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On Łojasiewicz Inequalities and the Effective Putinar's Positivstellensatz

The representation of positive polynomials on a semi-algebraic set in terms of sums of squares is a central question in real algebraic geometry, which the Positivstellensatz answers. In this paper, we study the effective Putinar's Positivestellensatz on a compact basic semialgebraic set S and provide a new proof and new improved bounds on the degree of the representation of positive polynomials. These new bounds involve a parameter ε measuring the non-vanishing of the positive function, the constant c and exponent L of a Łojasiewicz inequality for the semi-algebraic distance function associated to the inequalities g = (g 1 , . . . , g r ) defining S. They are polynomial in c and ε -1 with an exponent depending only on L. We analyse in details the Łojasiewicz inequality when the defining inequalties g satisfy the Constraint Qualification Condition. We show that, in this case, the Łojasiewicz exponent L is 1 and we relate the Łojasiewicz constant c with the distance of g to the set of singular systems.

Introduction

A fundamental difference between Algebraic Geometry and Real Algebraic Geometry is the use of the ordering of the real numbers. A central question in Real Algebraic Geometry is thus how to characterise real polynomials satisfying non-negativity and positivity conditions on a given domain, and not only those vanishing on it. This problem has attracted a lot of research in the last decades, also due to the connections with global optimization techniques. See e.g. [Las01; Mar08; Lau09; Las15] or more recently [START_REF] Powers | Certificates of Positivity for Real Polynomials: Theory[END_REF]. The purpose of this article is to present a quantitative version of Putinar's Positivstellensatz, a representation theorem for positive polynomials on a compact domain defined by polynomial inequalities.

The first example of globally non-negative polynomials f ∈ R[X] = R[X 1 , . . . , X n ] are the Sums of Squares polynomials:

Σ 2 = Σ 2 [X] ≔ f ∈ R[X] | ∃r ∈ N, g i ∈ R[X] : f = g 2 1 + • • • + g 2 r .
It is known since Hilbert [Hil88] that the convex cone of globally non-negative polynomials Pos(R n ) contains properly the Sums of Squares (SoS) cone for n ≥ 2, and the first explicit example of positive, non-SoS polynomial was given by Motzkin [START_REF] Motzkin | The arithmetic-geometric inequality[END_REF]. The complete description of Pos(R n ) in terms of SoS was proven by Artin [START_REF] Artin | Uber die Zerlegung definiter Funktionen in Quadrate[END_REF]: f ∈ Pos(R n ) if and only if f can be written as a ratio of two SoS polynomials. This introduces a denominator in the description of f . In this paper we investigate the description of positive polynomials on basic closed semi-algebraic sets: S = S (g) = S (g 1 , . . . , g r ) ≔ { x ∈ R n | g 1 (x) ≥ 0, . . . , g r (x) ≥ 0 }, in the particular case where S is compact. A natural subcone of the cone Pos(S) of non-negative polynomials on S is the quadratic module:

Q = Q(g) ≔ Σ 2 + Σ 2 • g 1 + • • • + Σ 2 • g r
and the preordering O = O(g) ≔ Q( j∈J g j : J ⊂ {1, . . . , r}). While to characterise non-negative polynomials in terms of SoS and preorderings a denominator is necessary [START_REF] Krivine | Anneaux préordonnés[END_REF][START_REF] Stengle | A nullstellensatz and a positivstellensatz in semialgebraic geometry[END_REF], Schmüdgen [START_REF] Schmüdgen | TheK-moment problem for compact semi-algebraic sets[END_REF] showed that a denominator free representation exists for strictly positive polynomials on a basic compact semi-algebraic sets.

Theorem 1.1 (Schmüdgen's Positivstellensatz [START_REF] Schmüdgen | TheK-moment problem for compact semi-algebraic sets[END_REF]). Let S (g) be a compact basic semi-algebraic set. Then f > 0 on S (g) implies f ∈ O(g).

This result greatly simplifies the representation. However the representation still needs a number of terms that is exponential in the number of defining inequalities of S, since the conclusion of the theorem is f ∈ O(g) and not f ∈ Q(g). The problem is solved when one introduces the Archimedean property.

Definition 1.2. Denote X 2 2 = X 2 1 + • • • + X 2 n .
We say that a quadratic module Q is Archimedean if there exists R ∈ R such that R 2 -X 2 2 ∈ Q. Notice that the Archimedean condition for Q = Q(g) implies the compactness of S = S (g). Moreover, as a corollary of Theorem 1.1 we have that O(g) is Archimedean if S is compact. This result is not true for quadratic modules: there are examples with S (g) compact but Q(g) not Archimedean, see e.g. [START_REF] Prestel | Positive Polynomials: From Hilbert's 17th Problem to Real Algebra[END_REF]ex. 6.3.1].

With the Archimedean condition we can introduce the representation that we will study through the paper, based on the following theorem: Theorem 1.3 (Putinar's Positivstellensatz [START_REF] Putinar | Positive Polynomials on Compact Semi-algebraic Sets[END_REF]). Let S (g) be a basic semi-algebraic set. If Q(g) is Archimedean, then f > 0 on S (g) implies f ∈ Q(g).

The aim of the paper is to present a quantitative version of Theorem 1.3, giving a degree bound for the representation f = s 0 +s 1 g 1 +• • •+s r g r ∈ Q(g) of a polynomial f positive on S (g). This bound is presented in Theorem 3.1. It involves ε, a measure for how f is close to have a zero on S, and a Łojasiewicz exponent L and coefficient c, that compare the behaviour of f and of the inequalities g 1 , . . . , g r on a scaled simplex D containing S.

This problem is also known as the Effective Putinar's Positivstellensatz or Effective Schmüdgen's Positivstellensatz and it has been investigated for the first time by Schweighofer in [Sch04] for Schmüdgen's theorem, and by Nie and Schweighofer in [NS07] for Putinar's theorem. The bound obtained for Schmüdgen's theorem were significantly better than those for Putinar's theorem: [START_REF] Schweighofer | On the complexity of Schmüdgen's Positivstellensatz[END_REF] has a polynomial dependence in ε, while [START_REF] Nie | On the complexity of Putinar's Positivstellensatz[END_REF] has an exponential one. It was an open question until recently if a polynomial dependence on ε was possible for Putinar's theorem, and a positive answer was given by the first two authors in [START_REF] Baldi | On the effective Putinar's Positivstellensatz and moment approximation[END_REF].

The Effective Positivstellensatz has also been studied for specific semi-algebraic sets, where special techniques can be applied to obtain better bounds: see for instance [START_REF] Laurent | An effective version of Schmüdgen's Positivstellensatz for the hypercube[END_REF] for Schmüdgen's theorem on the unit box, [START_REF] Slot | Sum-of-squares hierarchies for polynomial optimization and the Christoffel-Darboux kernel[END_REF] for Schmüdgen's theorem on the unit ball and simplex and [FF20] for Putinar's theorem on the unit sphere. Bounds on the size of exact representations (with rational coefficients if the input polynomials have rational coefficients) have also been investigated e.g. in [START_REF] Magron | On Exact Reznick, Hilbert-Artin and Putinar's Representations[END_REF], using the doubly exponential bounds of [START_REF] Nie | On the complexity of Putinar's Positivstellensatz[END_REF] with bit size bounds which are doubly exponential in the size of the input coefficients.

Łojasiewicz inequalities play a central role in these developments. Classical Łojasiewicz inequalities are often stated as follows, see [BCR98, cor. 2.6.7].

