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Abstract

The representation of positive polynomials on a semi-algebraic set in terms of sums of
squares is a central question in real algebraic geometry, which the Positivstellensatz answers.
In this paper, we study the effective Putinar’s Positivestellensatz on a compact basic semi-
algebraic set S and provide a new proof and new improved bounds on the degree of the rep-
resentation of positive polynomials. These new bounds involve a parameter ε measuring the
non-vanishing of the positive function, the constant c and exponent L of a Łojasiewicz inequal-
ity for the semi-algebraic distance function associated to the inequalities g = (g1, . . . ,gr ) defining
S. They are polynomial in c and ε−1 with an exponent depending only on L. We analyse in
details the Łojasiewicz inequality when the defining inequalities g satisfy the Constraint Qual-
ification Condition. We show that, in this case, the Łojasiewicz exponent L is 1 and we relate
the Łojasiewicz constant c with the distance of g to the set of singular systems.

1 Introduction

A fundamental difference between Algebraic Geometry and Real Algebraic Geometry is the use of
the ordering of the real numbers. A central question in Real Algebraic Geometry is thus how to
characterise real polynomials satisfying non-negativity and positivity conditions on a given domain,
and not only those vanishing on it. This problem has attracted a lot of research in the last decades,
also due to the connections with global optimization techniques. See e.g. [Las01; Mar08; Lau09;
Las15] or more recently [Pow21]. The purpose of this article is to present a quantitative version
of Putinar’s Positivstellensatz, a representation theorem for positive polynomials on a compact
domain defined by polynomial inequalities.

The first example of globally non-negative polynomials f ∈ R[X] = R[X1, . . . ,Xn] are the Sums
of Squares polynomials:

Σ
2 = Σ

2[X]≔
{
f ∈ R[X] | ∃r ∈N, gi ∈ R[X] : f = g21 + · · ·+ g2r

}
.

It is known since Hilbert [Hil88] that the convex cone of globally non-negative polynomials
Pos(Rn) contains properly the Sums of Squares (SoS) cone for n ≥ 2, and the first explicit ex-
ample of positive, non-SoS polynomial was given by Motzkin [Mot67]. The complete description
of Pos(Rn) in terms of SoS was proven by Artin [Art27]: f ∈ Pos(Rn) if and only if f can be written
as a ratio of two SoS polynomials. This introduces a denominator in the description of f .

In this paper we investigate the description of positive polynomials on basic closed semi-algebraic
sets:

S = S (g) = S (g1, . . . , gr )≔ {x ∈ Rn | g1(x) ≥ 0, . . . , gr (x) ≥ 0 },
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in the particular case where S is compact. Natural subcones of the cone Pos(S) of non-negative
polynomials on S are the quadratic module:

Q = Q(g)≔ Σ
2 +Σ

2 · g1 + · · ·+Σ
2 · gr

and the preordering

O = O(g)≔Q(
∏

j∈J
gj : J ⊂ {1, . . . , r})

= Σ
2 +Σ

2 · g1 + · · ·+Σ
2 · gr +Σ

2 · g1g2 + · · ·+Σ
2 · g1 . . . gr

While to characterize non-negative polynomials in terms of SoS and preorderings a denominator
is necessary [Kri64; Ste74], Schmüdgen [Sch91] showed that a denominator free representation
exists for strictly positive polynomials on a basic compact semi-algebraic sets.

Theorem 1.1 (Schmüdgen’s Positivstellensatz [Sch91]). Let S (g) be a compact basic semi-algebraic
set. Then f > 0 on S (g) implies f ∈ O(g).

This result greatly simplifies the representation. However, the representation still needs a
number of SoS terms that is exponential in r, the number of defining inequalities of S , since the
conclusion of the theorem is f ∈ O(g) and not f ∈ Q(g). The problem is solvedwhen one introduces
the Archimedean property.

Definition 1.2. Denote ‖X‖22 = X2
1 + · · ·+X2

n . We say that a quadratic module Q is Archimedean if
there exists R ∈R such that R2 − ‖X‖22 ∈Q.

Notice that the Archimedean condition for Q = Q(g) implies the compactness of S = S (g).
Moreover, as a corollary of Theorem 1.1 we have that O(g) is Archimedean if S is compact. This
result is not true for quadratic modules: there are examples with S (g) compact but Q(g) not
Archimedean, see e.g. [PD01, ex. 6.3.1].

With the Archimedean condition, we can introduce the representation that we will study
through the paper, based on the following theorem:

Theorem 1.3 (Putinar’s Positivstellensatz [Put93]). Let S (g) be a basic semi-algebraic set. If Q(g) is
Archimedean, then f > 0 on S (g) implies f ∈ Q(g).

The aim of the paper is to present a quantitative version of Theorem 1.3, giving an upper
degree bound for the representation f = s0 + s1g1 + · · ·+ srgr ∈ Q(g) of a polynomial f positive on
S (g). This bound is presented in Theorem 3.1. It involves ε = ε(f ), a measure for how f is close
to having a zero on S (see Section 1.3 (iv) for the definition), and a Łojasiewicz exponent L and
coefficient c, that compare the behavior of f and of the inequalities g1, . . . , gr on a scaled simplex
D containing S . The Łojasiewicz exponent and constant are defined in Definition 2.1

The dependence of degree bounds on continuous parameters, such as ε above, is typical of
real algebraic geometry. In particular, lower degree bounds for the Positivstellensätze, showing
the degrees of the SoS multipliers in the representation have to go to infinity as ε→ 0, have been
known since the work of Stengle [Ste96], for a special univariate example. Only recently, another
quantitative lower degree bound in ε appeared in [BS24] for unit boxes. Let us also recall that for
ε = ε(f ) = 0, i.e. when the minimum of f on S (g) is zero, there might be no representation of f in
the preordering or in the quadratic module (see e.g. [BS24, Prop. 29]).

The problem of determining degree bounds for the Positvstellensäte is known as the Effec-
tive Putinar’s Positivstellensatz or Effective Schmüdgen’s Positivstellensatz. While for lower degree
bounds the only known results are above-mentioned [Ste96; BS24], upper degree bounds have
been extensively studied.

For a special univariate example, the first upper degree bound can be found in [Ste96]. For gen-
eral semialgebraic sets, upper degree bounds for the Effective Schmüdgen’s Positivstellensatz has
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been investigated for the first time by Schweighofer in [Sch04], while the Effective Putinar’s Posi-
tivstellensatz by Nie and Schweighofer in [NS07]. The bound obtained for Schmüdgen’s theorem
were significantly better than those for Putinar’s theorem: [Sch04] has a polynomial dependence
in ε, while [NS07] has an exponential one. It was an open question until recently if a polynomial
dependence on ε was possible for Putinar’s theorem: the first two authors gave a positive answer
in [BM23]. Upper bounds have also been studied for specific semi-algebraic sets, where special
techniques can be applied to obtain better bounds: see for instance [LS22; BS24] for Schmüdgen’s
and Putinar’s theorems on the unit box, [Slo22] for Schmüdgen’s theorem on the unit ball and
simplex and [FF20] for Putinar’s theorem on the unit sphere.

Łojasiewicz inequalities play a central role in the study of the Effective Positivstellensätze
for general semialgebraic sets. Classical Łojasiewicz inequalities are often stated as follows, see
[BCR98, cor. 2.6.7].

Theorem 1.4. Let B be a closed bounded semi-algebraic set of Rn and let f ,g be two continuous semi-
algebraic functions from B to R such that f −1(0) ⊂ g−1(0). Then there exists c,L ∈R>0 such that ∀x ∈ B:

|g(x)|L ≤ c|f (x)|. (1)

One can show that the smallest exponent L for which the inequality (1) holds always exists
and is a strictly positive rational number (see [Ło59]). It is called the Łojasiewicz exponent. Then,
having L fixed, the smallest c > 0 such that this inequality holds, that also always exists, is called
the Łojasiewicz constant (relative to L).

