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Long-time trajectorial large deviations and importance
sampling for affine stochastic volatility models

Zorana Grbac1 David Krief2 Peter Tankov3

Abstract: We establish a pathwise large deviations principle for affine stochastic
volatility models introduced in (Keller-Ressel, 2011), and present an application to
variance reduction for Monte Carlo computation of prices of path-dependent options
in these models, extending the method developed in (Genin and Tankov, 2020) for
exponential Lévy models. To this end, we apply an exponentially affine change of
measure and use Varadhan’s lemma, in the fashion of (Guasoni and Robertson,
2008) and (Robertson, 2010), to approximate the problem of finding the measure
that minimises the variance of the Monte-Carlo estimator. We test the method on
the Heston model with and without jumps to demonstrate its numerical efficiency.

Key words: large deviations, Monte Carlo methods, importance sampling, affine
stochastic volatility
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1. Introduction

The aim of this paper is to develop efficient importance sampling estimators for
prices of path-dependent options in affine stochastic volatility (ASV) models of
asset prices. To this end, we establish pathwise large deviation results for these
models, which are of independent interest.

An ASV model, studied in (Keller-Ressel, 2011), is a two-dimensional affine
process (X,V ) on R× R+ with special properties, where X models the logarithm
of the stock price and V its instantaneous variance. This class includes many well
studied and widely used models such as Heston stochastic volatility model (Heston,
1993), the model of (Bates, 1996), the stochastic volatility model of (Barndorff-
Nielsen and Shephard, 2001) and time-changed Lévy models with independent
affine time change. European options in affine stochastic volatility models may be
priced by Fourier transform, but for path-dependent options explicit formulas are
in general not available and Monte Carlo is often the method of choice. At the same
time, Monte Carlo simulation of such processes is difficult and time-consuming: the
convergence rates of discretization schemes are often low due to the irregular nature
of coefficients of the corresponding stochastic differential equations. To accelerate
Monte Carlo simulation, it is thus important to develop efficient variance-reduction
algorithms for these models.

In this paper, we therefore develop an importance sampling algorithm for ASV
models. Let (Ω,F ,P) be a given probability space and denote by E[·] the expecta-
tion with respect to P. The importance sampling method is based on the following
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identity, valid for any probability measure Q, with respect to which P is absolutely
continuous. Let P be a deterministic function of a random trajectory S, then

E[P (S)] = EQ
[
dP
dQ

P (S)

]
.

This allows one to define the importance sampling estimator

P̂Q
N :=

1

N

N∑
j=1

[
dP
dQ

](j)

P (S
(j)
Q ),

where S
(j)
Q are i.i.d. sample trajectories of S under the measure Q. For efficient

variance reduction, one needs then to find a probability measure Q such that S is
easy to simulate under Q and the variance

VarQ

[
P (S)

dP
dQ

]
is considerably smaller than the original variance VarP [P (S)].

In this paper, following the work of (Genin and Tankov, 2020) in the context of
Lévy processes, we define the probability Q using the exponentially affine measure
change,

dPΘ

dP
=

e
∫
[0,T ] Xt·Θ(dt)

E
[
e
∫
[0,T ] Xt·Θ(dt)

] ,
where X is the first component of the ASV model (the logarithm of stock price)
and Θ is a (deterministic) bounded signed measure on [0, T ]. Such a choice is
justified by several considerations. First, under the new measure the characteristic
function of X remains analytically tractable; moreover, if Θ is supported by a finite
number of points, X is piecewise affine under PΘ and is relatively easy to simulate.
Second, for a class of payoffs possessing the concavity property, such a choice leads
to asymptotically optimal variance reduction (see Theorem 5.4). For other payoffs
it may be necessary to use more strongly path-dependent measure changes (e.g.,
with stochastic Θ), which can be obtained by approximating the solution of the
HJB equation resulting from the minimization of the variance, see for example
(Dupuis and Wang, 2004; Dupuis and Wang, 2007). However, such schemes may
lead to higher computational complexity.

The optimal choice of Θ should minimize the variance of the estimator under
PΘ,

VarPΘ

(
P (S)

dP
dPΘ

)
= E

[
P 2(S)

dP
dPΘ

]
− E [P (S)]2 .

The computation of this variance is in general as difficult as the computation of
the option price itself. Following (Glasserman et al., 1999; Guasoni and Robertson,
2008; Robertson, 2010) and more recently (Genin and Tankov, 2020), we propose
to compute the variance reduction measure Θ∗ by minimizing the proxy for the
variance computed using the theory of large deviations.

To this end, we establish a pathwise large deviation principle (LDP) for affine
stochastic volatility models. A one dimensional LDP for Xt/t as t → ∞ where
X is the first component of an ASV model has been proven in (Jacquier et al.,
2013). In this paper, we first establish an equivalent result for multiple dates and
then we use the Dawson-Gärtner theorem to extend it to the trajectorial setting,
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in the spirit of the pathwise LDP principles of (Léonard, 2000), but in the weaker
topology of pointwise convergence.

The rest of the paper is structured as follows. In Section 2, we describe the
model and recall certain useful properties of ASV processes. In Section 3, we
recall some general results of large deviations theory. In Section 4, we prove a
LDP for the trajectories of ASV processes. In Section 5, we develop the variance
reduction method, using an asymptotically optimal change of measure obtained
via the LDP shown in Section 4. In Section 6, we test the method numerically
on several examples of options, some of which are path-dependent, in the Heston
model with and without jumps.

2. Model description
sec:Model Description

In this paper, we model the price of the underlying asset (St)t≥0 of an option as
St = S0 e

Xt , where we model (Xt)t≥0 as an affine stochastic volatility process. We
recall, from (Keller-Ressel, 2011) and (Duffie et al., 2003), the definition and some
properties of ASV models.

Definition 2.1. An ASV model (Xt, Vt)t≥0, is a stochastically continuous, time-
homogeneous Markov process such that

(
eXt
)
t≥0

is a martingale and

IE
(
euXt+wVt

∣∣X0 = x, V0 = v
)

= eφ(t,u,w)+ψ(t,u,w) v+ux , (2.1) eq:LaplaceTransform

for all (t, u, w) ∈ R+× C2.

Proposition 2.2. The functions φ and ψ satisfy generalized Riccati equationseq:GeneralizedRiccati

∂tφ(t, u, w) = F (u, ψ(t, u, w)) , φ(0, u, w) = 0, (2.2a) eq:GeneralizedRiccati-a

∂tψ(t, u, w) = R(u, ψ(t, u, w)) , ψ(0, u, w) = w, (2.2b) eq:GeneralizedRiccati-b

where F and R have the Lévy-Khintchine forms

F (u,w) =
(
u w

)
· a

2
·
(
u
w

)
+ b ·

(
u
w

)
+

∫
D\{0}

(
exu+yw − 1− wF (x, y) ·

(
u
w

))
m(dx, dy) ,

R(u,w) =
(
u w

)
· α

2
·
(
u
w

)
+ β ·

(
u
w

)
+

∫
D\{0}

(
exu+yw − 1− wR(x, y) ·

(
u
w

))
µ(dx, dy) ,

where D = R× R+,

wF (x, y) =

( x
1+x2

0

)
and wR(x, y) =

( x
1+x2
y

1+y2

)
and (a, α, b, β,m, µ) satisfy the following conditions

• a, α are positive semi-definite 2×2-matrices where a12 = a21 = a22 = 0.
• b ∈ D and β ∈ R2.
• m and µ are Lévy measures on D and

∫
D\{0}((x

2 + y)∧ 1)m(dx, dy) <∞.
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Define the function

χ(u) = ∂wR(u,w)|w=0 = α12u+ β2 +

∫
D\{0}

y

(
exu − 1

1 + y2

)
µ(dx, dy) .

In the rest of the paper, we shall impose the following standing assumption to
ensure nondegeneracy of the model (dependence of the law of (Xt)t≥0 on V0), the
martingale property of (St)t≥0, where St = S0 e

Xt , and the existence of long-time
limit of the functions φ and ψ, see (Keller-Ressel, 2011, Corollary 2.7 and Theorem
3.4).

ass1 Assumption 1 (Nondegeneracy and martingale property). The functions F , R and
χ are such that there exists u ∈ R such that R(u, 0) 6= 0, F (1, 0) = R(1, 0) = 0,
χ(0) < 0 and χ(1) < 0.

In the following theorem, we compile several results of (Keller-Ressel, 2011),
which describe the behaviour of the solutions to equations given in (2.2) as t→∞.
The functions w(u) and w̃(u) denoting respectively the unique stable equilibrium
and the unstable equilibrium (if there is one) of (2.2b), which are defined below in
(1) and (2), will be used throughout the paper, as well as the function h(u) defined
in (2.5).

thm:KellerResselProperties Theorem 2.3. The following statements hold true.

(1) There exists a maximal interval I ⊇ [0, 1], and a unique function w ∈
C(I) ∩ C1(I̊) such that

R(u,w(u)) = 0 for all u ∈ I,
w(0) = w(1) = 0, w(u) < 0 for all u ∈ (0, 1), w(u) > 0 for all u ∈ I \ [0, 1]
and

∂wR(u,w(u)) < 0 for all u ∈ I̊.

In other words, the function w(u) is the unique stable equilibrium of (2.2b).
(2) For u ∈ I, eq. (2.2b) admits at most one other equilibrium w̃(u), which is

unstable.
(3) For u ∈ R\I, eq. (2.2b) does not have any equilibrium.

We denote B(u) the basin of attraction of the stable solution w(u) of eq. (2.2b)
and J = {u ∈ I : F (u,w(u)) <∞}, the domain of u 7→ F (u,w(u)). We have that

(4) J is an interval such that [0, 1] ⊆ J ⊆ I.
(5) For u ∈ I, w ∈ B(u) and ∆t > 0, we have

ψ

(
∆t

ε
, u, w

)
−→
ε→0

w(u) . (2.3) eq:ConvergencePsi

(6) For u ∈ J , w ∈ B(u) and ∆t > 0,

ε φ

(
∆t

ε
, u, w

)
−→
ε→0

∆t h (u) , (2.4) eq:ConvergencePhi

where
h(u) := F (u,w(u)) = lim

ε→0
ε log IE

[
euX1/ε

]
. (2.5) def-h

(7) For every u ∈ I, 0 ∈ B(u).

