
HAL Id: hal-03899372
https://hal.science/hal-03899372

Submitted on 14 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving Vehicle Routing Problems With Intermediate
Stops Using VRPSolver Models

Marcos Roboredo, Ruslan Sadykov, Eduardo Uchoa

To cite this version:
Marcos Roboredo, Ruslan Sadykov, Eduardo Uchoa. Solving Vehicle Routing Problems With Inter-
mediate Stops Using VRPSolver Models. Networks, 2022, 81 (3), pp.399-416. �10.1002/net.22137�.
�hal-03899372�

https://hal.science/hal-03899372
https://hal.archives-ouvertes.fr

Solving Vehicle Routing Problems With Intermediate Stops

Using VRPSolver Models

Marcos Roboredo1, Ruslan Sadykov2, and Eduardo Uchoa1

1Departamento de Engenharia de Produção, Universidade Federal Fluminense -
Rua Passo da Pátria, 156, São Domingos, Niterói, RJ, 24210-240, Brazil

2Inria centre at the University of Bordeaux, 200 Avenue de la Vieille Tour,
Talence 33405, France

November 25, 2022

Abstract

In this paper, we propose graph-based models for several vehicle routing problems with
intermediate stops: the capacitated multi-trip vehicle routing problem with time windows,
the multi-depot vehicle routing problem with inter-depot routes, the arc routing problem
with intermediate facilities under capacity and length restrictions and the green vehicle
routing problem. In these models, the set of feasible routes is represented by a set of re-
source constrained paths in one or several graphs. Intermediate stops are supported by
the possibility to define negative resource consumption for some arcs. The models that we
propose are then solved by VRPSolver, which implements a generic branch-cut-and-price
exact algorithm. Thus, a simple parameterization enables us to use several state-of-the-art
algorithmic components: automatic stabilization by dual price smoothing, limited-memory
rank-1 cuts, reduced cost-based arc elimination, enumeration of elementary routes, and
hierarchical strong branching. For each problem, we numerically compare the proposed
methodology with the best exact approach found in the literature. State-of-the-art compu-
tational results were obtained for all problems except one.

1 Introduction

Vehicle Routing Problems (VRPs) form a highly studied class of combinatorial optimization
problems with applications in a large number of fields, most often related to freight transportation
and logistics. [13] introduced the basic Capacitated VRP, in which the set of customers should
be served by a set of identical vehicles from a single depot under customer demand and vehicle
capacity constraints to minimize the total transportation cost. Since then, a large number of
VRP variants has been proposed in the literature involving different product types, vehicle types,
multiple locations, and additional operational constraints.

Some VRP variants involve a possibility for a vehicle to make an intermediate stop inside a
route in order to improve its capability to fulfil service tasks. These variants are combined under
the class of Vehicle Routing Problems with Intermediate Stops (VRPIS). In most VRPIS, the
vehicles stop at so called Intermediate Facilities (IFs) in order to replenish a certain resource.
The stops at IFs can model several practical situations such as replenishment or unloading of a
cargo, refuelling, or ensuring breaks and rests periods for the driver [36].

Nowadays, branch-cut-and-price (BCP) approach is the leading methodology for exactly
solving VRPs, as surveyed in [11]. BCP algorithms solve VRPs by formulating them as integer
programs with an exponential number of variables, each one corresponding to a feasible vehicle
route. The variables are then generated dynamically by solving pricing subproblems modelled

1

as resource constrained shortest path problems (RCSPP). Families of valid cutting planes are
also generated to improve the linear relaxation of the problem. Finally, branching is used to
close the primal-dual gap. Numerous algorithmic components have been proposed in literature
to improve the efficiency of BCP algorithms for VRPs.

Unfortunately, the implementation of a BCP algorithm with state-of-the-art components for
a particular VRP requires a lot of time even for a skilled team. In order to mitigate this problem,
[33] proposed a generic model and an associated BCP algorithm for it for solving a wide range
of VRPs. The modelling approach relies on 1) representing the set of feasible routes as a set of
resource constrained paths in one or several graphs, 2) defining mapping between arcs in graphs
and variables in the integer programming part of the model, and 3) specifying so-called packing
sets of vertices or arcs in the graphs. An implementation of this modelling interface and the
associated generic BCP algorithm as the VRPSolver package has shown excellent results for
many classic VRP variants, being often better than the best specific solvers proposed for those
variants.

The efficiency of the VRPSolver models can be explained by the fact that its associated BCP
algorithm already includes most techniques/features known in the literature to be necessary for
achieving a state-of-the-art performance. The main techniques are automatic stabilization by
dual price smoothing, limited-memory rank-1 cuts, rounded capacity cuts, ng-route relaxation,
reduced cost-based arc elimination, enumeration of elementary routes, bucket-graph based la-
beling algorithm for the pricing problem, and hierarchical strong branching. Many of these
techniques are often missing in algorithms for specific problems, as they are very complex and
time consuming to implement. However, their implementation pays off in a generic code, as it
can be reused for many problems. In spite of all those advantages, there are also disadvantages of
using VRPSolver: (i) it is always possible to make a faster code for a specific problem (however,
at the expense of a large implementation effort); ii) there may exist problem-specific techniques
which are not available in the generic solver; iii) there is a learning curve to be able to understand
and efficiently use VRPSolver.

This paper aims to show that several VRPIS can be successfully tackled by the modelling
approach just mentioned. Describing intermediate stops inside the proposed paradigm is not
obvious. We show that this can be done by exploiting the possibility to define a negative resource
consumption for arcs in graphs. Modeling and solving the pricing subproblem for VRPIS as a
RCSPP is not new. [26] pointed out that the labelling algorithm to solve the standard RCSPP
can be adapted to the case with intermediate stops by resetting a certain resource when visiting
some special nodes. However, this modification requires a possibility to access and modify
an implementation of a sophisticated BCP algorithm and the technical competence to do so.
Our contribution is to show that instead one can obtain an easily reproducible state-of-the-art
approach for several VRPIS just by modelling.

The current best approaches for VRPIS often work with so-called trips, i.e. parts of routes
between two consecutive intermediate stops. Thus, trip variables are used instead of route
variables. An advantage of trip variables is that they can be generated more easily and sometimes
even completely enumerated in the preprocessing step. Route variables are often considered to
be difficult to dynamically generate due to the fact that routes in VRPIS are usually long. The
second contribution of this work is to show that fast dynamic generation of route variables for
VRPIS is possible if state-of-the-art algorithmic components are used. Moreover, our route-based
approach outperforms trip-based approaches from the literature for some problems.

The following VRPIS are considered in this work:

• The Capacitated Multitrip Vehicle-Routing ProblemWith Time Windows (CMTVRPTW)
[31].

• The Multi-depot vehicle routing problem with inter-depot routes (MDVRPI) [12].

• The Arc Routing Problem with Intermediate Facilities under Capacity and Length Re-
strictions (CLARPIF)[18].

2

• The Green Vehicle Routing Problem (G-VRP) [16]

The CMTVRPTW consists of assigning a sequence of trips (paths starting and ending at a
given depot) to each available vehicle. The objective is to minimize the total distance travelled
by the vehicles. Each customer demand is served by a single vehicle and the total demand served
in a trip cannot exceed the vehicle capacity. Besides, the service of every customer should start
within a pre-specified time window. The CMTVRPTW can be viewed as a VRPIS because the
capacity of a vehicle is replenished every time this vehicle passes through the depot between two
trips.

The MDVRPI consists of assigning routes to each available vehicle in order to minimize the
total travelled distance. The demand of each customer is served by a single vehicle. There are
several depots and each route has to start and end at the same depot. While following a route,
a vehicle can stop at the depots. The total demand served between two consecutive depots in a
route can not exceed the vehicle capacity. In other words, the capacity of a vehicle is replenished
every time it stops at a depot. Thus the depots can be view as IFs.

The CLARPIF consists of assigning routes that start and end at a given depot to each
available vehicle in order to minimize the total travelled distance. There is a set of required
edges, each one with a different demand. Intermediate facilities are available, and any vehicle
can stop at these facilities during while following a route in order to renew its capacity. Again,
the total demand served between two IFs can not exceed the vehicle capacity.

The G-VRP consists of assigning routes to Alternative Fuel Vehicles (AFVs) that start and
end at a given depot in order to minimize the total travelled distance travelled. Each customer
is visited exactly once by a single AFV. The problem involves a set of Alternative Fuel Stations
(AFS). Each one of them can be visited by an AFV to refuel as many times as necessary while
following a route. There is a limit on the total travel time for each route. Moreover, there is
another limit on the total distance travelled by an AFV between two consecutive refuels. The
G-VRP can be considered as a VRPIS because the fuel of a vehicle is replenished every time
this vehicle passes through an AFS.

We highlight that, although VRPSolver is the most generic existing solver for VRPs, there
are still VRP variants for which no efficient VRPSolver model exists. In particular, several
extensions of the considered problems known in the literature, cannot be modelled and solved
using VRPSolver in an efficient way.

This paper has the following structure. Section 2 presents a literature review on vehicle
routing problems with intermediate stops. Section 3 presents an overview of the VRPSolver
generic model which serves as a foundation of our models, as well as the associated solution
approach . In Section 4, we present specific models for four problems we consider. Section 5
presents numerical results and comparison with the best exact approaches found in the literature.
Finally, Section 6 draws conclusions and presents some future research directions.

2 Literature Review

In VRPIS, the vehicles stop at IFs in order to replenish a certain resource. [36] classified the
stops into three following types.

(i) Stops for replenishment and unloading of goods or waste. The most common situation
occurs when the capacity of a vehicle is fully replenished whenever this vehicle stops at an IF. In
the literature, several works deal with VRPIS with this characteristic. In some cases, the depots
act as IFs. It happens for example in the multi-trip VRP [10] where there is a single depot, or in
the MDVRPI [12] where there are several depots. In other cases, the IFs are usually represented
by special nodes in the network [2, 17, 18, 38, 19, 41, 42, 43].

(ii) Stops for refuelling. In recent years, researchers have started to pay attention to VRPs
with a fleet of alternative fuel vehicles (AFVs). These problems involve refueling stations where

3

the vehicles can stop en route to increase its remaining range and keep itself operational [16, 14,
25].

(iii) Stops for rests and breaks. Some VRPs incorporate break or rest periods for the drivers
that arise from hour-of-service regulations or multiday planning [20, 39, 15, 21, 35]. In these
problems, the places where the breaks or rests occur can be viewed as IFs.

Currently in the literature, best exact approaches for VRPIS are based on mixed integer linear
programming (MILP) formulations with an exponential number of variables. Branch-and-price
and branch-price-and-cut algorithms are used to solve such formulations. In some approaches,
one variable per complete feasible route is defined. These route variables are generated dynami-
cally by solving the pricing subproblems, usually modeled as RCSPP. Route-based formulations
are used for example in [14, 25, 21, 29, 40].