We apply the above Łojasiewicz Inequality to three functions vanishing on S , namely the func-
tion F(x) defined in (3), the semi-algebraic distance to S , denoted G(x) and defined in (4), and the
Euclidean distance function to S denoted E(x). The Euclidean distance to S , denoted E(x), plays
an auxiliary but fundamental role.

In Theorem 2.10, under the Constraint Qualification Conditions assumption, we give the Ło-
jasiewicz Inequality bound on E(x) in terms of G(x). It is known by [BM23] that in this case L = 1,
and we give in Theorem 2.10 an explicit bound on the Łojasiewicz constant. While the case of
convex inequalities has been analyzed in the optimization community in [LP98], the authors do
not know any other reference where the Łojasiewicz constant has been studied for general g.

We also remark that the Łojasiewicz inequality has been used to solve other problems in semi-
algebraic geometry constructively. For instance, in [AB12] the Łojasiewicz inequality is used to
obtain bounds on the minimal number of polynomial inequalities defining a basic, closed semial-
gebraic set, in particular for the case of polyhedra.

Finally, let us recall that the Łojasiewicz Inequality for the distance function to the zero set
of a polynomial or a real analytic function is the original one and was introduced in the polyno-
mial case by Hörmander [Hör58] and in the analytic case by Łojasiewicz [Ło59], in both cases to
show the divisibility of Schwartz distributions by these functions. Therefore such an inequality is
sometimes called Hörmander-Łojasiewicz Inequality.

1.1 Contributions and outline

In this paper, we develop a new analysis of the Effective Positivstellensatz, improving the exist-
ing upper bounds on the degree of representation of positive polynomials and simplifying their
descriptions. The approach improves the degree bounds obtained in [NS07; Ave13; KS15] from
exponential bounds in ε−1 to a polynomial bound in ε−1, and the results in [BM23], by removing
the dependency of the exponent of ε−1 on the dimension n.

To obtain these new improved bounds, we analyse the Łojasiewicz inequality connecting the
semi-algebraic distance functionG associated to g and the distance function F associated to f , that
can be used directly in the proof of the Effective Positivstellensatz. Using a Markov inequality, we
deduce a Łojasiewicz inequality, which exponent is independent of f . The proof technique is
similar to the one in [BM23]. The main difference is the choice of a simpler semi-algebraic set
containing S that we reduce to. While in [BM23] a unit box containing S is used and a recent
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Effective Schmüdgen’s Positivstellensatz [LS22] is applied, in the main Theorem 3.1 we reduce to
a simplex and apply an effective version’s of Polya’s theorem [PR01] (or the convergence property
of the control polygon for the Bernstein basis). In the study of the effective Positivstellensätze,
another technique to reduce to the case of simplices has also been exploited in [Sch02] and more
recently in [SS22].

We analyze in detail the Łojasiewicz inequality between F and G in the regular case, i.e. when
the defining inequalities g satisfy the Constraint Qualification Condition. The main contribution
in the regular case is Theorem 2.10, where the exponent is proven to be equal to one and an
explicit bound for the constant in terms of geometric properties of the g is given. In Theorem 2.14
we describe another interpretation of the constant as the distance from g to the set of singular
systems, in the spirit of [Cuc+09].

In the remaining part of Section 1, we provide notation and preliminary material, and recall
approximation properties needed in the proof of the Effective Positivstellensatz. In Section 2,
we study Łojasiewicz inequalities between different distance functions and analyse in detail Ło-
jasiewicz exponent and constant, when Constraint Qualification Conditions hold. In Section 3
we prove the Effective Positivstellensatz and the new bound in Theorem 3.1. We conclude with
additional remarks and perspectives in Section 3.3.

1.2 Notation and conventions

Let R[X1, . . . ,Xn] = R[X] be the ring of polynomials in the variables X = (X1, . . . ,Xn) with coeffi-
cients in R. For g1, . . . , gr ∈ R[X], let S = S (g) ≔ {x ∈ R

n | gi (x) ≥ 0, ∀i ∈ {1, . . . , r} } be the basic
semi-algebraic set defined by g1, . . . , gr .

Recall that a quadratic module Q(g) is called Archimedean if R2 − ‖X‖22 ∈ Q(g) for some R ∈ R,
see Definition 1.2. However, to simplify the proofs we assume that R = 1.

Normalization assumption

1−X2
1 − · · · −X2

n ∈ Q(g)s (2)

We can always be in this setting by a change of variables if we start with an Archimedean quadratic
module. Indeed, if R2 − ‖X‖22 ∈ Q(g) then 1− ‖X‖22 ∈ Q(g(RX)) (i.e. the quadratic module generated
by gi (RX1, . . . ,RXn)). Notice also that the normalization assumption implies that S is contained in
the unit ball centered at the origin.

In the paper, we denote

D ≔
{
x ∈ Rn | 1+ x1 ≥ 0, . . . ,1+ xn ≥ 0,

√
n− x1 − · · · − xn ≥ 0

}

a simplex, containing the unit ball. Notice that D ⊂ [−1,1 +
√
n]n and, by the normalization as-

sumption, S ⊂D.
For f ∈ R[X] of degree d = deg(f ) and m ≥ d, we write f =

∑
α∈Nn,|α|≤m fm,αB

D
m,α(X) where

(BDm,α(X))|α|≤m is the Bernstein basis in degree m on D:

BDm,α(X) =

(
m

α

)
(n+
√
n)−d(

√
n−X1 − · · · −Xn)m−|α|(1 +X1)

α1 · · ·(1 +Xn)αn

where
(m
α

)
denotes the multinomial coefficient.

Norms

Hereafter we introduce the norms that will be used through the article.

• For f =
∑
α∈Nn,|α|≤m fm,αB

D
m,α(X) ∈ R[X] and m ≥ deg(f ), we denote ‖f ‖B,m the L∞ norm of f

with respect to the Bernstein basis:

‖f ‖B,m = max
|α|≤m

∣∣∣fm,α
∣∣∣.
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When m = deg(f ), we write ‖f ‖B ≔ ‖f ‖B,deg(f ) to simplify the notation.

• For f ∈R[X], we denote ‖f ‖∞ the infinity or supremum norm of f on D:

‖f ‖∞ =max
x∈D
|f (x)|.

• For a vector v = (v1, . . . ,vN ) ∈ RN , we denote ‖v‖2 its Euclidean norm:

‖v‖2 =

√√√
N∑

i=1

v21 .

• Moreover, ifM ∈RN1×N2 , we denote ‖M‖2 the induced operator norm:

‖M‖2 = sup
v,0

‖Mv‖2
‖v‖2

= σmax(M),

where σmax(M) denotes the largest singular value ofM .

We recall some properties of the norms mentioned above, and in particular for the Bernstein
norm that will be central in the article. For f ∈R[X]m and m′ ≥m, we have

max
x∈D
|f (x)| = ‖f ‖∞ ≤ ‖f ‖B,m′ ≤ ‖f ‖B,m

These well-known inequalities are consequences of the property that the graph of f is in the con-
vex hull of its control points and that degree elevation representation is performed by barycentric
combinations of the coefficients of f (see e.g. [Far01]). We will also use the following multiplica-
tive property of the Bernstein norm, which we briefly prove for the sake of completeness:

Lemma 1.5. For f ∈R[X]m, g ∈ R[X]m′ , we have

‖f g‖B,m+m′ ≤ ‖f ‖B,m ‖g‖B,m′
Proof. For f =

∑
|α|≤m fαB

D
m,α , g =

∑
|β|≤m′ fβB

D
m′,β , we have

‖f g‖B,m+m′ = ‖
∑

|γ |≤m+m′
(

∑

α+β=γ

fαgβ

(m
α

)(m′
β

)

(m+m′
γ

) )BDγ (x)‖B,m+m′

= max
|γ |≤m+m′

|
∑

α+β=γ

fαgβ

(m
α

)(m′
β

)

(m+m′
γ

) |

≤max
|α|≤m

|fα | max
|β|≤m′

|gβ | max
|γ |≤m+m′

∑

α+β=γ

(m
α

)(m′
β

)

(m+m′
γ

) ≤ ‖f ‖B,m ‖g‖B,m′

1.3 Parameters

We summarize here the notation and symbols that will appear in the bound of the Effective Puti-
nar’s Positivstellensatz.