Theorem 1.4. Let B be a closed bounded semi-algebraic set of R n and let f , g be two continuous semialgebraic functions from B to R such that f -1 (0) ⊂ g -1 (0). Then there exists c, L ∈ R >0 such that ∀x ∈ B:

|g(x)| L ≤ c|f (x)|.
(1)

One may show that the smallest exponent L for which the inequality (1) holds is always a strictly positive rational number. It is called the Łojasiewicz exponent. Then, having L fixed, the smallest c > 0 such that this inequality holds is called the Łojasiewicz constant (relative to L).

We apply the above Łojasiewicz Inequality to three functions vanishing on S, namely the function F(x) defined in (4), the semi-algebraic distance to S, denoted G(x) and defined in (5), and the Euclidean distance function to S denoted E(x). The Euclidean distance to S, denoted E(x), plays an auxiliary but fundamental role.

In Theorem 2.10, under the Constraint Qualification Conditions assumption, we give the Łojasiewicz Inequality bound on E(x) in terms of G(x). It is known by [START_REF] Baldi | On the effective Putinar's Positivstellensatz and moment approximation[END_REF] that in this case L = 1 and we give in Theorem 2.10 an explicit bound on the Łojasiewicz constant. While the case of convex inequalities has been analyzed in the optimization community in [START_REF] Lewis | Error Bounds for Convex Inequality Systems[END_REF], we don't not know another place where the Łojasiewicz constant has been studied for general g.

Finally let us recall that the Łojasiewicz Inequality for the distance function to the zero set of a polynomial or a real analytic function is the original one and was introduced in the polynomial case by Hörmander [START_REF] Hörmander | On the division of distributions by polynomials[END_REF] and in the analytic case by Łojasiewicz [Ło59], in both cases to show the divisibility of Schwartz distributions by these functions. Therefore such an inequality is sometimes called Hörmander-Łojasiewicz Inequality.

Contributions and outline

In this paper, we develop a new analysis of the Effective Positivstellensatz, improving the existing bounds on the degree of representation of positive polynomials and simplifying their descriptions. The approach improves the degree bounds obtained in [NS07; Ave13; KS15] from exponential bounds in ε -1 to a polynomial bound in ε -1 , and the results in [START_REF] Baldi | On the effective Putinar's Positivstellensatz and moment approximation[END_REF], by removing the dependency of the exponent of ε -1 on the dimension n.

To obtain these new improved bounds, we analyse the Łojasiewicz inequality connecting the semi-algebraic distance function G associated to g and the distance function F associated to f , that can be used directly in the proof of the Effective Positivstellensatz. Using a Markov inequality, we deduce a Łojasiewicz inequality, which exponent is independent of f . The proof technique is similar to the one in [START_REF] Baldi | On the effective Putinar's Positivstellensatz and moment approximation[END_REF]. The main difference is the choice of the simpler semi-algebraic set containing S that we reduce to. While in [START_REF] Baldi | On the effective Putinar's Positivstellensatz and moment approximation[END_REF] a unit box containing S is used and a recent Effective Schmüdgen's Positivstellensatz [START_REF] Laurent | An effective version of Schmüdgen's Positivstellensatz for the hypercube[END_REF] is applied, in the main Theorem 3.1 we reduce to a simplex and apply an effective version's of Polya's theorem [START_REF] Powers | A New Bound for Pólya's Theorem with Applications to Polynomials Positive on Polyhedra[END_REF] (or the convergence property of the control polygon for the Bernstein basis).

We analyse in details the Łojasiewicz inequality between F and G in the regular case, i.e. when the defining inequalities g satisfy the Constraint Qualification Condition. The main contribution in the regular case is Theorem 2.10, where the exponent is proven to be equal to one and an explicit bound for the constant in terms of geometric properties of the g is given. In Theorem 2.14 we describe another interpretation of the constant as the distance from g to the set of singular systems, in the spirit of [START_REF] Cucker | A Numerical Algorithm for Zero Counting. II: Distance to Ill-posedness and Smoothed Analysis[END_REF].

In the rest of Section 1, we provide notations and preliminary material, and recall approximation properties needed in the proof of the Effective Positivstellensatz. In Section 2, we study Łojasiewicz inequalities between different distance functions and analyse in detail Łojasiewicz exponent and constant, when Constraint Qualification Conditions hold. In Section 3 we prove the Effective Positivstellensatz and the new bound in Theorem 3.1. We conclude by remarks and perspectives in Section 3.3.

Notations and conventions

Let R[X 1 , . . . , X n ] = R[X] be the ring of polynomials in the variabls X = (X 1 , . . . , X n ) with coefficients in R. For g 1 , . . . , g r ∈ R[X], let S = S (g) ≔ { x ∈ R n | g i (x) ≥ 0, ∀i ∈ {1, . . . , r} } be the basic semialgebraic set defined by g 1 , . . . , g r .

Recall that a quadratic module

Q(g) is called Archimedean if R 2 -X 2 2 ∈ Q(g)
for some R ∈ R, see Definition 1.2. However, to simplify the proofs we assume that R = 1. Normalization assumption:

1 -X 2 1 -• • • -X 2 n ∈ Q(g). (2) 
We can always be in this setting by a change of variables if we start with an Archimedean quadratic module. Indeed, if R 2 -X 2 2 ∈ Q(g) then 1 -X 2 2 ∈ Q(g(RX)) (i.e. the quadratic module generated by g i (RX 1 , . . . , RX n )). Notice also that the normalization assumption implies that S is contained in the unit ball centered at the origin.

In the paper, we denote 

D ≔ {x ∈ R n | 1 + x 1 ≥ 0, . . . , 1 + x n ≥ 0, √ n -x 1 -• • • -x n ≥ 0} a simplex,
B D m,α (X) = m α (n + √ n) -d ( √ n -X 1 -• • • -X n ) m-|α| (1 + X 1 ) α 1 • • • (1 + X n ) α n
where m α denotes the multinomial coefficient.

Norms

Hereafter we introduce the norms that will be used through the article.

• For

f = α∈N n ,|α|≤m f α B D m,α (X) ∈ R[X]
and m ≥ deg(f ), we denote f B,m the L ∞ norm of f with respect to the Bernstein basis:

f B,m = max |α|≤m f m,α .
When m = deg(f ), we write f B ≔ f B,deg(f ) to simplify the notation.

• For f ∈ R[X], we denote f ∞ the infinity or supremum norm of f on D:

f ∞ = max x∈D |f (x)|.
• For a vector v = (v 1 , . . . , v N ) ∈ R N , we denote v 2 its Euclidean norm:

v 2 = N i=1 v 2 1 .
• Moreover, if M ∈ R N 1 ×N 2 , we denote M 2 the induced operator norm:

M 2 = sup v 0 Mv 2 v 2 = σ max (M),
where σ max (M) denotes the largest singular value of M.