A disadvantage of route-based formulations is that the pricing problem can be time consuming
to solve as routes are usually long in VRPIS. Thus, alternative formulations are also considered in
the literature. They are based on variables representing parts of routes. Trip-based formulations
are employed in [28, 24, 31, 44] for solving multi-trip VRPs. [6] tackle the Traveling Salesperson
Problem With Hotel Selection using the formulation in which every variable represents a single-
day part of the multi-day TSP tour. [8] used a MILP formulation based on pre-enumerated trips
(which they call paths) to solve the G-VRP.

We now review the existing exact approaches for solving the problems addressed in this paper:
CMTVRPTW, MDVRPI, CLARPIF and G-VRP.

The CMTVRPTW is a capacitated multi-trip VRP with time windows. In addition to the
time windows, some variants consider service-dependent loading times (CMTVRPTW-LT), lim-
ited trip duration (CMTVRPTW-LD) and release dates (CMTVRPTW-R). In CMTVRPTW-
LT, each customer i is associated with a loading time li. For each trip, the vehicle spends
β ×

∑
i is visited li before departing, where β is a given constant such that 0 < β < 1. In

CMTVRPTW-LD, there is a maximum time limit for each trip. To the best of our knowl-
edge, all papers about CMTVRPTW-LD also consider service-dependent loading times. In
CMTVRPTW-R, each customer i is associated with a release date ri. The trip where i is served
can not start before ri. For more details about the multi-trip VRPs classification, we refer to [10].
To solve the CMTVRPTW-LD, we highlight three representative papers: [4] proposed a route-
based formulation and the corresponding BCP algorithm, [28] proposed a pseudo-polynomial
network flow model and [23] proposed an exact two-phase algorithm. The first phase enumerates
possible ordered lists of clients which match the maximum trip duration criterion. The second
phase uses a BCP scheme based on a trip-based formulation. For multi-trip CMTVRPTW-LT,
Both route-based and trip based formulations and corresponding BCP approaches are considered
by [24]. For the CMTVRPTW-R, [9] proposed a hybrid genetic algorithm. The consideration of
service-dependent loading times, limited trip duration or release dates is very common in multi-
trip problem variants not only because of theoretical aspect of these characteristics but also
because they can model several real-life situations. As an example, we highlight the researches
developed by [45], [27], [46] and [30].

Recently, [31] and [44] proposed exact algorithms for the four variants: CMTVRPTW,
CMTVRPTW-LT, CMTVRPTW-LD and CMTVRPTW-R. [31] introduced a novel structure-
based formulation that involves fewer variables than the trip-based and route-based formulations.
Based on this novel formulation, the authors propose an exact solution framework that relies
on column generation, column enumeration, and generation of cutting planes. [44] improve the
methodology proposed by [31]. In specific for CMTVRPTW, focus of this paper, the method-
ology proposed by [31] optimally solve instances with up to 50 customers while the algorithm
proposed by [44] optimally solved all instances with up to 70 customers and obtained near-
optimal solutions with the average optimality gap less than 0.3% for instances with 80 and 100
customers.

The MDVRPI is introduced by [12], who suggest a heuristic for this problem. [29] propose
two branch-and-price algorithms for the problem based on the standard route-based formulation.
The first algorithm is a standard one in which the pricing problem is solved as a RCSPP. In the

4

second algorithm, the pricing problem is solved by a two-phase approach which first enumerates
trips, and then applies a labeling algorithm over the set of enumerated trips. [40] propose a BCP
algorithm based on the route-based formulation. The algorithm incorporates several state-of-the-
art algorithmic components, including ng-routes, variable fixing, elementary route enumeration,
generation of rounded capacity inequalities and limited-memory subset-row cuts. [40] obtain
optimal solutions for instances with up to 70 customers and 7 depots.

The first version of the CLARPIF is introduced by [17]. A generalised version which involves
the constraint on the maximum total route distance is considered in several papers [18, 34, 19,
42, 43], which propose heuristic approaches. To the best of our knowledge, no exact algorithm
exist for the CLARPIF in the literature.

VRPs that consider environmental impact are widely studied in the literature in recent years.
We refer to [3] for a review of these problems. To our knowledge, there are two exact approaches
for the G-VRP in the literature. [1] use the route-based formulation and apply a BCP algorithm
to solve it. They employ the concept of multi-graph to solve the pricing problem. In the multi-
graph, there can be several arcs between a pair of nodes, where each arc corresponds to a different
set of refuelling stops visited between two customer nodes. The authors also separate robust
non-standard k-path cuts which are based on maximum route duration constraint. [8] propose
a two-phase solution approach in which a route is seen as the composition of partial paths, each
one visiting a set of customers without intermediate stops at AFS. In the first phase, all feasible
partial paths are generated. Dominance rules are used to reduce the number of partial paths. In
the second phase, an ILP is generated in which every variable corresponds to a partial path. This
integer linear program is then solved by a MIP solver. [8] show that small- and medium-sized
instances can be solved by their two-phase approach faster than by the BCP algorithm proposed
by [1]. For large-size instances, the partial path-based approach cannot be used as an exact
algorithm, but can be converted to a heuristic.

There exist several alternative generic solvers for vehicle routing problems such as Vroom

(http://vroom-project.org), OptaPlanner (https://www.optaplanner.org, jsprit (https:
//jsprit.github.io), Google OR-Tools (https://developers.google.com/optimization),
or LocalSolver (https://www.localsolver.com). However, all these solvers are heuristic. To
the best of our knowledge, VRPSolver (https://vrpsolver.math.u-bordeaux.fr) is the only
generic exact solver for VRPs. Thus, direct performance comparison is difficult, as VRPSolver is
focused on improving dual bounds, whereas heuristic solvers are designed for improving primal
bounds. Modeling capabilities of solvers are different, there are more generic and less generic
ones. We should nevertheless mention that modelling with VRPSolver is usually more difficult
for a user, as VRPSolver models involve abstract entities, such as variables, graphs, resources,
etc. Heuristic VRP solvers usually offer more practice-oriented models which directly involve
vehicles, depots, capacities, time windows, etc.

3 Overview of the VRPSolver Generic Model

In this section, in order to make the paper self-contained, we present the generic VRPSolver
model. VRPSolver a framework proposed by [33] to facilitate the design of BCP algorithms
for VRPs and related problems. The generic model contains a MIP formulation that contains
variables representing feasible routes. The set of feasible routes is modeled by a set of resource
constrained paths in one or several directed graphs. VRPSolver solves the model using a generic
BCP algorithm that generates path variables dynamically by solving the pricing subproblems
which are RCSPP. In addition to the MIP formulation and directed graphs, one can also define
so-called packing sets that allow the user to activate some state-of-art BCP components, such as
ng-path relaxation, generation of rounded capacity and limited-memory rank-1 cuts, and route
enumeration.

5

http://vroom-project.org
https://www.optaplanner.org
https://jsprit.github.io
https://jsprit.github.io
https://developers.google.com/optimization
https://www.localsolver.com
https://vrpsolver.math.u-bordeaux.fr

3.1 Graphs for RCSP subproblems

Let K be a finite set of directed graphs Gk = (V k, Ak), k ∈ K. Each graph Gk has special vertices
vksource and vksink that can be different vertices or can be the same vertex. For each k ∈ K, there
is a set of resources Rk. For each resource r ∈ Rk and each arc a ∈ Ak, value qar ∈ R indicates
the consumption of resource r on arc a. This value can be both positive or negative. However,
we highlight that for every Gk with cycles, it is mandatory to have at least one resource in Rk

with non-negative consumption on all arcs. For each k ∈ K, for each resource r ∈ Rk and for
each vertex v ∈ V k, there is an interval [lvr, uvr] for accumulated consumption of resource r.
A path p = (vksource = vp0 , a

p
1, v

p
1 , . . . , a

p
n−1, v

p
n−1, a

p
n, v

p
n = vksink) in Gk is feasible if, for every

r ∈ Rk, the accumulated resource consumption ρpj,r at visit j traversing arc apj , 1 ≤ j ≤ n, where

ρpj,r = max{lvp
j ,r

, ρp
vp
j−1,r

+ qap
j ,r

} and ρp0,r = lvk
source,r

,

does not exceed uvp
j ,r

. By this definition, resources have disposability property: they can be

consumed for free in order to satisfy lower bounds on accumulated resource consumption. This
property is very useful to model resetting of accumulated resource consumption at intermediate
facilities.

3.2 MIP formulation

Let P k be the set of feasible paths in graph Gk, k ∈ K, and let P = ∪k∈KP
k be the set of

feasible paths in all graphs. For each k ∈ K, a ∈ Ak, and p ∈ P k, the number of times that
an arc a appears in path p is denoted by hp

a. The master formulation uses integer variables
xj , 1 ≤ j ≤ n1. The formulation also uses integer variables λp, p ∈ P which computes how
many times path p is used. Finally, the formulation uses some more constants. The constant
m indicates the total number of constraints. The constants cj ∈ R, j = 1, . . . , n1 indicate the
objective function coefficients of variables x. For each constraint i = 1, . . . ,m, the constants di
and αij ∈ R, j = 1, . . . , n1 indicate respectively the right-side and coefficients of variables x for
that constraint.

min

n1∑
j=1

cjxj (1a)

s.t.

n1∑
j=1

αijxj ≥ di, i = 1, . . . ,m, (1b)

xj =

K∑
k=1

∑
p∈Pk

 ∑
a∈M(xj)

hp
a

λp, j = 1 . . . , n1, (1c)

Lk ≤
∑
p∈Pk

λp ≤ Uk, k ∈ K (1d)

λp ∈ Z+, p ∈ P, (1e)

xj ∈ Z+, j = 1, . . . , n̄1. (1f)

(1g)

The Formulation (1) is a very generic one where the Equations (1c) define the relation between
the x and λ variables. Each one of these equations uses a set M(xj), representing the mapping
of the variable xj . This mapping is defined by the user in a way that M(xj) ⊆ ∪k=1,...,KA

k. The
mapping sets M are not necessarily disjoint and the union of all mapping sets are not necessarily
equal to ∪k=1,...,KA

k. Equations (1d) show that for each graph Gk, there is a lower bound Lk

and there is an upper bound Uk for the number of feasible paths from this graph participating
in a solution. These bounds are also defined by the user.

6

The VRPSolver solves formulation (1) using a generic BCP algorithm. It works with the
following master formulation which is the linear programming (LP) relaxation of (1), in which
variables x are eliminated:

min

K∑
k=1

∑
p∈Pk

 n1∑
j=1

cj
∑

a∈M(xj)

hp
a

λp (2a)

s.t.

K∑
k=1

∑
p∈Pk

 n1∑
j=1

αij

∑
a∈M(xj)

hp
a

λp ≥ di, i = 1, . . . ,m, (2b)

Lk ≤
∑
p∈Pk

λp ≤ Uk, k ∈ K (2c)

λp ≥ 0, p ∈ P. (2d)

The master formulation (2) is solved by the iterative column generation procedure. In each
iteration a restricted master formulation (RMF) with a subset of variables λ is solved, and
then variables λ absent in the RMF with a negative reduced cost are added to it. To find such
variables, the pricing problem is solved. If no negative reduced cost variable is found, the current
solution of the RMF is optimal for the master.

