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Abstract

The representation of positive polynomials on a semi-algebraic set in terms of sums of
squares is a central question in real algebraic geometry, which the Positivstellensatz answers.
In this paper, we study the effective Putinar’s Positivestellensatz on a compact basic semi-
algebraic set S and provide a new proof and new improved bounds on the degree of the rep-
resentation of positive polynomials. These new bounds involve a parameter ε measuring the
non-vanishing of the positive function, the constant c and exponent L of a Łojasiewicz inequal-
ity for the semi-algebraic distance function associated to the inequalities g = (g1, . . . ,gr ) defining
S. They are polynomial in c and ε−1 with an exponent depending only on L. We analyse in
details the Łojasiewicz inequality when the defining inequalties g satisfy the Constraint Qual-
ification Condition. We show that, in this case, the Łojasiewicz exponent L is 1 and we relate
the Łojasiewicz constant c with the distance of g to the set of singular systems.

1 Introduction

A fundamental difference between Algebraic Geometry and Real Algebraic Geometry is the use of
the ordering of the real numbers. A central question in Real Algebraic Geometry is thus how to
characterise real polynomials satisfying non-negativity and positivity conditions on a given domain,
and not only those vanishing on it. This problem has attracted a lot of research in the last decades,
also due to the connections with global optimization techniques. See e.g. [Las01; Mar08; Lau09;
Las15] or more recently [Pow21]. The purpose of this article is to present a quantitative version
of Putinar’s Positivstellensatz, a representation theorem for positive polynomials on a compact
domain defined by polynomial inequalities.

The first example of globally non-negative polynomials f ∈ R[X] = R[X1, . . . ,Xn] are the Sums
of Squares polynomials:

Σ
2 = Σ

2[X]≔
{
f ∈ R[X] | ∃r ∈N, gi ∈ R[X] : f = g21 + · · ·+ g2r

}
.

It is known since Hilbert [Hil88] that the convex cone of globally non-negative polynomials
Pos(Rn) contains properly the Sums of Squares (SoS) cone for n ≥ 2, and the first explicit ex-
ample of positive, non-SoS polynomial was given by Motzkin [Mot67]. The complete description
of Pos(Rn) in terms of SoS was proven by Artin [Art27]: f ∈ Pos(Rn) if and only if f can be written
as a ratio of two SoS polynomials. This introduces a denominator in the description of f .

In this paper we investigate the description of positive polynomials on basic closed semi-algebraic
sets:

S = S (g) = S (g1, . . . , gr )≔ {x ∈ Rn | g1(x) ≥ 0, . . . , gr (x) ≥ 0 },
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in the particular case where S is compact. A natural subcone of the cone Pos(S) of non-negative
polynomials on S is the quadratic module:

Q = Q(g)≔ Σ
2 +Σ

2 · g1 + · · ·+Σ
2 · gr

and the preordering O = O(g)≔ Q(∏j∈J gj : J ⊂ {1, . . . , r}). While to characterise non-negative poly-
nomials in terms of SoS and preorderings a denominator is necessary [Kri64; Ste74], Schmüdgen
[Sch91] showed that a denominator free representation exists for strictly positive polynomials on
a basic compact semi-algebraic sets.

Theorem 1.1 (Schmüdgen’s Positivstellensatz [Sch91]). Let S (g) be a compact basic semi-algebraic
set. Then f > 0 on S (g) implies f ∈ O(g).

This result greatly simplifies the representation. However the representation still needs a num-
ber of terms that is exponential in the number of defining inequalities of S , since the conclusion
of the theorem is f ∈ O(g) and not f ∈ Q(g). The problem is solved when one introduces the
Archimedean property.

Definition 1.2. Denote ‖X‖22 = X2
1 + · · ·+X2

n . We say that a quadratic module Q is Archimedean if

there exists R ∈R such that R2 − ‖X‖22 ∈Q.

Notice that the Archimedean condition for Q = Q(g) implies the compactness of S = S (g).
Moreover, as a corollary of Theorem 1.1 we have that O(g) is Archimedean if S is compact. This
result is not true for quadratic modules: there are examples with S (g) compact but Q(g) not
Archimedean, see e.g. [PD01, ex. 6.3.1].

With the Archimedean conditionwe can introduce the representation that wewill study through
the paper, based on the following theorem:

Theorem 1.3 (Putinar’s Positivstellensatz [Put93]). Let S (g) be a basic semi-algebraic set. If Q(g) is
Archimedean, then f > 0 on S (g) implies f ∈ Q(g).

The aim of the paper is to present a quantitative version of Theorem 1.3, giving a degree bound
for the representation f = s0+s1g1+ · · ·+srgr ∈ Q(g) of a polynomial f positive on S (g). This bound
is presented in Theorem 3.1. It involves ε, a measure for how f is close to have a zero on S , and a
Łojasiewicz exponent L and coefficient c, that compare the behaviour of f and of the inequalities
g1, . . . , gr on a scaled simplex D containing S .

This problem is also known as the Effective Putinar’s Positivstellensatz or Effective Schmüdgen’s
Positivstellensatz and it has been investigated for the first time by Schweighofer in [Sch04] for
Schmüdgen’s theorem, and by Nie and Schweighofer in [NS07] for Putinar’s theorem. The bound
obtained for Schmüdgen’s theorem were significantly better than those for Putinar’s theorem:
[Sch04] has a polynomial dependence in ε, while [NS07] has an exponential one. It was an open
question until recently if a polynomial dependence on ε was possible for Putinar’s theorem, and
a positive answer was given by the first two authors in [BM22].

The Effective Positivstellensatz has also been studied for specific semi-algebraic sets, where
special techniques can be applied to obtain better bounds: see for instance [LS21] for Schmüd-
gen’s theorem on the unit box, [Slo21] for Schmüdgen’s theorem on the unit ball and simplex and
[FF20] for Putinar’s theorem on the unit sphere. Bounds on the size of exact representations (with
rational coefficients if the input polynomials have rational coefficients) have also been investigated
e.g. in [MSED21], using the doubly exponential bounds of [NS07] with bit size bounds which are
doubly exponential in the size of the input coefficients.

Łojasiewicz inequalities play a central role in these developments. Classical Łojasiewicz in-
equalities are often stated as follows, see [BCR98, cor. 2.6.7].

Theorem 1.4. Let B be a closed bounded semi-algebraic set of Rn and let f ,g be two continuous semi-
algebraic functions from B to R such that f −1(0) ⊂ g−1(0). Then there exists c,L ∈R>0 such that ∀x ∈ B:

|g(x)|L ≤ c|f (x)|. (1)
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One may show that the smallest exponent L for which the inequality (1) holds is always a
strictly positive rational number. It is called the Łojasiewicz exponent. Then, having L fixed, the
smallest c > 0 such that this inequality holds is called the Łojasiewicz constant (relative to L).

We apply the above Łojasiewicz Inequality to three functions vanishing on S , namely the func-
tion F(x) defined in (4), the semi-algebraic distance to S , denoted G(x) and defined in (5), and the
Euclidean distance function to S denoted E(x). The Euclidean distance to S , denoted E(x), plays
an auxiliary but fundamental role.

In Theorem 2.10, under the Constraint Qualification Conditions assumption, we give the Ło-
jasiewicz Inequality bound on E(x) in terms of G(x). It is known by [BM22] that in this case L = 1
and we give in Theorem 2.10 an explicit bound on the Łojasiewicz constant. While the case of con-
vex inequalities has been analyzed in the optimization community in [LP98], we don’t not know
another place where the Łojasiewicz constant has been studied for general g.