We recall some properties of the the norms mentioned above, and in particular for the Bernstein norm that will be central in the article. For f ∈ R[X] m and m ′ ≥ m, we have

max x∈D |f (x)| = f ∞ ≤ f B,m ′ ≤ f B,m
These well-known inequalities are consequences of the property that the graph of f is in the convex hull of its control points and that degree elevation representation is performed by barycentric combinations of the coefficients of f (see e.g. [START_REF] Farin | Curves and Surfaces for CAGD: A Practical Guide[END_REF]). We will also use the following multiplicative property of the norm, which we briefly prove for sake of completeness:

Lemma 1.5. For f ∈ R[X] m , g ∈ R[X] m ′ , we have f g B,m+m ′ ≤ f B,m g B,m ′ Proof. For f = |α|≤m f α B D m,α , g = |β|≤m ′ f β B D m ′ ,β , we have f g B,m+m ′ = |γ |≤m+m ′ ( α+β=γ f α g β m α m ′ β m+m ′ γ )B D γ (x) B,m+m ′ = max |γ |≤m+m ′ | α+β=γ f α g β m α m ′ β m+m ′ γ | ≤ max |α|≤m |f α | max |β|≤m ′ |g β | max |γ |≤m+m ′ α+β=γ m α m ′ β m+m ′ γ ≤ f B,m g B,m ′

Parameters

We summarize here the notations and symbols that will appear in the bound of the Effective Putinar's Positivstellensatz.

• g = g 1 , . . . , g r denotes the r-tuple of real polynomials in n variables defining the basic closed semialgebraic set S = S (g);

• d(g) ≔ max i∈{1,...,r} deg(g i );

• f denotes a strictly positive polynomial on S of degree d = deg(f ) and f * = inf{ f (x) | x ∈ S } > 0 denotes its minimum on S;

• ε = ε(f ) ≔ f * f B
is a measure of how close f is to vanish on S.

In the article, by O(•), we mean a quantity such that O(•) ≤ c 1 (•) for some constant c 1 > 0 independent on n and on the polynomials g, f involved in the problem.

Approximation properties

In this section, we recall and adapt to our context known approximation properties of continuous functions, focusing on our scaled simplex D.

Let θ : x ∈ ∆ → (n + √ n) x -1 ∈ D be the affine map, which transforms the unit simplex ∆ = { x ∈ R n | x i ≥ 0 and 1 -i x i ≥ 0 } into D. For m ∈ N and ψ ∈ C 0 (D), consider the Bernstein operator B D m (ψ; x) = α∈N n ,|α|≤m ψ(θ( α m ))B D m,α (x) (3) Notice that B D m is positive linear operator on C 0 (D), i.e. if ∀x ∈ D, ψ(x) ≥ 0, then ∀x ∈ D, B D m (ψ; x) ≥ 0. Moreover B D
m reproduces constants and linear functions.

Lemma 1.6 ([NS64, Lemma 4]). For a positive linear operator

A : C 0 (D) → C 0 (D), ψ ∈ C 0 (D) and t > 0 and x ∈ D, we have |ψ(x) -A(ψ; x)| ≤ ω(ψ; t) 1 + 1 t A( • -x 2 2 ; x) 1 2
where ω(ψ; •) is the modulus of continuity of ψ.

Using this lemma for positive linear operators, we deduce the following approximation for the Bernstein operator:

Theorem 1.7. For ψ ∈ C 0 (D), |ψ(x) -B D m (ψ; x)| ≤ 2 ω(ψ; 2n √ m ).
Proof. First, using the property of the Bernstein operator on the unit simplex ∆, we verify that

θ -1 (x) 2 2 = 1 m(m -1) |α|≤m ( α 2 2 -m)B D m,α (x) = m m -1 B D m ( θ -1 (•) 2 2 ; x) - 1 m -1 where θ -1 : x ∈ D → 1 n+ √ n (x + 1)
. Therefore, we have

B D m,α ( θ -1 (•) 2 2 , x) = 1 (n + √ n) 2 B D m,α ( • +1 2 2 , x) = m -1 m θ -1 (x) 2 2 + 1 m = m -1 m x + 1 n + √ n 2 2 + 1 m so that B D m ( • +1 2 2 , x) = m -1 m x + 1 2 2 + (n + √ n) 2 m .
Since B D m reproduces affine functions, we have

B D m ( • -x 2 2 ; x) = B D m ( (• + 1) -(x + 1) 2 2 ; x) = m -1 m x + 1 2 2 + (n + √ n) 2 m -2 x + 1 2 2 + x + 1 2 2 = 1 m ((n + √ n) 2 -x + 1 2 ) ≤ (n + √ n) 2 m ≤ 4 n 2 m for x ∈ D. By lemma 1.6, we deduce that for x ∈ D, |ψ(x) -B D m (ψ; x)| ≤ 2 ω(ψ; 2 n √ m ) choosing t = 2 n √ m .
We recall now an effective version of Polya's theorem.

Theorem 1.8 ([PR01, Th. 1]). Let p = |β|=d p d,β d β X β 0 0 . . . X β n n be an homogeneous polynomial of degree d = deg(p). If ∀x = (x 0 , . . . , x n ) ∈ R n+1 such that x i ≥ 0 and n i=0 x i = 1, we have p(x) ≥ p * > 0, then (X 0 + • • • + X n ) m p has non negative coefficients in the monomial basis if m ≥ d(d -1) 2 max β p d,β p * -d
We can dehomogenize Theorem 1.8 setting X 0 = 1-X 1 -• • •-X n and restate it using the Bernstein basis and norm, as follows.

Corollary 1.9. Let p ∈ R[X] be a polynomial of degree d. If p ≥ p * > 0 on ∆ = { x ∈ R n | x i ≥ 0, 1-i x i ≥ 0 }, then p has non negative coefficients in the Bernstein basis (B ∆ m,α ) |α|≤m if m ≥ d(d -1) 2 p B p * -d
Corollary 1.9 can be seen as a result of convergence of the control polygon to the graph of the polynomial p. Finally, we deduce from Corollary 1.9 an analogous result for the case of the scaled simplex

D = θ(∆) = {x ∈ R n | 1 + x 1 ≥ 0, . . . , 1 + x n ≥ 0, √ n -x 1 -• • • -x n ≥ 0}.
In order do to that, notice that B D m,α (θ(x)) = B ∆ m,α (x) for all x ∈ ∆ and α ∈ N n such that |α| ≤ m. Furthermore, we state Corollary 1.10 with a worst but simplified constant that will be more convenient in the next sections.

Corollary 1.10.

Let p = |α|≤m p m,α B D m,α (X) ∈ R[X] with m ≥ d = deg(p). If ∀x ∈ D we have p(x) ≥ p * > 0 and m ≥ d 2 p B p * , then p m,α ≥ 0 for all α ∈ N n with |α| ≤ m.

Łojasiewicz inequalities for sum of squares representations

To analyze the representation of a positive polynomial f on S, we will construct a deformed polynomial p which is positive on D with a minimum of the same order than f * = inf x∈S f (x). For that purpose, we need to compare on D the behavior of the function f with the behavior of the functions g 1 , . . . , g r and thus we introduce the following semi-algebraic functions. For x ∈ D, let

F(x) = -min f (x) -f * f B , 0 (4) 
G(x) = -min g 1 (x) g 1 B , . . . , g r (x) g r B , 0 . ( 5 
)
The function G can be seen as a semi-algebraic distance to S, since x ∈ S if and only if G(x) = 0.

As F(x) ≥ 0, G(x) ≥ 0 and G(x) = 0 implies x ∈ S and F(x) = 0, we deduce from Theorem 1.4 the existence of the following constants.

Definition 2.1. The smallest L such that

∀x ∈ D, F(x) L ≤ cG(x) (6) 
is called the Łojasiewicz exponent. For L satisfying (6) fixed, we call the constant c > 0 the Łojasiewicz constant (relative to L).