Definition 2.4. A convex function f : Rn → R ∪ {∞} with effective domain Df

is essentially smooth if
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i. D◦f is non-empty;
ii. f is differentiable in D◦f ;

iii. f is steep, that is, for any sequence (un)n∈N ⊂ D◦f that converges to a point
in the boundary of Df ,

lim
n→∞

||∇f(un)|| =∞ .

In the rest of the paper, to establish large deviations results, we shall make the
following assumptions on the model.

ass:H Assumption 2. The function h, defined in (2.5), satisfies the following properties:

ass:Ha (1) There exists u < 0, such that h(u) <∞.
ass:Hb (2) u 7→ h(u) is essentially smooth.

In (Jacquier et al., 2013), a set of sufficient conditions is provided for Assumption
2 to be verified:

Proposition 2.5 (Corollary 8 in (Jacquier et al., 2013)). Let (X,V ) be an ASV
model satisfying Assumption 1. If either of the following conditions holds

(i) The Lévy measure µ of R has exponential moments of all orders, F is steep
and (0, 0), (1, 0) ∈ D◦F .

(ii) (X,V ) is a diffusion,

then function h is well defined, for every u ∈ R with effective domain J . Moreover
h is essentially smooth and {0, 1} ⊂ J◦.

We now discuss the form of the basin of attraction of the unique stable solution
of (2.2b).

Lemma 2.6. (Keller-Ressel, 2011, Lemma 2.2.)lem:RConvex

(a) F and R are proper closed convex functions on R2.
(b) F and R are analytic in the interior of their effective domain.
(c) Let U be a one-dimensional affine subspace of R2. Then F |U is either a strictly

convex or an affine function. The same holds for R|U .
(d) If (u,w) ∈ DF , then also (u, η) ∈ DF for all η ≤ w. The same holds for R.

lem:BasinOfAttraction Lemma 2.7. Let f : R → R ∪ {+∞} be a convex function with either two zeros
w < w̃, or a single zero w. In the latter case, we let w̃ = ∞. Assume that there
exists y ∈ (w, w̃) such that f(y) < 0. Then for every x ∈ Df ,{

f(x) > 0 , if x < w or w̃ < x ,

f(x) < 0 , if x ∈ (w, w̃) .

Proof. By convexity, for every x ∈ Df such that x < w,

y − w
y − x

f(x) +
w − x
y − x

f(y) ≥ f(w) = 0

and therefore f(x) ≥ −w−x
y−w f(y) > 0. Furthermore, for every x ∈ (w, y],

f(x) ≤ y − x
y − w

f(w) +
x− w
y − w

f(y) < 0 .

Let s = sup{x ∈ Df : f(x) < 0}. If f is continuous in s, then w̃ = s and for every

x > w̃ in Df , f(x) ≥ − w̃−x
y−w̃ f(y) > 0. If f is discontinuous in s however, then by

convexity, f(x) = +∞ for x > s. �
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Proposition 2.8. Let u ∈ I and consider w(u) the stable equilibrium of (2.2b),
defined in Theorem 2.3 (1). Then the basin of attraction of w(u) is B(u) =
(−∞, w̃(u)) ∩ DR(u,·), where w̃(u) is the unstable equilibrium of (2.2b), defined
in Theorem 2.3 (2), and w̃(u) =∞ when (2.2b) admits only one equilibrium.

Proof. By Lemma 2.6, w 7→ R(u,w) is convex. Since w(u) is a stable equilibrium,
the hypotheses of Lemma 2.7 are verified. Therefore, R(u,w) > 0 for every w <
w(u), whereas R(u,w) < 0 for every w ∈ DR(u,·) such that w(u) < w < w̃(u). This
implies that the solution of

∂tψ(t, u, w) = R(u, ψ(t, u, w)) , ψ(0, u, w) = w (2.6) eq:REquationAlone

converges to w(u) for every w ∈ (−∞, w̃(u)) ∩ DR(u,·), whereas, if w > w̃, the
solution of (2.6) diverges to ∞. �

3. Large deviations theory
sec:LargeDeviationsTheory

In this section, we recall some useful classical results of the large deviations
theory. We refer the reader to (Dembo and Zeitouni, 1998) for the proofs and for
a broader overview of the theory.

thm:GartnerEllis Theorem 3.1 (Gärtner-Ellis). Let (Xε)ε∈]0,1] be a family of random vectors in Rn
with associated measure µε. Assume that for each λ ∈ Rn, the logarithmic moment
generating function, defined as the limit

Λ(λ) := lim
ε→0

ε log IE

[
e
〈λ,Xε〉

ε

]
,

exists as an extended real number. Assume also that 0 belongs to the interior of
DΛ := {λ ∈ Rn : Λ(λ) <∞}. Denoting

Λ∗(x) = sup
λ∈Rn
〈λ, x〉 − Λ(λ) , x ∈ Rn,

the following hold:

(a) For any closed set F ,

lim sup
ε→0

ε logµε(F ) ≤ − inf
x∈F

Λ∗(x) .

(b) For any open set G,

lim inf
ε→0

ε logµε(G) ≥ − inf
x∈G∩F

Λ∗(x) ,

where F is the set of exposed points of Λ∗, whose exposing hyperplane belongs
to the interior of DΛ.

(c) If Λ is an essentially smooth, lower semi-continuous function, then µε satisfies
a LDP with good rate function Λ∗.

Remark 3.2. In our paper, the random variable Xε will correspond to the value
of the affine stochastic volatility process X computed at time 1/ε, and the limiting
log-Laplace transform Λ(λ) from the Gärtner-Ellis theorem therefore coincides with
the function h defined in 2.5.

Definition 3.3. A partially ordered set (P,≤) is called right-filtering if for every
i, j ∈ P, there exists k ∈ P such that i ≤ k and j ≤ k.



7

Definition 3.4. A projective system (Yj , pij)i≤j∈P on a partially ordered right-
filtering set (P,≤) is a family of Hausdorff topological spaces (Yj)j∈P and contin-
uous maps pij : Yj → Yi such that pik = pij ◦ pjk whenever i ≤ j ≤ k.

Definition 3.5. Let (Yj , pij)i≤j∈P be a projective system on a partially ordered
right-filtering set (P,≤). The projective limit of (Yj , pij)i≤j∈P , denoted X = lim

←−
Yj ,

is the subset of topological spaces Y =
∏
j∈P Yj , consisting of all the elements

x = (yj)j∈P for which yi = pij(yj) whenever i ≤ j, equipped with the topology
induced by Y. The projective limit of closed subsets Fj ⊆ Yj are defined in the
same way and denoted F = lim

←−
Fj .

Remark 3.6. The canonical projections of X , i.e. the restrictions pj : X → Yj of
the coordinate maps from X to Yj , are continuous.

thm:DawsonGartner Theorem 3.7 (Dawson-Gärtner). Let (Yj , pij)i≤j∈P be a projective system on a
partially ordered right-filtering set (P,≤) and let (µε) be a family of probabilities
on X = lim

←−
Yj, such that for any j ∈ P, the Borel probability µε ◦ p−1

j on Yj
satisfies the LDP with good rate function Λ∗j . Then µε satisfies the LDP with good
rate function

Λ∗(x) = sup
j∈P

Λ∗j (pj(x)) .

thm:Varadhan Theorem 3.8 (Varadhan’s Lemma, version of (Guasoni and Robertson, 2008)).
Let X be a regular Hausdorff space, and let (Xε)ε∈]0,1 ] be a family of X -valued
random variables, whose laws µε satisfy a LDP with rate function Λ∗. If ϕ : X →
R ∪ {−∞} is a function such that the set {ϕ > −∞} is open and ϕ continuous on
this set and satisfies

lim sup
ε→0

ε log IE

[
exp

(
γ ϕ(Xε)

ε

)]
<∞ (3.1) varadhan.eq

for some γ > 1, then

lim
ε→0

ε log IE

[
exp

(
ϕ(Xε)

ε

)]
= sup

x∈X
{ϕ(x)− Λ∗(x)} .

4. Trajectorial large deviations for ASV models
sec:LDP-Affine

In this section, we prove a trajectorial LDP for (Xt) when the time horizon is
large. Define, for ε ∈ (0, 1] and 0 ≤ t ≤ T , the scaling Xε

t = εXt/ε. We proceed by
proving first a LDP for Xε

t in finite dimension, that we extend, in a second step to
the whole trajectory of (Xε

t )0≤t≤T .

4.1. Finite-dimensional LDP. Let τ = {0 < t1 < ... < tn = t}, by convention
t0 = 0, and define

Λε,τ (θ) := log IE
[
e
∑n
k=1 θkX

ε
tk

]
,

for θ ∈ Rn. We start by formulating our main technical assumption. Recall that
w(u) and w̃(u) denote, respectively, the stable and unstable equilibrium point of
the Riccati equation (2.2b), defined in Theorem 2.3 (1) and (2).

ass:H2 Assumption 3. One of the following conditions is verified:

ass:H2a (1) The interval support of F is J = [u−, u+] and w(u−) = w(u+).
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ass:H2b (2) For every u ∈ R, w̃(·) =∞, i.e, the generalized Riccati equations have only
one (stable) equilibrium.

The above assumption may be seen as rather restrictive, however there are im-
portant models for which it is satisfied, such as the Heston model, with or without
jumps, when there is no correlation between the Brownian motions driving the
asset price and the volatility (see Remark 6.6). In the following Lemma we state a
consequence of Assumption 3 which will be used hereafter.

lem:TildeW Lemma 4.1. Let Assumption 3 hold true. For every u1, u2 ∈ I, w̃(u1) ≥ w(u2).

Proof. If Assumption 3(2) holds, then the result is obvious. Assume then that it
is Assumption 3(1) that holds. Since u 7→ w(u) is convex and u 7→ w̃(u) is concave
(Keller-Ressel, 2011, Lemma 3.3), then for every u1, u2 ∈ I,

w̃(u1) ≥ u+ − u1

u+ − u−
w̃(u−) +

u1 − u−
u+ − u−

w̃(u+) ≥ w(u−) ,

while

w(u2) ≤ u+ − u2

u+ − u−
w(u−) +

u2 − u−
u+ − u−

w(u+) = w(u−) .