(i) g = g1, . . . , gr denotes the r-tuple of real polynomials in n variables defining the basic closed
semialgebraic set S = S (g);

(ii) d(g)≔maxi∈{1,...,r}deg(gi );

(iii) f denotes a strictly positive polynomial on S of degree d = deg(f ) and f ∗ = inf{ f (x) | x ∈ S } >
0 denotes its minimum on S ;

(iv) ε = ε(f )≔ f ∗

‖f ‖B is a measure of how close f is to vanish on S .

In the article, by O(·), we mean a quantity such that O(·) ≤ c1(·) for some constant c1 > 0
independent of n and of the polynomials g, f involved in the problem.
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2 Łojasiewicz inequalities for sum of squares representations

In this section we introduce several Łojasiewicz inequalities between functions defined on D and
vanishing on S = S (g). In the following section, in order to analyze the representation of a positive
polynomial f on S , we use Łojasiewicz inequalities to construct a polynomial p, a deformation of
f , which is positive on D with a minimum of the same order than f ∗ = infx∈S f (x). For this pur-
pose, we need to compare on D the behavior of the function f with the behavior of the functions
g1, . . . , gr , and we introduce the following semi-algebraic functions. For x ∈D, let

F(x) = −min

(
f (x)− f ∗
‖f ‖B

,0

)
(3)

G(x) = −min

(
g1(x)
‖g1‖B

, . . . ,
gr (x)
‖gr‖B

,0

)
. (4)

The function G can be seen as a semi-algebraic distance to S , since x ∈ S if and only if G(x) = 0. As
F(x) ≥ 0, G(x) ≥ 0, G−1(0) = S , and F−1(0) ⊃ S we deduce from Theorem 1.4 and the remark after
it the existence of the following constants.

Definition 2.1 (Łojasiewicz exponent and constant). The smallest L such that

∀x ∈D, F(x)L ≤ cG(x) (5)

is called the Łojasiewicz exponent. For L satisfying Equation (5) fixed, we call the smallest constant
c > 0 satisfying Equation (5) the Łojasiewicz constant (relative to L).

To analyse these exponent and constant, we first relate F to the Euclidean distance function

E : D ∋ x 7→ E(x) = d(x,S).

This is another continuous semialgebraic function vanishing on S and, therefore, F and E can be
related by Łojasiewicz inequality. As we show below, we have ∀x ∈D,

F(x) ≤ 4d2 − 2d
w(D)

E(x) ≤ 2d2E(x), (6)

with w(D) =
√
n+1 and d = deg(f ). Let us first recall the following Markow inequality.

Theorem 2.2 ([KR99, th. 3]). Let p ∈R[X]d be a polynomial of degree ≤ d. Then:
∥∥∥‖∇p(x)‖2

∥∥∥∞ =max
x∈D
‖∇p(x)‖2 ≤

2d(2d − 1)
w(D)

‖p‖∞

where w(D), the width of D, is the minimal distance between a pair of distinct parallel supporting
hyperplanes.

Now for y ∈D and z ∈ S such that E(y) = d(y,S) = ‖y − z‖2, we have

F(y) = F(y)− F(z) ≤ LF‖y − z‖2 = LFE(y),

where LF is the Lipschitz constant of F on D. Since LF = ‖f ‖Bmaxx∈D ‖∇f (x)‖2, the inequality (6)
follows from the above Markov inequality theorem applied to p = f .

As E(x) = 0 implies G(x) = 0, these two functions are related as well by a Łojasiewicz inequal-
ity:

∀x ∈D, E(x)LE,G ≤ cE,GG(x) (7)

Therefore we can bound the Łojasiewicz exponent and constant for F and G, by analysing the
Łojasiewicz inequality between the Euclidean distance function E and the semi-algebraic distance
function G in equation (7) and equation (6). More precisely, we have the following inequality:
L ≤ LE,G.

In the next subsection, we analyze the Łojasiewicz inequality (7) under a regularity assumption
and show, that under this assumption, LE,G = 1. We also compute the constant cE,G. Since G and S
are invariant by scaling the functions gi by positive scalars, we will assume hereafter the following.
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Scaling assumption:

‖gi‖B = 1 for all i ∈ {1, . . . , r } (8)

2.1 Minimizers of the distance function

In Definition 2.3 below we introduce a regularity condition on g that implies that LE,G = 1, see
Theorem 2.10. This is a standard condition in optimization (see [Ber99, sec. 3.3.1]), which implies
the so-called Karush–Kuhn–Tucker (KKT) conditions [Ber99, prop. 3.3.1].

Definition 2.3. Let x ∈ S (g). We define the active constraints at x are the constraints gi1 , . . . , gim such
that gij (x) = 0. We say that the Constraint Qualification Condition (CQC) holds at x if for all active
constraints gi1 , . . . , gil at x, the gradients ∇gi1(x), . . . ,∇gim(x) are linearly independent.

We start working locally. For z ∈ S we denote

I = I(z) = { i ∈ {1, . . . , r} | gi(z) = 0 }

the indices corresponding to the active constraints at z. For y ∈D and z ∈ S such that E(y) =
∥∥∥y − z

∥∥∥
2

we denote:

• g = g(y) = (g1(y), . . . , gr (y));

• gI = gI (y) = (gi(y) : i ∈ I );

• J = J(z) = Jac(gI )(z) =
(
∂gi
∂xj

(z)
)
i∈I , j∈{1,...,r} the transposed Jacobian matrix of g at z, that is the

matrix whose columns are the entries of the gradients∇gi(z);

• NI =NI (z) = Gram(∇gi (z) : i ∈ I ) = J tJ the Gram matrix at z.

Definition 2.4. We denote by σJ (z) = σmin(J(z)) the smallest singular value σmin(J(z)) of J(z).

As NI = J
tJ , notice that

∥∥∥N−1I
∥∥∥
2
= σmin(NI )

−1 = σmin(J)
−2 = σJ (z)

−2.
We show now how we can use J = J(z) to describe the cone of points y such that E(y) = d(y,S) =∥∥∥y − z

∥∥∥
2
.

Lemma 2.5. Let y ∈ Rn \ S (g), and let z be a point in S = S (g) minimizing the distance of y to S , that
is E(y) = d(y,S) =

∥∥∥y − z
∥∥∥
2
. If {gi : i ∈ I } are the active constraints at z and the CQC hold, then there

exist λi ∈R≥0 such that:
y − z =

∑

i∈I
λi∇(−gi)(z) = −Jλ.

Proof. Fix y ∈ Rn. Notice that y−x = −∇‖y−x‖22
2 , where the gradient is taken w.r.t. x. Moreover z ∈ S

such that d(y,S) =
∥∥∥y − z

∥∥∥
2
is a minimizer of the following Polynomial Optimization Problem:

min
x

∥∥∥y − x
∥∥∥2
2

2
: gi(x) ≥ 0 ∀i ∈ {1, . . . , r}.

Since the CQC holds at z, we deduce from [Ber99, prop. 3.3.1] that the KKT conditions hold. In
particular:

∇

∥∥∥y − z
∥∥∥2
2

2
=

∑

i∈I
λi∇gi (z)

For some λi ∈R≥0. Therefore y − z = −
∇d(y,z)2

2 =
∑
i∈I λi∇(−gi)(z).