The reduced cost of an arc a ∈ A is given by:

c̄a =
∑

j∈M−1(a)

cj −
m∑
i=1

∑
j∈M−1(a)

αijπi,

where vector π ∈ Rm
+ , indicates the dual variables for constraints (2b) and M−1(a) is defined as

M−1(a) = {j|a ∈ M(xj)}. The reduced cost c̄(p) of a path p = (v0, a1, v1, . . . , an−1, vn−1, an, vn) ∈
P k is given by

c̄(p) =

n∑
j=1

c̄aj
− µk

+ − µk
−,

where values µk
+ ∈ R+ and µk

− ∈ R− indicate the dual variables for constraints (2c). The pricing
subproblem for graph Gk, k ∈ K, consists in finding one or several paths in P k with a negative
reduced cost. This problem is the RCSPP, and it is solved by a labeling dynamic programming
algorithm. We refer to [33] for details about this algorithm. The generic BCP algorithm solves
the master formulation (2) on every node of the branch-and-bound search tree. Branching on
variables x is then used to solve MIP formulation (1) to optimality. Advanced algorithmic
components such as dual price automatic smoothing, arc elimination by reduced costs, and
strong branching are employed to reduce the solution time. It is worth mentioning that the
column generation and the pricing algorithms are defined automatically from the model given
by the user. Thus, the VRPSolver does not allow one to define user-specific column generation
and pricing procedures.

3.3 The concept of packing sets

Let V ′ = ∪k∈KV
k \ {vksource, vksink} be the set of all vertices that are neither source or sink of

their graphs. Let PV ⊂ 2V
′
be a collection of mutually disjoint subsets of V ′. We say that the

elements of PV are packing sets if there is at least one optimal solution of the formulation (1)
satisfying the following constraints:

∑
p∈P

(∑
v∈S

hp
v

)
λp ≤ 1, ∀S ∈ PV , (3)

7

where the constants hp
v computes how many times the vertex v is present in a path p. According

to (3), the number of times vertices in a packing set S ∈ PV appear in all paths of some
optimal solution is at most one. Packing sets often correspond to customers in VRPs. The
definition of a proper collection PV is a part of the VRPSolver model. As mentioned above,
definition of packing sets allows VRPSolver to activate some algorithmic components, namely
ng-path relaxation, generation of rounded capacity and limited-memory rank-1 cutting planes,
and elementary route enumeration. Activation of such components is necessary for the BCP
algorithm to attain the state-of-the-art performance for VRPs. We refer to [33] for details on
these components.

4 Models for the Considered Problems

4.1 Capacitated multi-trip vehicle routing problem with time windows

The CMTVRPTW is formally defined as follows. Given a directed graph G = (V,A), the vertex
set V = {0}∪V + consists of the depot with index 0 and the set of customers V + = {1, 2, ..., n}.
For each customer i ∈ V +, a demand wi > 0, a service time sti ≥ 0 and a time window
[ai, bi] are given. For the depot, The demand and the service time of the depot are equal to 0:
w0 = st0 = 0. Let tij be the travel time between two nodes i, j in V . The arc set A is defined as
A = {(i, j) ∈ V × V : i ̸= j, ai + tij + sti ≤ bj and wi + wj ≤ Q}. For each arc (i, j) ∈ A, the
travel cost from i to j is denoted by cij . A fleet of K homogeneous vehicles of capacity Q is
available. A trip is defined as a sequence of visited nodes starting and ending at the depot. A
journey is a sequence of trips non-overlapping in time with no common customers. The problem
aims to find at most K journeys aiming to minimize the total travel cost such that:

• each customer is visited exactly once by a single trip;

• the sum of demands visited during each trip does not exceed Q;

• each node is visited within its time windows (including the depot node);

4.1.1 VRPSolver model for the CMTVRPTW

We define a single path generator graphG1 = (V 1, A1). In the set of vertices V 1 = {v10 , v11 , ..., v1n+1},
vertex v10 corresponds to the depot when it is used as the first or the last element of a journey,
vertex v1n+1 corresponds to depot when it is used as an IF, and other vertices correspond to
customers. The set of arcs A1 = {(v1i , v1j) : 0 ≤ i, j ≤ n, i ̸= j} ∪ {(v1i , v1n+1) : 1 ≤ i ≤
n} ∪ {(v1n+1, v

1
i) : 1 ≤ i ≤ n} includes all possible arcs except the arcs between two depot

vertices v10 and v1n+1. The complete proposed VRPSolver model for the CMTVRPTW is the
following.

8

VRPSolver Model for CMTVRPTW. A single graph G1 = (V 1, A1), where V 1 and A1 are
defined just above. v1source = v1sink = v10 . R1 = {r1, r2}, where resource r1 ensures the vehicle
capacity constraint, and resource r2 guarantees that time windows are respected. [lv,r1 , uv,r1] =
[0, Q] for v ∈ V 1 \ {v1n+1}, and [lv1

n+1,r1
, uv1

n+1,r1
] = [0, 0]. [lv1

i ,r2
, uv1

i ,r2
] = [ai, bi], for i ∈ V +,

and [lv1
n+1,r2

, uv1
n+1,r2

] = [a0, b0]. For all a = (v1i , v
2
j) ∈ A1 such that j ̸= n + 1, qa,r1 = wj .

q(v1
i ,v

1
n+1),r1

= −Q, for i ∈ V +. For all a = (v1i , v
2
j) ∈ A1, qa,r2 = tij + sti, where tn+1,i = t0,i,

ti,n+1 = ti,0, for all i ∈ V +, and stn+1 = st0. Let δ−(j) be the set of incoming arcs in G for
each node j ∈ V +. The following MIP formulation uses integer variables xa, a ∈ A, to indicate
the number of times that the arc a is traversed.

min
∑
a∈A

caxa (4a)

s.t.
∑

a∈δ−(j)

xa = 1, j ∈ V +. (4b)

M(x(i,j)) = {(v1i , v1j)}, for (i, j) ∈ A with i, j ̸= 0. M(x(i,0)) = {(v1i , v10), (v1i , v1n+1)}, for i ∈ V +.

M(x(0,i)) = {(v10 , v1i), (v1n+1, v
1
i)}, for i ∈ V +. L1 = 0, U1 = K. PV = ∪i∈V +{{v1i }}. Rounded

capacity cut separator on ((∪i∈V +{({v1i }, wi)}, Q). Branching on variables x. Enumeration is
on.

We remark that specifying negative consumption −Q for capacity resource on arcs incoming
to vertex v1n+1 allows us to model resetting of accumulated capacity resource consumption to zero
when visiting the depot between two trips. This happens due to the disposability property of
the capacity resource: any negative accumulated consumption of this resource is automatically
updated to zero, i.e., to the lower bound on accumulated capacity resource consumption for
vertex v1n+1. Similar modelling scheme is employed for other problems we consider below.

As we mention in Section 2, in addiction to time windows, some other characteristics can be
considered in a multi-trip VRP such as service-dependent loading times, limited trip duration,
release dates, etc. However, in the variant addressed in this paper, CMTVRPTW, only the time
windows is considered. The current version of the VRPSolver is not able to model in an efficient
way the other multi-trip variants CMTVRPTW-LD, CMTVRPTW-R and CMTVRPTW-LT. In
CMTVRPTW-LD, trip duration depends on the starting time of the route. In CMTVRPTW-R,
route feasibility depends on the starting time of the route. Finally, in CMTVRPTW-LT, the
service time of at the depot depends on the demands of the subset of customers that are served
in the route. For the moment, the dependency between resources can only be modelled using
tricks that lead to very large models and a non-competitive solver efficiency.

4.1.2 VRPSolver model example for the CMTVRPTW

Consider a CMTVRPTW instance with n = K = 2, w1 = w2 = 1, Q = 1, [a0, b0] = [a1, b1] =
[a2, b2] = [0, 4], s1 = s2 = 1, cij = tij = 1 for each (i, j) ∈ A. The path generator graph
G1 = (V 1, A1) is illustrated by Figure 1. The intervals for accumulated consumption of resources
r1 and r2 are shown close to each vertex. For each arc, we show the consumption of both
resources, denoted by q1 and q2. We also indicate the variable which is mapped to the arc.

Set P is composed of feasible paths p1 = (v10 , v
1
1 , v

1
0), p2 = (v10 , v

1
2 , v

1
0), p3 = (v10 , v

1
1 , v

1
3 , v

1
2 , v

1
0),

p4 = (v10 , v
1
2 , v

1
3 , v

1
1 , v

1
0), p5 = (v10 , v

1
1 , v

1
3 , v

1
1 , v

1
0), p6 = (v10 , v

1
2 , v

1
3 , v

1
2 , v

1
0). The complete formula-

tion (1) for the instance is the following.

9

v11[0, 1],[0, 4]

v12 [0, 1],[0, 4]

v13 [0, 0],[0, 4]

v10[0, 1],[0, 4]

vsource = vsink

q 1
=
q 2
=
1;
x 0
1

q 1
=
0;
q 2
=
1;
x 1

0

q1 = 0; q2 = 1;x20

q1 = q2 = 1;x02

q
1 =

q
2 =

1;x
12

q
1 =

q
2 =

1;x
21

q1 = −1; q2 = 1;x10

q1 = q2 = 1;x01

q 1
=
−
1;
q 2

=
1;
x 2

0

q 1
=
q 2

=
1;
x 0

2

Figure 1: Path generator graph for the illustrative CMTVRPTW instance.

min x01 + x10 + x02 + x20 + x12 + x21 (5a)

s.t. x01 + x21 = 1 (5b)

x02 + x12 = 1 (5c)

x01 = λ1 + λ3 + λ4 + 2λ5 (5d)

x10 = λ1 + λ3 + λ4 + 2λ5 (5e)

x02 = λ2 + λ3 + λ4 + 2λ6 (5f)

x20 = λ2 + λ3 + λ4 + 2λ6 (5g)

x12 = 0 (5h)

x21 = 0 (5i)

0 ≤ λ1 + λ2 + λ3 + λ4 + λ5 + λ6 ≤ 2 (5j)

x01, x10, x02, x20, x12, x21 ∈ Z+ (5k)

λ1, λ2, λ3, λ4, λ5, λ6 ∈ Z+ (5l)

Variables λ5 or λ6 cannot take a positive value in any feasible solution for (5). This happens
because paths p5 and p6 visit a customer twice. Such paths are called non-elementary paths
and they never appear in an integer feasible solution. Presence of these paths make the linear
relaxation or master formulation weaker. BCP algorithm implemented in VRPSolver uses ng-
path relaxation [5] that eliminates many non-elementary paths which tend to appear in a solution
of the master formulation. ng-path relaxation, limited-memory rank-1 cuts [32] and other state-
of-art BCP components use the information provided by the collection PV of packing sets. For
this instance, there are two packing sets {v11} and {v12}. These packing sets are implied by the
following constraints corresponding to (3) which are valid for (5).