Therefore w̃(u1) ≥ w(u2) for every u1, u2 ∈ I. �

As a first step to apply Theorem 3.1, we prove the following result.

thm:LambdaTau Theorem 4.2. Let θ ∈ Rn. If Assumption 3 holds, then

Λτ (θ) := lim
ε→0

εΛε,τ (θ/ε) =

{∑n
j=1(tj − tj−1)h

(
θ̄j
)

if θ̄j ∈ J , ∀j
∞ otherwise

,

where θ̄j :=
∑n

k=j θk and h is defined in (2.5).

Proof. Since Assumption 3 holds, then, by Lemma 4.1, w(θ̄j+1) ∈ B(θ̄j) for every
j. Assume first that θ̄j ∈ J for every j. Using the Markov property and eq. (2.1),
we obtain

Λτ (θ) = lim
ε→0

ε log
(

IE
[
e
∑n
j=1 θjXtj/ε

])
= lim

ε→0
ε log

(
IE
[
e
∑n−1
j=1 θjXtj/ε IE

(
eθ̄nXtn/ε

∣∣∣Xtn−1/ε, Vtn−1/ε

)])
= lim

ε→0
ε φ

(
tn − tn−1

ε
, θ̄n, 0

)
+ ε log

(
IE

[
e
∑n−2
j=1 θjXtj/ε+θ̄n−1Xtn−1/ε

+ψ
(
tn−tn−1

ε
, θ̄n, 0

)
Vtn−1/ε

])
.

Since θ̄n ∈ J and 0 ∈ B(θ̄n), eqs. (2.3) and (2.4) apply and

Λτ (θ) = lim
ε→0

ε log

(
IE

[
e
∑n−2
j=1 θjXtj/ε+θ̄n−1Xtn−1/ε

+ψ
(
tn−tn−1

ε
, θ̄n, 0

)
Vtn−1/ε

])
+ (tn − tn−1)h(θ̄n) .

Using the fact that θ̄j ∈ J and w(θ̄j+1) ∈ B(θ̄j) for every j, we can iterate the
procedure to obtain

Λτ (θ) =
n∑
j=1

(tj − tj−1)h
(
θ̄j
)

+ lim
ε→0

ε ψ

(
t1 − t0
ε

, θ̄1, w
(
θ̄2

))
V0 + ε

n∑
k=1

θkX0
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=

n∑
j=1

(tj − tj−1)h
(
θ̄j
)
. (4.1) eq:LambdaN

Assume now that there exists k such that θ̄k 6∈ J . Without loss of generality, we
take the largest such k. Following the same procedure, we find

Λτ (θ) = lim
ε→0

ε log

(
IE

[
e
∑k−2
j=1 θjXtj/ε+θ̄k−1 Xtk−1/ε

+ψ
(
tk−tk−1

ε
,θ̄k,w(θ̄k+1)

)
Vtk−1/ε

])
+ ε φ

(
tk − tk−1

ε
, θ̄k, w(θ̄k+1)

)
+

n∑
j=k+1

(tj − tj−1)h(θ̄j) .

Noting that φ(·, u, w) explodes in finite time for u 6∈ J then finishes the proof. �

We now proceed to the finite-dimensional large deviations result. Let us denote
Jn := DΛτ .

thm:LDPFiniteDimensional Theorem 4.3. Let (Xε
t )t≥0, ε∈(0,1] and τ = {t1, ..., tn} as previously. Let Assump-

tions 2 and 3 hold true. Then (Xε
t1 , ..., X

ε
tn) satisfies a LDP on Rn with good rate

function

Λ∗τ (x) = sup
θ̄∈Jn


n∑
j=1

θ̄j(xj − xj−1)−
n∑
j=1

(tj − tj−1)h
(
θ̄j
) ,

where h is defined in (2.5).

Proof. By Assumption 2(1), there exists u ∈ J such that u < 0, which implies that
[u, 1] ⊂ J and therefore 0 is in the interior of Jn. Theorem 4.2 implies that the
limit

Λτ (θ) = lim
ε→0

εΛε,τ (θ/ε) =

{∑n
j=1(tj − tj−1)h

(
θ̄j
)

if θ̄j ∈ J , ∀j
∞ otherwise

,

where θ̄j :=
∑n

k=j θk, exists as an extended real number.

Since, by Assumption 2(2), h is essentially smooth and lower semi-continuous,
then so is Λτ . Theorem 3.1 then applies and (Xε

t1 , ..., X
ε
tn) satisfies a LDP, on Rn,

with good rate function

Λ∗τ (x) = sup
θ∈Rn

{
θ>x− Λτ (θ)

}
.

Furthermore, with the convention x0 = 0, and letting θj = θ̄j − θ̄j+1 for j =
1, . . . , n− 1 and θn = θ̄n, we have,

Λ∗τ (x) = sup
θ∈Rn

{
θ>x− Λτ (θ)

}
= sup

θ̄∈Jn


n∑
j=1

n∑
k=j

θk(xj − xj−1)−
n∑
j=1

(tj − tj−1)h
(
θ̄j
)

= sup
θ̄∈Jn


n∑
j=1

θ̄j(xj − xj−1)−
n∑
j=1

(tj − tj−1)h
(
θ̄j
) ,

which finishes the proof. �

4.2. Infinite-dimensional LDP.
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4.2.1. Extension of the LDP. We now extend the LDP to the whole trajectory of
(Xε

t )0≤t≤T on F([0, T ], R) := {x : [0, T ]→ R, x0 = 0}, the set of all functions from
[0, T ] to R that vanish at 0, by proving the following general lemma.

lem:DawsonGartner Lemma 4.4. Let (P,≤) be the partially ordered right-filtering set

P =

∞⋃
n=1

{(t1, ..., tn) , 0 ≤ t1 ≤ ... ≤ tn ≤ T}

ordered by inclusion. We consider, on (P,≤), the projective system
(Yj , pij)i≤j∈P defined by Yj = R#j and pij : Yj → Yi the natural projection on
shared times. Assume that for any j = {t1, ..., tn}, the finite-dimensional pro-
cess (Xε

t1 , ..., X
ε
tn) satisfies a large deviation property with good rate function Λ∗j .

Then the family (Xε
t )0≤t≤T satisfies a large deviation property on X = F([0, T ], R)

equipped with the topology of pointwise convergence, with good rate function

Λ∗(x) = sup
j∈P

Λ∗j (pj(x)) ,

where pτ (x) = (xt1 , ..., xtn) is the canonical projection from X to Yτ .

Proof. Let µε be the probability measure generated by (Xε
t )0≤t≤T on X . Then, by

hypothesis, for any j ∈ P, µε ◦ p−1
j satisfies a LDP with good rate function Λ∗τ .

The result then follows from Theorem 3.7. �

thm:LDPInfiniteDimensionalExistence Theorem 4.5. Assume that Assumptions 2 and 3 hold. Then (Xε
t )0≤t≤T satisfies

a LDP on F([0, T ],R) equipped with the topology of point-convergence, as ε → 0,
with good rate function

Λ∗(x) = sup
τ

Λ∗τ (x) ,

where the supremum is taken over the discrete ordered subsets of the form τ =
{t1, ..., tn} ⊂ [0, T ].

Proof. The result is a direct application of Lemma 4.4. �

4.2.2. Calculation of the rate function. We finally calculate the rate function in
Theorem 4.5.

thm:LPDInfiniteDimensionalRateFunction Theorem 4.6. The rate function of Theorem 4.5 is

Λ∗(x) =

T∫
0

h∗(
·
xt
ac) dt+

T∫
0

H
(
dν

d|ν|
(t)

)
d|ν| ,

where
h∗(y) := sup

θ∈J
{θy − h(θ)} , H(y) := lim

ε→0
ε h∗(y/ε) ,

h is defined in (2.5),
·
xac is the derivative of the absolutely continuous part of x,

ν is the finite signed measure which is the singular component of dx with respect
to the Lebesgue measure, |ν| is the total variation measure of ν and dν

d|ν| is the

Radon-Nikodym derivative of ν with respect to its total variation measure.

Proof. By Theorem 4.3, for every x ∈ F([0, T ],R),

sup
τ

Λ∗τ (x) = sup
τ

sup
θ̄∈J#τ

#τ∑
j=1

θ̄j(xtj − xtj−1)− (tj − tj−1)h(θ̄j)
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= sup
τ

sup
ξ∈C([0,T ],J)

#τ∑
j=1

ξtj (xtj − xtj−1)− (tj − tj−1)h(ξtj )

= sup
ξ∈C([0,T ],J)

sup
τ

#τ∑
j=1

ξtj (xtj − xtj−1)− (tj − tj−1)h(ξtj ) .

The second line follows from the first line since one can always find a continuous
function ξ such that ξti = θ̄i for i = 1, . . . , n. Since we have assumed that there
exists u < 0 in J , then if x has infinite variation, we immediately find that Λ∗(x) =
∞. Assume therefore that x has finite variation. We wish to show that

sup
ξ∈C([0,T ],J)

sup
τ

#τ∑
j=1

ξtj (xtj − xtj−1)− (tj − tj−1)h(ξtj )

= sup
ξ∈C([0,T ],J)

T∫
0

ξtdxt −
T∫

0

h(ξt)dt .

Notice that

sup
ξ∈C([0,T ],J)

sup
τ

#τ∑
j=1

ξtj (xtj − xtj−1)− (tj − tj−1)h(ξtj )

≥ sup
ξ∈C([0,T ],J)

lim sup
τ

#τ∑
j=1

ξtj (xtj − xtj−1)− (tj − tj−1)h(ξtj )

= sup
ξ∈C([0,T ],J)

T∫
0

ξtdxt −
T∫

0

h(ξt)dt .

To prove the other inequality, we use the following construction. Fix τ and let
ξ ∈ C([0, T ], J). Let also ε > 0 such that ε < min(tj − tj−1) and define ξε,τ as

ξε,τt =

{
ξtj−1 +

t−tj−1

ε (ξtj − ξtj−1) if t ∈ [tj−1, tj−1 + ε] ,

ξtj if t ∈ [tj−1 + ε, tj ] .