7



Let λ = λ(y) := (λi(y); i ∈ I ) be the column vector in Lemma 2.5, so that (y − z) = −Jλ. Note that
λ(y) depends linearly on y − z and is given by the formula

λ(y) = −N−1I J t(y − z).

Then, using Taylor’s expansion at z and Lemma 2.5, we obtain:

gI = gI (y) = J
t(y − z) +h = −NIλ+h (9)

and the mean-value form for the remainder in Taylor’s theorem gives:

‖h‖2 ≤ c2

∥∥∥y − z
∥∥∥2
2
, (10)

where c2 = c2(g) = maxx∈D{‖Hess(gi )‖2, i = 1, . . . , r} denotes an upper bound for the second deriva-
tive of gI on D.

We keep working locally at z ∈ S , and in particular considering only the active constraints at z,
whose indexes are denoted I(z) ⊂ {1, . . . , r }. Notice that, if y ∈D \ S is close enough to z ∈ ∂S , then
gi (y) ≤ 0 implies gi(z) = 0: so only the active constraints at z and negative at y determine the value
of G(y) in a neighborhood of z. We introduce a notation to identify those indices:

I− = I−(y,z) = { j ∈ I = I(z) | gj (y) ≤ 0 }. (11)

Moreover we introduce the function G̃−(y) =
(∑

j∈I− gj (y)
2
) 1
2 as an intermediate step between G

and E. Indeed, it is easy to upper bound G̃−(y) in terms of G(y):

G̃−(y) =
(∑

j∈I−

gj (y)
2
) 1
2 ≤

√
|I−|max

j∈I−

∣∣∣gj (y)
∣∣∣ ≤
√
nG(y). (12)

For the last inequality, we are using the fact that CQC at z implies |I−| ≤ |I | ≤ n. So we only need to
find an upper bound for E(y) in terms of G̃−(y). In order to do that, let gI (y) = g−(y)+g+(y), where:

• g−(y) = (min{0, gi (y) : i ∈ I}) and

• g+(y) = (max{0, gi (y) : i ∈ I}),

and notice that
∥∥∥g−(y)

∥∥∥
2
= G̃−(y).

We proceed similarly to analyze the linear part of gI . In the sequel we denote

γ = γ(y) = J t(y − z) = −NIλ(y)−NIλ (13)

the linear part of gI at z.
To showTheorem 2.10we first show the inequality (16) for the linear part γ(y), and then, in the

following subsection, extend it to gI . In particular wewant to relate the norm
∥∥∥y − z

∥∥∥
2
= 〈y−z,y−z〉,

computed with respect to the Euclidean scalar product, with the norm of γ(y) w. r. t. another inner
product. Exploiting (13), one sees that

〈y − z,y − z〉 = 〈λ,λ〉NI
= 〈γ,γ〉N−1I (14)

where 〈·, ·〉NI
denotes the inner product induced by NI : 〈λ,λ〉NI

= λtNIλ. Notice that both NI and
N−1I define an inner product since they are positive definite.

As in the case of gI , let
Ĩ− = Ĩ−(y,z) = { i ∈ I(z) | γi(y) ≤ 0 } (15)

and γ(y) = γ−(y) +γ+(y), where:

• γ−(y) = (min{0, γi(y)} : i ∈ I ) and
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• γ+(y) = (max{0, γi(y)} : i ∈ I ).

Lemma 2.6. With the notation above, we have:

• 〈γ−,γ〉N−1I ≥ 0;

• 〈γ+,γ〉N−1I ≤ 0

• 〈γ+,γ−〉N−1I ≤ 0

Proof. For the first inequality notice that 〈γ−,γ〉N−1I = −γt−λ = −∑i∈Ĩ− γiλi ≥ 0 because all λi are
non-negative. A similar argument shows the second inequality. Finally 〈γ+,γ−〉N−1I = 〈γ+,γ〉N−1I −
〈γ+,γ+〉N−1I ≤ 0 as claimed.

The following observation, crucial for the sequel, shows that we can bound
∥∥∥y − z

∥∥∥
2
only in

terms of the negative γi .

Proposition 2.7. With the notation above, we have:

∥∥∥y − z
∥∥∥
2
≤ 1
σJ (z)

(∑

i∈Ĩ−

γ2
i (y)

) 1
2 =

1
σJ (z)

‖γ−‖2 (16)

where σJ (z) is the smallest singular value of J (see Definition 2.4).

Proof. Note that Lemma 2.6 implies the proposition since it shows that

〈γ,γ〉N−1I = 〈γ+,γ〉N−1I + 〈γ−,γ+〉N−1I + 〈γ−,γ−〉N−1I ≤ 〈γ−,γ−〉N−1I
and this allows us to complete (14) to get (16):

∥∥∥y − z
∥∥∥
2
= 〈y − z,y − z〉 ≤ 〈γ,γ〉N−1I ≤ 〈γ−,γ−〉N−1I ≤

1
σJ (z)

(∑

i∈Ĩ−

γ2
i (y)

) 1
2 =

1
σJ (z)

‖γ−‖2.

2.2 Łojasiewicz distance inequality

We now describe the Łojasiewicz exponent LE,G and constant cE,G between E and G (see (7)) under
the CQC assumption (Definition 2.3). First note that, trivially, because gi are polynomials and E
is the Euclidean distance, LE,G ≥ 1.

Let σJ = infz∈∂S σJ (z) = infz∈∂S σmin(J(z)). Notice that σJ > 0 as ∂S is compact and σmin(J(z)) is
lower semicontinuous. Let I = I(z) and let I− = I−(y) = {i ∈ I : gi(y) ≤ 0}. Note that we do not have
necessarily that I− = Ĩ− (see Equation (11) and Equation (15)): the sign of gi(y) might be different
from the sign of γi(z).

In Proposition 2.7 we have obtained a bound in terms of the linear part γ of gI . Now we are
going to deduce from it an analogous bound in terms of gI . To do this, we determine how close g−
and γ− are.

Lemma 2.8. With the notation above, we have:
∣∣∣‖g−‖2 − ‖γ−‖2

∣∣∣ ≤ c2

∥∥∥y − z
∥∥∥2
2
.

Proof. Note that if gi (y) and γi(y) are of different signs then their absolute values are bounded by∣∣∣gi (y)−γi(y)
∣∣∣. Therefore, by standard triangle inequality,

∣∣∣‖g−‖2 − ‖γ−‖2
∣∣∣ =

∣∣∣
(∑

i∈I−

g2i (y)
)1/2 −

(∑

i∈Ĩ−

γ2
i (y)

)1/2∣∣∣ ≤
(∑

i∈I
(gi(y)−γi(y))2

)1/2
= ‖h‖2 ≤ c2

∥∥∥y − z
∥∥∥2
2
,

where the latter inequality follows from (10).
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We first show the Łojasiewicz inequality with LE,G = 1 locally at z.

Proposition 2.9. If E(y) =
∥∥∥y − z

∥∥∥
2
≤ σJ

2c2
then

E(y) ≤ 2
√
n

σJ
G(y).

Proof. Fix y < S such that E(y) ≤ σJ
2c2

and z ∈ ∂S such that
∥∥∥y − z

∥∥∥
2
= E(y). If E(y) ≤ σJ

2c2
or, equiva-

lently c2
σJ
E2(y) ≤ 1

2E(y), then by Proposition 2.7 and Lemma 2.8 we have

E(y) =
∥∥∥y − z

∥∥∥
2
≤ 1
σJ
‖γ−‖2 ≤

1
σJ
‖g−‖2 +

1
σJ

c2

∥∥∥y − z
∥∥∥2
2

≤ 1
σJ
‖g−‖2 +

1
2
E(y).

This implies the claimed inequality as ‖g−‖2 = G̃−(y) ≤
√
nG(y) (since |I−(z,y)| ≤ |I(z)| ≤ n under

CQC at z).

