound.
The family F of these inequalities can be expressed in a general form for problem
L F as:

∑

{i, j}∈E

αt
i j xi j " β t , t ∈ F . (14)

Using Eq. (11), inequalities (14) become the following valid inequalities for L S P:

∑

r∈R

αt (Rr )yr " β t , t ∈ F , (15)

123

4Roberto Baldacci, Nicos Christofides, and Aristide Mingozzi (2008). “An
exact algorithm for the vehicle routing problem based on the set partitioning
formulation with additional cuts”. In: Mathematical Programming 115,
pp. 351–385.
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Capacitated Location-Routing Problem
▶ Depots k ∈ K

with capacity
Wk

▶ Identical
vehicles of
capacity Q

▶ Clients i ∈ V
with demand di

▶ Matrix c of
travelling costs

Depot

Client

Minimize the total travelling and depot opening costs
▶ such that every client is served
▶ each route starts and finished at a same opened depot
▶ depot and vehicle capacities are satisfied

21 / 38



Depot capacity knapsack constraints

▶ Variable yk — depot k ∈ K is open or not
▶ d(p) — the load (total delivered demand) of route p.

Q∑
q=1

∑
p∈Pk :

d(p)=q

qλp ≤Wkyk .

Valid inequalities can be generated again by Chvátal-Gomory
rounding...
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Depot capacity knapsack constraints

▶ Variable yk — depot k ∈ K is open or not
▶ d(p) — the load (total delivered demand) of route p.

Q∑
q=1

∑
p∈Pk :

d(p)=q

qλp ≤Wkyk .

Valid inequalities can be generated again by Chvátal-Gomory
rounding... but not only.

Q∑
q=1

qtk
q ≤Wkyk , where tk

q =
∑

p∈Pk :

d(p)=q

qλp.
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The master knapsack polytope
Theorem ((Aráoz, Evans, Gomory, and Johnson 2003))
The coefficient vectors ξ of the knapsack facets ξx ≤ 1 of
polytope conv{t ∈ ZW

+ :
∑W

q=1 qtq ≤W}, are the extreme points
of the following system of linear constraints

ξ1 = 0, ξW = 1, (3)
ξq + ξW−q = 1 ∀1 ≤ i ≤W/2, (4)

ξq + ξq′ ≤ ξq+q′ whenever q + q′ ≤W . (5)

Road Load Knapsack Cuts (Liguori, Mahjoub, Marques, S., and
Uchoa 2021)
Given a depot k ∈ K and a vector ξ ∈ RWk

+ satisfying (3) and
(5), the inequality

Wk∑
q=1

∑
p∈Pk : d(p)=q

ξqλp ≤ yk .

is valid for the extended formulation of the CLRP.
23 / 38



Computational results for instances with all depots
open

From (Liguori, Mahjoub, Marques, S., and Uchoa 2021)

0m 30m 60m 90m 120m 150m 180m
0

20

40

60

80

100

120

140

160

180

time

nb instances solved

BCP0

BCP0+RLCK
BCP0+DCC
BCPbest
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Extended formulation with linking variables
▶ x0 — linking natural variables
▶ x1, x2 — natural variables for blocks 1 and 2
▶ λ1, λ2 — extended variables representing all feasible

solutions in blocks 1 and 2.

Min c0x0 + c1x1 + c2x2

S.t. A0x0 + A1x1 + A2x2 ≥ a,

(x0, x1) = H1λ1,

(x0, x2) = H2λ2,

1λ1 = 1,

1λ2 = 1,

(x0, x1, x2) ∈ Zn0+n1+n2 ,

(λ1, λ2) ∈ {0,1}k1+k2 .

25 / 38



Consistency cuts5

▶ Let x̄0 be a particular partial solution for linking variables
x0 (a pattern).

▶ Let P1(x̄0) and P1(x̄0) be the sets of solutions of block 1
and 2 which “match” pattern x̄0.

Then the following constraint is valid∑
p∈P1(x̄0)

λ1
p =

∑
p∈P2(x̄0)

λ2
p.

5Jens Vinther Clausen, Richard Lusby, and Stefan Ropke (2022).
“Consistency Cuts for Dantzig-Wolfe Reformulations”. In: Operations
Research Ahead of Print.
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Consistency cuts5

▶ Let x̄0 be a particular partial solution for linking variables
x0 (a pattern).