Then ∣∣∣∣∣∣
#τ∑
j=1

ξtj (xtj − xtj−1)− (tj − tj−1)h(ξtj )−
T∫

0

ξε,τt dxt +

T∫
0

h(ξε,τt )dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
#τ∑
j=1

(ξtj − ξtj−1)

tj−1+ε∫
tj−1

(
1− t− tj−1

ε

)
dxt +

tj−1+ε∫
tj−1

h(ξε,τt )− h(ξtj )dt

∣∣∣∣∣∣∣
≤

#τ∑
j=1

∣∣ξtj − ξtj−1

∣∣
∣∣∣∣∣∣∣
tj−1+ε∫
tj−1

(
1− t− tj−1

ε

)
dxt

∣∣∣∣∣∣∣
+ 2εmax

{
|h(ξ)| : ξ ∈ [ξtj−1 , ξtj ]

}
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≤
#τ∑
j=1

∣∣ξtj − ξtj−1

∣∣ µx(]0, ε])+ 2εmax
{
|h(ξ)| : ξ ∈ [ξtj−1 , ξtj ]

}
→
ε→0

0 ,

where µx is the measure associated with x. Hence

sup
ξ∈C([0,T ],J)

sup
τ

#τ∑
j=1

ξtj (xtj − xtj−1)− (tj − tj−1)h(ξtj )

≤ sup
ξ∈C([0,T ],J)

T∫
0

ξtdxt −
T∫

0

h(ξt)dt

and

Λ∗(x) = sup
ξ∈C([0,T ],J)

T∫
0

ξtdxt −
T∫

0

h(ξt) dt .

We will now use (Rockafellar, 1971, Thm. 5.) to obtain the result. Since x has
finite variation, the measure dxt is regular. Using the notation of (Rockafellar,
1971), in our case the multifunction D is the constant multifunction t 7→ D(t) = J .
Therefore D is fully lower semi-continuous. Furthermore, since [0, 1] ⊂ J , the
interior of D(t) is non-empty. The set [0, T ] is compact with no non-empty open
sets of measure 0 and for every u in the interior of J , and V ∈ [0, T ] open,∫

V

|h(u)| dt ≤ T |h(u)| <∞ .

(Rockafellar, 1971, Thm. 5.) then implies that

sup
ξ∈C([0,T ],J)

T∫
0

ξt dxt −
T∫

0

h(ξt) dt =

T∫
0

h∗(
·
xt
ac) dt+

T∫
0

H
(
dν

d|ν|
(t)

)
d|ν| ,

where

h∗(y) = lim
ε→0

sup
θ∈J
{θy − h(θ)} , H(y) = lim

ε→0
ε h∗(y/ε) ,

and
·
xac and ν have been defined in the statement of the theorem. �

Remark 4.7. In particular, the proof of Theorem 4.6 shows that, if x does not
belong to Vr, the set of trajectories x : [0, t] → R with bounded variation, then
Λ∗(x) =∞.

5. Variance reduction
sec:VarianceReduction

Denote P (S) the payoff of an option on (St)0≤t≤T . The price of an option
is generally calculated as the expectation IE[P (S)] under a certain risk-neutral
measure P. For any equivalent measure Q, the price of the option can be written

IE[P (S)] = IEQ
[
P (S)

dP
dQ

]
.

The variance of P (S) is

VarP (P (S)) = IE
[
P 2(S)

]
− IE [P (S)]2 ,
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whereas

VarQ

(
P (S)

dP
dQ

)
= IEQ

[
P 2(S)

(
dP
dQ

)2
]
−
(

IEQ
[
P (S)

dP
dQ

])2

= IE

[
P 2(S)

dP
dQ

]
− IE [P (S)]2 .

We can therefore choose Q in order to reduce the variance of the random variable,
whose expectation gives the price of the option.

As discussed in the introduction, we follow (Genin and Tankov, 2020) by con-
sidering the class of exponentially affine transforms, defined as follows:

dPΘ

dP
=

e
∫ T
0 Xt Θ(dt)

IE
[
e
∫ T
0 Xt Θ(dt)

] ,
where Θ belongs to M , the set of signed measures on [0, T ]. Denoting H(X) =
logP

(
S0 e

X
)
, the optimization problem writes

inf
Θ∈M

IE

exp

2H(X)−
T∫

0

Xt Θ(dt) + G1(Θ)

 , (5.1) eq:OptimizationProblemExact

where

Gε(Θ) := ε log IE
[
e

1
ε

∫ T
0 Xε

t Θ(dt)
]
.

The optimization problem (5.1) cannot be solved explicitly. We therefore choose
to solve the problem asymptotically using the two following lemmas. Denote M̄
the set of measures Θ ∈ M with support on a finite set of points. We first give
a lemma that characterizes the behaviour of Gε(Θ) as ε → 0, for Θ ∈ M̄ as this
will be sufficient for the cases that we will consider in Section 6 (see Prop. 5.5).
We stress the fact that although Lemmas 5.1 and 5.2 are proved for Θ ∈ M̄ , the
resulting asymptotic proxy for the variance, and the resulting candidate importance
sampling measure are well defined, and may be used for any Θ ∈M , provided that
they lead to a sufficient reduction in the variance of the estimator.

lem:Gepsilon Lemma 5.1. If Assumption 3 holds, then for any measure Θ ∈ M̄ , such that for
every t ∈ [0, T ], Θ([t, T ]) ∈ J , we have

lim
ε→0
Gε(Θ) =

T∫
0

h(Θ([t, T ])) dt .

where h is defined in (2.5).

Proof. Denote τ = {t1, ..., tn}, the support of Θ. We then obtain

lim
ε→0

ε log IE
[
e

1
ε

∫ T
0 Xε

t Θ(dt)
]

= lim
ε→0

ε log IE

[
e

1
ε

∑n
j=1 X

ε
tj

Θ({tj})
]

=

n∑
j=1

(tj − tj−1)h (Θ({tj}))

=

T∫
0

h(Θ([t, T ])) dt
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by applying Theorem 4.2 to θ = (Θ({t1}), ...,Θ({tn})). �

Next, we give a result that characterizes the behaviour of the variance minimiza-
tion problem (5.1) where X has been replaced by Xε as ε→ 0.

lem:LimitFunction Lemma 5.2. Let Θ ∈ M̄ such that −Θ([t, T ]) ∈ J◦ for every t ∈ [0, T ]. Let
Assumptions 2 and 3 hold true and assume furthermore that H : F([0, T ],R)→ R
is bounded from above by a constant C and continuous on D the set of functions
x ∈ Vr, such that H(x) > −∞, with respect with to the pointwise convergence
topology. Then

lim
ε→0

ε log IE

[
exp

(
2H(Xε)−

∫ T
0 Xε

t Θ(dt) + Gε(Θ)

ε

)]

= sup
x∈D

2H(x)−
T∫

0

xtΘ(dt)− Λ∗(x)

+

T∫
0

h(Θ([t, T ])) dt .

Proof. First note that, by Lemma 5.1,

lim
ε→0

ε log IE

[
exp

(
2H(Xε)−

∫ T
0 Xε

t Θ(dt) + Gε(Θ)

ε

)]

= lim
ε→0

ε log IE

[
exp

(
2H(Xε)−

∫ T
0 X

ε
t Θ(dt)

ε

)]
+

T∫
0

h(Θ([t, T ])) dt .

We therefore just need to prove that

lim
ε→0

ε log IE

[
exp

(
2H(Xε)−

∫ T
0 X

ε
t Θ(dt)

ε

)]
= sup

x∈D

2H(x)−
T∫

0

xtΘ(dt)− Λ∗(x)

 .

Denote ϕ : F([0, T ],R)→ R the function ϕ(x) = 2H(x)−
∫ T

0 xt Θ(dt). Since H is
assumed to be continuous and Θ has support on τ , ϕ is continuous. Let us show
the integrability condition of Theorem 3.8. For every γ > 0

lim sup
ε→0

ε log IE

[
exp

(
γ ϕ(Xε)

ε

)]
= lim sup

ε→0
ε log IE

[
exp

(
2γH(Xε)− γ

∫ T
0 Xε

t Θ(dt)

ε

)]
≤ 2γC + lim sup

ε→0
ε log IE

[
e

1
ε

∫ T
0 Xε

t d(−γΘ)t
]
.

Since −Θ([t, T ]) ∈ J◦ for every t ∈ [0, T ], there exists γ > 1 such that −γΘ([t, T ])
remains in J for every t. Therefore Lemma 5.1 applies and

lim sup
ε→0

ε log IE

[
exp

(
γ ϕ(Xε)

ε

)]
≤ 2γC +

T∫
0

h(−γΘ([t, T ])) dt <∞ .

Theorem 3.8 then applies and yields the result. �
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In view of Lemma 5.2 we suggest to compute the candidate variance reduction
parameter by minimizing over Θ ∈M the expression

sup
x∈Vr

2H(x)−
T∫

0

xt Θ(dt)− Λ∗(x)

+

T∫
0

h(Θ([t, T ])) dt . (5.2) express

It is then natural to ask, how close the corresponding measure change will be
to the optimal one which minimizes the variance of the Monte Carlo estimator
over all possible measure changes. Varadhan’s lemma allows to define a notion of
asymptotic optimality, which provides a partial answer to this question. Consider
a family of importance sampling measures (Q(ε))ε>0. By Jensen’s inequality, for
all ε > 0,

EQ(ε)

[(
e

1
ε
H(Xε) dP

dQ(ε)

)2
]
≥ E

[
e

1
ε
H(Xε)

]2

A family of importance sampling measures changes is called asymptotically optimal
if, for this family, the log-scale decay rates of the above expressions are the same.
In other words, the asymptotically optimal measure change does at least as well as
any other measure change at the logarithmic scale of large deviations.

optvar.def Definition 5.3. Let (Q(ε))ε>0 be a family of importance sampling measure changes.
We say that (Q(ε))ε>0 is asymptotically optimal if

lim
ε↓0

ε logEQ(ε)

[(
e

1
ε
H(Xε) dP

dQ(ε)

)2
]

= 2 lim
ε↓0

ε logE
[
e

1
ε
H(Xε)

]
.