To analyse these exponent and constant, we can first relate F to the Euclidean distance function

E : D ∋ x → E(x) = d(x, S).
For y ∈ D and z ∈ S such that E(y) = d(y, S) = yz 2 , we have

F(y) = F(y) -F(z) ≤ L F y -z 2 = L F E(y),
where L F is the Lipschitz constant of F on D. From Markow inequality:

Theorem 2.2 ([KR99, th. 3]). Let p ∈ R[X] d be a polynomial of degree ≤ d. Then: ∇p(x) 2 ∞ = max x∈D ∇p(x) 2 ≤ 2d(2d -1) w(D) p ∞
where w(D), the width of D, is the minimal distance between a pair of distinct parallel supporting hyperplanes.

We deduce the following Łojasiewicz inequality between F and D: ∀x ∈ D,

F(x) ≤ 4d 2 -2d w(D) E(x) ≤ 2d 2 E(x). ( 7 
)
with w(D) = √ n + 1 and d = deg(f ). As E(x) = 0 implies G(x) = 0, these two functions are related as well by a Łojasiewicz inequality:

∀x ∈ D, E(x) L E,G ≤ c E,G G(x) (8)
Therefore we can bound the Łojasiewicz exponent and constant for F and G, by analysing the Łojasiewicz inequality between the Euclidean distance function E and the semi-algebraic distance function G in equation (8) and equation (7). More precisely, we have the following inequality:

L ≤ L E,G .
In the next section, we analyze the Łojasiewicz inequality (8) in regular cases, showing that L E,G = 1 and describing the constant c E,G . Since G and S are invariant by scaling the functions g i by positive scalars, we will assume hereafter in the article the following.

Scaling assumption:

g i B = 1 for all i ∈ { 1, . . . , r }. (9) 

Minimizers of the distance function

We introduce the regularity condition sufficient to prove that L E,G = 1. This is a standard condition in optimization (see [Ber99, sec. 3.3.1]), which implies the so-called Karush-Kuhn-Tucker (KKT) conditions [Ber99, prop. 3.3.1].

Definition 2.3. Let x ∈ S (g). We define the active constraints at x are the constraints g i 1 , . . . , g i m such that g i j (x) = 0. We say that the Constraint Qualification Condition (CQC) holds at x if for all active constraints g i 1 , . . . , g i l at x, the gradients ∇g i 1 (x), . . . , ∇g i m (x) are linearly independent.

We start working locally. For z ∈ S we denote

I = I(z) = { i ∈ {1, . . . , r} | g i (z) = 0 }
the indices corresponding to the active constraints at z. For y ∈ D and z ∈ S such that E(y) = yz 2 we denote:

• g = g(y) = (g 1 (y), . . . , g r (y));

• g I = g I (y) = (g i (y) : i ∈ I);

• J = J(z) = Jac(g I )(z) =
∂g i ∂x j i∈I, j∈{1,...,r} the transposed Jacobian matrix at z, that is the matrix whose columns are the entries of the gradients ∇g i (z);

• N I = N I (z) = Gram(∇g i (z) : i ∈ I) = J t J the Gram matrix at z.
Definition 2.4. We denote σ J (z) = σ min (J(z)) be the smallest singular value σ min (J(z)) of J(z).

As

N I = J t J, notice that N -1 I 2 = σ min (N I ) -1 = σ min (J) -2 = σ J (z) -2 .
We show now how we can use J = J(z) to describe the cone of points y such that E(y) = d(y, S) = yz 2 .

Lemma 2.5. Let y ∈ R n \ S (g), and let z be a point in S = S (g) minimizing the distance of y to S, that is E(y) = d(y, S) = yz 2 . If { g i : i ∈ I } are the active constraints at z and the CQC hold, then there exist λ i ∈ R ≥0 such that:

y -z = i∈I λ i ∇(-g i )(z) = -Jλ. Proof. Fix y ∈ R n . Notice that y -x = - ∇ y-x 2 2 2
, where the gradient is taken w.r.t. x. Moreover z ∈ S such that d(y, S) = yz 2 is a minimizer of the following Polynomial Optimization Problem:

min x y -x 2 2 2 : g i (x) ≥ 0 ∀i ∈ {1, . . . , r}.
Since the CQC holds at z, we deduce from [Ber99, prop. 3.3.1] that the KKT conditions hold. In particular:

∇ y -z 2 2 2 = i∈I λ i ∇g i (z)
For some

λ i ∈ R ≥0 . Therefore y -z = - ∇ d(y,z) 2 2 = i∈I λ i ∇(-g i )(z).
Let λ = λ(y) := (λ i (y); i ∈ I) be the column vector in Lemma 2.5, so that (yz) = -Jλ. Note that λ(y) depends linearly on yz and is given by the formula

λ(y) = -N -1 I J t (y -z).
Then, using Taylor's expansion at z and Lemma 2.5, we obtain:

g I = g I (y) = J t (y -z) + h = -N I λ + h (10)
and the Mean-value form for the remainder in Taylor's theorem gives:

h 2 ≤ c 2 y -z 2 2 , ( 11 
)
where c 2 = c 2 (g) = max x∈D { Hess(g i ) 2 , i = 1, . . . , r} denotes an upper bound for the second derivative of g I on D.

We keep working locally at z ∈ S, and in particular considering only the active constraints at z, whose indexes are denoted I(z) ⊂ { 1, . . . , r }. Notice that, if y ∈ D \ S is close enough to z ∈ ∂S, then g i (y) ≤ 0 implies g i (z) = 0: so only the active constraints at z and negative at y determine the value of G(y) in a neighborhood of z. We introduce a notation to identify those indices:

I -= I -(y, z) = { j ∈ I = I(z) | g j (y) ≤ 0 }. ( 12 
)
Moreover we introduce the function G -(y) = j∈I -g j (y) 2 1 2 as an intermediate step between G and E. Indeed, it is easy to upper bound G -(y) in terms of G(y):

G -(y) = j∈I - g j (y) 2 1 2 ≤ |I -| max j∈I - g j (y) ≤ √ nG(y). ( 13 
)
For the last inequality, we are using the fact that CQC at z implies |I -| ≤ |I| ≤ n. So we only need to find an upper bound for E(y) in terms of G -(y). In order to do that, let g I (y) = g -(y) +g + (y), where:

• g -(y) = (min{0, g i (y) : i ∈ I}) and

• g + (y) = (max{0, g i (y) : i ∈ I}),
and notice that g -(y) 2 = G -(y). We proceed similarly to analyze the linear part of g I . In the sequel we denote

γ = γ(y) = J t (y -z) = -N I λ(y) -N I λ (14) 
the linear part of g I .

The idea is to show first the inequality for the linear part γ(y), and then extend it to g I . In particular we want to relate the norm yz 2 = yz, yz , computed with respect to the euclidean scalar product, with the norm of γ(y) w. r. t. another inner product. Exploiting (14), one see that

y -z, y -z = λ, λ N I = γ, γ N -1 I (15)
where •, • N I denotes the inner product induced by N I : λ, λ N I = λ t N I λ. Notice that both N I and N -1 I define an inner product since they are positive definite. As in the case of g I , let

Ĩ-= Ĩ-(y, z) = { i ∈ I(z) | γ i (y) ≤ 0 } (16)
and γ(y) = γ -(y) + γ + (y), where:

• γ -(y) = (min{0, γ i (y)} : i ∈ I) and

• γ + (y) = (max{0, γ i (y)} : i ∈ I).

