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VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS IN PROPER
CAT(0) SPACES

OTHMANE JERHAOUI AND HASNAA ZIDANI

Abstract. In this article, we develop a novel notion of viscosity solutions for first order Hamilton-
Jacobi equations in proper CAT(0) spaces. The notion of viscosity is defined by taking test func-
tions that are directionally differentiable and can be represented as a difference of two semiconvex
functions. Under mild assumptions on the Hamiltonian, we recover the main features of viscosity
theory for both the stationary and the time-dependent cases in this setting: the comparison prin-
ciple and Perron’s method. Finally, we show that this notion of viscosity coincides with classical
one in RN and we give several examples of Hamilton-Jacobi equations in more general CAT(0)
spaces covered by this setting.

1 Introduction

First order Hamilton-Jacobi equations have been extensively studied in the Euclidean space or
more generally in infinite dimensional Banach spaces that enjoy the Radon Nikodym property. A
substantial literature exists on the subject going back to several decades ago [14, 15, 16, 5]. More
recently, there has been an increasing interest in studying first order Hamilton-Jacobi equations
posed in more general metric spaces. Typical examples include topological networks, the space
of Borel probability measures, or more generally any generic metric space. This problem involves
many challenging mathematical obstacles and has a wide range of applications in various fields
such as data transmission, social network problems, traffic management problems, fluid mechanics,
optimal control of multi-agent systems and mean field control problems.

Several new notions of viscosity were proposed for first order Hamilton-Jacobi equations in metric
spaces. Since a notion of a differential for real valued functions defined in a general metric space is
not well defined, the Hamiltonians studied in this case depend on the differential of the unknown
function only through its local Lipschitz constant, called the local slope. In [20, 28], the authors
studied a class of Hamilton-Jacobi equations of Eikonal-type in a general metric space. The notion
of viscosity used by the authors is defined via optimal control interpretations along absolutely
continuous curves. This has the advantage to reduce the viscosity notion into a one dimensional
problem and requires no structure on the space considered. In [19, 3], the authors proposed a
different notion of viscosity for a similar class of Hamilton-Jacobi equations defined in a complete
geodesic metric space using local slopes and suitable test functions. In [30], the authors provide a
comparison between these notions of viscosity. In particular, they show that the notions coincide
in the case of the Eikonal equation defined in a complete geodesic space.

On the other hand, there is a growing interest in studying Hamilton-Jacobi equations on a
simpler structure in the form of a network. The latter is defined as a finite collection of isometric
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half-spaces glued together along their boundary. For example in the one dimensional case, a network
is the result of gluing a finite number of half-lines along their origin. The subset where the gluing
operation occurs is called the junction. On each branch of the network, one defines a Hamiltonian,
the Hamiltonians are a priori independent from one another and a discontinuity occurs at the
junction. Thanks to the smooth structure that each branch of the network possesses, one can define
more general Hamilton-Jacobi equations than the Eikonal-type equations. The notion of viscosity
solution is defined here using test functions that are continuous on the network and continuously
differentiable on each branch. First, the special case of the Eikonal equation on networks has been
considered in [31, 11]. Later in [24] the authors treated the case of convex Hamiltonians on each
branch in a one dimensional network. In their work, an additional junction condition is considered,
called the flux-limiter, in order to guarantee well-posedness of the problem. These results have been
extended to the case of quasi-convex Hamiltonians in [21, 22]. The case of a higher dimensional
network was treated in [23]. In [27] the authors studied the case of a one dimensional network
with Hamiltonians that are not necessarily convex nor quasi-convex. They introduced a junction
condition called the Kirchoff condition and proved well-posedness of the problem using the same
notion of viscosity as in [21, 22]. Furthermore, they proved that the flux-limiter type condition at
the junction is a special case of the Kirchoff-type condition. The book [7] offers a detailed discussion
on the different junction conditions considered on networks and the notion of viscosity solutions
adopted in this space.

Despite the progress made regarding the study of Hamilton-Jacobi equations in metric spaces,
we propose in this paper to answer some questions that are still open in current state of the art. In-
deed, the techniques developed for the treatment of Hamilton-Jacobi equations in a general geodesic
metric space are restricted to a certain class of Hamilton-Jacobi equations such as Eikonal equa-
tions. On the other hand, the setting of a network allows to study more general Hamilton-Jacobi
equations but the techniques used in this setting do not take advantage of the metric structure of
the network and focus more on the differential structure that exists on each branch. Furthermore,
extending those results to a network where the branches have different Hausdorff dimensions is
still a challenging question. The purpose of this paper is to define a viscosity notion for first order
Hamilton-Jacobi equations in a class of metric spaces general enough that includes Euclidean spaces
and networks and can allow to treat more general equations than the Eikonal-type ones. Further-
more, this viscosity notion should ideally coincide with the classical one developed in Euclidean
spaces. Therefore, we focus our attention in this manuscript on developing a theory of first order
viscosity notion in a subclass of metric spaces called CAT(0) spaces.