The theorem below follows immediately from Theorem 8 of (Genin and Tankov,
2020) and shows that in the case of concave payoffs, the computation of the mini-
mizer of (5.2) is simplified and we have asymptotic optimality.

thm:Equivalence Theorem 5.4. Let H be concave and assume that the set {x ∈ Vr : H(x) > −∞}
is non-empty and contains a constant element. Assume furthermore that H is
continuous on this set with respect to the topology of pointwise convergence, that
h is lower semi-continuous with open and bounded effective domain and that there
exists a λ > 0 such that h is complex-analytic on {z ∈ C : |Im(z)| < λ}. Then

inf
Θ∈M

sup
x∈Vr

2H(x)−
T∫

0

xtΘ(dt)− Λ∗(x) +

T∫
0

h(Θ([t, T ])) dt

 (5.3) line1.eq

= 2 inf
Θ∈M

Ĥ(Θ) +

T∫
0

h(Θ([t, T ])) dt

 , (5.4) line2.eq

where

Ĥ(Θ) = sup
x∈Vr

H(x)−
T∫

0

xt Θ(dt)

 .

Furthermore, if the measure Θ∗ minimises the left-hand side of the above equation,
it also minimises the right-hand side. Finally, if the payoff functional and the
measure Θ∗ satisfy the assumptions of Lemma 5.2 then the importance sampling
measure corresponding to Θ∗ is asymptotically optimal.
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Finite-dimensional dependence. A simple example of a functional H which is con-
tinuous in the topology of pointwise convergence is the situation when H depends
on a path x only through its values at a finite number of points xt1 , ...., xtn . In this
case, our results hold under less stringent assumptions, and we state them as a sep-
arate proposition. The asymptotically optimal variance reduction measure is also
supported by the points {t1, . . . , tn}. To simplify notation, we denote xti by xi and
we introduce a function Hτ : Rn → R ∪ {−∞} such that H(x) = Hτ (x1, . . . , xn).

prop:OptimalMeasureIsDiscrete Proposition 5.5. Let τ = {t1, ..., tn} and let H(x) = Hτ (x1, . . . , xn). Assume
that the set {x ∈ Rn : Hτ (x) > −∞} is nonempty and that Hτ is concave and
continuous on this set. Let Assumptions 2 and 3 hold true, let the effective domain
J of h be bounded and contain a neighborhood of 0, and assume that h(x) is lower
semicontinuous on J . Define

Ĥτ (θ̄) = sup
x∈Rn

{
Hτ (x)−

n∑
i=1

θ̄i(xi − xi−1)

}
.

Then, there exists θ̄
∗

which minimizes

F (θ̄) := Ĥτ (θ̄) +

n∑
i=1

(ti − ti−1)h(θ̄i), (5.5) minim.eq

and the family of importance sampling measures defined by

dPε

dP
=

e
∑n
i=1(Xε

ti
−Xε

ti−1
)θ̄
∗
i

E
[
e
∑n
i=1(Xε

ti
−Xε

ti−1
)θ̄
∗
i

]
is asymptotically optimal.

Proof. Let {θ̄(k)}k≥1 ⊆ Jn be a minimizing sequence for (5.5). Since J is bounded,

this sequence has a subsequence {θ̄(km)}m≥1, converging to θ̄
∗ ∈ Jn. As a supre-

mum over a family of linear functions Ĥτ is lower semicontinuous. By the lower
semicontinuity of h, it follows that F is lower semicontinuous as well and θ̄

∗
is a

minimizer of (5.5) on J
n
. Moreover, since Hτ is bounded and h(0) = 0, F (0) <∞

and thus also F (θ̄
∗
) <∞. Assume that θ̄

∗ ∈ ∂(Jn), let ρ ∈ (0, 1) and let k be such

that θ̄
∗
k ∈ ∂J . Then, ρθ̄

∗ ∈ J̊n and, using the convexity of Ĥτ and h, we have the
following estimate

F (ρθ̄
∗
) = F (θ̄

∗
) + Ĥτ (ρθ̄

∗
)− Ĥτ (θ̄) +

n∑
i=1

(ti − ti−1){h(ρθ̄
∗
i )− h(θ̄

∗
i )}

≤ F (θ̄
∗
) + (1− ρ){Ĥτ (0)− Ĥτ (θ̄

∗
)}

+ (1− ρ)
∑

i=1,...,n;i 6=k
(ti − ti−1){h(0)− h(θ̄

∗
i )} − (tk − tk−1)(1− ρ)θ̄k∇h(ρθ̄k)

To fix the ideas, assume that θ̄k > 0. Then, by the essential smoothness of h,
∇h(ρθ̄k)→ +∞ as ρ→ 1, so that there exists ρ < 1 with F (ρθ̄

∗
) < F (θ̄

∗
). This is

in contradiction with the assumption that θ̄
∗

is the minimizer of F , and therefore
θ̄
∗ ∈ J̊n. In view of this condition, and Lemma 5.1, assumption (3.1) holds for the
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function φ given by

x ∈ Rn 7→ φ(x) := 2Hτ (x)−
n∑
i=1

θ̄
∗
i (xi − xi−1),

with the convention x0 = 0.
Define the measure Θ :=

∑n
i=1 θiδti , where δti is the Dirac measure at ti, θi =

θ̄∗i − θ̄∗j+1 for j = 1, . . . , n − 1 and θn = θ̄∗n. By Varadhan’s lemma (Theorem 3.8)
applied with the LDP of Theorem 4.3 and Lemma 5.1 applied with the measure
Θ, it follows that

lim
ε→0

ε logEPε
[(

e
1
ε
Hτ (Xε) dP

dPε

)2
]

= lim
ε→0

ε log

{
E

[
exp

(
2Hτ (Xε)−

∑n
i=1(Xε

ti −X
ε
ti−1

)θ̄
∗
i

ε

)]

× E

[
exp

(∑n
i=1(Xε

ti −X
ε
ti−1

)θ̄
∗
i

ε

)]}

= sup
x∈Rn

{
2Hτ (x)−

n∑
i=1

(xti − xti−1)θ̄
∗
i − Λ∗τ (x)

}
+

n∑
i=1

(ti − ti−1)h(θ̄
∗
i )

= sup
x∈Rn

inf
ξ̄∈Jn

{
2Hτ (x)−

n∑
i=1

(xti − xti−1)(θ̄
∗
i + ξ̄i) +

n∑
i=1

(ti − ti−1)(h(ξ̄i) + h(θ̄
∗
i ))

}
In view of our assumptions (in particular, the boundedness of J), the inf and the
sup may be exchanged, see Proposition VI.2.3 in (Ekeland and Temam, 1999), so
that the above is equal to the following:

inf
ξ̄∈Jn

sup
x∈Rn

{
2Hτ (x)−

n∑
i=1

(xti − xti−1)(θ̄
∗
i + ξ̄i) +

n∑
i=1

(ti − ti−1)(h(ξ̄i) + h(θ̄
∗
i ))

}

= inf
ξ̄∈Jn

{
2Ĥτ

(
ξ̄ + θ̄

∗

2

)
+

n∑
i=1

(ti − ti−1)h(ξ̄i) +

n∑
i=1

(ti − ti−1)h(θ̄
∗
i )

}

= 2

{
Ĥτ

(
θ̄
∗)

+
n∑
i=1

(ti − ti−1)h(θ̄
∗
i )

}
The last line follows because, on the one hand, by convexity of h and by definition
of θ̄

∗
,

inf
ξ̄∈Jn

{
2Ĥτ

(
ξ̄ + θ̄

∗

2

)
+

n∑
i=1

(ti − ti−1)h(ξ̄i) +
n∑
i=1

(ti − ti−1)h(θ̄
∗
i )

}

≥ inf
ξ̄∈Jn

{
2Ĥτ

(
ξ̄ + θ̄

∗

2

)
+ 2

n∑
i=1

(ti − ti−1)h

(
ξ̄i + θ̄

∗
i

2

)}

= 2 inf
ξ̄∈Jn

{
Ĥτ

(
ξ̄
)

+

n∑
i=1

(ti − ti−1)h
(
ξ̄i
)}

= F (θ̄
∗
),

and on the other hand, choosing ξ̄ = θ̄
∗
, we have that
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inf
ξ̄∈Jn

{
2Ĥτ

(
ξ̄ + θ̄

∗

2

)
+

n∑
i=1

(ti − ti−1)h(ξ̄i) +

n∑
i=1

(ti − ti−1)h(θ̄
∗
i )

}

≤ 2Ĥτ

(
θ̄
∗)

+ 2

n∑
i=1

(ti − ti−1)h(θ̄
∗
i ).

By another application of Varadhan’s lemma (here the boundedness of Hτ suffices
to ensure its applicability), exchanging the inf and the sup by the same argument
as above, we have:

lim
ε→0

ε logE
[
exp

(
Hτ (Xε)

ε

)]
= sup

x∈Rn
{Hτ (x)− Λ∗τ (x)}

= sup
x∈Rn

inf
θ̄∈Jn

Hτ (x)−
n∑
j=1

θ̄j(xj − xj−1) +

n∑
j=1

(tj − tj−1)h(θ̄j)


= inf

θ̄∈Jn
sup
x∈Rn

Hτ (x)−
n∑
j=1

θ̄j(xj − xj−1) +

n∑
j=1

(tj − tj−1)h(θ̄j)


= inf

θ̄∈Jn

Ĥτ (θ̄)−
n∑
j=1

(tj − tj−1)h(θ̄j)


= F (θ̄

∗
),

which shows the asymptotic optimality of θ̄
∗

as per Definition 5.3.
�

6. Numerical examples
sec:NumericalExamples

In this section, we apply the variance reduction method to several examples. We
first prove a result for options on the average value of the underlying over a finite
set of points.

prop:HHat Proposition 6.1. Let τ = {t1, ..., tn} and consider an option with log-payoff

H(x) = log
(
K − S0

n

n∑
j=1

exj
)

+
. (6.1) asianpayoff.eq

Then H satisfies the assumptions of Proposition 5.5 and for any θ̄ ∈ Rn,

Ĥ(θ̄) = log

(
K

1−
∑n

l=1 θl

)
−

n∑
m=1

θm log

(
−θm nK/S0

1−
∑n

l=1 θl

)
(6.2) eq:HHat

where we use the notation θj = θ̄j − θ̄j+1 for j = 1, . . . , n− 1 and θn = θ̄n.

Proof. Let us first show that the assumptions of Proposition 5.5 are satisfied. The
concavity of H follows from Lemma 10 in (Genin and Tankov, 2020), see the
examples in section 4 of that paper; the payoff is clearly bounded from above and
continuous on the set where it is finite.