▶ Let P1(x̄0) and P1(x̄0) be the sets of solutions of block 1
and 2 which “match” pattern x̄0.

Then the following constraint is valid∑
p∈P1(x̄0)

λ1
p =

∑
p∈P2(x̄0)

λ2
p.

When decomposition forms a staircase structure, there are no
linking constraints, and linking variables are binary, then
consistency cuts are enough to obtain an optimal integer
solution (no branching is necessary).

5Jens Vinther Clausen, Richard Lusby, and Stefan Ropke (2022).
“Consistency Cuts for Dantzig-Wolfe Reformulations”. In: Operations
Research Ahead of Print.
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Consistency cuts: application
Temporal knapsack problem
▶ Every item is active during a certain time interval.
▶ Knapsack constraints are imposed only for groups of items

active at the same time

Figure 1: Visualization of the constraint matrix of a small TKP. Colored (green and black) cells are
non-zero variable coefficients. The blue lines indicate where the decomposition splits the constraints
and the color green is used to indicate the linking variables.

This means that the decomposition satisfies the four conditions of Theorem 1. The first two and

the last are easily verified (S0 = ; and the model only has binary variables); however, the third one

might be slightly harder to see. Each constraint represents a point in time, and the constraints are

chronologically ordered. Because each variable is active only in one continuous time interval, the

variables follow exactly the structure specified in Corollary 2. This means, by adding the consistency

cuts to the DW relaxation of the TKP, we guarantee that the optimal solution of the DW relaxation

is integer and no branching will be necessary.

Figure 1 shows an example of a constraint matrix of a small TKP. The colored (green and

black) cells are non-zero variable coefficients. The blue lines indicate where a decomposition with

16 constraints in each block would split the problem. Some of the variables overlap multiple blocks.

These are the linking variables and are indicated by the color green rather than black. Figure 1 shows

the variables are active in continuous time intervals. If the constraints were ordered differently, then

it might not be immediately obvious that Corollary 2 applies.

22
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Consistency cuts: computational results for the
temporal knapsack instances

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
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Figure 2: Plot of time vs number of instances solved for the methods CP, BP, CPLEX, and CDG
when all given a single thread and a 3-hour time limit.

Method # of threads Time limit [h] #Optimal Avg. gap [%] Avg. time [s]
CFM 1 1 138 0.07 N/A
GI 1 1 154 0.02 N/A
CDG 6 1 161 N/A N/A
CDG 6 3 194 N/A N/A
CPLEX 4 1 173 0.02 674
CP 4 1 200 0.00 201
BP 4 1 179 <0.01 833

Table 4: Comparison of historical results, the performance of our methods and CPLEX on the test
set.

6.2 MIPLIB2017

Solving generic MIPs using DW reformulation is an interesting research direction, that still is in

its infancy. Noteworthy contributions include [Lübbecke and Puchert, 2015, Bergner et al., 2015,

Wang and Ralphs, 2013]. Currently, solution methods that automatically detect the decomposition

structure cannot compete with state-of-the-art branch-and-cut solvers. The purpose of this test is to

show that the consistency cuts can improve the DW relaxation bounds of generic MIPs. We only test

the consistency cuts on shared binary variables. We do not binarize any shared integer variables. For

this test, we limit ourselves to instances with a density between 0.05 and 5%, at most 20, 000 non-

zero elements, and at least 20% of variables must be integer. These characteristics describe instances

33
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Non-robust cuts and the pricing problem
▶ Non-robust cuts change the structure (or dimension) of the

pricing problem!
▶ Usually cannot generate many cuts, as the pricing problem

may become intractable.
▶ Family of non-robust cuts and pricing algorithm are always

interdependent.

A way to limit impact on the pricing difficulty
▶ Design a weaker variant of non-robust cuts adapted for the

pricing algorithm
▶ Example: Limited-memory Chvátal-Gomory rank-1 cuts for

vehicle routing problems
▶ Limited-memory cuts are adapted for the labelling pricing

algorithm
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Limited-memory Chvátal-Gomory rank-1 cuts

(Pecin, Pessoa, Poggi, and Uchoa
2017)

Optimal solution of instance
M-n200-k16 D. Pecin et al.
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Fig. 3 Optimal solution of M-n200-k16, value 1274

7.1 Handling symmetrical instances

A high level of symmetry is observed in most instances from [14]. This impacts
negatively the BCP performance, making the cutting and branching operations less
efficient than usual. In fact, whenever a fractional solution is cut, it is likely that a
symmetric solution with the same cost will appear in its place. The lower bounds
can only move after all symmetric solutions are cut. We implemented some special
techniques in our BCP in order to mitigate this negative impact.