λ1 + λ3 + λ4 + 2λ5 ≤ 1 (6a)

λ2 + λ3 + λ4 + 2λ6 ≤ 1 (6b)

In a feasible solution to Formulation (5), variable λ3 takes value one, and other λ variables
take value zero. λ3 is associated with path p3 = (v10 , v

1
1 , v

1
3 , v

1
2 , v

1
0) composed of two trips. The

first trip visits only customer 1 while the second one only visits customer 2.

10

The master formulation solved by column generation for this instances is the following.

min 2λ1 + 2λ2 + 4λ3 + 4λ5 + 4λ6 (7a)

s.t. λ1 + λ3 + λ4 + 2λ5 = 1 (7b)

λ2 + λ3 + λ4 + 2λ6 = 1 (7c)

0 ≤ λ1 + λ2 + λ3, λ4 + λ5 + λ6 ≤ 2 (7d)

λ1, λ2, λ3, λ4, λ5, λ6 ≥ 0 (7e)

4.2 Multi-depot vehicle routing problem with inter-depot routes

The MDVRPI is formally defined as follows. Given a directed graph G = (V,A), the vertex
set V = V + ∪ Vd consists of the set V + = {1, ..., n} of customers and the set Vd = {n +
1, ..., n + m} of depots. The set of arcs is defined as A = {(i, j), (j, i) : i ∈ Vd, j ∈ V +}∪
{(i, j) : i, j ∈ V +, i ̸= j}. For each customer i ∈ V +, a demand wi > 0 and a service time sti ≥ 0
are given. For each arc (i, j) ∈ A, a travel time tij > 0 is known. A fleet of K homogeneous
vehicles of capacity Q is available. In a route, a vehicle can visit any depot (including the depot
where the route is started) in order to fully replenish its capacity. Thus each depot can be viewed
as an IF in MDVRPI. The time spent for replenishing the vehicle capacity at a depot d ∈ Vd is
called docking time and denoted by πd > 0. The docking time is also applied in the beginning of
a route. A route is feasible if i) it starts and ends at a same depot d ∈ Vd; ii) the total demand
served between two consecutive visits to depots does not exceeds vehicle capacity Q; and iii)
the total route time (sum of docking times, service times and travel times) does not exceed a
given upper bound Tmax. The objective of the MDVRPI is to find at most K feasible routes of
minimum total travel time such that each customer is visited exactly once by a single vehicle.

4.2.1 VRPSolver model for the MDVRPI

We define a path generator graph Gk = (V k, Ak) for each depot k ∈ Vd, where V k = {vki : 0 ≤
i ≤ n + m} and Ak = {(vki , vkj), (vkj , vki) : i ∈ Vd ∪ {0}, j ∈ V +} ∪ {(vki , vkj) : i, j ∈ V +}.
Node vk0 corresponds to the depot k when it is used as the starting point for the route. Vertices
vkn+1,...,v

k
n+m correspond to depots n + 1, . . . , n + m which are used as IFs. Other vertices

correspond to customers. We present below the complete description of the proposed VRPSolver
model.

11

VRPSolver Model for MDVRPI. For each k ∈ Vd, a graphGk = (V k, Ak) defined just above.
vksource = vksink = vk0 . Rk = {r1, r2}, where resource r1 ensures the vehicle capacity constraint,
and r2 guarantees that the maximum route total time is respected. [lvk

i ,r1
, uvk

i ,r1
] = [0, Q] for

k ∈ Vd and i ∈ V + ∪ {0}. [lvk
i ,r1

, uvk
i ,r1

] = [0, 0], for k ∈ Vd and i ∈ Vd. [lv,r2 , uv,r2] = [0, Tmax]

for k ∈ Vd and v ∈ V k. q(vk
i ,v

k
j),r1

= −Q for k ∈ Vd, i ∈ V +, and j ∈ Vd. q(vk
i ,v

k
0),r1

= 0, for

k ∈ Vd and i ∈ V +. q(vk
i ,v

k
j),r1

= wj for k ∈ Vd, i ∈ V k and j ∈ V +. q(vk
0 ,v

k
j),r2

= πk + tkj + stj

for k ∈ Vd and j ∈ V +. q(vk
i ,v

k
0),r2

= tik for k ∈ Vd and i ∈ V +. q(vk
i ,v

k
j),r2

= tij + stj for k ∈ Vd,

i ̸= 0, and j ∈ V +. q(vk
i ,v

k
j),r2

= tij + πj for k ∈ Vd and j ∈ Vd. As before, let δ−(j) be the set of

incoming arcs in G for each node j ∈ V +. The following MIP formulation uses integer variables
xa for a ∈ A, to indicate the number of times that the arc a is traversed and integer variables
yk for k ∈ Vd, to indicate the number of routes that start and end at depot k.

min
∑
a∈A

taxa (8a)

s.t.
∑

a∈δ−(j)

xa = 1, j ∈ V +, (8b)

∑
k∈Vd

yk ≤ K; (8c)

M(x(i,j)) = {(vki , vkj) : k ∈ Vd} for (i, j) ∈ A such that i, j ∈ V +, M(x(i,d)) = {(vki , vkd) : k ∈
Vd} ∪ {(vdi , vd0)} for i ∈ V + and d ∈ Vd, M(x(d,i)) = {(vkd , vki) : k ∈ Vd} ∪ {(vd0 , vdi)} for d ∈ Vd

and i ∈ V +. M(yk) = {(vk0 , i) : i ∈ V +} for k ∈ Vd; L
k = 0 and Uk = K for k ∈ Vd. PV =

∪i∈V +{{vki }k∈Vd
}. Rounded capacity cut separator on (∪i∈V +{({vki }k∈Vd

, wi)}, Q). Branching
on x and y variables. Enumeration is on.

4.2.2 VRPSolver model example for the MDVRPI

Consider a MDVRPI instance with n = m = K = 2, w1 = w2 = 1, Q = 1, Tmax = 8,
st1 = st2 = π3 = π4 = 1, and tij = 1 for (i, j) ∈ A. There are two path generator graphs
G3 = (V 3, A3) and G4 = (V 4, A4). Graph G3 is illustrated by the Figure 2. As in the previous
example, the intervals for accumulated consumption of resources r1 and r2 are shown close to
each vertex. For each arc, we show the consumption of the both resources, denoted by q1 and
q2. We also indicate the variable which is mapped to the arc.

4.3 Arc Routing Problem With Intermediate Facilities Under Capac-
ity and Length Restrictions

The CLARPIF is formally defined as follows. We are given an undirected graph G = (V,E). For
each edge e ∈ E, a cost (or distance) ce ≥ 0 and a demand we ≥ 0 are defined. We define the set
E′ of required edges, i.e., edges with positive demand: E′ = {e ∈ E : we > 0}. Each edge can
be traversed any number of times, except that required edges should be traversed at least once
in order to collect the demand. An unlimited number of homogeneous vehicles with capacity Q
is available. Vertex set V contains the depot vertex 0 and a set F ⊆ V of IFs. The CLARPIF
consists in finding the set of routes of minimum total cost under the following constraints.

• Each route starts and ends at the depot.

• The demand of every required edge e ∈ E′ is collected by exactly one vehicle.

• In each route, the total demand collected between two consecutive visits of the depot or
an IF does not exceed vehicle capacity Q.

12

v
3 1

[0
,1
],
[0
,8
]

v
3 2

[0
,1
],
[0
,8
]

v
3 3

[0
,0
],
[0
,8
]

v
3 4

[0
,0
],
[0
,8
]

v
3 0

[0
,1
],
[0
,8
]

v s
o
u
r
c
e
=

v s
in

k

q1
=
1;
q2

=
3;
x1

3,y
3

q1
=
0;
q2

=
1;
x3

1

q 1
=

0
; q

2
=

1
;x

2
3

q 1
=

1
;q

2
=

3
;x

3
2
,y

3q1
=
1;
q2
=
2;
x1

2

q1
=
1;
q2
=
2;
x2

1

q 1
=

−
1
; q

2
=

2
;x

1
3

q 1
=

1
;q

2
=

2
;x

3
1

q1
=
−1

;q
2=

2;
x2

3

q1
=
1;
q2

=
2;
x3

2

q1 =
−1; q2

= 2;x14

q1
=

1
;q

2
=

2
;x

4
1

q 1
=

−
1
; q

2
=

2
;x

2
4

q 1
=

1
;q

2
=

2
;x

4
2

F
ig
u
re

2:
P
at
h
ge
n
er
a
to
r
g
ra
p
h
G

3
(V

3
,A

3
)
fo
r
th
e
il
lu
st
ra
ti
ve

M
D
V
R
P
I
in
st
a
n
ce
.

13

• If {0} /∈ F then no demand can be collected between the last visit to an IF and returning
to the depot.

• The total distance of any route does not exceed a given upper limit Tmax.

4.3.1 VRPSolver model for the CLARPIF

Our model for the CLARPIF is an extension of the VRPSolver model for the Capacitated
Arc Routing Problem proposed by [33]. First, we introduce some notations. For i, j ∈ V let
D(i, j) ⊆ E be the set of edges in a cheapest path from i to j in graph G. The cost of this path is
denoted as C(i, j) =

∑
e∈D(i,j) ce. We define a dummy edge b0 = (0, 0′) with wb0 = 0 and cb0 = 0

and a set of dummy edges F0 = {(i, i′) : i ∈ F} with wbi = −Q and cbi = 0 for (i, i′) ∈ F0. We
denote E0 = E′∪{b0}∪F0. For each e ∈ E0 we define the set Se of possible traversal directions.
If e = (i, j) ∈ E′ then two directions are possible: Se = {i, j}. If e = (i, i′) ∈ {b0} ∪ F0 then one
“direction” is possible Se = {i}.

We define a single path generator graph G1 = (V 1, A1). This graph contains vertices for
every required or dummy edge e ∈ E0 and every traversal direction s ∈ Se: V 1 = {vse : e ∈
E0, s ∈ Se}. Set A1 contains: i) arcs which connect vertices corresponding to edges in E′ ∪ F0

such that at least one edges is required: {(vse , vs
′

e′) : e, e′ ∈ E′ ∪ F0, s ∈ Se, s′ ∈ Se′ , e ∈
E′ or e′ ∈ E′, e ̸= e′ or s ̸= s′}; ii) arcs from vertex v0b0 to all vertices corresponding to required
edges: {(v0b0 , v

s
e) : e ∈ E′, s ∈ Se}; and iii) arcs from vertices corresponding intermediate

facilities to vertex v0b0 if the depot is not an IF: {(vse , v0b0) : e ∈ F0, s ∈ Se, {0} ̸∈ F}.