Let us now turn to the computation of Ĥ. For this payoff,

H(x)−
n∑
i=1

θ̄i(xi − xi−1) = log
(
K − S0

n

n∑
j=1

exj
)

+
−

n∑
j=1

θjxj .
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When the option is out or at the money, the log-payoff is −∞. Assume that x is
such that H(x) > −∞ and differentiate with respect to xj . We obtain

0 = ∂xj

{
log

(
K − S0

n

n∑
l=1

exl

)
−

n∑
l=1

xlθl

}
=

−S0
n e

xj

K − S0
n

∑n
l=1 e

xl
− θj .

Therefore the x that maximises H(x)−
∑n

j=1 θjxj satisfies

exj

θj
= −n K

S0
+

n∑
l=1

exl = −n K
S0

+
exj

θj

n∑
l=1

θl ,

for every j. Therefore

xj = log

(
−θj nK/S0

1−
∑n

l=1 θl

)
.

Inserting xj in the value of H(x)−
∑n

j=1 θjxj , we obtain the result. �

6.1. European and Asian put options in the Heston model. Consider the
Heston model (Heston, 1993)

dXt = −Vt
2
dt+

√
Vt dW

1
t , X0 = 0

dVt = λ(µ− Vt) dt+ ζ
√
Vt dW

2
t , V0 > 0

d
〈
W 1,W 2

〉
t

= ρ dt ,

(6.3) eq:HestonDynamicsP

whereW 1,W 2 are standard P-Brownian motions. The Laplace transform of (Xt, Vt)
is

IE
(
euXt+wVt

)
= eφ(t,u,w)+ψ(t,u,w)V0+uX0 ,

where φ, ψ satisfy the Riccati equations

∂tφ(t, u, w) = F (u, ψ(t, u, w)) φ(0, u, w) = 0

∂tψ(t, u, w) = R(u, ψ(t, u, w)) ψ(0, u, w) = w
(6.4) eq:RiccatiEquations

for F (u,w) = λµw and

R(u,w) =
ζ2

2
w2 + ζρ uw − λw +

1

2
(u2 − u) .

A standard calculation shows that the solution of the Riccati equations (6.4) is

ψ(t, u, w) =
1

ζ

(
λ

ζ
− ρu

)
− γ

ζ2

tanh
(γ

2 t
)

+ η

1 + η tanh
(γ

2 t
)

φ(t, u, w) = µ
λ

ζ

(
λ

ζ
− ρu

)
t− 2µ

λ

ζ2
log
(

cosh
(γ

2
t
)

+ η sinh
(γ

2
t
))

,

(6.5) eq:RiccatiSolution

where γ = γ(u) = ζ

√(
λ
ζ − ρu

)2
+ 1

4 −
(
u− 1

2

)2
and η = η(u,w) = λ−ζρu−ζ2w

γ(u) .

Furthermore, for the Heston model, the function h (asymptotic Laplace exponent
of X, see Equation (2.4)) is given by

h(u) =

µ
λ

ζ

(
λ

ζ
− ρu

)
− µ λ

ζ2
γ(u), if

(
λ

ζ
− ρu

)2

+
1

4
−
(
u− 1

2

)2

> 0

+∞, otherwise.

(6.6) eq:HestonH
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Remark 6.2. The function h is the log-Laplace transform of the normal inverse
Gaussian process (Barndorff-Nielsen, 1997) which is complex-analytic on a strip
around the real axis.

The following proposition describes the effect of the time dependent Esscher
transform on the dynamics of the Heston model.

prop:HestonDynamicsPTheta Proposition 6.3. Let τ = {t1, ..., tn} and Pθ̄ the measure given by

dPθ̄
dP

=
e
∑n
j=1 θ̄j (Xtj−Xtj−1 )

IE
[
e
∑n
j=1 θ̄j (Xtj−Xtj−1 )

] .
Under Pθ̄, the dynamics of the P-Heston process (Xt, Vt) becomes

dXt =

(
θ̄nt + ζρΨ

(
τt − t, θ̄nt , ..., θ̄n

)
− 1

2

)
Vt dt+

√
Vt dW̃

1
t , X0 = 0

dVt = λ̃t (µ̃t − Vt) dt+ ζ
√
Vt dW̃

2
t , V0 = V0

d
〈
W̃ 1, W̃ 2

〉
t

= ρ dt ,

(6.7) eq:HestonDynamicsPTheta

where W̃ is 2-dimensional correlated Pθ̄-Brownian motion, nt = inf{k ∈ N : tk ≥
t}, τt = inf{s ∈ τ : s ≥ t}, Ψ is defined iteratively as

Ψ
(
s, θ̄j , ..., θ̄n

)
= ψ

(
s, θ̄j ,Ψ

(
tj+1 − tj , θ̄j+1..., θ̄n

))
Ψ (s) = 0

and

λ̃t = λ− ζθ̄ntρ− ζ2 Ψ
(
τt − t, θ̄nt , ..., θ̄n

)
and µ̃t =

λµ

λ̃t
.

Proof. We define the function Φ iteratively by

Φ
(
s, θ̄j , ..., θ̄n

)
= φ

(
s, θ̄j ,Ψ

(
tj+1 − tj , θ̄j+1, ..., θ̄n

))
+ Φ

(
tj+1 − tj , θ̄j+1, ..., θ̄n

)
Φ (s) = 0

Denote

D(t,Xt, Vt) =
dPθ̄
dP

∣∣∣∣
Ft
.

Then

D(t,Xt, Vt) =
e
∑nt−1
j=1 θ̄j (Xtj−Xtj−1 )

IE
[
e
∑n
j=1 θ̄j (Xtj−Xtj−1 )

] IE
[
e
∑n
j=nt

θ̄j (Xtj−Xtj−1 )
∣∣∣Ft]

=
e
∑nt−1
j=1 θ̄j (Xtj−Xtj−1 )+Φ(τt−t,θ̄nt ,...,θ̄n)

eΦ(t1,θ̄1,...,θ̄n)+Ψ(t1,θ̄1,...,θ̄n)V0+θ̄1 X0
eΨ(τt−t,θ̄nt ,...,θ̄n)Vt+θ̄nt Xt .

The dynamics of D(t,Xt, Vt) can then be expressed using Itō’s Lemma as

dD(t,Xt, Vt) = D(t,Xt, Vt)
(
θ̄ntdXt + Ψ

(
τt − t, θ̄nt , ..., θ̄n

)
dVt
)

+ ... dt

= D(t,Xt, Vt)
√
Vt
(
θ̄ntdW

1
t + ζ Ψ

(
τt − t, θ̄nt , ..., θ̄n

)
dW 2

t

)
.
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By Girsanov’s theorem,

d

(
W̃ 1
t

W̃ 2
t

)
= d

(
W 1
t

W 2
t

)
−
√
Vt

(
θ̄nt + ζρΨ

(
τt − t, θ̄nt , ..., θ̄n

)
θ̄ntρ+ ζ Ψ

(
τt − t, θ̄nt , ..., θ̄n

) ) dt
is a 2-dimensional Brownian motion under the measure Pθ. Replacing W in eq.
(6.3) by W̃ gives the result. �

Remark 6.4. Prop. 6.3 shows that the time-dependent Esscher transform changes
a classical Heston process into a Heston process with time-inhomogeneous drift.

hestonsatisfies Remark 6.5 (Asymptotic optimality for the Heston model). The limiting Laplace
exponent of the Heston model is finite and continuous on the bounded interval,
J = [u−, u+], where

u± =

(
1
2 −

λ
ζ ρ
)
±
√(

1
2 −

λ
ζ ρ
)2

+ λ2

ζ2 (1− ρ2)

(1− ρ2)
,

which contains a neighborhood of zero. The function w (stable equilibrium of the
second Riccati equation) is given by

w(u) =
(λ− uρζ)−

√
(λ− uρζ)2 − ζ2(u2 − u)

ζ2
, (6.8) wheston.eq

so that

w(u−) =
1

ζ

(
λ

ζ
− ρu−

)
and w(u+) =

1

ζ

(
λ

ζ
− ρu+

)
.

and we see that Assumption 3 is verified and thus asymptotic optimality for Asian
and European put options is guaranteed in the Heston model only when ρ = 0.
Nevertheless, since the actual variance reduction problem is itself unsolvable, our
goal is to find a good candidate measure that we can test numerically. The fact
that we do not have the full theory to justify it is therefore not problematic.

6.1.1. Numerical results for European put options. In this case, the asymptotically
optimal variance reduction measure of Proposition 5.5 is supported by the single
point {T} and given (with ε = 1) by

dPθ̄∗
dP

=
eθ̄
∗XT

E
[
eθ̄∗XT

] .
For θ̄ ∈ R,

Ĥ(θ̄) + Th(θ̄)

= log

(
K

1− θ̄

)
− θ̄ log

(
−θ̄ K/S0

1− θ

)
+ T µ

λ

ζ

(
λ

ζ
− ρ θ̄ − γ(θ̄)

ζ

)
.

(6.9) eq:HHatHestonEuro

In order to obtain θ̄
∗
, we therefore differentiate (6.9) with respect to θ̄ and solve

the resulting equation numerically.
We simulate N = 10000 trajectories of the Heston model with parameters λ =

1.15, µ = 0.04, ζ = 0.2, ρ = −0.4 and initial values V0 = 0.04 and S0 = 1, under
both P, eq. (6.3), and Pθ̄∗ , eq. (6.7), with n = 1 and t1 = T , using a standard Euler

scheme with 200 discretization steps. For the P-realisations X(i), we calculate the
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European put price as 1
N

∑N
j=1

(
K − S0 e

X
(i)
T

)
+

and for the Pθ̄∗-realisations X(i,θ̄∗),

as

eφ(T,θ̄
∗,0)+ψ(T,θ̄∗,0)V0

N

N∑
j=1

e−θ X
(i,θ̄∗)
T

(
K − S0e

X
(i,θ̄∗)
T

)
+

. (6.10) eq:EstimatorTheta

Each time, we compute the Pθ̄∗-standard deviation, the variance ratio and the
adjusted variance ratio, i.e. the variance ratio divided by the ratio of simulation
time. The latter measures the actual efficiency of the method, given the fact that
simulating under the measure change takes in general slightly more time.