Lemma 2.6. With the notation above, we have:

• γ -, γ N -1 I ≥ 0; • γ + , γ N -1 I ≤ 0 • γ + , γ -N -1 I ≤ 0 
Proof. For the first inequality notice that γ -, γ N -1 I = -γ t -λ = -i∈ Ĩ-γ i λ i ≥ 0 because all λ i are non-negative. A similar argument shows the second inequality. Finally γ + , γ -N -1

I = γ + , γ N -1 I - γ + , γ + N -1 I ≤ 0 as claimed.
The following observation, crucial for the sequel, shows that we can bound yz 2 only in terms of the negative γ i .

Proposition 2.7. With the notation above, we have:

y -z 2 ≤ 1 σ J (z) i∈ Ĩ- γ 2 i (y) 1 2 = 1 σ J (z) γ -2 (17)
where σ J (z) is the smallest singular value of J (see Definition 2.4).

Proof. Note that Lemma 2.6 implies the proposition since it shows that γ, γ N -1

I = γ + , γ N -1 I + γ -, γ + N -1 I + γ -, γ -N -1 I ≤ γ -, γ -N -1
I and this allows us to complete (15) to get (17):

y -z 2 = y -z, y -z ≤ γ, γ N -1 I ≤ γ -, γ -N -1 I ≤ 1 σ J (z) i∈ Ĩ- γ 2 i (y) 1 2 = 1 σ J (z) γ -2 .

Łojasiewicz distance inequality

We can now describe Łojasiewicz exponent and constant between E and G (see (8)) when Constraint Qualification Condition (Definition 2.3) holds. Let σ J = inf z∈∂S σ J (z) = inf z∈∂S σ min (J(z)). Notice that σ J > 0 as ∂S is compact and σ min (J(z)) is lower semicontinuous. Let I = I(z) and let I -= I -(y) = {i ∈ I : g i (y) ≤ 0}. Note that we do not have necessarily that I -= Ĩ-(see Equation (12) and Equation ( 16)): the sign of g i (y) might be different from the sign of γ i (z).

We want to move from γ to g I . To do this, we determine how close are g -and γ -.

Lemma 2.8. With the notation above, we have:

g -2 -γ -2 ≤ c 2 y -z 2 2 .
Proof. Note that if g i (y) and γ i (y) are of different signs then their absolute values are bounded by g i (y) -γ i (y) . Therefore, by standard triangle inequality,

g -2 -γ -2 = i∈I - g 2 i (y) 1/2 - i∈ Ĩ- γ 2 i (y) 1/2 ≤ i∈I (g i (y) -γ i (y)) 2 1/2 = h 2 ≤ c 2 y -z 2 2 ,
where the latter inequality follows from (11).

We first show the Łojasiewicz inequality with Ł E,G = 1 locally at z.

Proposition 2.9.

If E(y) = y -z 2 ≤ σ J 2c 2 then E(y) ≤ 2 √ n σ J G(y). Proof. Fix y S such that E(y) ≤ σ J 2c 2 and z ∈ ∂S such that y -z 2 = E(y). If E(y) ≤ σ J 2c 2 or, equiva- lently c 2 σ J E 2 (y) ≤ 1
2 E(y), then by Proposition 2.7 and Lemma 2.8 we have

E(y) = y -z 2 ≤ 1 σ J γ -2 ≤ 1 σ J g -2 + 1 σ J c 2 y -z 2 2 ≤ 1 σ J g -2 + 1 2 E(y).
This implies the claimed inequality as

g -2 = G -(y) ≤ √ n G(y) (since |I -(z, y)| ≤ |I(z)| ≤ n under CQC at z).
We are finally able to prove that L E,G = 1. We denote

U = { y ∈ D | E(y) < σ J 2c 2 } the open neighborhood of S of points at distance < σ J 2c 2 .
Theorem 2.10. Suppose that the CQC holds at every point of S (g). Then, for all y ∈ D,

E(y) ≤ c E,G G(y), with c E,G = sup{ E(y) G(y) | y ∈ D \ S} ≤ max( 2 √ n σ J , diam(D) G *
), where

G * = min y∈D\U G(z) > 0 and diam(D) = max x,y∈D x -y 2 . Proof. If E(y) ≤ σ J 2c 2
then by Proposition 2.9 we have

E(y) ≤ 2 √ n σ J G(y).
Otherwise:

E(y) = y -z ≤ diam(D) ≤ diam(D) G(y)
G * , since y, z ∈ D (notice that, as G(x) > 0 on the compact set D \ U , we have G * > 0).

We want now to give another description of the constant c E,G in Theorem 2.10 as distance from singular systems, following the approach of [START_REF] Cucker | A Numerical Algorithm for Zero Counting. II: Distance to Ill-posedness and Smoothed Analysis[END_REF]. In other words, we show how c E,G can be interpreted as the condition number of g. See also [START_REF] Bürgisser | Condition: The Geometry of Numerical Algorithms[END_REF] for more about condition numbers.

For

d = (d 1 , . . . , d r ), let R[X] d ≔ R[X] d 1 × • • • × R[X] d r
denote the systems of polynomials of bounded degree, which we equip with the Euclidean norm • 2 with respect to the monomial basis in any component (another choice could be the apolar or Bombieri-Weil norm • d i in degree ≤ d i in every component, see [START_REF] Cucker | A Numerical Algorithm for Zero Counting. II: Distance to Ill-posedness and Smoothed Analysis[END_REF]).

We say that a system g is singular if there exists a point in x ∈ R n such that x ∈ S (g) and the active constraints have rank deficient Jacobian at x. In other words, this is the set of systems g such that CQC does not hold at some point of the semi-algebraic set S defined by g. Formally:

Sing ≔ g ∈ R[X] d | ∃x ∈ R n : Z⊂{1,...,r} g j (x) = 0 ∀j ∈ Z ∧ g j (x) > 0 ∀j Z ∧ rank Jac(g j (x) : j ∈ Z) < min(n, |Z|) (18)
We want to relate the constant c D in Theorem 2.10 with d(g, Sing), the distance from g to the singular systems induced from the Euclidean norm. Notice that Sing is a semi-algebraic set (by Tarski-Seidenberg principle [BCR98, th. 2.2.1] or quantifier elimination[BCR98, prop. 5.2.2]), and therefore d(•, Sing) is a well-defined continuous semi-algebraic function [BCR98, prop. 2.2.8].

Lemma 2.11. Under the normalization assumption (2) and with the previous notations, we have d(g, Sing) ≤ √ 2σ J .

Proof. Let z ∈ ∂S be such that σ J = σ min (J(z)). Since the CQC hold at z, rank J(z) is maximal. On the following, we assume that all the inequalities are active at z, the general case being a trivial generalization. By the Eckart-Young theorem, the distance of J(z) from rank deficient matrices is equal to σ min (J(z)): there exists P (of rank one) such that J(z) -P has not maximal rank and P F = P 2 = σ min (J(z)). Now consider a system l of affine equations vanishing at z and such that Jac(l)(z) = P. Therefore, gl ∈ Sing since Jac(gl)(z) = J(z) -P is rank deficient and (gl)(z) = 0. Now, notice that: d(g, Sing) ≤ g -(gl) 2 = l 2 Write l = l 1 , . . . l r and l i (x) = l i0 + n j=1 l ij x j . By hypothesis l i (z) = 0 and z 2 2 ≤ 1 (from the normalization assumption). Therefore:

l 2 i0 = ( n i=1 l i x i ) 2 ≤ (l i1 , . . . , l in ) 2 2 z 2 2 ≤ n j=1 l 2 ij Notice also that σ 2 J = P 2 F = r i=1 n
j=1 l 2 ij , and thus:

d(g, Sing) 2 ≤ l 2 2 = r i=1 n j=1 l 2 ij + r i=1 l 2 i0 ≤ 2 r i=1 n j=1 l 2 ij = 2σ 2 J
which concludes the proof.