Finally let us recall that the Łojasiewicz Inequality for the distance function to the zero set
of a polynomial or a real analytic function is the original one and was introduced in the polyno-
mial case by Hörmander [Hör58] and in the analytic case by Łojasiewicz [Ło59], in both cases to
show the divisibility of Schwartz distributions by these functions. Therefore such an inequality is
sometimes called Hörmander-Łojasiewicz Inequality.

1.1 Contributions and outline

In this paper, we develop a new analysis of the Effective Positivstellensatz, improving the existing
bounds on the degree of representation of positive polynomials and simplifying their descrip-
tions. The approach improves the degree bounds obtained in [NS07; Ave13; KS15] from expo-
nential bounds in ε−1 to a polynomial bound in ε−1, and the results in [BM22], by removing the
dependency of the exponent of ε−1 on the dimension n.

To obtain these new improved bounds, we analyse the Łojasiewicz inequality connecting the
semi-algebraic distance functionG associated to g and the distance function F associated to f , that
can be used directly in the proof of the Effective Positivstellensatz. Using a Markov inequality, we
deduce a Łojasiewicz inequality, which exponent is independent of f . The proof technique is
similar to the one in [BM22]. The main difference is the choice of the simpler semi-algebraic set
containing S that we reduce to. While in [BM22] a unit box containing S is used and a recent
Effective Schmüdgen’s Positivstellensatz [LS21] is applied, in the main Theorem 3.1 we reduce to
a simplex and apply an effective version’s of Polya’s theorem [PR01] (or the convergence property
of the control polygon for the Bernstein basis).

We analyse in details the Łojasiewicz inequality between F and G in the regular case, i.e. when
the defining inequalities g satisfy the Constraint Qualification Condition. The main contribution
in the regular case is Theorem 2.10, where the exponent is proven to be equal to one and an
explicit bound for the constant in terms of geometric properties of the g is given. In Theorem 2.14
we describe another interpretation of the constant as the distance from g to the set of singular
systems, in the spirit of [Cuc+09].

In the rest of Section 1, we provide notations and preliminary material, and recall approxi-
mation properties needed in the proof of the Effective Positivstellensatz. In Section 2, we study
Łojasiewicz inequalities between different distance functions and analyse in detail Łojasiewicz
exponent and constant, when Constraint Qualification Conditions hold. In Section 3 we prove
the Effective Positivstellensatz and the new bound in Theorem 3.1. We conclude by remarks and
perspectives in Section 3.3.

1.2 Notations and conventions

Let R[X1, . . . ,Xn] =R[X] be the ring of polynomials in the variablsX = (X1, . . . ,Xn) with coefficients
in R. For g1, . . . , gr ∈ R[X], let S = S (g) ≔ {x ∈ R

n | gi (x) ≥ 0, ∀i ∈ {1, . . . , r} } be the basic semi-
algebraic set defined by g1, . . . , gr .
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Recall that a quadratic module Q(g) is called Archimedean if R2 − ‖X‖22 ∈ Q(g) for some R ∈ R,
see Definition 1.2. However, to simplify the proofs we assume that R = 1.
Normalization assumption:

1−X2
1 − · · · −X2

n ∈ Q(g). (2)

We can always be in this setting by a change of variables if we start with an Archimedean quadratic
module. Indeed, if R2 − ‖X‖22 ∈ Q(g) then 1− ‖X‖22 ∈ Q(g(RX)) (i.e. the quadratic module generated
by gi (RX1, . . . ,RXn)). Notice also that the normalization assumption implies that S is contained in
the unit ball centered at the origin.

In the paper, we denote

D ≔ {x ∈ Rn | 1+ x1 ≥ 0, . . . ,1+ xn ≥ 0,
√
n− x1 − · · · − xn ≥ 0}

a simplex, containing the unit ball. Notice that D ⊂ [−1,1 +
√
n]n and, by the normalization as-

sumption, S ⊂D.
For f ∈ R[X] of degree d = deg(f ) and m ≥ d, we write f =

∑
α∈Nn,|α|≤m fm,αB

D
m,α(X) where

(BDm,α(X))|α|≤m is the Bernstein basis in degree m on D:

BDm,α(X) =

(
m

α

)
(n+
√
n)−d(

√
n−X1 − · · · −Xn)m−|α|(1 +X1)

α1 · · ·(1 +Xn)αn

where
(m
α

)
denotes the multinomial coefficient.

Norms

Hereafter we introduce the norms that will be used through the article.

• For f =
∑
α∈Nn,|α|≤m fαB

D
m,α(X) ∈ R[X] and m ≥ deg(f ), we denote ‖f ‖B,m the L∞ norm of f

with respect to the Bernstein basis:

‖f ‖B,m = max
|α|≤m

∣∣∣fm,α
∣∣∣.

When m = deg(f ), we write ‖f ‖B ≔ ‖f ‖B,deg(f ) to simplify the notation.

• For f ∈R[X], we denote ‖f ‖∞ the infinity or supremum norm of f on D:

‖f ‖∞ =max
x∈D
|f (x)|.

• For a vector v = (v1, . . . ,vN ) ∈ RN , we denote ‖v‖2 its Euclidean norm:

‖v‖2 =

√√√
N∑

i=1

v21 .

• Moreover, ifM ∈RN1×N2 , we denote ‖M‖2 the induced operator norm:

‖M‖2 = sup
v,0

‖Mv‖2
‖v‖2

= σmax(M),

where σmax(M) denotes the largest singular value ofM .

We recall some properties of the the norms mentioned above, and in particular for the Bern-
stein norm that will be central in the article. For f ∈R[X]m and m′ ≥m, we have

max
x∈D
|f (x)| = ‖f ‖∞ ≤ ‖f ‖B,m′ ≤ ‖f ‖B,m

These well-known inequalities are consequences of the property that the graph of f is in the con-
vex hull of its control points and that degree elevation representation is performed by barycentric
combinations of the coefficients of f (see e.g. [Far01]). We will also use the following multiplica-
tive property of the norm, which we briefly prove for sake of completeness:
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Lemma 1.5. For f ∈R[X]m, g ∈ R[X]m′ , we have

‖f g‖B,m+m′ ≤ ‖f ‖B,m ‖g‖B,m′

Proof. For f =
∑
|α|≤m fαB

D
m,α , g =

∑
|β|≤m′ fβB

D
m′,β , we have

‖f g‖B,m+m′ = ‖
∑

|γ |≤m+m′

(
∑

α+β=γ

fαgβ

(m
α

)(m′
β

)

(m+m′

γ

) )BDγ (x)‖B,m+m′

= max
|γ |≤m+m′

|
∑

α+β=γ

fαgβ

(m
α

)(m′
β

)

(m+m′

γ

) |

≤max
|α|≤m

|fα | max
|β|≤m′

|gβ | max
|γ |≤m+m′

∑

α+β=γ

(m
α

)(m′
β

)

(m+m′

γ

) ≤ ‖f ‖B,m ‖g‖B,m′

Parameters

We summarize here the notations and symbols that will appear in the bound of the Effective
Putinar’s Positivstellensatz.