We are finally able to prove that LE,G = 1. We denote U = {y ∈ D | E(y) < σJ
2c2
} the open

neighborhood of S of points at distance <
σJ
2c2

.

Theorem 2.10. Suppose that the CQC holds at every point of S (g). Then, for all y ∈D,

E(y) ≤ cE,GG(y),

with cE,G = sup{ E(y)G(y) | y ∈ D \ S} ≤ max(2
√
n

σJ
, diam(D)

G∗ ), where G∗ = min
y∈D\U

G(z) > 0 and diam(D) =

maxx,y∈D
∥∥∥x − y

∥∥∥
2
.

Proof. If E(y) ≤ σJ
2c2

then by Proposition 2.9 we have

E(y) ≤ 2
√
n

σJ
G(y).

Otherwise:

E(y) = ‖y − z‖ ≤ diam(D) ≤ diam(D)
G(y)
G∗

,

since y,z ∈D (notice that, as G(x) > 0 on the compact set D \U , we have G∗ > 0).

We want now to give another description of the constant cE,G in Theorem 2.10 as the distance
from singular systems, following the approach of [Cuc+09]. In other words, we show how cE,G can
be interpreted as the condition number of g. See also [BC13] for more about condition numbers.

For d = (d1, . . . ,dr ), let R[X]d ≔ R[X]d1 × · · · × R[X]dr denote the systems of polynomials of
bounded degree, which we equip with the Euclidean norm ‖·‖2 with respect to the monomial
basis in any component (another choice could be the apolar or Bombieri-Weil norm ‖·‖di in degree
≤ di in every component, see [Cuc+09]).

We say that a system g is singular if there exists a point in x ∈ Rn such that x ∈ S (g) and the
active constraints have rank deficient Jacobian at x. In other words, this is the set of systems g
such that CQC does not hold at some point of the semi-algebraic set S defined by g. Formally:

Sing≔
{
g ∈R[X]d | ∃x ∈ Rn :

∨

Z⊂{1,...,r}

(
gj (x) = 0 ∀j ∈ Z

∧ gj (x) > 0 ∀j < Z
∧ rankJac(gj (x) : j ∈ Z) <min(n, |Z |)

)}
(17)
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We want to relate the constant cD in Theorem 2.10 with d(g,Sing), the distance from g to the
singular systems induced from the Euclidean norm. Notice that Sing is a semi-algebraic set (by
Tarski–Seidenbergprinciple [BCR98, th. 2.2.1] or quantifier elimination[BCR98, prop. 5.2.2]), and
therefore d(·,Sing) is a well-defined continuous semi-algebraic function [BCR98, prop. 2.2.8].

Lemma 2.11. Under the normalization assumption (2) and with the previous notations, we have d(g,Sing) ≤√
2σJ .

Proof. Let z ∈ ∂S be such that σJ = σmin(J(z)). Since the CQC hold at z, rankJ(z) is maximal. On
the following, we assume that all the inequalities are active at z, the general case being a trivial
generalization. By the Eckart-Young theorem, the distance of J(z) from rank deficient matrices
is equal to σmin(J(z)): there exists P (of rank one) such that J(z) − P has not maximal rank and
‖P‖F = ‖P‖2 = σmin(J(z)). Now consider a system l of affine equations vanishing at z and such that
Jac(l)(z) = P. Therefore, g− l ∈ Sing since Jac(g− l)(z) = J(z)− P is rank deficient and (g− l)(z) = 0.
Now, notice that:

d(g,Sing) ≤ ‖g− (g− l)‖2 = ‖l‖2
Write l = l1, . . . lr and li(x) = li0 +

∑n
j=1 lijxj . By hypothesis li(z) = 0 and ‖z‖22 ≤ 1 (from the normal-

ization assumption). Therefore:

l2i0 = (
n∑

i=1

lixi)
2 ≤ ‖(li1, . . . , lin)‖22 ‖z‖22 ≤

n∑

j=1

l2ij

Notice also that σ2
J = ‖P‖2F =

∑r
i=1

∑n
j=1 l

2
ij , and thus:

d(g,Sing)2 ≤ ‖l‖22 =
r∑

i=1

n∑

j=1

l2ij +
r∑

i=1

l2i0 ≤ 2
r∑

i=1

n∑

j=1

l2ij = 2σ2
J

which concludes the proof.

In order to measure the distance to Sing, we introduce a global equivalent to G∗ in theo-
rem 2.10. We define then G̃∗≔ min

y∈Rn\U
G(z) > 0.

Lemma 2.12. Let U be as in Theorem 2.10 and assume that G̃∗ = G(y) is not attained on ∂U . Then
1
G̃∗
≤
√
r d(g,Sing)−1.

Proof. Without loss of generality assume that g1(y) = −G̃∗. Since y < ∂U we have∇g1(y) = 0. Then
the system (g1 + G̃

∗, . . . , gr + G̃
∗) ∈ Sing is a singular system, and

∥∥∥g− (g1 + G̃∗, . . . , gr + G̃∗)
∥∥∥
2
=
√
r G̃∗.

Therefore d(g,Sing) ≤
√
r G̃∗, and finally 1

G̃∗
≤

√
r

d(g,Sing) .

Lemma 2.13. Assume that G̃∗ = G(y) is attained at y ∈ ∂{y ∈D | E(y) ≤ σJ
2c2
}. Then 1

G̃∗
≤ 4
√
nc2
σ2
J

.

Proof. Since E(y) =
σJ
2c2

, we can apply Proposition 2.9:

σJ
2c2

= E(y) ≤ 2σ−1J ‖g−‖2 ≤ 2
√
nσ−1J G(y) = 2

√
nσ−1J G̃∗.

Therefore 1
G̃∗
≤ 4
√
nc2σ

−2
J .

We deduce from these two lemmas the following bound on Łojasiewicz constant in terms of
the distance from g to the singular systems Sing:
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Theorem 2.14. Suppose that the CQC holds at every point of S (g). Then, for all y ∈D,

E(y) ≤max
( c

d(g,Sing)
,
8diam(D)

√
nc2

d(g,Sing)2
)
G(y),

where c2 = c2(g) = maxx∈D{‖Hess(gi(x))‖2, i = 1, . . . , r} and c1 =max(2
√
2n,diam(D)

√
r).

Proof. We estimate the constant cE,G = sup{ E(y)G(y) | y ∈ D \ S} ≤ max(2
√
n

σJ
, diam(D)

G∗ ) in Theorem 2.10

using the previous lemma. In particular, from Lemma 2.11 we have 1
σJ
≤

√
2

d(g,Sing) , and using
Lemma 2.12 and Lemma 2.13 we obtain:

2
√
n

σJ
≤ 2

√
2n

d(g,Sing)

diam(D)
G∗

≤ diam(D)

G̃∗
≤ diam(D)max(

4
√
nc2
σ2
J

,

√
r

d(g,Sing)
)

≤ diam(D)max(
8
√
nc2

d(g,Sing)2
,

√
r

d(g,Sing)
)

Choosing c1 =max(2
√
2n,diam(D)

√
r) we then see that cE,G ≤max

(
c

d(g,Sing) ,
8diam(D)

√
nc2

d(g,Sing)2

)
, conclud-

ing the proof.

Remark 1. Under the CQC condition, we have analyzed in Theorem 2.10 and Theorem 2.14 the
Łojasiewicz constant, giving estimates for it, andmoreover showing that the Łojasiewicz exponent
is equal to one. On the contrary when the problem is not regular the bounds on the exponent LE,G
can be large. We have:

LE,G ≤ d(g)(6d(g)− 3)n+r

see [KS15, sec. 3.1], [KSS16] and the errata [KSS19]. Recently, a new bound independent on the
number of inequalities r has been shown in [BMN22, th. 2]:

LE,G ≤ d(g)O(n2).

Finally, let us recall that the first quantitative estimation for the Łojasiewicz inequality providing
a bound with a single exponential in n was given in [Sol91].