VRPSolver Model for CLARPIF. A single graph G1 = (V 1, A1), where V 1 and A1 are
defined just above. v1source = v1sink = v0b0 . R1 = {r1, r2}, where resource r1 ensures the vehicle
capacity constraints, and resource r2 guarantees that the total route distance does not exceed the
upper limit. [lv,r1 , uv,r1] = [0, Q] for v ∈ V 1\{vsink}. [lvsink,r1 , uvsink,r1] = [0, 0] in order to ensure
that the vehicle finishes the route empty according to the CLARPIF definition. [lv,r2 , uv,r2] =

[0, Tmax] for each v ∈ V 1. For every arc a = (vse , v
s′

e′) ∈ A1, qa,r1 = we′ . For every arc

a = (vse , v
s′

e′) ∈ A1, qa,r2 = C ′
a = C(s, s̄′(e′)) + ce′ , where s̄′(e′) is the extremity of e′ different

from s′ if e′ ∈ E′, and s̄′(e′) = s′ if e′ ̸∈ E′. Let δ−(v) denote the set of incoming arcs in A1

entering a vertex v ∈ V 1. Let also δ−(e) = ∪s∈Se
δ−(vse). The following MIP formulation uses

integer variable xa for each a ∈ A1, to indicate the number of times that the arc a is traversed.
The formulation follows.

min
∑
a∈A1

C ′
axa (9a)

s.t.
∑

a∈δ−(e)

xa = 1, e ∈ E′; (9b)

M(xa) = {a}, a ∈ A1; L1 = 0 and U1 = |E′|. PV = ∪e∈E′ {{vse}s∈Se
}. Rounded capac-

ity cut separator on
(
∪e∈E′

{(
{vse}s∈Se

, we

)}
, Q
)
. We first branch on the aggregations of x

variables corresponding to node degrees in original graph G. We then branch on the aggre-
gations of x variables corresponding to pairs of required or dummy edges e, e′ ∈ E0, e ̸= e′:∑

s∈Se

∑
s′∈Se′

(
x(vs

e ,v
s′
e′)

+ x(vs′
e′ ,v

s
e)

)
. Finally, we branch on variables x.

4.3.2 A VRPSolver model example for the CLARPIF

Consider a CLARPIF instance with original graph G = (V,E), V = {0, 1, 2}, v0 = 0, E =
{(0, 1), (0, 2), (1, 2))}, E′ = {(1, 2), (0, 2)}, w(1,2) = w(0,2) = 1, F = {2}, Q = 1, ce = 1 for each
e ∈ E, Tmax = 5. Figure 3 presents a graph representation for G where we marked depot vertex
0 in yellow and vertex 2 corresponding to the intermediate facility in red. We also indicate the

14

0

1

2w
=
0

w = 1

w = 1

Figure 3: A graph representation for the illustrative CLARPIF instance.

respective demand on each edge.

A feasible solution for the proposed illustrative CLARPIF instance is the single route 0 →
1 ⇒ 2 ⇒ 0 → 2 → 0, where demand collection happens during traversals “⇒”. In this solution,
a single vehicle with capacity Q = 1 can collects two demand units, as it visits the intermediate
facility between collecting them. The vehicle has to visit vertex 2 again before returning to the
depot, as the second collected demand unit cannot be dropped at the depot which is not an
intermediate facility.

For this instance, we define E0 = E′ ∪ {(0, 0′)} ∪ {(2, 2′)}, with w(0,0′) = c(0,0′) = c(0,0′) = 0,
and w(2,2′) = −Q = −1. The set of vertices V1 in the path generator graph contains two
vertices for edges (1, 2) and (0, 2) and one vertex for edges (0, 0′) and (2, 2′). Thus, we have
V 1 = {v0(0,0′), v

1
(1,2), v

2
(1,2), v

0
(0,2), v

2
(0,2), v

2
(2,2′)}, where vsource = vsink = v0(0,0′). The set of arcs A

1

is built in the following way. Let e = (i, j) and e′ = (i′, j′) be two different edges in E0. If e ∈ E′

and e′ ∈ E′ then we add eight arcs to A1 between vertices corresponding to these two edges.
If e = (i, i′) ̸∈ E′ and e′ ∈ E′ then we add four arcs to A1. Path generator graph G1 for the
proposed instance is illustrated in Figure 4. Again, the intervals for accumulated consumption
of resources r1 and r2 are shown close to each vertex. Due to the lack of space in the figure, we
show the consumption of the both resources, denoted by q1 and q2, only for arcs participating
in the feasible solution 0 → 1 ⇒ 2 ⇒ 0 → 2 → 0 presented above.

Route 0 → 1 ⇒ 2 ⇒ 0 → 2 → 0 for the CLARPIF corresponds to path
(
v0(0,0′), v

2
(1,2), v

2
(2,2′), v

0
(0,2), v

2
(2,2′), v

0
(0,0′)

)
in graph G1. Arc

(
v0(0,0′), v

2
(1,2)

)
corresponds to taking the shortest path to vertex 1, and then

following required edge (1, 2) while collecting the demand. Arc
(
v2(1,2), v

2
(2,2′)

)
corresponds to

staying at vertex 2 and then dropping the demand at IF 2. Arc
(
v2(2,2′), v

0
(0,2)

)
corresponds to

following required edge (0, 2) while collecting the demand. Arc
(
v0(0,2), v

2
(2,2′)

)
corresponds to

taking the shortest path from vertex 0 to vertex 2 and dropping the collected demand at IF 2.

Finally, arc
(
v2(2,2′), v

0
(0,0′)

)
corresponds to returning to the depot by taking the shortest path

from vertex 2.

4.4 Green Vehicle Routing Problem

The G-VRP is formally defined as follows. Given a complete graph G = (V,A), the vertex set
V = {0}∪V +∪F contains the depot vertex 0, a customer set V + = {1, ..., n} and an alternative
fuel station (AFS) set F = {n+1, ..., n+m}. For each customer a service time sti ≥ 0 is defined.
For each arc a ∈ A a travel time t′a and a distance da are defined. The customers are served
by Alternative Fuel Vehicles (AFVs). Each AFV can travel a maximum distance D without
refuelling. The AFVs can stop at a AFS to refuel, incurring a refuelling delay of duration π.
The refuelling delay also occurs when the vehicles leave the depot. To simplify the notation, we
include the service and refueling times in the arc travel times. Thus, the complete travel times

15

v
1 (1
,2
)

[0
,1
],
[0
,5
]

v
2 (1
,2
)

[0
,1
],
[0
,5
]

v
0 (0
,2
)

[0
,1
],
[0
,5
]

v
2 (0
,2
)

[0
,1
],
[0
,5
]

v
0 (0
,0

′)
v s

o
u
r
c
e
=

v s
in

k

[0
,0
],
[0
,5
]

v
2 (2
,2

′)
[0
,1
],
[0
,5
]

q1
=

−
1
;q

2
=

0
;x

(v
2 (
1
,2

)
,v

2 (
2
,2

′)
)

q 1
=

1
; q

2
=

2
;x

(v
0 (
0
,0

′)
,v

2 (
1
,2

)
)

q 1
=

1
; q

2
=

1
;x

(v
2 (
2
,2

′)
,v

0 (
0
,2

)
)

q 1
=

−
1
; q

2
=

1
;x

(v
0 (
0
,2

)
,v

2 (
2
,2

′)
)

q 1
=

0
;q

2
=

1
;x

(v
2 (
2
,2

′)
,v

0 (
0
,0

′)
)

F
ig
u
re

4:
P
at
h
ge
n
er
a
to
r
g
ra
p
h
G

1
fo
r
th
e
p
ro
p
o
se
d
C
L
A
R
P
IF

ex
a
m
p
le
.

16

of an arc a = (i, j) equals t(i,j) = t′(i,j) + sti when i ∈ V +, or equals t(i,j) = t′(i,j) + π when

i ∈ F ∪ {0}. The G-VRP consists of finding a set of routes which minimizes the total travelled
distance under the following constraints.

• Each route starts and ends at the depot.

• Each customer is visited by exactly one AFV.

• In each route, the total distance travelled between two successive AFS does not exceed the
maximum distance without refueling D.

• The total travel time in any route does not exceed a given bound Tmax.

4.4.1 VRPSolver model for the G-VRP

Now we present our VRPSolver model for the G-VRP.

VRPSolver Model for G-VRP. A single path generator complete graph G1 = (V 1, A1)
where V 1 = V and A1 = A. v1source = v1sink = 0. R1 = {r1, r2}, where time resource r1 ensures
that the maximum route total travel time is respected, and resource r2 guarantees that the
maximum travelled distance between two refuels is respected.. [li,r1 , ui,r1] = [0, Tmax], i ∈ V 1.
[li,r2 , ui,r2] = [0, D] for i ∈ V 1 \ F , and [li,r2 , ui,r2] = [0, 0] for i ∈ F . qa,r1 = ta for a ∈ A1.
qa,r2 = da for a = (i, j) ∈ A1 with j ̸∈ F . qa,r2 = da − D for a = (i, j) ∈ A1 with j ∈ F . Let
δ−(i) denote the set of incoming arcs to a vertex i ∈ V +. The following MIP formulation uses
integer variables xa, a ∈ A, to indicate the number of times that the arc a is traversed.

min
∑
a∈A

daxa (10a)

s.t.
∑

a∈δ−(i)

xa = 1, i ∈ V +; (10b)

M(xa) = {a}, for a ∈ A1; L1 = 0 and U1 = |V +|. Pv = ∪i∈V +{{i}}. We then branch on the
aggregations of x variables corresponding to incoming arcs to the depot:

∑
a∈δ−(0)

xa. Finally, we

branch on variables x. Enumeration is on.

For the particular case where the distance and travel time matrices are symmetric, we do
the following changes: we create a variable x(i,j) only if i < j, we replace the constraints (10b)
by

∑
a∈δ(i)

xa = 2,∀i ∈ V+, where δ(i) represents the set of edges adjacent to i and we replace the

mapping set M by M(x(i,j)) = {(i, j), (j, i)}, (i, j) ∈ A1.

4.4.2 An example for the G-VRP VRPSolver model

Consider a G-VRP instance with n = 3, m = 1, Tmax = 8, D = 2, π = st1 = st2 = 1,
t′a = da = 1 for a ∈ A. Thus, we have ta = 2 for all a ∈ A. The path generator graph for
this instance is illustrated in Figure 5. The intervals for accumulated consumption of resources
r1 and r2 are shown close to each vertex. For each arc, we show the consumption of the both
resources, denoted by q1 and q2. We also indicate the variable which is mapped to the arc.
Depot, customers and AFS are coloured in yellow, green, and red, respectively.