• g = g1, . . . , gr denotes the r-tuple of real polynomials in n variables defining the basic closed
semialgebraic set S = S (g);

• d(g)≔maxi∈{1,...,r}deg(gi );

• f denotes a strictly positive polynomial on S of degree d = deg(f ) and f ∗ = inf{ f (x) | x ∈ S } >
0 denotes its minimum on S ;

• ε = ε(f )≔
f ∗

‖f ‖B is a measure of how close f is to vanish on S .

In the article, by O(·), we mean a quantity such that O(·) ≤ c1(·) for some constant c1 > 0
independent on n and on the polynomials g, f involved in the problem.

1.3 Approximation properties

In this section, we recall and adapt to our context known approximation properties of continuous
functions, focusing on our scaled simplex D.

Let θ : x ∈ ∆ 7→ (n+
√
n)x−1 ∈D be the affine map, which transforms the unit simplex ∆ = {x ∈

R
n | xi ≥ 0 and 1−∑

i xi ≥ 0 } into D. For m ∈N and ψ ∈ C0(D), consider the Bernstein operator

BDm (ψ;x) =
∑

α∈Nn,|α|≤m
ψ(θ(

α

m
))BDm,α(x) (3)

Notice that BDm is positive linear operator onC0(D), i.e. if ∀x ∈D,ψ(x) ≥ 0, then ∀x ∈D,BDm (ψ;x) ≥
0. Moreover BDm reproduces constants and linear functions.

Lemma 1.6 ([NS64, Lemma 4]). For a positive linear operator A : C0(D)→ C0(D), ψ ∈ C0(D) and
t > 0 and x ∈D, we have

|ψ(x)−A(ψ;x)| ≤ ω(ψ; t)
(
1+

1

t
A(‖ · −x‖22;x)

1
2

)

where ω(ψ; ·) is the modulus of continuity of ψ.
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Using this lemma for positive linear operators, we deduce the following approximation for the
Bernstein operator:

Theorem 1.7. For ψ ∈ C0(D),

|ψ(x)−BDm(ψ;x)| ≤ 2ω(ψ;
2n√
m
).

Proof. First, using the property of the Bernstein operator on the unit simplex ∆, we verify that

‖θ−1(x)‖22 =
1

m(m− 1)
∑

|α|≤m
(‖α‖22 −m)BDm,α(x) =

m

m− 1B
D
m (‖θ−1(·)‖22;x)−

1

m− 1

where θ−1 : x ∈D 7→ 1
n+
√
n
(x + 1). Therefore, we have

BDm,α(‖θ−1(·)‖22,x) =
1

(n+
√
n)2
BDm,α(‖ ·+1‖22,x) =

m− 1
m
‖θ−1(x)‖22 +

1

m
=
m− 1
m
‖ x + 1

n+
√
n
‖22 +

1

m

so that

BDm (‖ ·+1‖22,x) =
m− 1
m
‖x + 1‖22 +

(n+
√
n)2

m
.

Since BDm reproduces affine functions, we have

BDm (‖ · −x‖22;x) = BDm (‖(·+ 1)− (x+ 1)‖22;x)

=
m− 1
m
‖x + 1‖22 +

(n+
√
n)2

m
− 2‖x + 1‖22 + ‖x + 1‖22

=
1

m
((n+

√
n)2 − ‖x + 1‖2) ≤ (n+

√
n)2

m
≤ 4

n2

m

for x ∈D. By lemma 1.6, we deduce that for x ∈D,

|ψ(x)−BDm(ψ;x)| ≤ 2ω(ψ;
2n√
m
)

choosing t = 2n√
m
.

We recall now an effective version of Polya’s theorem.

Theorem 1.8 ([PR01, Th. 1]). Let p =
∑
|β|=d pd,β

(d
β

)
X
β0
0 . . .X

βn
n be an homogeneous polynomial of

degree d = deg(p). If ∀x = (x0, . . . ,xn) ∈ Rn+1 such that xi ≥ 0 and
∑n
i=0 xi = 1, we have p(x) ≥ p∗ > 0,

then (X0 + · · ·+Xn)mp has non negative coefficients in the monomial basis if

m ≥ d(d − 1)
2

maxβ
∣∣∣pd,β

∣∣∣
p∗

− d

We can dehomogenize Theorem 1.8 settingX0 = 1−X1−· · ·−Xn and restate it using the Bernstein
basis and norm, as follows.

Corollary 1.9. Let p ∈R[X] be a polynomial of degree d. If p ≥ p∗ > 0 on∆ = {x ∈ Rn | xi ≥ 0,1−∑i xi ≥
0 }, then p has non negative coefficients in the Bernstein basis (B∆m,α)|α|≤m if

m ≥ d(d − 1)
2

‖p‖B
p∗
− d

Corollary 1.9 can be seen as a result of convergence of the control polygon to the graph of
the polynomial p. Finally, we deduce from Corollary 1.9 an analogous result for the case of the
scaled simplex D = θ(∆) = {x ∈ Rn | 1 + x1 ≥ 0, . . . ,1 + xn ≥ 0,

√
n − x1 − · · · − xn ≥ 0}. In order do to

that, notice that BDm,α(θ(x)) = B
∆
m,α(x) for all x ∈ ∆ and α ∈Nn such that |α| ≤ m. Furthermore, we

state Corollary 1.10 with a worst but simplified constant that will be more convenient in the next
sections.

Corollary 1.10. Let p =
∑
|α|≤m pm,αB

D
m,α(X) ∈ R[X] with m ≥ d = deg(p). If ∀x ∈ D we have p(x) ≥

p∗ > 0 and m ≥ d2 ‖p‖Bp∗ , then pm,α ≥ 0 for all α ∈Nn with |α| ≤m.
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2 Łojasiewicz inequalities for sum of squares representations

To analyze the representation of a positive polynomial f on S , we will construct a deformed poly-
nomial p which is positive on D with a minimum of the same order than f ∗ = infx∈S f (x). For
that purpose, we need to compare on D the behavior of the function f with the behavior of the
functions g1, . . . , gr and thus we introduce the following semi-algebraic functions. For x ∈D, let

F(x) = −min

(
f (x)− f ∗
‖f ‖B

,0

)
(4)

G(x) = −min

(
g1(x)

‖g1‖B
, . . . ,

gr (x)

‖gr‖B
,0

)
. (5)

The function G can be seen as a semi-algebraic distance to S , since x ∈ S if and only if G(x) = 0.
As F(x) ≥ 0, G(x) ≥ 0 and G(x) = 0 implies x ∈ S and F(x) = 0, we deduce from Theorem 1.4 the
existence of the following constants.

Definition 2.1. The smallest L such that

∀x ∈D, F(x)L ≤ cG(x) (6)

is called the Łojasiewicz exponent. For L satisfying (6) fixed, we call the constant c > 0 the Łojasiewicz
constant (relative to L).

To analyse these exponent and constant, we can first relate F to the Euclidean distance function

E : D ∋ x 7→ E(x) = d(x,S).

For y ∈D and z ∈ S such that E(y) = d(y,S) = ‖y − z‖2, we have

F(y) = F(y)− F(z) ≤ LF‖y − z‖2 = LFE(y),

where LF is the Lipschitz constant of F on D. From Markow inequality:

Theorem 2.2 ([KR99, th. 3]). Let p ∈R[X]d be a polynomial of degree ≤ d. Then:
∥∥∥‖∇p(x)‖2

∥∥∥∞ =max
x∈D
‖∇p(x)‖2 ≤

2d(2d − 1)
w(D)

‖p‖∞

where w(D), the width of D, is the minimal distance between a pair of distinct parallel supporting
hyperplanes.