Remark 2. The function G can be seen as semialgebraic distance to S , since x ∈ S if and only if
G(x) = 0. Using the language of error bounds in optimization, the function G can also be consid-
ered as a residual function, see [Pan97]. Residual functions are used, in the analysis of iterative
optimization algorithms, to bound the distance of an approximate solution from the true solution
set. Using the language of error bounds and residual functions, a result analogous to Theorem 2.14
has been proven in [LP98, Prop. 7 and 8], when g1, . . . , gr are convex functions.

Remark 3. The CQC condition implies that the number of active constraints at every z ∈ S (g) is
≤ n. CQC also implies that for every point y ∈ Rn with closest point z ∈ S , y − z belongs to the
convex cone generated by the gradients of the active constraints, see Lemma 2.5.

For convex sets S , the set of vectors y − z, for points y whose closest point in S is z, is called
normal cone at z. Abadie’s Constraint Qualification (see e.g. [Pan97]) says that every vector in
the normal cone is a conic combination of the gradients of the active constraints. This is the
condition used in [LP98, Prop. 7 and 8] to analyze the Łojasiewicz exponent and constant for
convex g1, . . . , gr .

In this section, we could have similarly replaced the CQC condition with the (more general)
assumption that for every point y ∈ R

n with closest point z ∈ S , y − z is a conic combination of
the gradients of the active constraints. In other words, we could have assumed the conclusion of
Lemma 2.5 instead of the CQC. Indeed, all the proofs of Section 2 can be adapted to this more
general setting with minor changes.
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3 The Effective Positivstellensatz

We analyze now how non-negative polynomials Pos(S) can be approximated by polynomials that
can be represented in terms of sums of squares. We quantify how the complexity of this repre-
sentation, that is the degree of the terms, depends on the non-vanishing of the polynomial and
Łojasiewicz exponent and constant of D and G.

For l ∈N, let Σ2,l ⊂ R[X] be the set of sums of squares of degree at most l, that is, the polyno-
mials of the form p =

∑
i p

2
i with pi ∈R[X] of degree ≤ l

2 . We define

Ql = Σ
2,l + (1−

n∑

i=1

X2
i )Σ

2,l−2 + g1Σ
2,l−d1 + · · ·+ grΣ2,l−dr ,

where di = deg(gi) for i = 1, . . . , r.
Recall from (4), (3), and using the notations from Section 1.3, that

F(x) = − 1
‖f ‖B

min(f − f ∗,0)

G(x) = −min(
g1(x)
‖g1‖B

, . . . ,
gr (x)
‖gr‖B

,0) = −min(g1(x), . . . , gr (x),0)

(by scaling gi we can assume that ‖gi‖B = 1, see the scaling assumption (8)). We have ∀x ∈ D,
F(x) ≥ 0, G(x) ≥ 0 and ∀x ∈ S , F(x) = G(x) = 0. Moreover G(x) = 0 implies that x ∈ S and F(x) = 0.
Also, F(x) > 0 implies G(x) > 0. By the Łojasiewicz theorem, there exists cF,G > 0,LF,G ∈ R such
that ∀x ∈D,

F(x)LF,G ≤ cF,GG(x). (18)

We are now ready to state the main result of the article.

Theorem 3.1 (Effective Positivstellensatz). Let f ∈ R[X] and S = {x ∈ D | g1(x) ≥ 0, . . . , gr (x) ≥ 0}
with S ⊂ B = {x ∈Rn | 1−∑

i x
2
i ≥ 0}. If ∀x ∈ S , f (x) ≥ f ∗ > 0, then f ∈ Qm for

m =O(n2 r d(g)6c7ε−(7L+3)),

where d(g) = maxi deg(gi ), ε =
f ∗

‖f ‖B and c = cF,G,L = LF,G are respectively the Łojasiewicz constant and
exponent in Inequality (18).

The proof follows the same lines as the proof of [BM23, th. 1.7], but we work on the scaled sim-
plex D instead of the box [−1,1]n and we highlight the dependency of the bounds on Łojasiewicz
constant c, Łojasiewicz exponent L and on ε.

The main differences between Theorem 3.1 and [BM23, th. 1.7] are two:

• we use a different Łojasiewicz inequality, which leads to a smaller exponent L;

• we eliminate the explicit dependence on the number of variables n in the exponent of ε.

These improvements are achieved by introducing the semialgebraic function F, see Equation (3),
and using the Bernstein norm instead of the max norm. For a more detailed comparison, we refer
the reader to Section 3.3.

3.1 Approximation of a plateau function

The first ingredient is an approximation of a plateau or Urysohn function by a sum of squares
polynomial with a control of the error and of the degree of the polynomial. Recall that we are
working under the scaling assumption (8): ‖gi‖B = 1 for i = 1, . . . , r.

Proposition 3.2. For i = 1, . . . , s and δ > 0,ν > 0, there exists hi,δ,ν ∈R[X] such that
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• For gi (x) ≥ 0, |hi,δ,ν (x)| ≤ 2ν.

• For gi (x) ≤ −δ, |hi,δ,ν (x)| ≥ 1
2 .

• ‖hi,δ,µ‖ ≤ 1.

• hi,δ,ν ∈ Σ2,m with m =O(nd(g)2δ−2ν−1).

Proof. To construct such a polynomial, we use the following plateau function. For δ > 0,ν > 0, let
ϕ ∈ C0([−1,1]) be defined as:

ϕ =



1 −1 ≤ x ≤ −δ√
ν +3 x2

δ2
(1−
√
ν) + 2 x3

δ3
(1−
√
ν) −δ ≤ x ≤ 0√

ν 0 ≤ x ≤ 1

We verify that ϕ is in C1([0,1]), that ϕ(0) =
√
ν, ϕ(−δ) = 1 and that maxx∈[−1,1] |ϕ′(x)| ≤ 2

δ .
Let ϕi = ϕ(gi) ∈ C0(D). We have maxx∈D |ϕi | = 1.
We are going to approximate ϕi by a polynomial, using Bernstein operators defined in (21).

We deduce from Theorem A.2 that

|Bm(ϕi ;x)−ϕi(x)| ≤ 2ω(ϕi ;
2n√
m
)

≤ 2 max
x∈[−1,1]

|ϕ′(x)|ω(gi ;
2n√
m
)

≤ 8
δ
max
x∈D
‖∇gi(x)‖2

n√
m

(19)

Using Markov inequalities (Theorem 2.2), we have that maxx∈D ‖∇gi(x)‖2 ≤ 4d(g)2√
n+1
‖gi‖∞ ≤ 4d(g)2√

n+1
where d(g) = maxi deg(gi ). Thus (19) implies that

|Bm(ϕi ;x)−ϕi(x)| ≤ 32n
1
2 d(g)2δ−1m−

1
2 .

Let us take m′ =O(nd(g)4δ−2ν−1),

si(x) = BDm′ (ϕi ;x) =
∑

α∈Nn,|α|≤m′
ϕi(θ(

α

m′
))BDm′,α(x)

and hi,δ,ν = hi = s
2
i so that for x ∈D,

|si(x)−ϕi(x)| ≤
1
4

√
ν

Then we have

• gi(x) ≥ 0 implies si(x) ≤ ϕi(x) + 1
4

√
ν ≤ 5

4

√
ν and hi (x) = si(x)

2 ≤ 25
16ν ≤ 2ν.

• gi(x) ≤ −δ implies si(x) ≥ 1− 1
4

√
ν and hi (x) ≥ (1− 1

4

√
ν)2 ≥ 1

2 for ν small enough.

• ‖hi‖ ≤ ‖si‖2 ≤ 1.

• hi = s
2
i ∈ Σ2,m with m = 2m′ =O(nd(g)2δ−2ν−1).

This concludes the proof of the proposition.
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3.2 Exponents in the Effective Positivstellensatz

We can now prove Theorem 3.1.