A metric space (X, d), is said to be a CAT(0) space if, roughly speaking, it is a geodesic space
and its geodesic triangles are “thinner” than the triangles of the Euclidean plane R2 (see Definition
2.2). This method of comparing geodesic triangles of a geodesic space with triangles from a model
space, such as the Euclidean plane, was first introduced by Alexandrov [2, 9]. It gives a synthetic
definition of curvature for geodesic spaces. In particular, CAT(0) spaces are spaces of curvature not
greater than 0 in the sense of Alexandrov. Typical examples of CAT(0) spaces are Hilbert spaces,
convex sets of Hilbert spaces, simply connected Riemannian manifolds with nonpositive sectional
curvature and the space of Borel probability measures over the real line [26]. Although CAT(0)
spaces do not possess any smooth structure, they carry a solid first order calculus similar to smooth
manifolds with sectional curvature not greater than 0. For example, a notion of tangent cone TxX
is well defined at each point of X. The tangent cone is the metric counterpart of the tangent space
in Riemannian geometry or the Bouligand tangent cone in convex analysis. Furthermore, a notion
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of differential is well defined for any function u : X → R that is Lipschitz and DC. By DC functions
we intend real valued functions that can be represented as a difference of two semiconvex functions.
The exact definition of this class of functions is given in Definition 2.16. We refer to [10, 8, 9, 2, 4]
for a more detailed discussion on the topic.

In this paper, we propose to study first order Hamilton-Jacobi equations in proper CAT(0)
spaces, i.e., CAT(0) spaces whose closed bounded sets are compact. More specifically, we consider
the following stationary problem,

(1.1)
{
H(u(x), x,Dxu) = 0, ∀x ∈ Ω,
u(x) = `(x), ∀x ∈ ∂Ω,

and its time-dependent counterpart,

(1.2)
{
∂tu+H(x,Dxu) = 0, ∀ (t, x) ∈ (0,+∞)×X,
u(0, x) = `(x), x ∈ X,

where Ω is an open set, ` is a real valued continuous and bounded function on its domain, and
u is a Lipschitz and DC function on its domain. The differential Dxu : TxX → R is defined in
the tangent cone of X at a point x. The differential Dxu is itself a Lipschitz, DC and positively
homogeneous function (see Proposition 2.18). The Hamiltonian H : R × X × DC1(TxX) → R is
a real valued function. The set DC1(TxX) represents Lipschitz, positively homogeneous and DC
functions on TxX.

The viscosity notion we adopt here generalizes what is currently present in the literature. We
define the notion of viscosity using subsets of the class of Lipschitz and DC functions. More precisely,
we test upper semicontinuous subsolutions with Lipschitz semiconvex functions and we test lower
semicontinuous supersolutions with Lipschitz semiconcave functions. We prove comparison results
that apply for any upper semicontinuous subsolution and any lower semicontinuous supersolution
using the same techniques as in the classical theory of viscosity. In particular, we apply the variable
doubling technique using the squared distance function in the same way as in [6, 13]. Comparison
results guarantee the uniqueness of the solution. Furthermore, we prove existence of the solution by
virtue of Perron’s method in a similar way as originally developed in [6, 13]. We would like to also
mention that the same notion of viscosity was used by the authors in the case of a Hamilton-Jacobi
equation defined on the space of probability measures over a compact Riemannian manifold in [25].

We give several examples showing the degree of generality of our setting. Namely, we show that
the setting developed in this paper coincides with the classical setting when X = RN by treating the
examples of Hamilton-Jacobi-Bellman equations and Isaacs equations defined in RN . Furthermore,
we give several examples of Hamilton-Jacobi equations defined in more general proper CAT(0)
spaces, covered by this setting.