We deduce the following Łojasiewicz inequality between F and D: ∀x ∈D,

F(x) ≤ 4d2 − 2d
w(D)

E(x) ≤ 2d2E(x). (7)

with w(D) =
√
n+1 and d = deg(f ).

As E(x) = 0 implies G(x) = 0, these two functions are related as well by a Łojasiewicz inequal-
ity:

∀x ∈D, E(x)LE,G ≤ cE,GG(x) (8)

Therefore we can bound the Łojasiewicz exponent and constant for F and G, by analysing the
Łojasiewicz inequality between the Euclidean distance function E and the semi-algebraic distance
function G in equation (8) and equation (7). More precisely, we have the following inequality:
L ≤ LE,G.

In the next section, we analyze the Łojasiewicz inequality (8) in regular cases, showing that
LE,G = 1 and describing the constant cE,G. Since G and S are invariant by scaling the functions gi
by positive scalars, we will assume hereafter in the article the following.
Scaling assumption:

‖gi‖B = 1 for all i ∈ {1, . . . , r }. (9)
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2.1 Minimizers of the distance function

We introduce the regularity condition sufficient to prove that LE,G = 1. This is a standard condition
in optimization (see [Ber99, sec. 3.3.1]), which implies the so-called Karush–Kuhn–Tucker (KKT)
conditions [Ber99, prop. 3.3.1].

Definition 2.3. Let x ∈ S (g). We define the active constraints at x are the constraints gi1 , . . . , gim such
that gij (x) = 0. We say that the Constraint Qualification Condition (CQC) holds at x if for all active

constraints gi1 , . . . , gil at x, the gradients ∇gi1(x), . . . ,∇gim(x) are linearly independent.

We start working locally. For z ∈ S we denote

I = I(z) = { i ∈ {1, . . . , r} | gi(z) = 0 }

the indices corresponding to the active constraints at z. For y ∈D and z ∈ S such that E(y) =
∥∥∥y − z

∥∥∥
2

we denote:

• g = g(y) = (g1(y), . . . , gr (y));

• gI = gI (y) = (gi(y) : i ∈ I );

• J = J(z) = Jac(gI )(z) =
(
∂gi
∂xj

)
i∈I , j∈{1,...,r}

the transposed Jacobian matrix at z, that is the matrix

whose columns are the entries of the gradients∇gi (z);

• NI =NI (z) = Gram(∇gi (z) : i ∈ I ) = J tJ the Gram matrix at z.

Definition 2.4. We denote σJ (z) = σmin(J(z)) be the smallest singular value σmin(J(z)) of J(z).

As NI = J
tJ , notice that

∥∥∥N−1I
∥∥∥
2
= σmin(NI )

−1 = σmin(J)
−2 = σJ (z)

−2.
We show now how we can use J = J(z) to describe the cone of points y such that E(y) = d(y,S) =∥∥∥y − z

∥∥∥
2
.

Lemma 2.5. Let y ∈ Rn \ S (g), and let z be a point in S = S (g) minimizing the distance of y to S , that
is E(y) = d(y,S) =

∥∥∥y − z
∥∥∥
2
. If {gi : i ∈ I } are the active constraints at z and the CQC hold, then there

exist λi ∈R≥0 such that:
y − z =

∑

i∈I
λi∇(−gi)(z) = −Jλ.

Proof. Fix y ∈ Rn. Notice that y−x = −∇‖y−x‖22
2 , where the gradient is taken w.r.t. x. Moreover z ∈ S

such that d(y,S) =
∥∥∥y − z

∥∥∥
2
is a minimizer of the following Polynomial Optimization Problem:

min
x

∥∥∥y − x
∥∥∥2
2

2
: gi(x) ≥ 0 ∀i ∈ {1, . . . , r}.

Since the CQC holds at z, we deduce from [Ber99, prop. 3.3.1] that the KKT conditions hold. In
particular:

∇

∥∥∥y − z
∥∥∥2
2

2
=

∑

i∈I
λi∇gi (z)

For some λi ∈R≥0. Therefore y − z = −
∇d(y,z)2

2 =
∑
i∈I λi∇(−gi)(z).

Let λ = λ(y) := (λi(y); i ∈ I ) be the column vector in Lemma 2.5, so that (y − z) = −Jλ. Note that
λ(y) depends linearly on y − z and is given by the formula

λ(y) = −N−1I J t(y − z).

8



Then, using Taylor’s expansion at z and Lemma 2.5, we obtain:

gI = gI (y) = J
t(y − z) +h = −NIλ+h (10)

and the Mean-value form for the remainder in Taylor’s theorem gives:

‖h‖2 ≤ c2

∥∥∥y − z
∥∥∥2
2
, (11)

where c2 = c2(g) = maxx∈D{‖Hess(gi )‖2, i = 1, . . . , r} denotes an upper bound for the second deriva-
tive of gI on D.

We keep working locally at z ∈ S , and in particular considering only the active constraints at z,
whose indexes are denoted I(z) ⊂ {1, . . . , r }. Notice that, if y ∈D \ S is close enough to z ∈ ∂S , then
gi (y) ≤ 0 implies gi(z) = 0: so only the active constraints at z and negative at y determine the value
of G(y) in a neighborhood of z. We introduce a notation to identify those indices:

I− = I−(y,z) = { j ∈ I = I(z) | gj (y) ≤ 0 }. (12)

Moreover we introduce the function G̃−(y) =
(∑

j∈I− gj (y)
2
) 1
2 as an intermediate step between G

and E. Indeed, it is easy to upper bound G̃−(y) in terms of G(y):

G̃−(y) =
(∑

j∈I−

gj (y)
2
) 1
2 ≤

√
|I−|max

j∈I−

∣∣∣gj (y)
∣∣∣ ≤
√
nG(y). (13)

For the last inequality, we are using the fact that CQC at z implies |I−| ≤ |I | ≤ n. So we only need to
find an upper bound for E(y) in terms of G̃−(y). In order to do that, let gI (y) = g−(y)+g+(y), where:

• g−(y) = (min{0, gi (y) : i ∈ I}) and

• g+(y) = (max{0, gi (y) : i ∈ I}),

and notice that
∥∥∥g−(y)

∥∥∥
2
= G̃−(y).

We proceed similarly to analyze the linear part of gI . In the sequel we denote

γ = γ(y) = J t(y − z) = −NIλ(y)−NIλ (14)

the linear part of gI .
The idea is to show first the inequality for the linear part γ(y), and then extend it to gI . In par-

ticular we want to relate the norm
∥∥∥y − z

∥∥∥
2
= 〈y − z,y − z〉, computed with respect to the euclidean

scalar product, with the norm of γ(y) w. r. t. another inner product. Exploiting (14), one see that

〈y − z,y − z〉 = 〈λ,λ〉NI
= 〈γ,γ〉N−1I (15)

where 〈·, ·〉NI
denotes the inner product induced by NI : 〈λ,λ〉NI

= λtNIλ. Notice that both NI and

N−1I define an inner product since they are positive definite.
As in the case of gI , let

Ĩ− = Ĩ−(y,z) = { i ∈ I(z) | γi(y) ≤ 0 } (16)

and γ(y) = γ−(y) +γ+(y), where:

• γ−(y) = (min{0, γi(y)} : i ∈ I ) and

• γ+(y) = (max{0, γi(y)} : i ∈ I ).