Proof of Theorem 3.1. Scaling gi by
1
‖gi‖B

does not change the definition of S and the bound in
Theorem 3.1. Therefore we can assume hereafter that ‖gi‖B = 1. Let

p = f −λ
r∑

i=1

hi gi , (20)

where hi = hi,δ,ν is defined in Proposition 3.2. We consider two cases:

1) F(x) > f ∗

4‖f ‖B . Then by Łojasiewicz Inequality (5), G(x) > δ := c−1εL. There exists i ∈ [1, . . . , r]
such that gi (x) ≤ −δ, say i = 1. Then h1(x) ≥ 1

2 and hi (x) ≤ 2ν if gi (x) ≥ 0. We deduce that for x ∈D,

p(x) ≥ f (x) +λ
1
2
δ − 2λν(r − 1)

≥ f (x) +λ
δ

4
+λ

(
δ

4
− 2ν(r − 1)

)
.

Let λ≫ 0 such that f (x) + λ δ4 ≥
1
4 f
∗ (i.e. λ ≥ 5

δ ‖f ‖B since 1
4 f
∗ − f (x) ≤ 5

4‖f ‖B) and let ν be small
enough such that δ4 − 2ν(r − 1) ≥ 0 (i.e. ν ≤ δ

8r ). Then p(x) ≥
1
4f
∗.

2) F(x) ≤ f ∗

4‖f ‖B . In this case, f (x) ≥ 3
4 f
∗ and

p(x) ≥ 3
4
f ∗ − 2r λν.

Then p(x) ≥ 1
4f
∗ for 2 r λν ≤ 1

2 f
∗, i.e. ν ≤ f ∗

4 r λ .
We deduce that for δ = c−1εL, λ = 5δ−1‖f ‖B = 5cε−L‖f ‖B and

ν ≤min(
δ

8r
,
f ∗

4rλ
) =

1
20
r−1 δε =

1
20

c
−1εL+1,

we have p(x) ≥ 1
4f
∗ > 0 for all x ∈D.

Let η =max{deg(f ),deg(higi ), i = 1, . . . , r}. Then

deg(p) ≤ η =O(nd(g)3δ−2ν−1) =O(nd(g)3(cε−L)2(cε−(L+1))) =O(nd(g)3c3ε−(3L+1)),

and we have

‖p‖B,η = ‖f −λ
r∑

i=1

hi gi‖B,η ≤ ‖f ‖B,η +λ
r∑

i=1

‖hi‖B,η−deg(gi ) ‖gi‖B,deg(gi ) ≤ ‖f ‖B,deg(f ) +λr

≤ (1 + 5cε−Lr)‖f ‖B ≤ (6 r cε−L)‖f ‖B

for cε−L ≥ 1.
Now, we use the property of convergence of the control polygon in the Bernstein basis on D

to the graph of the function. By Corollary A.5 applied to the polynomial p defined in (20), we get
that for

m =O(deg(p)2
‖p‖B,η
p∗

) =O(n2d(g)6c6ε−(6L+2)rcε−L
‖f ‖B
f ∗

) =O(n2r d(g)6c7ε−(7L+3))

the Bernstein coefficients pm,α in the Bernstein basis (BDm,α)|α|≤m are non-negative. We deduce

that p belongs to the preordering generated by 1 + X1, . . . ,1 + Xn,1 − n−
1
2 (X1 + · · · + Xn) in degree

m and conclude as in [BM23, lem. 3.8] that p ∈ Σ2,m+n + (1 − X2
1 − · · · − X2

n )Σ
2,m+n−2. Therefore

f = p +λ
∑r
i=1 higi belongs to Qm+n, which concludes the proof.
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3.3 Some consequences, remarks and perspectives

The exponent of ε−1 in the bound of Theorem 3.1 depends on f . In order to avoid this dependency
of the exponent on f , we can use a Łojasiewicz inequality (7) between E = d(·,S) and G and a
consequence of Markov inequality to get the following corollary:

Corollary 3.3. Let f ∈ R[X] with d = deg(f ) and S = {x ∈ D | g1(x) ≥ 0, . . . , gr (x) ≥ 0} with S ⊂ B =
{x ∈ Rn | 1−∑

i x
2
i ≥ 0}. If ∀x ∈ S , f (x) ≥ f ∗ > 0, then f ∈ Qm for

m =O(n2 r d(g)62L̃d2L̃c̃7ε−(7L̃+3))

where d(g) = maxi deg(gi ), ε = f ∗

‖f ‖ and c̃ = cE,G, L̃ = LE,G are respectively Łojasiewicz constant and
exponent in Inequality (7).

Proof. By inequalities (6) and (7), we have for x ∈D,

F(x)LE,G ≤ (2d2)LE,GELE,G ≤ 2LE,Gd2LE,GcE,GG(x).

Applying Theorem 3.1 with c = 2LE,Gd2LE,GcE,G and L = LE,G, we get the desired bound.

We describe the main differences between Theorem 3.1 and the result in [BM23].
First, the bound in Theorem 3.1 uses Łojasiewicz inequality (5), while in [BM23] the authors

consider the Łojasiewicz inequality (7), as in Corollary 3.3. Not only it is more natural to work
with Łojasiewicz inequality (5) instead of (7), but it also gives potentially significantly better
bounds. For an illustration of this phenomenon, see e.g. [KL10, sec. 4], where the authors dis-
cuss the gap between Lasserre’s hierarchies based on the quadratic module and the preordering
defining the unit hypercube. Another advantage of Theorem 3.1 over Corollary 3.3 is that in the
case of an exact representation of f − f ∗ in Q(g), we have L = 1 (See. Proposition 3.5).

On the other hand, Corollary 3.3 allows to deduce a general convergence rate for Lasserre’s hi-
erarchies, as done in [BM23, sec. 4]. The convergence rate that can be deduced from Corollary 3.3
improves the one in [BM23], as there is no dependence on the number of variables n in the expo-
nent of ε. As a corollary, we also obtain improved convergence rates for the Haudorff distance of
feasible pseudo moment sequences to moment sequences in the Lasserre’s moment hierarchy, see
[BM23, sec. 5].

The second important difference between this article and [BM23] is the norm used to define
ε = ε(f ). In this article, we use the max norm of the coefficients of f in the Berstein basis on the
scaled simplex D. This allows to use [PR01], and leads to a bound with no n in the exponent
of ε. On the other hand, in [BM23] the norm used to define ε is the max norm on [−1,1]n and
the approximation result in [LS22] is exploited. This leads to a convergence rate with n in the
exponent of ε. We can also rephrase Theorem 3.1 using the max norm on D using the result in
[LS97], which can be stated, with our notation, as follows:

‖f ‖B,d ≤ Kd(Rn)‖f ‖∞

where Kd(R
n), given exactly in [LS97, th. 4.2], has asymptotic behaviour as in [LS97, th. 5.1] when

d tends to infinity. Thus, if we use the norm ‖f ‖∞ instead of ‖f ‖B,m to define ε, we need tomultiply
by the extra factor Km(Rn)−(7L+3) in Theorem 3.1 and Corollary 3.3.

When some regularity conditions hold, the bounds on the representation of positive polyno-
mials can be simplified: if the CQC hold, we can apply the results of Section 2.2 and obtain the
following corollary.

Corollary 3.4. With the hypothesis of Theorem 3.1, if the CQC hold for every x ∈ S and f > 0 on S then
f ∈ Qm for

m =O(n2 r d(g)6 c7 ε−10),

where c can be bounded using (6) and Theorem 2.10 or Theorem 2.14.
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Notice that in Corollary 3.4 the exponent is independent of f . In this case, the analysis per-
formed to estimate the Łojasiewicz exponent is then necessarily connecting the distance function
D and the euclidean distance E, rather than connecting directly F and G.