In Table 1, we fix the strike to the value K = 1 and let the maturity T vary
from 0.25 to 3, whereas in Tables 2 and 3, we fix maturity to T = 1 and to T = 3,
while we let the strike K vary between 0.25 and 1.75. We calculate each time the
price, the standard error, the variance ratio adjusted and not adjusted by the ratio
of simulation times.

T Price Std. error Var. ratio Adj. ratio Time, s

0.25 0.0395 3.72 ·10−4 2.46 2.14 20.2
0.5 0.0550 4.54 ·10−4 3.12 2.83 19.9
1 0.0780 5.59 ·10−4 3.92 3.66 19.5
2 0.111 7.20 ·10−4 4.21 3.89 19.7
3 0.134 8.48 ·10−4 4.19 3.79 19.8

Table 1. The variance ratio as function of the maturity for at-the-
money European put options. tab:PutVarianceReductionMaturity

K Price Std. error Var. ratio Adj. ratio Time, s

0.5 0.00014 7.65 ·10−6 26.6 24.5 18.4
0.75 0.00794 1.34 ·10−4 6.53 5.91 18.7

1 0.0773 5.60 ·10−4 3.96 3.65 18.5
1.25 0.261 8.62 ·10−4 4.20 3.78 18.9
1.5 0.502 7.92 ·10−4 5.84 5.36 18.6
1.75 0.749 6.84 ·10−4 8.45 7.29 19.7

Table 2. The variance ratio as function of the strike for the Euro-
pean put option with maturity T = 1. tab:PutVarianceReductionStrikeT1

K Price Std. error Var. ratio Adj. ratio Time, s

0.25 7.1 ·10−5 1.84 ·10−5 92.0 70.9 23.1
0.5 0.00418 6.05 ·10−5 16.1 16.0 20.0
0.75 0.0369 3.43 ·10−4 6.67 6.00 20.4

1 0.133 8.51 ·10−4 4.24 4.15 20.2
1.25 0.300 1.34 ·10−3 3.61 3.13 21.3
1.5 0.517 1.60 ·10−3 3.47 3.30 19.9
1.75 0.755 1.64 ·10−3 3.89 3.53 19.9

Table 3. The variance ratio as function of the strike for the Euro-
pean put option with maturity T = 3. tab:PutVarianceReductionStrikeT3
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In all the cases, we can see that the variance ratio is quite significant for deep
out of the money options and less significant, yet still very interesting, when the
option is at or in the money. This corresponds to the natural behaviour of variance
reduction techniques that involve measure changes, as the measure change increases
the exercise probability. Note that the simulation time is only slightly larger when
simulating with the measure change, while the time required for the optimization
procedure is negligible compared with the simulation time. In Figure 6.1, we fix
the maturity to T = 1.5 and plot the empirical variance of the estimator (6.10) as a
function of θ̄∗. Our method provides θ̄∗ = −0.457 as the candidate asymptotically
optimal measure change. We can therefore see that our candidate θ̄∗ is very close
to the optimal one.

Figure 6.1. The variance of the Monte-Carlo estimator as a func-
tion of θ. fig:VarianceHeston

6.1.2. Numerical results for Asian put options. We now consider the case of a
(discretized) Asian put option with log payoff (6.1) and discretization dates tj =
j
n T . By Prop. 5.5, the asymptotically optimal variance reduction measure (with
ε = 1) is given by

dPθ̄∗
dP

=
e
∑n
j=1 θ̄

∗
j (Xtj−Xtj−1 )

IE
[
e
∑n
j=1 θ̄

∗
j (Xtj−Xtj−1 )

] ,
where θ̄∗ is computed by minimizing

log

(
K

1− θ̄1

)
−

n∑
m=1

(θ̄m − θ̄m+1) log

(
−(θ̄m− θ̄m+1)nK/S0

1− θ̄1

)
+
T

n

n∑
j=1

h
(
θ̄j
)
,

see Prop. 6.1 and eq. (6.6). By differentiating with respect to θ̄j , we obtain, for
j = 2, ..., n,

0 = ∂θ̄j

{
Ĥ(θ̄) +

T

n

n∑
m=1

h
(
θ̄m
)}

=
T h′

(
θ̄j
)

n
− log

[
−(θ̄j − θ̄j+1)

]
+ log

[
−(θ̄j−1 − θ̄j)

]
,

(6.11) eq:MinimizationEquation2toN
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while, for j = 1, we have

0 = ∂θ̄1

{
Ĥ(θ̄) +

T

n

n∑
m=1

h
(
θ̄m
)}

= log
(
1− θ̄1

)
− log(nK/S0) +

T

n
h′
(
θ̄1

)
− log

[
−(θ̄1 − θ̄2)

]
.

(6.12) eq:MinimizationEquation1

Taking the exponential in eqs. (6.11) and (6.12), we obtain

θ̄2 − θ̄1 = (1 − θ̄1 ) e
T
n
h′(θ̄1) · S0

nK

θ̄3 − θ̄2 = (θ̄2 − θ̄1 ) e
T
n
h′(θ̄2)

... =
...

θ̄n − θ̄n−1 = (θ̄n−1 − θ̄n−2) e
T
n
h′(θ̄n−1)

−θ̄n = (θ̄n − θ̄n−1) e
T
n
h′(θ̄n) .

Finally, let T be the real-valued function defined by

θ̄n 7→ T (θ̄n) = (1− θ̄1)e
T
n
h′(θ̄1) · S0

nK
− θ̄2 − θ̄1 ,

where θ̄n−1 = θ̄n + θ̄n e
−T
n
h′(θ̄n) and iteratively,

θ̄j−2 = θ̄j−1 − (θ̄j − θ̄j−1) e−
T
n
h′(θ̄j−1) , j = n, ..., 3 .

Solving numerically the equation T (θ̄n) = 0, we find the optimal θ̄
∗
.

As before, we simulate N = 10000 trajectories of the Heston model with param-
eters λ = 1.15, µ = 0.04, ζ = 0.2, ρ = −0.4 and initial values V0 = 0.04 and S0 = 1,
under both P, eq. (6.3), and Pθ̄∗ , eq. (6.7), with n = 200 and tj = j

n T , using a

standard Euler scheme with 200 discretization steps. For the P-realisations X(i),
we calculate the Asian put price as

1

N

N∑
j=1

K − S0

n

n∑
j=1

e
X

(i)
tj


+

(6.13)

and for the Pθ̄∗-realisations X(i,θ̄∗), as

eΦ(t1,θ̄∗1,...,θ̄∗n)+Ψ(t1,θ̄∗1,...,θ̄∗n)V0

N

N∑
j=1

e
−
∑n
j=1 θ̄

∗
j (X

(i,θ∗)
tj

−X(i,θ∗)
tj−1

)

K − S0

n

n∑
j=1

e
X

(i,θ̄∗)
tj


+

.

(6.14)
Each time, we compute the Pθ̄∗-standard deviation and the adjusted and non-
adjusted variance ratios. In Table 4, we fix the maturity to T = 1.5 and let the
strike K vary between 0.6 and 1.3.
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K Price Std. error Var. ratio Adj. ratio Time, s

0.6 3.466 ·10−5 4.13 ·10−6 16.9 14.6 19.9
0.7 0.000562 2.60 ·10−5 5.77 4.77 21.1
0.8 0.00414 9.64 ·10−5 4.36 3.77 20.1
0.9 0.0185 0.00024 3.48 3.09 20.6
1 0.0558 0.00043 3.49 3.07 20.1

1.1 0.120 0.00057 3.69 3.20 20.1
1.2 0.206 0.00062 4.27 3.80 19.7
1.3 0.301 0.00059 5.30 4.41 21.0

Table 4. The variance ratio as function of the strike for the Asian
put option. λ = 1.15, µ = 0.04, ζ = 0.2, ρ = −0.4, S0 = 1,
V0 = 0.04, T = 1.5, N = 10000, 200 discretization steps. tab:AsianPutVarianceReductionMaturity

The conclusion is the same as for the European put option. Indeed, the vari-
ance ratio explodes when the option moves away from the money. Due to the
time-dependence of the measure change, the adjusted variance ratio is consistently
around 13% below its non-adjusted version. The adjusted variance ratio remains
however very interesting, with values above 3 around the money.

6.2. European put options in the Heston model with negative exponen-
tial jumps. We now consider the Heston model with negative exponential jumps

dXt =

(
δ − Vt

2

)
dt+

√
Vt dW

1
t + dJt , X0 = 0

dVt = λ(µ− Vt) dt+ ζ
√
Vt dW

2
t , V0 = V0

d
〈
W 1,W 2

〉
t

= ρ dt ,

(6.15) eq:HestonWithJumpsDynamicsP

where W 1,W 2 are standard P-Brownian motions and (Jt)t≥0 is an independent
compound Poisson process with constant jump rate r and jump distribution Neg-Exp(α),
i.e. the Lévy measure of (Jt)t≥0 is ν(dx) = r αeαx1{x<0}dx. The martingale con-

dition on S = S0 e
X imposes δ = r

α+1 . The Laplace transform of (Xt, Vt) is

IE
(
euXt+wVt

)
= eφ(t,u,w)+ψ(t,u,w)V0+uX0 ,

where φ, ψ satisfy the Riccati equations

∂tφ(t, u, w) = F (u, ψ(t, u, w)) φ(0, u, w) = 0

∂tψ(t, u, w) = R(u, ψ(t, u, w)) ψ(0, u, w) = w
(6.16) eq:JumpRiccatiEquations

for F (u,w) = λµw + κ̃(u), where κ̃(u) = ru(u−1)
(α+1)(α+u) , and

R(u,w) =
ζ2

2
w2 + ζρ uw − λw +

1

2
(u2 − u) .

Again, a standard calculation shows that the solution of the generalized Riccati
equations (6.16) is

ψ(t, u, w) =
1

ζ

(
λ

ζ
− ρu

)
− γ

ζ2

tanh
(γ

2 t
)

+ η

1 + η tanh
(γ

2 t
)

φ(t, u, w) = µ
λ

ζ

(
λ

ζ
− ρu

)
t− 2µ

λ

ζ2
log
(

cosh
(γ

2
t
)

+ η sinh
(γ

2
t
))

+ tκ̃(u) ,

(6.17) eq:GRiccatiSolution
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where γ = γ(u) = ζ

√(
λ
ζ − ρu

)2
+ 1

4 −
(
u− 1

2

)2
and η = η(u,w) = λ−ζρu−ζ2w

γ(u) .