Lemma 2.6. With the notation above, we have:

• 〈γ−,γ〉N−1I ≥ 0;

• 〈γ+,γ〉N−1I ≤ 0

9



• 〈γ+,γ−〉N−1I ≤ 0

Proof. For the first inequality notice that 〈γ−,γ〉N−1I = −γt−λ = −∑i∈Ĩ− γiλi ≥ 0 because all λi are
non-negative. A similar argument shows the second inequality. Finally 〈γ+,γ−〉N−1I = 〈γ+,γ〉N−1I −
〈γ+,γ+〉N−1I ≤ 0 as claimed.

The following observation, crucial for the sequel, shows that we can bound
∥∥∥y − z

∥∥∥
2
only in

terms of the negative γi .

Proposition 2.7. With the notation above, we have:

∥∥∥y − z
∥∥∥
2
≤ 1

σJ (z)

(∑

i∈Ĩ−

γ2
i (y)

) 1
2 =

1

σJ (z)
‖γ−‖2 (17)

where σJ (z) is the smallest singular value of J (see Definition 2.4).

Proof. Note that Lemma 2.6 implies the proposition since it shows that

〈γ,γ〉N−1I = 〈γ+,γ〉N−1I + 〈γ−,γ+〉N−1I + 〈γ−,γ−〉N−1I ≤ 〈γ−,γ−〉N−1I

and this allows us to complete (15) to get (17):

∥∥∥y − z
∥∥∥
2
= 〈y − z,y − z〉 ≤ 〈γ,γ〉N−1I ≤ 〈γ−,γ−〉N−1I ≤

1

σJ (z)

(∑

i∈Ĩ−

γ2
i (y)

) 1
2 =

1

σJ (z)
‖γ−‖2.

2.2 Łojasiewicz distance inequality

We can now describe Łojasiewicz exponent and constant between E and G (see (8)) when Con-
straint Qualification Condition (Definition 2.3) holds.

Let σJ = infz∈∂S σJ (z) = infz∈∂S σmin(J(z)). Notice that σJ > 0 as ∂S is compact and σmin(J(z)) is
lower semicontinuous. Let I = I(z) and let I− = I−(y) = {i ∈ I : gi(y) ≤ 0}. Note that we do not have
necessarily that I− = Ĩ− (see Equation (12) and Equation (16)): the sign of gi(y) might be different
from the sign of γi(z).

We want to move from γ to gI . To do this, we determine how close are g− and γ−.

Lemma 2.8. With the notation above, we have:
∣∣∣‖g−‖2 − ‖γ−‖2

∣∣∣ ≤ c2

∥∥∥y − z
∥∥∥2
2
.

Proof. Note that if gi (y) and γi(y) are of different signs then their absolute values are bounded by∣∣∣gi (y)−γi(y)
∣∣∣. Therefore, by standard triangle inequality,

∣∣∣‖g−‖2 − ‖γ−‖2
∣∣∣ =

∣∣∣
(∑

i∈I−

g2i (y)
)1/2 −

(∑

i∈Ĩ−

γ2
i (y)

)1/2∣∣∣ ≤
(∑

i∈I
(gi(y)−γi(y))2

)1/2
= ‖h‖2 ≤ c2

∥∥∥y − z
∥∥∥2
2
,

where the latter inequality follows from (11).

We first show the Łojasiewicz inequality with ŁE,G = 1 locally at z.

Proposition 2.9. If E(y) =
∥∥∥y − z

∥∥∥
2
≤ σJ

2c2
then

E(y) ≤ 2
√
n

σJ
G(y).
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Proof. Fix y < S such that E(y) ≤ σJ
2c2

and z ∈ ∂S such that
∥∥∥y − z

∥∥∥
2
= E(y). If E(y) ≤ σJ

2c2
or, equiva-

lently c2
σJ
E2(y) ≤ 1

2E(y), then by Proposition 2.7 and Lemma 2.8 we have

E(y) =
∥∥∥y − z

∥∥∥
2
≤ 1

σJ
‖γ−‖2 ≤

1

σJ
‖g−‖2 +

1

σJ
c2

∥∥∥y − z
∥∥∥2
2

≤ 1

σJ
‖g−‖2 +

1

2
E(y).

This implies the claimed inequality as ‖g−‖2 = G̃−(y) ≤
√
nG(y) (since |I−(z,y)| ≤ |I(z)| ≤ n under

CQC at z).

We are finally able to prove that LE,G = 1. We denote U = {y ∈ D | E(y) < σJ
2c2
} the open

neighborhood of S of points at distance <
σJ
2c2

.

Theorem 2.10. Suppose that the CQC holds at every point of S (g). Then, for all y ∈D,

E(y) ≤ cE,GG(y),

with cE,G = sup{ E(y)G(y) | y ∈ D \ S} ≤ max(
2
√
n

σJ
, diam(D)

G∗ ), where G∗ = min
y∈D\U

G(z) > 0 and diam(D) =

maxx,y∈D
∥∥∥x − y

∥∥∥
2
.

Proof. If E(y) ≤ σJ
2c2

then by Proposition 2.9 we have

E(y) ≤ 2
√
n

σJ
G(y).

Otherwise:

E(y) = ‖y − z‖ ≤ diam(D) ≤ diam(D)
G(y)

G∗
,

since y,z ∈D (notice that, as G(x) > 0 on the compact set D \U , we have G∗ > 0).

We want now to give another description of the constant cE,G in Theorem 2.10 as distance
from singular systems, following the approach of [Cuc+09]. In other words, we show how cE,G can
be interpreted as the condition number of g. See also [BC13] for more about condition numbers.

For d = (d1, . . . ,dr ), let R[X]d ≔ R[X]d1 × · · · × R[X]dr denote the systems of polynomials of
bounded degree, which we equip with the Euclidean norm ‖·‖2 with respect to the monomial
basis in any component (another choice could be the apolar or Bombieri-Weil norm ‖·‖di in degree
≤ di in every component, see [Cuc+09]).

We say that a system g is singular if there exists a point in x ∈ Rn such that x ∈ S (g) and the
active constraints have rank deficient Jacobian at x. In other words, this is the set of systems g
such that CQC does not hold at some point of the semi-algebraic set S defined by g. Formally:

Sing≔
{
g ∈R[X]d | ∃x ∈ Rn :

∨

Z⊂{1,...,r}

(
gj (x) = 0 ∀j ∈ Z

∧ gj (x) > 0 ∀j < Z
∧ rankJac(gj (x) : j ∈ Z) <min(n, |Z |)

)}
(18)

We want to relate the constant cD in Theorem 2.10 with d(g,Sing), the distance from g to the
singular systems induced from the Euclidean norm. Notice that Sing is a semi-algebraic set (by
Tarski–Seidenberg principle [BCR98, th. 2.2.1] or quantifier elimination[BCR98, prop. 5.2.2]), and
therefore d(·,Sing) is a well-defined continuous semi-algebraic function [BCR98, prop. 2.2.8].