5 Computational Experiments

In this section, we present computational results for the four problems addressed in this paper.
All experiments are performed on a computer with an Intel Core i7-4790 processor with 3.6 GHz

17

v10

[0, 8],[0, 2]

v1source = v1sink

v11[0, 8],[0, 2]

v12[0, 8],[0, 2]

v13 [0, 8],[0, 0]

q1
= 2; q2

= 1;x
01

q1
= 2; q2

= 1;x
01

q1 = 2; q2 = 1;x02

q1 = 2; q2 = 1;x02

q
1
=

2
;q

1
=

1
;x

1
2

q 1
=

2
;q

1
=

1
;x

1
2

q1 =
2; q2 = −1;x

13

q1 =
2; q2 =

1;x
13

q1
=
2; q

2
=
−1;

x23

q1
=
2; q

2
=
1;x

23

q1 = 2; q2 = −1;x03

q1 = 2; q2 = 1;x03

Figure 5: Path generator graph for the illustrative GVRP instance.

Problem Best exact method Time limit(s) Initial ub

CMTVRPTW [44] 3h [44]
MDVRPI [40] 2h This paper
CLARPIF - 2h [41]
G-VRP [1] 10h [1]

Table 1: Best exact method, time limit and Initial upper bound for each problem

and 16 GB of RAM on Ubuntu 18.04.2 LTS operating system. Each instance is solved using a
single thread. CPLEX v12.9 is used as the LP and MIP solver. For each problem, we compare
our approach with the best exact algorithm available in the literature. Each instance is solved
with and without the information about a known feasible solution. Table 1 presents for each
problem the reference with the best known exact method, the time limit in hours for solving
each instance, and the source we used to obtain the known feasible solutions. For the MDVRPI,
we use the feasible solutions obtained by ourselves in preliminary runs, as a part of instances we
use were not previously considered in the literature.

In the reminder of this section, we present aggregated results for each instances class. Each
class is characterised by a pair of instance group name and instance size. Detailed computational
results for each instance are presented in the online appendix. The tables in this section have
the same structure which is the following. Each line corresponds to one instance class. Column
Group indicates the instance group name. Column #Inst gives the number of instances in the
class. The next column(s) specify the instance size in the class. Size units depend on the problem.
Column #Int. Solved indicates the number of instances in the class solved to optimality within
the time limit. Columns Avg. Gap0(%) indicates the average root gap among optimally solved
instances in the class. The root gap for an instance is the difference between the value of the
best known solution and the value of the lower bound obtained at the end of the root node,
taken in per cent from the value of the best known solution. Column Avg. #Nodes gives the
average number of nodes in the branch-and-bound tree among optimally solved instances in the
class. Finally, column Time(s) shows the average total CPU time in seconds among instances
in the class solved to optimality within the time limit.

18

5.1 Results for the CMTVRPTW instances

The test instances for the CMTVRPTW are generated from the standard VRPTW instances by
Solomon [37]. As it is common in the literature, only instances of type 2 are used. The set of
instances is divided in three groups: C, R and RC with respectively 8, 11 and 8 instances for each
size. Instances with different sizes are used: those with n ∈ {25, 40, 50, 70, 80, 100}. Instances
with n < 100 are obtained by taking the first n customers from original Solomon instances with
100 customers. The number of available vehicles K is set to two for n = 25, four for n = 40 and
n = 50, six for n = 70, seven for n = 80, and eight for n = 100. The vehicle capacity Q is fixed
to 100 for all instances.

To our knowledge, the most efficient current exact algorithms for the CMTVRPTW are
proposed by [31] and [44]. The latter algorithm defines the current state-of-the-art for the exact
solution of the CMTVRPTW. We present the computational comparison of three algorithms in
Table 2. The size of instances in each class is determined by the number of customers n. For the
Yang’s algorithm, we use its implementation available online: github.com/Yu1423/CMTVRPTW.
This implementation as well as our algorithm were run on the same machine. The only difference
is that the literature implementation uses Gurobi v9.1 as the LP and MIP solver while we use
CPLEX v12.9 for these tasks. For the BCP algorithm proposed by [31], we present the original
results from their paper which were obtained on a Windows server equipped with six virtual
CPUs running at 2.59 GHz and with 16 GB of RAM. All three algorithms are use a single thread
for each instance. The execution of algorithm by [44] was interrupted for several instances with
100 customers due to lack of available memory.

From the results presented in Table 2, it can be seen that our approach is more efficient in
general than the state-of-the-art, as it solves more instances to optimality within the time limit
even when no information about known feasible solutions is used. Our approach is particularly
efficient for instances in group C (clustered instances). However, for instances in groups R and
RC, some instances can be solved by [44] and cannot be solved by our approach.

Superiority of our algorithm can be explained by the fact that it incorporates the main state-
of-the-art techniques known to be useful for many VRP variants. These techniques are listed in
the beginning of Section 3. Existing algorithms often miss many of these techniques because they
were not known at the moment of publication or because they are time-consuming to implement.
In addition, our implementation is carefully designed to ensure the best possible performance.

When using the information about the best known upper bounds, the efficiency of our ap-
proach rises considerably, as more than 90% of instances can be solved to optimality. Any
instance solved by [44], can also be solved by our approach when initialised with the best known
solutions. This shows importance of this information for VRPSolver as well for any BCP ap-
proach. We would like also to highlight the small average size of the branch-and-bound tree
generated by our algorithm.

The solution time of our algorithm is larger for small instances with 25 customers than
for larger instances with 40 customers. This happens because we use a parameterisation of
VRPSolver, which is adapted for difficult instances.

5.2 Results for the MDVRPI instances

For the MDVRPI, the test instances are generated from two groups of original instances proposed
by [12] and available online: chairelogistique.hec.ca/data/mdvrpi. The number of original
instances in groups Random and CGL is 12 and 10 respectively. They have between 48 and 288
customers and between three and seven depots. We generate instances of different sizes, i.e.,
with different number of customers n, by taking the first 25, 40, 70, 100, and 120 customers
in the original instances that have an enough number of customers. For example if for some
original instance file the number of customers is 48 then we create two instances: one of them
with 25 customers and another one with 40 customers. The number of vehicles K is fixed to 4,
6, 10, 15, and 17, respectively for each number of customers. The values of Q and Tmax are set

19

P
ro
p
os
ed

B
C
P

w
it
h
ou

t
in
it
ia
l
u
b

P
ro
p
o
se
d
B
C
P

w
it
h
in
it
ia
l
u
b

[3
1
]

[4
4
]

#
In
st
.

A
v
g.

#
In
st
.

A
v
g
.

#
In
st
.

A
v
g
.

#
In
st
.

A
v
g
.

G
ro
u
p
#
In
st

n
S
ol
ve
d
G
a
p
0
(%

)
#
N
o
d
es

T
im

e(
s)

S
o
lv
ed

G
a
p
0
(%

)
#
N
o
d
es

T
im

e(
s)

S
o
lv
ed

T
im

e
(s
)

S
o
lv
ed

T
im

e
(s
)

C
8

25
8

0.
0

1.
0

1
7
4
.2

8
0
.0

1
.0

1
.8

8
1
6
.1

8
3
.3

R
11

25
11

0.
1

1.
4

3
8
.1

1
1

0
.0

1
.0

2
.7

1
1

8
3
.1

1
1

8
.1

R
C

8
25

8
0.
1

2
.3

1
4
2
.1

8
0
.0

1
.0

5
.6

8
1
7
5
.7

8
5
2
.4

C
8

40
8

0.
1

2.
5

3
2
.3

8
0
.1

2
.0

2
6
.7

6
2
5
8
9
.9

8
1
3
5
.0

R
11

40
11

0.
2

2.
1

9
3
.6

1
1

0
.0

1
.0

1
5
.0

1
0

3
7
7
.7

1
1

1
1
.0

R
C

8
40

8
0.
1

2
.0

4
0
.2

8
0
.0

1
.5

1
7
.4

8
1
2
2
3
.7

8
2
7
.3

C
8

50
8

0.
1

3.
3

3
2
5
.2

8
0
.1

1
.3

6
2
.0

2
1
6
0
1
.1

8
5
7
.4

R
11

50
11

0.
7

20
.8

3
2
1
8
.1

1
1

0
.3

5
.5

1
2
6
6
.4

0
-

1
1

1
2
8
4
.7

R
C

8
50

7
0.
5

5
.9

1
6
2
.3

8
0
.6

2
8
.8

8
3
4
.9

7
6
4
7
.6

8
4
8
.4

C
8

70
8

0.
2

4.
8

7
8
1
.0

8
0
.2

4
.8

79
6
.7

3
3
9
4
9
.3

R
11

70
7

0.
6

15
.6

2
8
3
2
.8

9
0
.5

2
4
.1

2
88
0
.6

9
1
1
6
4
.2

R
C

8
70

7
0.
3

18
.7

2
9
0
5
.6

8
0
.3

1
0
.3

2
4
1
6
.3

8
1
7
1
1
.1

C
8

80
8

0.
0

2.
0

1
9
1
.9

8
0
.0

1
.0

17
8
.3

5
4
8
0
9
.7

R
11

80
4

0.
6

25
.5

4
6
1
1
.2

9
0
.5

2
5
.0

4
22
4
.2

6
3
3
3
5
.6

R
C

8
80

6
0.
2

8
.0

2
0
8
1
.7

8
0
.2

7
.3

6
1
3
.3

8
1
2
4
1
.2

C
8
10
0

8
0.
1

2
.8

7
0
5
.2

8
0
.1

1
.8

4
5
6
.1

1
9
0
4
1
.3

R
11

10
0

1
0.
3

15
.0

5
2
7
9
.8

3
0
.4

2
9
.7

3
9
0
4
.6

1
5
2
2
5
.4

R
C

8
10
0

2
0.
2

7
.0

8
3
7
.5

6
0
.4

3
8
.0

5
5
8
6
.7

1
1
2
0
.9

A
ll

16
2

13
1

0.
2

6.
8

1
0
3
1
.9

1
4
8

0
.2

9
.0

1
1
2
5
.5

1
2
3

9
8
6
.4

T
ab

le
2:

S
u
m
m
a
ry

o
f
o
u
r
re
su
lt
s
fo
r
C
M
T
V
R
P
T
W

in
st
a
n
ce
s.

20

respectively to 50 and 450. Other data comes from the original instances. Instances with 100
and 120 customers are considered the first time in the literature. Smaller instances with 25, 40,
and 70 customers were already used by [29] and [40].

To our knowledge, the best exact approaches in the literature for the MDVRPI are a branch-
and-price algorithm by [29] and a BCP algorithm by [40]. The latter algorithm defines the
current state-of-the-art for the exact solution of the MDVRPI. The results for the algorithm by
[29] were obtained on a computer with a 2.67 GHz Intel Westmere-EP X5650 Processor and 4
GB of RAM. The authors used the CPLEX v12.2 as a LP and MIP solver. The results for the
algorithm by [40] were obtained on an Intel Xeon CPU E5-2689 v4 server running at 3.10 GHz
with 128GB of RAM. We took at the web site www.cpubenchmark.net the score of the single
thread performance of the processor used by the literature algorithms and used by ours: 1306,
2380 and 2231 points for the algorithms proposed by [29], [40] and us, respectively. The processor
speed for the last two algorithms is very similar, and the efficiency of the first algorithm is clearly
not on pair with others even considering the difference in processor speed. Therefore, we do not
do any adjustments to the solutions times in the computational comparison of three algorithms
presented in Table 3.