The proposed BCP has a procedure that automatically detects, for instances that use
non-rounded Euclidean distances calculated from the customer and depot coordinates,
angles of rotation and reflection with respect to the depot that result in equivalent
instances. For example, the instance G14 (see Fig. 4) remains the same if it is rotated

123
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Implementation: BaPCod C++ library

▶ Has been developed for ≈ 15 years.
▶ Source code: bapcod.math.u-bordeaux.fr (only for

research purposes)
▶ User guide is available6

6R. S. and François Vanderbeck (2021). BaPCod — a generic
Branch-And-Price Code. Technical report HAL-03340548. Inria Bordeaux —
Sud-Ouest.
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BaPCod: implementation of non-robust cuts

User should define
▶ A data structure (a class) which characterises a non-robust

cut
▶ A separation algorithm which takes a master solution as

input
▶ Pricing algorithm(s) which retrieve and take into account

active non-robust cuts
▶ A function which calculates the coefficient of a column in a

non-robust cut

BaPCod provides
Column generation procedure with automatic stabilization,
strong branching, cut and column clean-up, some primal
heuristics.
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Other libraries

GCG (gcg.or.rwth-aachen.de)
▶ A subclass of Gomory cuts ({0, 1

2}-Chvátal-Gomory cuts)
can be used

▶ Generation of clique cuts is in plans
▶ However, only when the pricing is solved by MIP

SCIP (www.scipopt.org)
▶ Flexible branch-cut-and-price framework
▶ Non-robust cuts implementation is similar to BaPCod

Coluna.jl
(https://github.com/atoptima/Coluna.jl)
▶ Support of non-robust cuts is in plans
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Generality/efficiency trade-off

▶ Branch-cut-and-price (BCP) approaches for specific
problems are rarely used in practice

▶ Fully generic BCP (pricing solved by MIP) is rarely
competitive with MIP solvers

VRPSolver (vrpsolver.math.u-bordeaux.fr)
▶ A "semi-generic" BCP algorithm for a wide range of vehicle

routing problems
▶ Accessible through a MIP-and-Graph-based model

▶ A state-of-the art performance
▶ Robust and non-robust cuts are activated by using the

collection of packing sets modelling concept.
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Generality/efficiency trade-off
▶ Branch-cut-and-price (BCP) approaches for specific

problems are rarely used in practice
▶ Fully generic BCP (pricing solved by MIP) is rarely

competitive with MIP solvers

VRPSolver7 (vrpsolver.math.u-bordeaux.fr)
▶ A "semi-generic" BCP algorithm for a wide range of vehicle

routing problems
▶ Accessible through a MIP-and-Graph-based model

▶ A state-of-the art performance
▶ Robust and non-robust cuts are activated by using the

collection of packing sets modelling concept.
7Artur Pessoa, R. S., Eduardo Uchoa, and François Vanderbeck (2020).

“A Generic Exact Solver for Vehicle Routing and Related Problems”. In:
Mathematical Programming 183, pp. 483–523.
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Collection of packing sets in VRPSolver

Definition
A packing set is a subset of arcs (vertices) such that, in an
optimal solution of the problem, at most one arc (vertex) in the
subset appears at most once.

▶ Definition of packing sets is a part of modeling
▶ Packing sets generalize customers in CVRP

▶ Generalization examples:
▶ Heterogeneous Fleet: customer copies for each vehicle

type
▶ Multiple time windows: customer copies for each time

window
▶ Alternative delivery locations: all delivery locations for each

client
▶ Arc routing: two possible directions for a required edge
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Takeaways

▶ Generation of non-robust cuts is sometimes necessary to
outperform MIP solvers and attain the state-of-the-art
performance

▶ Relatively unexplored area of research

▶ Coordination with pricing algorithm is important

▶ Tools which make implementation easier start to appear

▶ More or less generic approaches are especially welcome
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