Lemma 2.11. Under the normalization assumption (2) and with the previous notations, we have d(g,Sing) ≤√
2σJ .
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Proof. Let z ∈ ∂S be such that σJ = σmin(J(z)). Since the CQC hold at z, rankJ(z) is maximal. On
the following, we assume that all the inequalities are active at z, the general case being a trivial
generalization. By the Eckart-Young theorem, the distance of J(z) from rank deficient matrices
is equal to σmin(J(z)): there exists P (of rank one) such that J(z) − P has not maximal rank and
‖P‖F = ‖P‖2 = σmin(J(z)). Now consider a system l of affine equations vanishing at z and such that
Jac(l)(z) = P. Therefore, g− l ∈ Sing since Jac(g− l)(z) = J(z)− P is rank deficient and (g− l)(z) = 0.
Now, notice that:

d(g,Sing) ≤ ‖g− (g− l)‖2 = ‖l‖2
Write l = l1, . . . lr and li(x) = li0 +

∑n
j=1 lijxj . By hypothesis li(z) = 0 and ‖z‖22 ≤ 1 (from the normal-

ization assumption). Therefore:

l2i0 = (
n∑

i=1

lixi)
2 ≤ ‖(li1, . . . , lin)‖22 ‖z‖22 ≤

n∑

j=1

l2ij

Notice also that σ2
J = ‖P‖2F =

∑r
i=1

∑n
j=1 l

2
ij , and thus:

d(g,Sing)2 ≤ ‖l‖22 =
r∑

i=1

n∑

j=1

l2ij +
r∑

i=1

l2i0 ≤ 2

r∑

i=1

n∑

j=1

l2ij = 2σ2
J

which concludes the proof.

In order to measure the distance to Sing, we introduce a global equivalent to G∗ in theo-
rem 2.10. We define then G̃∗≔ min

y∈Rn\U
G(z) > 0.

Lemma 2.12. Let U be as in Theorem 2.10 and assume that G̃∗ = G(y) is not attained on ∂U . Then
1
G̃∗
≤
√
r d(g,Sing)−1.

Proof. Without loss of generality assume that g1(y) = −G̃∗. Since y < ∂U we have∇g1(y) = 0. Then
the system (g1 + G̃

∗, . . . , gr + G̃
∗) ∈ Sing is a singular system, and

∥∥∥g− (g1 + G̃∗, . . . , gr + G̃∗)
∥∥∥
2
=
√
r G̃∗.

Therefore d(g,Sing) ≤
√
r G̃∗, and finally 1

G̃∗
≤

√
r

d(g,Sing) .

Lemma 2.13. Assume that G̃∗ = G(y) is attained at y ∈ ∂{y ∈D | E(y) ≤ σJ
2c2
}. Then 1

G̃∗
≤ 4
√
nc2
σ2
J

.

Proof. Since E(y) =
σJ
2c2

, we can apply Proposition 2.9:

σJ
2c2

= E(y) ≤ 2σ−1J ‖g−‖2 ≤ 2
√
nσ−1J G(y) = 2

√
nσ−1J G̃∗.

Therefore 1
G̃∗
≤ 4
√
nc2σ

−2
J .

We deduce from these two lemmas the following bound on Łojasiewicz constant in terms of
the distance from g to the singular systems Sing:

Theorem 2.14. Suppose that the CQC holds at every point of S (g). Then, for all y ∈D,

E(y) ≤max
( c

d(g,Sing)
,
8diam(D)

√
nc2

d(g,Sing)2

)
G(y),

where c2 = c2(g) = maxx∈D{‖Hess(gi(x))‖2, i = 1, . . . , r} and c1 =max(2
√
2n,diam(D)

√
r).
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Proof. We estimate the constant cE,G = sup{ E(y)
G(y)
| y ∈ D \ S} ≤ max(

2
√
n

σJ
, diam(D)

G∗ ) in Theorem 2.10

using the previous lemma. In particular, from Lemma 2.11 we have 1
σJ
≤

√
2

d(g,Sing) , and using

Lemma 2.12 and Lemma 2.13 we obtain:

2
√
n

σJ
≤ 2

√
2n

d(g,Sing)

diam(D)

G∗
≤ diam(D)

G̃∗
≤ diam(D)max(

4
√
nc2
σ2
J

,

√
r

d(g,Sing)
)

≤ diam(D)max(
8
√
nc2

d(g,Sing)2
,

√
r

d(g,Sing)
)

Choosing c1 =max(2
√
2n,diam(D)

√
r) we then see that cE,G ≤max

(
c

d(g,Sing) ,
8diam(D)

√
nc2

d(g,Sing)2

)
, conclud-

ing the proof.

Remark 1. Under the CQC condition, we have analyzed in Theorem 2.10 and Theorem 2.14 the
Łojasiewicz constant, giving estimates for it, andmoreover showing that the Łojasiewicz exponent
is equal to one. On the contrary when the problem is not regular the bounds on the exponent LE,G
can be large. We have:

LE,G ≤ d(g)(6d(g)− 3)n+r

see [KS15, sec. 3.1], [KSS16] and the errata [KSS19]. Recently, a new bound independent on the
number of inequalities r has been shown in [BMN22, th. 2]:

LE,G ≤ d(g)O(n2).

Finally, let us recall that the first quantitative estimation for the Łojasiewicz inequality providing
a bound with a single exponential in n was given in [Sol91].

Remark 2. The functionG is a semialgebraic distance to S , since x ∈ S if and only ifG(x) = 0. Using
the language of error bounds in optimization, the function G can also be considered as a residual
function, see [Pan97]. In this context, a result analogous to Theorem 2.10 and Theorem 2.14 has
been proven in [LP98], where they show that the Łojasiewicz exponent is equal to one and give a
description of the Łojasiewicz constant when the defining inequalities g are convex functions.

Remark 3. The CQC condition implies that the number of active constraints at every z ∈ S (g) is
≤ n. This shows that every point y ∈ R

n, that has z ∈ S as a closest point in S , belongs to the
convex cone with vertex z generated by the gradients of the active constraints, see lemma 2.5. We
could have replaced the CQC with the (more general) conclusion of lemma 2.5 as assumption:
with minor adjustments, the proof carries over to this more general context. In the convex case,
this condition is called Abadie’s Constraint Qualification, see e.g. see [Pan97]. Abadie’s CQ is the
condition used in [LP98] to prove that the Łojasiewicz exponent is equal to 1 in the convex case.

3 The Effective Positivstellensatz

We analyze now how non-negative polynomials Pos(S) can be approximated by polynomials that
can be represented in terms of sums of squares. We quantify how the complexity of this repre-
sentation, that is the degree of the terms, depends on the non-vanishing of the polynomial and
Łojasiewicz exponent and constant of D and G.

For l ∈N, let Σ2,l ⊂ R[X] be the set of sums of squares of degree at most l, that is, the polyno-
mials of the form p =

∑
i p

2
i with pi ∈R[X] of degree ≤ l

2 . We define

Ql = Σ
2,l + (1−

n∑

i=1

X2
i )Σ

2,l−2 + g1Σ
2,l−d1 + · · ·+ grΣ2,l−dr ,
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where di = deg(gi) for i = 1, . . . , r.

Recall that F(x) = − 1
‖f ‖B min(f −f ∗,0) andG(x) = −min(

g1(x)
‖g1‖B , . . . ,

gr (x)
‖gr‖B ,0) = −min(g1(x), . . . , gr (x),0),

since by scaling gi we can assume that ‖gi‖B = 1. We have ∀x ∈ D, F(x) ≥ 0, G(x) ≥ 0 and ∀x ∈ S ,
F(x) = G(x) = 0. Moreover G(x) = 0 implies that x ∈ S and F(x) = 0. Also, F(x) > 0 implies G(x) > 0.
By Łojasiewicz theorem, there exits cF,G > 0,LF,G ∈ R such that ∀x ∈D,

F(x)LF,G ≤ cF,GG(x). (19)

Theorem 3.1 (Effective Positivstellensatz). Let f ∈ R[X] and S = {x ∈ D | g1(x) ≥ 0, . . . , gr (x) ≥ 0}
with S ⊂ B = {x ∈Rn | 1−∑

i x
2
i ≥ 0}. If ∀x ∈ S , f (x) ≥ f ∗ > 0, then f ∈ Qm for

m =O(n2 r d(g)6c7ε−(7L+3)).

where d(g) = maxi deg(gi ), ε =
f ∗

‖f ‖B and c = cF,G,L = LF,G are respectively the Łojasiewicz constant and
exponent in Inequality (19).