From the results in Table 3, one can see that our approach solves more instances than the
best literature one by [40], even when no information about known feasible solution is used. 89%
of all instances are solved to optimality within the time limit, including some large instances
with 120 customers. However, smaller instances with up to 40 customers are solved faster by
the best algorithm in the literature.

Again, when using the information about the best known solutions, the solution time our
approach decreases by one order of magnitude. Nevertheless, no additional instances are solved
to optimality. No solutions are known in the literature for unsolved instances with 100 and 120
customers. We suppose that efficiency of our approach will increase considerably when good
solutions are obtained by heuristics.

5.3 Computational results for CLARPIF instances

For the CLARPIF, we use the test instances proposed by [41] and available online:
sites.google.com/site/wasteoptimisation. These instances were obtained by modification
of two groups of original instances for the capacitated arc routing problem (CARP). Group gdb
was proposed by [22], and group bccm was proposed by [7]. There 23 modified instances with
up to 55 required edges in the group gdb-IF, and 34 instances with up to 92 required edges in
the group bccm-IF. We refer to [41] for more details about the instances.

The Table 4 summarises only our computational results for the CLARPIF, as there is no
exact algorithm for this problem in the literature to our knowledge. Column Avg. |V | specifies
the average number of nodes in the instances of each group. Column Avg. |E′| gives the average
number of required edges in instances of each group.

From 57 test instances, our approach is able to solve 53 instances (or 93%) to optimality within
the time limit, when initialised with known solutions presented by [41]. When the information
about best known solutions is not used, we optimally solved all 23 instances in group gdb-IF.
Thus, the average optimality gap of these solutions is equal to zero. On the other hand, for the
34 instances in group bccm-IF, we did not optimally solve 10 instances. For all of these instances,
we did not find any feasible solution. Therefore, we could not calculate their optimality gaps.
Instances in group bccm-IF are harder to solve to optimality. This is probably due to the fact
that these instances are larger.

It is worth pointing out that the heuristic algorithm proposed by [41] found the optimum
values for 14 out of 23 instances in group gdb-IF. The average optimality gap of their heuristic
solutions equals to 1.59% for these instances. For the instances in group bccm-IF, the heuristic
found the optimum or best values obtained by us for 31 out of 34 instances, and obtained the
average gap of 0.88%. These results confirm a very good efficiency of the heuristic proposed by

21

P
ro
p
os
ed

B
C
P

w
it
h
ou

t
in
it
ia
l
u
b

P
ro
p
o
se
d
B
C
P

w
it
h
in
it
ia
l
u
b

[2
9
]

[4
0
]

#
In
st
.

A
v
g
.

#
In
st
.

A
v
g
.

#
In
st
.

A
v
g
.
#
In
st
.

A
v
g
.

G
ro
u
p

n
#
In
st

S
ol
ve
d
G
a
p
0
(%

)
#
N
o
d
es

T
im

e(
s)

S
o
lv
ed

G
a
p
0
(%

)
#
N
o
d
es

T
im

e(
s)

S
o
lv
ed

T
im

e
(s
)
S
o
lv
ed

T
im

e
(s
)

R
an

d
om

25
12

12
0.
5

2
.5

2
3
.9

1
2

0
.0

1
.0

2
.1

7
4
5
1
.9

1
2

1
7
.5

C
G
L

25
10

10
0.
5

3
.2

3
1
.8

1
0

0
.0

1
.0

2
.3

8
1
2
2
1
.8

1
0

1
5
.2

R
an

d
om

40
12

12
0.
2

3
.5

1
3
1
.5

1
2

0
.0

1
.0

6
.8

1
4
4
7
4
.0

1
2

7
6
.6

C
G
L

40
10

10
0.
5

4
.6

1
5
7
.5

1
0

0
.0

1
.0

4
.5

2
6
3
8
3
.5

1
0

8
1
.1

R
an

d
om

70
10

10
0.
2

6
.6

4
7
8
.3

1
0

0
.0

1
.2

5
9
.1

-
-

9
2
7
2
8
.0

C
G
L

70
9

9
0.
3

7
.0

5
4
0
.8

9
0
.0

1
.0

6
2
.5

-
-

8
1
6
0
7
.3

R
an

d
om

10
0

6
5

0.
3

1
5
.0

3
4
9
5
.2

5
0
.1

3
.4

4
5
0
.9

-
-

-
-

C
G
L

10
0

7
6

0.
2

6
.0

1
8
9
3
.8

6
0
.0

1
.0

1
4
5
.4

-
-

-
-

R
an

d
om

12
0

6
2

0.
1

6
.0

2
6
5
0
.1

2
0
.0

1
.0

1
9
3
.7

-
-

-
-

C
G
L

12
0

7
3

0.
2

4
.0

2
1
6
9
.1

3
0
.0

1
.0

3
1
4
.6

-
-

-
-

T
ab

le
3:

S
u
m
m
a
ry

o
f
o
u
r
re
su
lt
s
fo
r
M
D
V
R
P
I
in
st
a
n
ce
s.

22

P
ro
p
o
se
d
B
C
P

w
it
h
o
u
t
in
it
ia
l
u
b

P
ro
p
o
se
d
B
C
P

w
it
h
in
it
ia
l
u
b

A
v
g.

#
In
st
.

A
v
g
.

#
In
st
.

A
v
g
.

G
ro
u
p

#
In
st
.

|V
|

|E
′ |

S
ol
ve
d

G
a
p
0
(%

)
#
N
o
d
es

T
im

e(
s)

S
o
lv
ed

G
a
p
0
(%

)
#
N
o
d
es

T
im

e(
s)

gd
b
-I
F

23
11
.4

29
.4

2
3

0
.2

1
0
.3

1
1
7
.5

2
3

0
.2

6
.7

3
9
.1

b
cc
m
-I
F

34
35
.0

63
.3

2
4

1
.5

2
4
.7

5
8
1
.3

3
0

1
.0

9
.7

3
7
9
.9

T
ab

le
4:

S
u
m
m
a
ry

o
f
o
u
r
re
su
lt
s
fo
r
C
L
A
R
P
IF

in
st
a
n
ce
s.

23

[41]. Thus, we can highlight that evaluation of heuristics performance is an important use case
of VRPSolver models. Such evaluation may be carried out using medium size instances which
are out of reach for MIP models.

5.4 Computational results for G-VRP instances

For the G-VRP, the use two groups AB1 and AB2 of test instances proposed by [1] and available
online: www.vrp-rep.org/variants/item/g-vrp.html. Each group contains 20 instances which have
from 50 to 100 customers and from 21 to 25 refuelling stations.

The best exact algorithm in the literature to our knowledge was proposed by [1]. In Table
5 we compare computationally with it our approach. Column Avg. n presents the average
number of customers for every group of instances. Columns Avg. s shows the average number
of refuelling stations. The tests conducted by [1] did not consider a time limit. Their approach
does not solve some instances due to insufficient memory when performing the route generation
step in their algorithm.

It can be seen from Table 5 that our approach does not manage to outperform the state-of-
the-art in general. However, we manage to solve two instances AB214 and AB216 to optimality
for the first time, as indicated in the detailed results we present in the online appendix.

It is not surprising that the algorithm by [1] outperforms ours, as the former uses special
k-path cuts. This family of cuts is different from the well-known rounded capacity cuts, which
are sometimes also called k-path cuts. k-path cuts proposed by [1] are based on the maximum
travelled distance between two successive AFS and on the maximum total route travel time.
Combination of these constraints is specific to the G-VRP. Separation algorithm for these cuts
is complex and requires a laborious implementation of the labelling algorithm for a particular
RCSPP problem. Since the focus of this paper is on using generic tools, we decided not to use
separation algorithms specific to a particular problem.

We highlight that the method proposed by [1] is not efficient without k-path cuts. As stated
by the authors in [1], only one instance (AB101) in group AB1 could be solved by their algorithm
with the same parameters and time limit settings if the k-path cuts are not used ignored. Thus,
our algorithm is significantly more efficient than the algorithm in [1] without separation of k-path
cuts.

6 Conclusions

In this paper, we propose VRPSolver models for four vehicle routing problems with intermediate
stops: the CMTVRPTW, the MDVRPI, the CLARPIF and the GVRP. These models contain
one variable for each feasible complete route. The set of feasible routes is expressed as a set of
resource constrained paths in specified graphs. The intermediate stops en route are taken into
account by defining a negative resource consumption for certain arcs in these graphs.

The performance of models, when approaching them with the VRPSolver, is compared with
the current best exact algorithms in the literature. For the CMTVRPTW, our approach solved
to optimality more instances than the algorithm proposed by [44]. Our results are especially
good for the largest test instances. For the MDVRPI, our approach is faster for most instances
than the algorithm proposed by [40]. In addition, many instances with 100 and 120 customers
are solved to optimality for the first time. For the CLARPIF, our approach is the first exact
one proposed in the literature. For the G-VRP, even if our approach does not outperform the
state-of-the-art, two instances are solved to optimality for the first time.

Before our work, only small instances of considered problems could be solved by MIP models.
Our results show that exact solution of medium-size instances of vehicle routing problems with
intermediate stops is now possible by defining models. Thus, non-specialists in exact approaches
for VRPs can use these models to solve instances of the considered problems or other VRPIS.

24

P
ro
p
o
se
d
B
C
P

A
n
d
el
m
in

a
n
d

w
it
h
o
u
t
in
it
it
a
l
u
b

w
it
h
in
it
ia
l
u
b

B
a
rt
o
li
n
i
(2
0
1
7
)

A
v
g.

#
In
st
.

A
v
g
.

#
In
st
.

A
v
g
.

#
In
st
.

A
v
g
.

G
ro
u
p

#
In
st
.

n
s

S
ol
ve
d

G
a
p
0
(%

)
#
N
o
d
es

T
im

e(
s)

S
o
lv
ed

G
a
p
0
(%

)
#
N
o
d
es

T
im

e(
s)

S
o
lv
ed

T
im

e(
s)

A
B
1

20
80
.4

20
.2

7
1
.5

4
6
0
.7

1
5
7
9
3
.9

9
1
.0

1
0
.6
8

6
3
0
3
.4

1
9

8
2
6
0
.3

A
B
2

20
81
.3

22
.2

8
1
.1

1
3
8
.0

7
0
3
2
.4

1
2

1
.2

7
0
.6
6

3
5
2
4
.0

1
5

7
8
7
8
.9

T
ab

le
5
:
S
u
m
m
a
ry

o
f
o
u
r
re
su
lt
s
fo
r
G
-V

R
P

in
st
a
n
ce
s

25

One of possible applications is to estimate quality of heuristic approaches, as we did for the
the CLARPIF. As much larger instances can now be solved to optimality by modelling, a more
precise estimation of heuristic efficiency can be performed.