In order to measure the distance to Sing, we introduce a global equivalent to G * in theorem 2.10. We define then G * ≔ min

y∈R n \U G(z) > 0.
Lemma 2.12. Let U be as in Theorem 2.10 and assume that G * = G(y) is not attained on ∂U . Then

1 G * ≤ √ r d(g, Sing) -1 .
Proof. Without loss of generality assume that g 1 (y) = -G * . Since y ∂U we have ∇g 1 (y) = 0. Then the system (g 1 + G * , . . . , g r + G * ) ∈ Sing is a singular system, and g -

(g 1 + G * , . . . , g r + G * ) 2 = √ r G * .
Therefore d(g, Sing) ≤ √ r G * , and finally 1

G * ≤ √ r d(g,Sing) . Lemma 2.13. Assume that G * = G(y) is attained at y ∈ ∂{ y ∈ D | E(y) ≤ σ J 2c 2 }. Then 1 G * ≤ 4 √ nc 2 σ 2 J . Proof. Since E(y) = σ J
2c 2 , we can apply Proposition 2.9:

σ J 2c 2 = E(y) ≤ 2σ -1 J g -2 ≤ 2 √ n σ -1 J G(y) = 2 √ n σ -1 J G * . Therefore 1 G * ≤ 4 √ nc 2 σ -2 J .
We deduce from these two lemmas the following bound on Łojasiewicz constant in terms of the distance from g to the singular systems Sing: Theorem 2.14. Suppose that the CQC holds at every point of S (g). Then, for all y ∈ D,

E(y) ≤ max c d(g, Sing) , 8 diam(D) √ n c 2 d(g, Sing) 2 G(y),
where

c 2 = c 2 (g) = max x∈D { Hess(g i (x)) 2 , i = 1, . . . , r} and c 1 = max(2 √ 2n, diam(D) √ r).
Proof. We estimate the constant c E,G = sup{

E(y) G(y) | y ∈ D \ S} ≤ max( 2 √ n σ J , diam(D) G *
) in Theorem 2.10 using the previous lemma. In particular, from Lemma 2.11 we have 1 σ J ≤ √ 2 d(g,Sing) , and using Lemma 2.12 and Lemma 2.13 we obtain:

2 √ n σ J ≤ 2 √ 2n d(g, Sing) diam(D) G * ≤ diam(D) G * ≤ diam(D) max( 4 √ nc 2 σ 2 J , √ r d(g, Sing)
)

≤ diam(D) max( 8 √ nc 2 d(g, Sing) 2 , √ r d(g, Sing)
)

Choosing c 1 = max(2 √ 2n, diam(D) √ r) we then see that c E,G ≤ max c d(g,Sing) , 8 diam(D) √ n c 2 d(g,Sing) 2
, concluding the proof.

Remark 1. Under the CQC condition, we have analyzed in Theorem 2.10 and Theorem 2.14 the Łojasiewicz constant, giving estimates for it, and moreover showing that the Łojasiewicz exponent is equal to one. On the contrary when the problem is not regular the bounds on the exponent L E,G can be large. We have:

L E,G ≤ d(g)(6d(g) -3) n+r see [KS15, sec. 3.1], [ KSS16 
] and the errata [START_REF] Kurdyka | Correction to: Metric Properties of Semialgebraic Mappings[END_REF]. Recently, a new bound independent on the number of inequalities r has been shown in [BMN22, th. 2]:

L E,G ≤ d(g) O(n 2 ) .
Finally, let us recall that the first quantitative estimation for the Łojasiewicz inequality providing a bound with a single exponential in n was given in [START_REF] Solernó | Effective Łojasiewicz Inequalities in Semialgebraic Geometry[END_REF].

Remark 2. The function G is a semialgebraic distance to S, since x ∈ S if and only if G(x) = 0. Using the language of error bounds in optimization, the function G can also be considered as a residual function, see [START_REF] Pang | Error bounds in mathematical programming[END_REF]. In this context, a result analogous to Theorem 2.10 and Theorem 2.14 has been proven in [START_REF] Lewis | Error Bounds for Convex Inequality Systems[END_REF], where they show that the Łojasiewicz exponent is equal to one and give a description of the Łojasiewicz constant when the defining inequalities g are convex functions.

Remark 3. The CQC condition implies that the number of active constraints at every z ∈ S (g) is ≤ n. This shows that every point y ∈ R n , that has z ∈ S as a closest point in S, belongs to the convex cone with vertex z generated by the gradients of the active constraints, see lemma 2.5. We could have replaced the CQC with the (more general) conclusion of lemma 2.5 as assumption: with minor adjustments, the proof carries over to this more general context. In the convex case, this condition is called Abadie's Constraint Qualification, see e.g. see [START_REF] Pang | Error bounds in mathematical programming[END_REF]. Abadie's CQ is the condition used in [START_REF] Lewis | Error Bounds for Convex Inequality Systems[END_REF] to prove that the Łojasiewicz exponent is equal to 1 in the convex case.

The Effective Positivstellensatz

We analyze now how non-negative polynomials Pos(S) can be approximated by polynomials that can be represented in terms of sums of squares. We quantify how the complexity of this representation, that is the degree of the terms, depends on the non-vanishing of the polynomial and Łojasiewicz exponent and constant of D and G.

For l ∈ N, let Σ 2,l ⊂ R[X] be the set of sums of squares of degree at most l, that is, the polynomials of the form p = i p 2 i with p i ∈ R[X] of degree ≤ l 2 . We define

Q l = Σ 2,l + (1 - n i=1 X 2 i )Σ 2,l-2 + g 1 Σ 2,l-d 1 + • • • + g r Σ 2,l-d r ,
where

d i = deg(g i ) for i = 1, . . . , r. Recall that F(x) = -1 f B min(f -f * , 0) and G(x) = -min( g 1 (x) g 1 B , . . . , g r (x) g r B
, 0) = -min(g 1 (x), . . . , g r (x), 0), since by scaling g i we can assume that g i B = 1. We have ∀x ∈ D, F(x) ≥ 0, G(x) ≥ 0 and ∀x ∈ S, F(x) = G(x) = 0. Moreover G(x) = 0 implies that x ∈ S and F(x) = 0. Also, F(x) > 0 implies G(x) > 0. By Łojasiewicz theorem, there exits c F,G > 0, L F,G ∈ R such that ∀x ∈ D,

F(x) L F,G ≤ c F,G G(x). ( 19 
) Theorem 3.1 (Effective Positivstellensatz). Let f ∈ R[X] and S = {x ∈ D | g 1 (x) ≥ 0, . . . , g r (x) ≥ 0} with S ⊂ B = {x ∈ R n | 1 -i x 2 i ≥ 0}. If ∀x ∈ S, f (x) ≥ f * > 0, then f ∈ Q m for m = O(n 2 r d(g) 6 c 7 ε -(7L+3) ).
where 

d(g) = max i deg(g i ), ε = f * f B and c = c F,G , L = L F,G

Approximation of a plateau function

The first ingredient is an approximation of a plateau function by a sum of squares polynomial with a control of the error and of the degree of the polynomial. Recall that we are working under the scaling assumption (9): g i B = 1 for i = 1, . . . , r. Proposition 3.2. For i = 1, . . . , s and δ > 0, ν > 0, there exists h i,δ,ν ∈ R[X] such that

• For g i (x) ≥ 0, |h i,δ,ν (x)| ≤ 2ν. • For g i (x) ≤ -δ, |h i,δ,ν (x)| ≥ 1 2 .
• h i,δ,µ ≤ 1.