The proof follows the same lines as the proof of [BM22, th. 1.7], but we work on the scaled sim-
plex D instead of the box [−1,1]n and we highlight the dependency of the bounds on Łojasiewicz
constant c, Łojasiewicz exponent L and on ε.

3.1 Approximation of a plateau function

The first ingredient is an approximation of a plateau function by a sum of squares polynomial with
a control of the error and of the degree of the polynomial. Recall that we are working under the
scaling assumption (9): ‖gi‖B = 1 for i = 1, . . . , r.

Proposition 3.2. For i = 1, . . . , s and δ > 0,ν > 0, there exists hi,δ,ν ∈R[X] such that

• For gi (x) ≥ 0, |hi,δ,ν (x)| ≤ 2ν.

• For gi (x) ≤ −δ, |hi,δ,ν (x)| ≥ 1
2 .

• ‖hi,δ,µ‖ ≤ 1.

• hi,δ,ν ∈ Σ2,m with m =O(nd(g)2δ−2ν−1).

Proof. To construct such a polynomial, we use the following plateau function. For δ > 0,ν > 0, let
ϕ ∈ C0([−1,1]) be defined as:

ϕ =



1 −1 ≤ x ≤ −δ√
ν +3 x2

δ2
(1−
√
ν) + 2 x3

δ3
(1−
√
ν) −δ ≤ x ≤ 0√

ν 0 ≤ x ≤ 1

We verify that ϕ is in C1([0,1]), that ϕ(0) =
√
ν, ϕ(−δ) = 1 and that maxx∈[−1,1] |ϕ′(x)| ≤ 2

δ .

Let ϕi = ϕ(gi) ∈ C0(D). We have maxx∈D |ϕi | = 1.
We are going to approximate ϕi by a polynomial, using Bernstein operators defined in (3). We

deduce from Theorem 1.7 that

|Bm(ϕi ;x)−ϕi(x)| ≤ 2ω(ϕi ;
2n√
m
)

≤ 2 max
x∈[−1,1]

|ϕ′(x)|ω(gi ;
2n√
m
)

≤ 8

δ
max
x∈D
‖∇gi(x)‖2

n√
m

(20)
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Using Markov inequalities (Theorem 2.2), we have that maxx∈D ‖∇gi(x)‖2 ≤ 4d(g)2√
n+1
‖gi‖∞ ≤ 4d(g)2√

n+1

where d(g) = maxi deg(gi ). Thus (20) implies that

|Bm(ϕi ;x)−ϕi(x)| ≤ 32n
1
2 d(g)2δ−1m−

1
2 .

Let us take m′ =O(nd(g)4δ−2ν−1),

si(x) = BDm′ (ϕi ;x) =
∑

α∈Nn,|α|≤m′
ϕi(θ(

α

m′
))BDm′,α(x)

and hi,δ,ν = hi = s
2
i so that for x ∈D,

|si(x)−ϕi(x)| ≤
1

4

√
ν

Then we have

• gi(x) ≥ 0 implies si(x) ≤ ϕi(x) + 1
4

√
ν ≤ 5

4

√
ν and hi (x) = si(x)

2 ≤ 25
16ν ≤ 2ν.

• gi(x) ≤ −δ implies si(x) ≥ 1− 1
4

√
ν and hi (x) ≥ (1− 1

4

√
ν)2 ≥ 1

2 for ν small enough.

• ‖hi‖ ≤ ‖si‖2 ≤ 1.

• hi = s
2
i ∈ Σ2,m with m = 2m′ =O(nd(g)2δ−2ν−1).

This concludes the proof of the proposition.

3.2 Exponents in the Effective Positivstellensatz

We can now prove Theorem 3.1.

Proof of Theorem 3.1. Scaling gi by
1
‖gi‖B

does not change the definition of S and the bound in

Theorem 3.1. Therefore we can assume hereafter that ‖gi‖B = 1. Let

p = f −λ
r∑

i=1

hi gi . (21)

where hi = hi,δ,ν is defined in Proposition 3.2. We consider two cases:

1) F(x) >
f ∗

4‖f ‖B . Then by Łojasiewicz Inequality (6), G(x) > δ := c−1εL. There exists i ∈ [1, . . . , r]
such that gi (x) ≤ −δ, say i = 1. Then h1(x) ≥ 1

2 and hi (x) ≤ 2ν if gi (x) ≥ 0. We deduce that for x ∈D,

p(x) ≥ f (x) +λ
1

2
δ − 2λν(r − 1)

≥ f (x) +λ
δ

4
+λ

(
δ

4
− 2ν(r − 1)

)
.

Let λ≫ 0 such that f (x) + λ δ4 ≥
1
4 f
∗ (i.e. λ ≥ 5

δ ‖f ‖B since 1
4 f
∗ − f (x) ≤ 5

4‖f ‖B) and let ν be small

enough such that δ4 − 2ν(r − 1) ≥ 0 (i.e. ν ≤ δ
8r ). Then p(x) ≥

1
4f
∗.

2) F(x) ≤ f ∗

4‖f ‖B . In this case, f (x) ≥ 3
4 f
∗ and

p(x) ≥ 3

4
f ∗ − 2r λν.

Then p(x) ≥ 1
4f
∗ for 2 r λν ≤ 1

2 f
∗, i.e. ν ≤ f ∗

4 r λ .
We deduce that for δ = c−1εL, λ = 5δ−1‖f ‖B = 5cε−L‖f ‖B and

ν ≤min(
δ

8r
,
f ∗

4rλ
) =

1

20
r−1 δε =

1

20
c
−1εL+1,
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we have p(x) ≥ 1
4f
∗ > 0 for all x ∈D.

Let η =max{deg(f ),deg(higi ), i = 1, . . . , r}. Then

deg(p) ≤ η =O(nd(g)3δ−2ν−1) =O(nd(g)3(cε−L)2(cε−(L+1))) =O(nd(g)3c3ε−(3L+1)).

and we have

‖p‖B,η = ‖f −λ
r∑

i=1

hi gi‖B,η ≤ ‖f ‖B,η +λ
r∑

i=1

‖hi‖B,η−deg(gi ) ‖gi‖B,deg(gi ) ≤ ‖f ‖B,deg(f ) +λr

≤ (1 + 5cε−Lr)‖f ‖B ≤ (6 r cε−L)‖f ‖B

for cε−L ≥ 1.
Now, we use the property of convergence of the control polygon in the Bernstein basis on D to

the graph of the function. By Corollary 1.10 applied to the polynomial p defined in (21), we get
that for

m =O(deg(p)2
‖p‖B,η
p∗

) =O(n2d(g)6c6ε−(6L+2)rcε−L
‖f ‖B
f ∗

) =O(n2r d(g)6c7ε−(7L+3))

the Bernstein coefficients pm,α in the Bernstein basis (BDm,α)|α|≤m are non-negative. We deduce

that p belongs to the preordering generated by 1 + X1, . . . ,1 + Xn,1 − n−
1
2 (X1 + · · · + Xn) in degree

m and conclude as in [BM22, lem. 3.8] that p ∈ Σ2,m+n + (1 − X2
1 − · · · − X2

n )Σ
2,m+n−2. Therefore

f = p +λ
∑r
i=1 higi belongs to Qm+n, which concludes the proof.