We believe that the potential of VRPSolver models is not yet fully explored. Thus, finding
models for other classes of vehicle routing and related problems may help a larger number of
practitioners to exploit results of many years of research in exact BCP algorithms in a simple
way.

There exist many vehicle routing problems which cannot be well described as VRPSolver
models. These are for example the variants of the CMTVRPTW, considered by [31] and [44].
In this variants, there is a dependency between resources, which cannot be efficiently modelled
in the current version of VRPSolver . Therefore, a natural research direction is to enrich the
VRPSolver model to cover a larger number of vehicle routing and related problems. At the
same time, the generic solver proposed by [33] should be generalised to support such an enriched
model.

Acknowledgments

This study was financed in part by Capes PrInt UFF, Brazil no 88881, by CNPq, Brazil grant
313601/2018-6, and by FAPERJ, Brazil grant E-26/202.887/2017.

References

[1] J. Andelmin and E. Bartolini. An exact algorithm for the green vehicle routing problem.
Transportation Science, 51(4):1288–1303, 2017.

[2] E. Angelelli and M. G. Speranza. The periodic vehicle routing problem with intermediate
facilities. European Journal of Operational Research, 137(2):233–247, 2002.

[3] M. Asghari, S. M. J. M. Al-e, et al. Green vehicle routing problem: A state-of-the-art
review. International Journal of Production Economics, 231:107899, 2021.

[4] N. Azi, M. Gendreau, and J.-Y. Potvin. An exact algorithm for a vehicle routing problem
with time windows and multiple use of vehicles. European Journal of Operational Research,
202(3):756–763, 2010.

[5] R. Baldacci, A. Mingozzi, and R. Roberti. New route relaxation and pricing strategies for
the vehicle routing problem. Operations Research, 59(5):1269–1283, 2011.

[6] L. H. Barbosa and E. Uchoa. A branch-cut-and-price algorithm for the traveling salesperson
problem with hotel selection. Computers & Operations Research, 123:104986, 2020.

[7] J.-M. Belenguer, E. Benavent, P. Lacomme, and C. Prins. Lower and upper bounds for
the mixed capacitated arc routing problem. Computers & Operations Research, 33(12):
3363–3383, 2006.

[8] M. Bruglieri, S. Mancini, F. Pezzella, and O. Pisacane. A path-based solution approach for
the green vehicle routing problem. Computers & Operations Research, 103:109–122, 2019.

[9] D. Cattaruzza, N. Absi, and D. Feillet. The multi-trip vehicle routing problem with time
windows and release dates. Transportation Science, 50(2):676–693, 2016.

[10] D. Cattaruzza, N. Absi, and D. Feillet. Vehicle routing problems with multiple trips. 4OR,
14(3):223–259, 2016.

[11] L. Costa, C. Contardo, and G. Desaulniers. Exact branch-price-and-cut algorithms for
vehicle routing. Transportation Science, 53(4):946–985, 2019.

26

[12] B. Crevier, J.-F. Cordeau, and G. Laporte. The multi-depot vehicle routing problem with
inter-depot routes. European Journal of Operational Research, 176(2):756–773, 2007.

[13] G. B. Dantzig and J. H. Ramser. The truck dispatching problem. Management science, 6
(1):80–91, 1959.

[14] G. Desaulniers, F. Errico, S. Irnich, and M. Schneider. Exact algorithms for electric vehicle-
routing problems with time windows. Operations Research, 64(6):1388–1405, 2016.

[15] A. Divsalar, P. Vansteenwegen, and D. Cattrysse. A variable neighborhood search method
for the orienteering problem with hotel selection. International Journal of Production Eco-
nomics, 145(1):150–160, 2013.

[16] S. Erdoğan and E. Miller-Hooks. A green vehicle routing problem. Transportation Research
Part E: Logistics and Transportation Review, 48(1):100–114, 2012.

[17] G. Ghiani, G. Improta, and G. Laporte. The capacitated arc routing problem with inter-
mediate facilities. Networks: An International Journal, 37(3):134–143, 2001.

[18] G. Ghiani, F. Guerriero, G. Laporte, and R. Musmanno. Tabu search heuristics for the arc
routing problem with intermediate facilities under capacity and length restrictions. Journal
of Mathematical Modelling and Algorithms, 3(3):209–223, 2004.

[19] G. Ghiani, D. Laganà, G. Laporte, and F. Mari. Ant colony optimization for the arc
routing problem with intermediate facilities under capacity and length restrictions. Journal
of Heuristics, 16(2):211–233, 2010.

[20] A. Goel. Vehicle scheduling and routing with drivers’ working hours. Transportation Science,
43(1):17–26, 2009.

[21] A. Goel and S. Irnich. An exact method for vehicle routing and truck driver scheduling
problems. Transportation Science, 51(2):737–754, 2017.

[22] B. L. Golden, J. S. DeArmon, and E. K. Baker. Computational experiments with algorithms
for a class of routing problems. Computers & Operations Research, 10(1):47–59, 1983.

[23] F. Hernandez, D. Feillet, R. Giroudeau, and O. Naud. A new exact algorithm to solve the
multi-trip vehicle routing problem with time windows and limited duration. 4or, 12(3):
235–259, 2014.

[24] F. Hernandez, D. Feillet, R. Giroudeau, and O. Naud. Branch-and-price algorithms for the
solution of the multi-trip vehicle routing problem with time windows. European Journal of
Operational Research, 249(2):551 – 559, 2016.

[25] G. Hiermann, J. Puchinger, S. Ropke, and R. F. Hartl. The electric fleet size and mix
vehicle routing problem with time windows and recharging stations. European Journal of
Operational Research, 252(3):995–1018, 2016.

[26] S. Irnich. Resource extension functions: Properties, inversion, and generalization to seg-
ments. OR Spectrum, 30(1):113–148, 2008.

[27] A. Lim, Z. Zhang, and H. Qin. Pickup and delivery service with manpower planning in
hong kong public hospitals. Transportation Science, 51(2):688–705, 2017.

[28] R. Macedo, C. Alves, J. Valério de Carvalho, F. Clautiaux, and S. Hanafi. Solving the vehicle
routing problem with time windows and multiple routes exactly using a pseudo-polynomial
model. European Journal of Operational Research, 214(3):536–545, 2011.

[29] I. Muter, J.-F. Cordeau, and G. Laporte. A branch-and-price algorithm for the multidepot
vehicle routing problem with interdepot routes. Transportation Science, 48(3):425–441,
2014.

27

[30] B. Pan, Z. Zhang, and A. Lim. Multi-trip time-dependent vehicle routing problem with
time windows. European Journal of Operational Research, 291(1):218–231, 2021.

[31] R. Paradiso, R. Roberti, D. Laganá, and W. Dullaert. An exact solution framework for
multitrip vehicle-routing problems with time windows. Operations Research, 68(1):180–198,
2020.

[32] D. Pecin, A. Pessoa, M. Poggi, E. Uchoa, and H. Santos. Limited memory rank-1 cuts for
vehicle routing problems. Operations Research Letters, 45(3):206–209, 2017.

[33] A. Pessoa, R. Sadykov, E. Uchoa, and F. Vanderbeck. A generic exact solver for vehicle
routing and related problems. Mathematical Programming, 183(1):483–523, 2020.

[34] M. Polacek, K. F. Doerner, R. F. Hartl, and V. Maniezzo. A variable neighborhood search
for the capacitated arc routing problem with intermediate facilities. Journal of Heuristics,
14(5):405–423, 2008.

[35] A. Rijal, M. Bijvank, A. Goel, and R. de Koster. Workforce scheduling with order-picking
assignments in distribution facilities. Transportation Science, 55(3):725–746, 2021.

[36] M. Schiffer, M. Schneider, G. Walther, and G. Laporte. Vehicle routing and location routing
with intermediate stops: A review. Transportation Science, 53(2):319–343, 2019.

[37] M. M. Solomon. Algorithms for the vehicle routing and scheduling problems with time
window constraints. Operations Research, 35(2):254–265, 1987.

[38] C. D. Tarantilis, E. E. Zachariadis, and C. T. Kiranoudis. A hybrid guided local search for
the vehicle-routing problem with intermediate replenishment facilities. INFORMS Journal
on computing, 20(1):154–168, 2008.

[39] P. Vansteenwegen, W. Souffriau, and K. Sörensen. The travelling salesperson problem with
hotel selection. Journal of the Operational Research Society, 63(2):207–217, 2012.

[40] A. Wang, J. E. Arbogast, G. Bonnier, Z. Wilson, and C. E. Gounaris. Estimation of marginal
cost to serve individual customers. Technical Report 7573, Optimization Online, 2020.

[41] E. J. Willemse and J. W. Joubert. Constructive heuristics for the mixed capacity arc rout-
ing problem under time restrictions with intermediate facilities. Computers & Operations
Research, 68:30–62, 2016.

[42] E. J. Willemse and J. W. Joubert. Splitting procedures for the mixed capacitated arc
routing problem under time restrictions with intermediate facilities. Operations Research
Letters, 44(5):569–574, 2016.

[43] E. J. Willemse and J. W. Joubert. Efficient local search strategies for the mixed capacitated
arc routing problems under time restrictions with intermediate facilities. Computers &
Operations Research, 105:203–225, 2019.

[44] Y. Yang. An efficient adaptable exact solution framework for the capacitated multi-trip
vehicle routing problem with time windows and its variants. Technical Report 8237, Opti-
mization Online, 2021.

[45] Z. Zhang, M. Liu, and A. Lim. A memetic algorithm for the patient transportation problem.
Omega, 54:60–71, 2015.

[46] L. Zhen, C. Ma, K. Wang, L. Xiao, and W. Zhang. Multi-depot multi-trip vehicle routing
problem with time windows and release dates. Transportation Research Part E: Logistics
and Transportation Review, 135:101866, 2020.

28

	Introduction
	Literature Review
	Overview of the VRPSolver Generic Model
	Graphs for RCSP subproblems
	MIP formulation
	The concept of packing sets

	Models for the Considered Problems
	Capacitated multi-trip vehicle routing problem with time windows
	VRPSolver model for the CMTVRPTW
	VRPSolver model example for the CMTVRPTW

	Multi-depot vehicle routing problem with inter-depot routes
	VRPSolver model for the MDVRPI
	VRPSolver model example for the MDVRPI

	Arc Routing Problem With Intermediate Facilities Under Capacity and Length Restrictions
	VRPSolver model for the CLARPIF
	A VRPSolver model example for the CLARPIF

	Green Vehicle Routing Problem
	VRPSolver model for the G-VRP
	An example for the G-VRP VRPSolver model

	Computational Experiments
	Results for the CMTVRPTW instances
	Results for the MDVRPI instances
	Computational results for CLARPIF instances
	Computational results for G-VRP instances

	Conclusions