• h i,δ,ν ∈ Σ 2,m with m = O(n d(g) 2 δ -2 ν -1 ).
Proof. To construct such a polynomial, we use the following plateau function. For δ > 0, ν > 0, let ϕ ∈ C 0 ([-1, 1]) be defined as:

ϕ =          1 -1 ≤ x ≤ -δ √ ν + 3 x 2 δ 2 (1 - √ ν) + 2 x 3 δ 3 (1 - √ ν) -δ ≤ x ≤ 0 √ ν 0 ≤ x ≤ 1 We verify that ϕ is in C 1 ([0, 1]), that ϕ(0) = √ ν, ϕ(-δ) = 1 and that max x∈[-1,1] |ϕ ′ (x)| ≤ 2 δ . Let ϕ i = ϕ(g i ) ∈ C 0 (D). We have max x∈D |ϕ i | = 1.
We are going to approximate ϕ i by a polynomial, using Bernstein operators defined in (3). We deduce from Theorem 1.7 that

|B m (ϕ i ; x) -ϕ i (x)| ≤ 2ω(ϕ i ; 2n √ m ) ≤ 2 max x∈[-1,1] |ϕ ′ (x)| ω(g i ; 2n √ m ) ≤ 8 δ max x∈D ∇g i (x) 2 n √ m ( 20 
)
Using Markov inequalities (Theorem 2.2), we have that max

x∈D ∇g i (x) 2 ≤ 4 d(g) 2 √ n+1 g i ∞ ≤ 4 d(g) 2 √ n+1
where d(g) = max i deg(g i ). Thus (20) implies that

|B m (ϕ i ; x) -ϕ i (x)| ≤ 32 n 1 2 d(g) 2 δ -1 m -1 2 .
Let us take m ′ = O(n d(g) 4 δ -2 ν -1 ),

s i (x) = B D m ′ (ϕ i ; x) = α∈N n ,|α|≤m ′ ϕ i (θ( α m ′ )) B D m ′ ,α (x)
and h i,δ,ν = h i = s 2 i so that for x ∈ D,

|s i (x) -ϕ i (x)| ≤ 1 4 √ ν
Then we have

• g i (x) ≥ 0 implies s i (x) ≤ ϕ i (x) + 1 4 √ ν ≤ 5 4 √ ν and h i (x) = s i (x) 2 ≤ 25 16 ν ≤ 2ν. • g i (x) ≤ -δ implies s i (x) ≥ 1 -1 4 √ ν and h i (x) ≥ (1 -1 4 √ ν) 2 ≥ 1 2 for ν small enough. • h i ≤ s i 2 ≤ 1. • h i = s 2 i ∈ Σ 2,m with m = 2m ′ = O(n d(g) 2 δ -2 ν -1
). This concludes the proof of the proposition.

Exponents in the Effective Positivstellensatz

We can now prove Theorem 3.1.

Proof of Theorem 3.1. Scaling g i by 1

g i B
does not change the definition of S and the bound in Theorem 3.1. Therefore we can assume hereafter that g i B = 1. Let

p = f -λ r i=1 h i g i . ( 21 
)
where h i = h i,δ,ν is defined in Proposition 3.2. We consider two cases:

1) F(x) > f * 4 f B
. Then by Łojasiewicz Inequality (6), G(x) > δ := c -1 ε L . There exists i ∈ [1, . . . , r] such that g i (x) ≤ -δ, say i = 1. Then h 1 (x) ≥ 1 2 and h i (x) ≤ 2ν if g i (x) ≥ 0. We deduce that for x ∈ D,

p(x) ≥ f (x) + λ 1 2 δ -2 λ ν(r -1) ≥ f (x) + λ δ 4 + λ δ 4 -2 ν(r -1) . Let λ ≫ 0 such that f (x) + λ δ 4 ≥ 1 4 f * (i.e. λ ≥ 5 δ f B since 1 4 f * -f (x) ≤ 5 4 f B ) and let ν be small enough such that δ 4 -2ν(r -1) ≥ 0 (i.e. ν ≤ δ 8r ). Then p(x) ≥ 1 4 f * . 2) F(x) ≤ f * 4 f B . In this case, f (x) ≥ 3 4 f * and p(x) ≥ 3 4 f * -2r λ ν. Then p(x) ≥ 1 4 f * for 2 r λ ν ≤ 1 2 f * , i.e. ν ≤ f * 4 r λ . We deduce that for δ = c -1 ε L , λ = 5δ -1 f B = 5cε -L f B and ν ≤ min( δ 8r , f * 4rλ ) = 1 20 r -1 δ ε = 1 20 c -1 ε L+1 , we have p(x) ≥ 1 4 f * > 0 for all x ∈ D. Let η = max{deg(f ), deg(h i g i ), i = 1, . . . , r}. Then deg(p) ≤ η = O(n d(g) 3 δ -2 ν -1 ) = O(n d(g) 3 (cε -L ) 2 (cε -(L+1) )) = O(n d(g) 3 c 3 ε -(3L+1) ). and we have p B,η = f -λ r i=1 h i g i B,η ≤ f B,η + λ r i=1 h i B,η-deg(g i ) g i B,deg(g i ) ≤ f B,deg(f ) + λr ≤ (1 + 5cε -L r) f B ≤ (6 r cε -L ) f B for cε -L ≥ 1.
Now, we use the property of convergence of the control polygon in the Bernstein basis on D to the graph of the function. By Corollary 1.10 applied to the polynomial p defined in (21), we get that for

m = O(deg(p) 2 p B,η p * ) = O(n 2 d(g) 6 c 6 ε -(6L+2) rcε -L f B f * ) = O(n 2 r d(g) 6 c 7 ε -(7L+3) )
the Bernstein coefficients p m,α in the Bernstein basis (B D m,α ) |α|≤m are non-negative. We deduce that p belongs to the preordering generated by 1 + X 1 , . .

. , 1 + X n , 1 -n -1 2 (X 1 + • • • + X n ) in degree m and conclude as in [BM22, lem. 3.8] that p ∈ Σ 2,m+n + (1 -X 2 1 -• • • -X 2 n ) Σ 2,m+n-2 . Therefore f = p + λ r
i=1 h i g i belongs to Q m+n , which concludes the proof.

Some consequences, remarks and perspectives

The exponent of ε -1 in the bound of Theorem 3.1 depend on f . In order to avoid this dependency of the exponent on f , we can use a Łojasiewicz inequality (8) between E = d(•, S) and G and a consequence of Markov inequality to get the following corollary:

Corollary 3.3. Let f ∈ R[X] with d = deg(f ) and S = {x ∈ D | g 1 (x) ≥ 0, . . . , g r (x) ≥ 0} with S ⊂ B = {x ∈ R n | 1 -i x 2 i ≥ 0}. If ∀x ∈ S, f (x) ≥ f * > 0, then f ∈ Q m for m = O(n 2 r d(g) 6 2 Ld 2 L c7 ε -(7 L+3) ).
where

d(g) = max i deg(g i ), ε = f * f and c = c E,G , L = L E,G
are respectively Łojasiewicz constant and exponent in Inequality (8).