3.3 Some consequences, remarks and perspectives

The exponent of ε−1 in the bound of Theorem 3.1 depend on f . In order to avoid this dependency
of the exponent on f , we can use a Łojasiewicz inequality (8) between E = d(·,S) and G and a
consequence of Markov inequality to get the following corollary:

Corollary 3.3. Let f ∈ R[X] with d = deg(f ) and S = {x ∈ D | g1(x) ≥ 0, . . . , gr (x) ≥ 0} with S ⊂ B =
{x ∈ Rn | 1−∑

i x
2
i ≥ 0}. If ∀x ∈ S , f (x) ≥ f ∗ > 0, then f ∈ Qm for

m =O(n2 r d(g)62L̃d2L̃c̃7ε−(7L̃+3)).

where d(g) = maxi deg(gi ), ε =
f ∗

‖f ‖ and c̃ = cE,G, L̃ = LE,G are respectively Łojasiewicz constant and
exponent in Inequality (8).

Proof. By inequalities (7) and (8), we have for x ∈D,

F(x)LE,G ≤ (2d2)LE,GELE,G ≤ 2LE,Gd2LE,GcE,GG(x).

By applying Theorem 3.1 with c = 2LE,Gd2LE,GcE,G and L = LE,G, we get the expected bound.

We describe the main differences between Theorem 3.1 and the result in [BM22].
First, the bound in Theorem 3.1 uses Łojasiewicz inequality (6), while in [BM22] the authors

consider the Łojasiewicz inequality (8), as in Corollary 3.3. Not only it is more natural to work
with Łojasiewicz inequality (6) instead of (8), but it also gives potentially significantly better
bounds. For an illustration of this phenomenon, see e.g. [KL10, sec. 4], where the authors dis-
cuss the gap between Lasserre’s hierarchies based on the quadratic module and the preordering
defining the unit hypercube. Another advantage of Theorem 3.1 over Corollary 3.3 is that in the
case of an exact representation of f − f ∗ in Q(g), we have L = 1 (See. Proposition 3.5).

On the other hand, Corollary 3.3 allows to deduce a general convergence rate for Lasserre’s hi-
erarchies, as done in [BM22, sec. 4]. The convergence rate that can be deduced from Corollary 3.3
improves the one in [BM22], as there is no dependence on the number of variables n in the expo-
nent of ε. As a corollary, we also obtain improved convergence rates for the Haudorff distance of
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feasible pseudo moment sequences to moment sequences in the Lasserre’s moment hierarchy, see
[BM22, sec. 5].

The second important difference between this article and [BM22] is the norm used to define
ε = ε(f ). In this article, we use the max norm of the coefficients of f in the Berstein basis on the
scaled simplex D. This allows to use [PR01], and leads to a bound with no n in the exponent
of ε. On the other hand, in [BM22] the norm used to define ε is the max norm on [−1,1]n and
the approximation result in [LS21] is exploited. This leads to a convergence rate with n in the
exponent of ε. We can also rephrase Theorem 3.1 using the max norm on D using the result in
[LS97], which can be stated, with our notation, as follows:

‖f ‖B,d ≤ Kd(Rn)‖f ‖∞
where Kd(R

n), given exactly in [LS97, th. 4.2], has asymptotic behaviour as in [LS97, th. 5.1] when
d tends to infinity. Thus, if we use the norm ‖f ‖∞ instead of ‖f ‖B,m to define ε, we need tomultiply

by the extra factor Km(R
n)−(7L+3) in Theorem 3.1 and Corollary 3.3.

When some regularity conditions hold, the bounds on the representation of positive polyno-
mials can be simplified: if the CQC hold, we can apply the results of Section 2.2 and obtain the
following corollary.

Corollary 3.4. With the hypothesis of Theorem 3.1, if the CQC hold for every x ∈ S and f > 0 on S then
f ∈ Qm for

m =O(n2 r d(g)6 c7 ε−10),

where c can be bounded using (7) and Theorem 2.10 or Theorem 2.14.

Notice that in Corollary 3.4 the exponent is independent of f . In this case, the analysis per-
formed to estimate the Łojasiewicz exponent is then necessarily connecting the distance function
D and the euclidean distance E, rather than connecting directly F and G.

The simplest case where we can apply Corollary 3.4 is when S is the unit ball defined by the
single polynomial g = 1 − ‖X‖22. This case can be analyzed, by specializing a general result, in
[MM22, cor. 1], where the authors prove a representation result for strictly positive polynomials
(that includes furthermore a denominator) with degree of order ε−65. In this case, Corollary 3.4
naturally gives a representation with order ε−10, improving [MM22, cor. 1]. In the case of the unit
ball, to the best of our knowledge the best available result gives a bound of the order ε−1/2, and it
is developed with a specific technique in [Slo21].

As a perspective of this work, we would like to investigate the tightness of the bound. We can
notice that if f − f ∗ ∈ Q(g) with f ∗ ≥ 0 then f ∈ Qℓ(g) for some ℓ ∈N and the bound on ℓ should
not depend on ε. In this case, we see that L ≤ 1 as shown in the following proposition.

Proposition 3.5. Assume that f − f ∗ = s0+ s1g1+ · · ·+ srgr ∈ Q(g) and let F, G be as in Section 2. Then:

F(x) ≤ cG(x) for all x ∈D,

where c = 1
‖f ‖max{∑r

i=1 ‖gi‖si(x) : x ∈D }.

Proof. Let f − f ∗ = s0 + s1g1 + · · ·+ srgr ∈ Q(g) with si ∈ Σ2 and x ∈D. There are two cases.
If f (x) > f ∗ then 0 = F(x) ≤ cG(x) for any c ∈ R>0.
If f (x) ≤ f ∗ then F(x) = f ∗−f (x)

‖f ‖ . Therefore, if c = 1
‖f ‖max{∑r

i=1 ‖gi‖si(x) | x ∈ ∆ } and I−(x) = {i ∈
{1, . . . , r : gi (x) ≤ 0} we have:

F(x) =
1

‖f ‖ (f (x)− f
∗) = − 1

‖f ‖
(
s0(x) + s1(x)g1(x) + · · ·+ sr (x)gr (x)

)

≤ 1

‖f ‖
∑

i∈I−(x)
si(x)(−gi(x)) =

1

‖f ‖
∑

i∈I−(x)
‖gi‖si(x)

(
− gi(x)‖gi‖

)
≤ cG(x).

This shows that F(x) ≤ cG(x) for all x ∈D.
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This proposition suggests that the exponent of ε in a tight bound for the Effective Positivstel-
lensatz should vanish when L = 1.

A particular case when f − f ∗ ∈ Qℓ(g) is given by the so called Boundary Hessian Conditions
(BHC), introduced by Marshall in [Mar06]. It would be interesting to see if, conversely, L ≤ 1
implies regularity conditions such as BHC and so that f − f ∗ ∈ Qℓ(g).

Another direction for future investigations is the analysis of worst case bounds in terms of
the bit size and degree of the input polynomials with rational coefficients and to compare these
bounds with those in [LPR20].
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