Furthermore, for the Heston model with negative jumps, the function h is given by

h(u) = µ
λ

ζ

(
λ

ζ
− ρu

)
− µ λ

ζ2
γ(u) + κ̃(u) . (6.18) eq:HestonWithJumpsH

hestonsatisfies Remark 6.6 (Asymptotic optimality for the Heston model with jumps). The lim-
iting Laplace exponent of the Heston model is finite and continuous on the bounded
interval, J = [u−, u+], where

u± =

(
1
2 −

λ
ζ ρ
)
±
√(

1
2 −

λ
ζ ρ
)2

+ λ2

ζ2 (1− ρ2)

(1− ρ2)
∨ (−α) ,

which contains a neighborhood of zero. The function w has the same form (6.8) as
in the Heston model without jumps, so that

w(u−) =
1

ζ

(
λ

ζ
− ρu−

)
1u−>−α+w(−α)1u−=−α and w(u+) =

1

ζ

(
λ

ζ
− ρu+

)
.

Thus, Assumption 3 is verified and asymptotic optimality holds for Asian and
European put options when ρ = 0 and jumps are sufficiently small, namely

α >

√
1

4
+
λ2

ζ2
− 1

2
.

Let us now study the effect of the Esscher transform on the dynamics of the
Heston model with jumps.

prop:HestonWithJumpsDynamicsPTheta Proposition 6.7. Let Pθ̄ be the measure given by

dPθ̄
dP

=
eθ̄ XT

IE
[
eθ̄ XT

] .
Under Pθ̄, the dynamics of the P-Heston process with jumps (Xt, Vt) becomes

dXt = δdt+

(
θ̄ + ζρψ

(
T − t, θ̄, 0

)
− 1

2

)
Vt dt+

√
Vt dW̃

1
t + dJt , X0 = 0

dVt = λ̃t (µ̃t − Vt) dt+ ζ
√
Vt dW̃

2
t , V0 = V0

d
〈
W̃ 1, W̃ 2

〉
t

= ρ dt ,

(6.19) eq:HestonWithJumpsDynamicsPTheta

where W̃ is 2-dimensional correlated Pθ̄-Brownian motion, φ and ψ are given in
(6.17),

λ̃t = λ− ζθ̄ρ− ζ2 ψ
(
T − t, θ̄, 0

)
and µ̃t =

λµ

λ̃t
and (Jt)t≥0 is a compound Poisson process with jump rate rα

α+θ̄
and jump distribu-

tion Neg-Exp(α+ θ̄) under Pθ̄.

Proof. Denote

D(t,Xt, Vt) =
dPθ̄
dP

∣∣∣∣
Ft

=
eφ(T−t,θ̄,0)

eφ(T,θ̄,0)+ψ(T,θ̄,0)V0
eψ(T−t,θ̄,0)Vt+θ̄ Xt .
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The dynamics of D(t,Xt, Vt) can then be expressed using Itō’s Lemma as

dD(t,Xt, Vt) = D(t,Xt, Vt)
(
θ̄dXt + ψ

(
T − t, θ̄, 0

)
dVt
)

+ ... dt

= D(t,Xt, Vt)
[√

Vt
(
θ̄dW 1

t +ζ ψ
(
T−t, θ̄, 0

)
dW 2

t

)
+θ̄ (δdt+dJt)

]
and Girsanov’s theorem then shows that

d

(
W̃ 1
t

W̃ 2
t

)
= d

(
W 1
t

W 2
t

)
−
√
Vt

(
θ̄ + ζρψ

(
T − t, θ̄, 0

)
θ̄ρ+ ζ ψ

(
T − t, θ̄, 0

) ) dt
is a 2-dimensional Brownian motion under the measure Pθ̄. Replacing W in eq.

(6.3) by W̃ gives eq. (6.19). In order to finish the proof, it remains to show that
the jump process (Jt)t≥0 has the desired distribution under Pθ̄. Let us calculate
the Pθ̄-Laplace transform of Jt:

IEPθ̄
[
euJt

]
=

IE
[
euJt IE

[
eθ̄XT

∣∣∣Ft]]
IE
[
eθ̄XT

]
=
eφ(T−t,θ̄,0)

IE
[
eθ̄XT

] IE
[
euJt+ψ(T−t,θ̄,0)Vt+θ̄Xt

]
.

By independence of the jumps,

IE
[
euJt+ψ(T−t,θ̄,0)Vt+θ̄Xt

]
= eθ̄δ t IE

[
e(u+θ̄)Jt

]
IE
[
eψ(T−t,θ̄,0)Vt+θ̄(Xt−δ t−Jt)

]
,

where IE
[
e(u+θ̄)Jt

]
= e
−rt u+θ̄

u+θ̄+α . Furthermore, (Xt − δ t− Jt, Vt)t≥0 is a standard

Heston process without jumps. Therefore comparing (6.5) and (6.17), we find that

IE
[
eψ(T−t,θ̄,0)Vt+θ̄(Xt−δ t−Jt)

]
= e

φ(t,θ̄,ψ(T−t,θ̄,0))−t rθ̄(θ̄−1)

(α+1)(α+θ̄)
+ψ(t,θ̄,ψ(T−t,θ̄,0))V0 .

Using the fact that ψ(t, θ̄, ψ
(
T − t, θ̄, 0

)
) = ψ

(
T, θ̄, 0

)
and

φ
(
T − t, θ̄, 0

)
+ φ(t, θ̄, ψ

(
T − t, θ̄, 0

)
) = φ

(
T, θ̄, 0

)
(see eq. (2.1) in (Keller-Ressel, 2011)), we finally obtain

IEPθ̄
[
euJt

]
= e

θ̄δ t−rt u+θ̄
u+θ̄+α

−t rθ̄(θ̄−1)

(α+1)(α+θ̄)

= e
θ̄ r
α+1

t−rt u+θ̄
u+θ̄+α

−t rθ̄(θ̄−1)

(α+1)(α+θ̄) = e
− rα
α+θ̄

t u
u+(α+θ̄) ,

which is indeed the Laplace transform of a compound Poisson process with jump
rate rα

α+θ̄
and Neg-Exp(α+ θ̄)-distributed jumps. �

6.2.1. Numerical results for the European put option. Similarly to the case of the
Heston model without jumps, we find the optimal θ̄∗ by minimizing numerically

Ĥ(θ̄) + Th(θ̄) dt

= log

(
K

1− θ̄

)
− θ̄ log

(
−θ̄ K/S0

1− θ̄

)
+ T µ

λ

ζ

(
λ

ζ
− ρθ̄ − γ(θ̄)

ζ

)
+ T κ̃(θ̄).

(6.20) eq:HHatHestonWithJumpsEuro

We simulate N = 10000 trajectories of the Heston model with jumps with pa-
rameters λ = 1.1, µ = 0.7, ζ = 0.3, ρ = −0.5, r = 2, α = 3 and initial values
V0 = 1.3 and S0 = 1, under both P, eq. (6.15), and Pθ̄∗ , eq. (6.19), using a stan-

dard Euler scheme with 200 discretization steps. For the P-realisations X(i), we
calculate the standard Monte-Carlo estimator of the European put price and for
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the Pθ̄∗-realisations X(i,θ̄∗), we use (6.10) where φ and ψ are given in (6.17) and
compute the same statistics as in the previous examples. In Table 5, we fix the
strike to the value K = 1 and let the maturity T vary from 0.25 to 3, whereas in
Tables 6 and 7, we fix the maturity to T = 1 and to T = 3, while we let the strike
K vary between 0.25 and 1.75.

T Price Std. error Var. ratio Adj. ratio Time, s

0.25 0.0945 9.96 ·10−4 3.28 3.00 23.6
0.5 0.147 1.28 ·10−3 3.20 2.99 24.5
1 0.215 1.61 ·10−3 2.95 2.77 24.7
2 0.309 2.04 ·10−3 2.61 2.43 24.7
3 0.374 2.30 ·10−3 2.40 2.20 25.0

Table 5. The variance ratio as function of the maturity for the
European put option in the Heston model with jumps. tab:PutVarianceReductionMaturityJumps

K Price Std. error Var. ratio Adj. ratio Time, s

0.25 0.00606 7.83 ·10−5 11.6 10.4 25.8
0.5 0.0377 4.03 ·10−4 5.42 5.28 24.7
0.75 0.105 9.44 ·10−4 3.76 3.19 27.3

1 0.215 1.61 ·10−3 2.93 2.89 26.1
1.25 0.369 2.26 ·10−3 2.65 2.46 25.4
1.5 0.550 2.80 ·10−3 2.43 2.24 24.9
1.75 0.766 3.05 ·10−3 2.57 2.44 24.6

Table 6. The variance ratio as function of the strike for the Eu-
ropean put option with maturity T = 1 in the Heston model with
jumps. tab:PutVarianceReductionStrikeJumpT1

K Price Std. error Var. ratio Adj. ratio Time, s

0.25 0.0280 2.69 ·10−4 5.19 4.99 24.8
0.5 0.108 8.60 ·10−4 3.32 3.05 25.1
0.75 0.226 1.58 ·10−3 2.68 2.56 26.3

1 0.374 2.31 ·10−3 2.39 2.20 27.0
1.25 0.545 3.01 ·10−3 2.20 2.19 25.2
1.5 0.730 3.66 ·10−3 2.09 1.94 24.6
1.75 0.932 4.27 ·10−3 1.97 1.83 24.8

Table 7. The variance ratio as function of the strike for the Eu-
ropean put option with maturity T = 3 in the Heston model with
jumps. tab:PutVarianceReductionStrikeJumpT3

When adding negative jumps to the Heston model, one can see that the vari-
ance ratio diminishes. When the options are out of the money however it is still
sufficiently high to make it interesting to use in applications. In Figure 6.2, we fix
the maturity to T = 1.5 and plot again the empirical variance of the estimator as a
function of θ̄∗ for the Heston model with jumps. The method provides θ̄∗ = −0.312
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as candidate asymptotically optimal measure change which is, as in the continuous
case, very close to the optimal one.

Figure 6.2. The variance of the Monte-Carlo estimator as a func-
tion of θ̄∗ for the Heston model with jumps. fig:VarianceHestonJumps
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