The simplest case where we can apply Corollary 3.4 is when S is the unit ball defined by the
single polynomial g = 1 − ‖X‖22. This case can be analyzed, by specializing a general result, in
[MM22, cor. 1], where the authors prove a representation result for strictly positive polynomials
(that includes furthermore a denominator) with degree of order ε−65. In this case, Corollary 3.4
naturally gives a representation with order ε−10, improving [MM22, cor. 1]. In the case of the unit
ball, to the best of our knowledge the best available result gives a bound of the order ε−1/2, and it
is developed with a specific technique in [Slo22].

As a perspective of this work, we would like to investigate the tightness of the bound. We can
notice that if f − f ∗ ∈ Q(g) with f ∗ ≥ 0 then f ∈ Qℓ(g) for some ℓ ∈N and the bound on ℓ should
not depend on ε. In this case, we see that L ≤ 1 as shown in the following proposition.

Proposition 3.5. Assume that f − f ∗ = s0+ s1g1+ · · ·+ srgr ∈ Q(g) and let F, G be as in Section 2. Then:

F(x) ≤ cG(x) for all x ∈D,

where c = 1
‖f ‖max{∑r

i=1 ‖gi‖si(x) : x ∈D }.

Proof. Let f − f ∗ = s0 + s1g1 + · · ·+ srgr ∈ Q(g) with si ∈ Σ2 and x ∈D. There are two cases.
If f (x) > f ∗ then 0 = F(x) ≤ cG(x) for any c ∈ R>0.
If f (x) ≤ f ∗ then F(x) = f ∗−f (x)

‖f ‖ . Therefore, if c = 1
‖f ‖max{∑r

i=1 ‖gi‖si(x) | x ∈ ∆ } and I−(x) = {i ∈
{1, . . . , r : gi (x) ≤ 0} we have:

F(x) =
1
‖f ‖ (f (x)− f

∗) = − 1
‖f ‖

(
s0(x) + s1(x)g1(x) + · · ·+ sr (x)gr (x)

)

≤ 1
‖f ‖

∑

i∈I−(x)
si(x)(−gi(x)) =

1
‖f ‖

∑

i∈I−(x)
‖gi‖si(x)

(
− gi(x)‖gi‖

)
≤ cG(x).

This shows that F(x) ≤ cG(x) for all x ∈D.

This proposition suggests that the exponent of ε in a tight bound for the Effective Positivstel-
lensatz should vanish when L = 1.

A particular case when f − f ∗ ∈ Qℓ(g) is given by the so called Boundary Hessian Conditions
(BHC), introduced by Marshall in [Mar06]. It would be interesting to see if, conversely, L ≤ 1
implies regularity conditions such as BHC and so that f − f ∗ ∈ Qℓ(g).

Another direction for future investigations is the analysis of worst case bounds in terms of
the bit size and degree of the input polynomials with rational coefficients and to compare these
bounds with those in [LPR20].

A Approximation properties

In this appendix, we recall and adapt to our context known approximation properties of continu-
ous functions, focusing on our scaled simplex D.

Let θ : x ∈ ∆ 7→ (n+
√
n)x−1 ∈D be the affine map, which transforms the unit simplex ∆ = {x ∈

R
n | xi ≥ 0 and 1−∑

i xi ≥ 0 } into D. For m ∈N and ψ ∈ C0(D), consider the Bernstein operator

BDm (ψ;x) =
∑

α∈Nn,|α|≤m
ψ

(
θ(
α

m
)
)
BDm,α(x) (21)

Notice that BDm is positive linear operator onC0(D), i.e. if ∀x ∈D,ψ(x) ≥ 0, then ∀x ∈D,BDm (ψ;x) ≥
0. Moreover BDm reproduces constants and linear functions.
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Lemma A.1 ([NS64, Lemma 4]). For a positive linear operator A : C0(D)→ C0(D), ψ ∈ C0(D) and
t > 0 and x ∈D, we have

|ψ(x)−A(ψ;x)| ≤ ω(ψ; t)
(
1+

1
t
A(‖ · −x‖22;x)

1
2

)

where ω(ψ; ·) is the modulus of continuity of ψ.

Using this lemma for positive linear operators, we deduce the following approximation for the
Bernstein operator:

Theorem A.2. For ψ ∈ C0(D),

|ψ(x)−BDm(ψ;x)| ≤ 2ω(ψ;
2n√
m
).

Proof. First, using the property of the Bernstein operator on the unit simplex ∆, we verify that

‖θ−1(x)‖22 =
1

m(m− 1)
∑

|α|≤m
(‖α‖22 −m)BDm,α(x) =

m

m− 1B
D
m (‖θ−1(·)‖22;x)−

1
m− 1

where θ−1 : x ∈D 7→ 1
n+
√
n
(x + 1). Therefore, we have

BDm,α(‖θ−1(·)‖22,x) =
1

(n+
√
n)2
BDm,α(‖ ·+1‖22,x) =

m− 1
m
‖θ−1(x)‖22 +

1
m

=
m− 1
m
‖ x + 1

n+
√
n
‖22 +

1
m

so that

BDm (‖ ·+1‖22,x) =
m− 1
m
‖x + 1‖22 +

(n+
√
n)2

m
.

Since BDm reproduces affine functions, we have

BDm (‖ · −x‖22;x) = BDm (‖(·+ 1)− (x+ 1)‖22;x)

=
m− 1
m
‖x + 1‖22 +

(n+
√
n)2

m
− 2‖x + 1‖22 + ‖x + 1‖22

=
1
m
((n+

√
n)2 − ‖x + 1‖2) ≤ (n+

√
n)2

m
≤ 4

n2

m

for x ∈D. By lemma A.1, we deduce that for x ∈D,

|ψ(x)−BDm(ψ;x)| ≤ 2ω(ψ;
2n√
m
)

choosing t = 2n√
m
.

We recall now an effective version of Polya’s theorem.

Theorem A.3 ([PR01, Th. 1]). Let p =
∑
|β|=d pd,β

(d
β

)
X
β0
0 . . .X

βn
n be an homogeneous polynomial of

degree d = deg(p). If ∀x = (x0, . . . ,xn) ∈ Rn+1 such that xi ≥ 0 and
∑n
i=0 xi = 1, we have p(x) ≥ p∗ > 0,

then (X0 + · · ·+Xn)mp has non negative coefficients in the monomial basis if

m ≥ d(d − 1)
2

maxβ
∣∣∣pd,β

∣∣∣
p∗

− d

We can dehomogenize Theorem A.3 setting X0 = 1−X1 − · · · −Xn and restate it using the Bern-
stein basis and norm, as follows.
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CorollaryA.4. Let p ∈R[X] be a polynomial of degree d. If p ≥ p∗ > 0 on∆ = {x ∈Rn | xi ≥ 0,1−∑i xi ≥
0 }, then p has non negative coefficients in the Bernstein basis (B∆m,α)|α|≤m if

m ≥ d(d − 1)
2

‖p‖B
p∗
− d

Corollary A.4 can be seen as a result of the convergence of the control polygon to the graph of
the polynomial p. Finally, we deduce from Corollary A.4 an analogous result for the case of the
scaled simplex D = θ(∆) = {x ∈ Rn | 1 + x1 ≥ 0, . . . ,1 + xn ≥ 0,

√
n − x1 − · · · − xn ≥ 0}. In order do to

that, notice that BDm,α(θ(x)) = B
∆
m,α(x) for all x ∈ ∆ and α ∈Nn such that |α| ≤ m. Furthermore, we

state Corollary A.5 with a worst but simplified constant that will be more convenient in the next
sections.

Corollary A.5. Let p =
∑
|α|≤m pm,αB

D
m,α(X) ∈ R[X] with m ≥ d = deg(p). If ∀x ∈ D we have p(x) ≥

p∗ > 0 and m ≥ d2 ‖p‖Bp∗ , then pm,α ≥ 0 for all α ∈Nn with |α| ≤m.
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