Proof. By inequalities (7) and (8), we have for x ∈ D,

F(x) L E,G ≤ (2d 2 ) L E,G E L E,G ≤ 2 L E,G d 2L E,G c E,G G(x).
By applying Theorem 3.1 with c = 2 L E,G d 2L E,G c E,G and L = L E,G , we get the expected bound.

We describe the main differences between Theorem 3.1 and the result in [START_REF] Baldi | On the effective Putinar's Positivstellensatz and moment approximation[END_REF]. First, the bound in Theorem 3.1 uses Łojasiewicz inequality (6), while in [START_REF] Baldi | On the effective Putinar's Positivstellensatz and moment approximation[END_REF] the authors consider the Łojasiewicz inequality (8), as in Corollary 3.3. Not only it is more natural to work with Łojasiewicz inequality (6) instead of (8), but it also gives potentially significantly better bounds. For an illustration of this phenomenon, see e.g. [KL10, sec. 4], where the authors discuss the gap between Lasserre's hierarchies based on the quadratic module and the preordering defining the unit hypercube. Another advantage of Theorem 3.1 over Corollary 3.3 is that in the case of an exact representation of ff * in Q(g), we have L = 1 (See. Proposition 3.5).

On the other hand, Corollary 3.3 allows to deduce a general convergence rate for Lasserre's hierarchies, as done in [START_REF] Baldi | On the effective Putinar's Positivstellensatz and moment approximation[END_REF]sec. 4]. The convergence rate that can be deduced from Corollary 3.3 improves the one in [START_REF] Baldi | On the effective Putinar's Positivstellensatz and moment approximation[END_REF], as there is no dependence on the number of variables n in the exponent of ε. As a corollary, we also obtain improved convergence rates for the Haudorff distance of feasible pseudo moment sequences to moment sequences in the Lasserre's moment hierarchy, see [BM22, sec. 5].

The second important difference between this article and [START_REF] Baldi | On the effective Putinar's Positivstellensatz and moment approximation[END_REF] is the norm used to define ε = ε(f ). In this article, we use the max norm of the coefficients of f in the Berstein basis on the scaled simplex D. This allows to use [START_REF] Powers | A New Bound for Pólya's Theorem with Applications to Polynomials Positive on Polyhedra[END_REF], and leads to a bound with no n in the exponent of ε. On the other hand, in [START_REF] Baldi | On the effective Putinar's Positivstellensatz and moment approximation[END_REF] the norm used to define ε is the max norm on [-1, 1] n and the approximation result in [START_REF] Laurent | An effective version of Schmüdgen's Positivstellensatz for the hypercube[END_REF] is exploited. This leads to a convergence rate with n in the exponent of ε. We can also rephrase Theorem 3.1 using the max norm on D using the result in [START_REF] Lyche | On the Sup-norm Condition Number of the Multivariate Triangular Bernstein Basis[END_REF], which can be stated, with our notation, as follows: When some regularity conditions hold, the bounds on the representation of positive polynomials can be simplified: if the CQC hold, we can apply the results of Section 2.2 and obtain the following corollary. where c can be bounded using (7) and Theorem 2.10 or Theorem 2.14.

f B,d ≤ K d (R n ) f ∞ where K d (R n ),
Notice that in Corollary 3.4 the exponent is independent of f . In this case, the analysis performed to estimate the Łojasiewicz exponent is then necessarily connecting the distance function D and the euclidean distance E, rather than connecting directly F and G.

The simplest case where we can apply Corollary 3.4 is when S is the unit ball defined by the single polynomial g = 1 -X 2 2 . This case can be analyzed, by specializing a general result, in [MM22, cor. 1], where the authors prove a representation result for strictly positive polynomials (that includes furthermore a denominator) with degree of order ε -65 . In this case, Corollary 3.4 naturally gives a representation with order ε -10 , improving [MM22, cor. 1]. In the case of the unit ball, to the best of our knowledge the best available result gives a bound of the order ε -1/2 , and it is developed with a specific technique in [START_REF] Slot | Sum-of-squares hierarchies for polynomial optimization and the Christoffel-Darboux kernel[END_REF].

As a perspective of this work, we would like to investigate the tightness of the bound. We can notice that if ff * ∈ Q(g) with f * ≥ 0 then f ∈ Q ℓ (g) for some ℓ ∈ N and the bound on ℓ should not depend on ε. In this case, we see that L ≤ 1 as shown in the following proposition. Proposition 3.5. Assume that ff * = s 0 + s 1 g 1 + • • • + s r g r ∈ Q(g) and let F, G be as in Section 2. Then: . Therefore, if c = 1 f max{ r i=1 g i s i (x) | x ∈ ∆ } and I -(x) = {i ∈ {1, . . . , r : g i (x) ≤ 0} we have:

F(x) = 1 f (f (x) -f * ) = - 1 f s 0 (x) + s 1 (x)g 1 (x) + • • • + s r (x)g r (x) ≤ 1 f i∈I -(x) s i (x)(-g i (x)) = 1 f i∈I -(x)
g i s i (x) -g i (x) g i ≤ cG(x).

This shows that F(x) ≤ cG(x) for all x ∈ D.

This proposition suggests that the exponent of ε in a tight bound for the Effective Positivstellensatz should vanish when L = 1.

A particular case when ff * ∈ Q ℓ (g) is given by the so called Boundary Hessian Conditions (BHC), introduced by Marshall in [START_REF] Marshall | Representations of non-negative polynomials having finitely many zeros[END_REF]. It would be interesting to see if, conversely, L ≤ 1 implies regularity conditions such as BHC and so that ff * ∈ Q ℓ (g).

Another direction for future investigations is the analysis of worst case bounds in terms of the bit size and degree of the input polynomials with rational coefficients and to compare these bounds with those in [START_REF] Lombardi | An Elementary Recursive Bound for Effective Positivstellensatz and Hilbert's 17th Problem[END_REF].

  are respectively the Łojasiewicz constant and exponent in Inequality (19). The proof follows the same lines as the proof of [BM22, th. 1.7], but we work on the scaled simplex D instead of the box [-1, 1] n and we highlight the dependency of the bounds on Łojasiewicz constant c, Łojasiewicz exponent L and on ε.

  given exactly in[START_REF] Lyche | On the Sup-norm Condition Number of the Multivariate Triangular Bernstein Basis[END_REF] th. 4.2], has asymptotic behaviour as in [LS97, th. 5.1] when d tends to infinity. Thus, if we use the norm f ∞ instead of f B,m to define ε, we need to multiply by the extra factor K m (R n ) -(7L+3) in Theorem 3.1 and Corollary 3.3.

  Corollary 3.4. With the hypothesis of Theorem 3.1, if the CQC hold for every x ∈ S and f > 0 on S then f ∈ Q m for m = O(n 2 r d(g) 6 c 7 ε -10 ),

F

  (x) ≤ cG(x) for all x ∈ D, where c = 1 f max{ r i=1 g i s i (x) : x ∈ D }. Proof. Let ff * = s 0 + s 1 g 1 + • • • + s r g r ∈ Q(g) with s i ∈ Σ 2 and x ∈ D. There are two cases. If f (x) > f * then 0 = F(x) ≤ cG(x) for any c ∈ R >0 . If f (x) ≤ f * then F(x) = f * -f (x) f
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