The paper is organized in the following way. In Section 2 we give the definition of CAT(0) spaces,
we describe the gluing operation of a collection of CAT(0) spaces, we define the central notion of
the tangent cone and we give the definition of DC functions and their differential in CAT(0) spaces.
In Section 3 and Section 4, we define the notion of viscosity solutions and the general form of
the Hamiltonian we are going to work with for the stationary case and the time-dependent cases
respectively. We show that we recover the main features of viscosity theory in this setting: the
comparison principle and Perron’s method. Finally, we give several examples showing the degree
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of generality of our setting. In particular, we treat classical examples of Hamilton-Jacobi equations
when the space X = RN to demonstrate that our setting coincides with the classical one in RN
and we treat other examples of Hamilton-Jacobi equations defined in more general CAT(0) spaces.

2 Calculus in CAT(0) spaces

Let us briefly recall some facts in metric geometry. Classical references are [10, 8, 9, 2, 4]. Let
(X, d) be a metric space. For x ∈ X and r > 0 we denote by B(x, r) and B(x, r) the open and
closed balls of center x and radius r respectively. The metric space (X, d) is said to be proper if all
of its closed bounded sets are compact sets.

Let l > 0. A metric space (X, d) is said to be a geodesic space if any two points x, y ∈ X are
connected by at least one unit speed geodesic, i.e. a map γ : [0, l]→ X such that γ0 = x, γl = y and

d(γt, γs) =|t− s|, ∀t, s ∈ [0, l].
In particular, we necessarily have l = d(x, y). The image of γ is called the geodesic segment with
endpoints x and y.

Let I ⊂ R be an interval. A map γ : I → X is said to be a constant speed geodesic if there exists
a constant D ≥ 0 such that

∀s, t ∈ I, d(γs, γt) = D|s− t|.
In what follows, we will refer to constant speed geodesics simply by geodesics.

Remark 2.1. In Section 3, we will also need another property on geodesic spaces (see Example 3.9).
A geodesic space (X, d) is said to be geodesically extendable if for every geodesic γ : [a, b]→ X with
a < b ∈ R, there exists a geodesic γ̃ : (−∞,+∞)→ X such that

γ̃|[a,b] = γ.

2.1 CAT(0) spaces. Let (X, d) be a geodesic space. In order to define the notion of curvature
of X, we shall first introduce the notion of geodesic triangles. A geodesic triangle 4(x, y, z) in a
geodesic space is the result of three points x, y, z ∈ X, called the vertices, together with a choice
of three corresponding geodesics, the edges, linking the vertices. A comparison triangle for the
geodesic triangle 4(x, y, z) is a geodesic triangle built in the Euclidean plane (R2, dR2), denoted by
4̄(x̄, ȳ, z̄), with x̄, ȳ, z̄ ∈ R2, such that

dR2(x̄, ȳ) = d(x, y), dR2(ȳ, z̄) = d(y, z), dR2(x̄, z̄) = d(x, z).
The choice of the comparison triangle is unique up to an isometry [8, Lemma I.2.14]. A point a ∈ X
is said to be between y and z provided that we have

d(y, a) + d(z, a) = d(y, z).
This means that the point a lies in a geodesic segment of y and z. The comparison point of a is
the unique point ā ∈ R2, once the comparison triangle 4̄(x̄, ȳ, z̄) is fixed, such that

dR2(ȳ, ā) + dR2(z̄, ā) = dR2(ȳ, z̄).

Definition 2.2 (CAT(0) spaces). A metric space (X, d) is called a CAT(0) space if it is a geodesic
space and satisfies the following comparison triangle inequality: for any x, y, z ∈ X and any point
a ∈ X between y and z, the comparison points x̄, ȳ, z̄, ā ∈ R2 satisfy
(2.1) d(x, a) ≤ dR2(x̄, ā).
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Figure 1. The comparison triangle on the left and the geodesic triangle on the
right.

Remark 2.3. The comparison triangle inequality (2.1) is equivalent to the following one: for any
x, y, z ∈ X and any comparison points x̄, ȳ, z̄ ∈ R2,

(2.2) d2(γt, x) ≤ d2
R2

(
(1− t)ȳ + tz̄, x̄

)
, ∀t ∈ [0, 1],

where γ : [0, 1] → X is the geodesic joining γ0 = y and γ1 = z. By expanding the right hand side
of (2.2) using the elementary properties of the inner product in R2, it becomes

(2.3) d2(γt, x) ≤ (1− t)d2(γ0, x) + td2(γ1, x)− t(1− t)d2(γ0, γ1), ∀t ∈ [0, 1].

Inequality (2.3) can be used in an equivalent way as a definition of CAT(0) spaces. It can be
understood as a synthetic inequality that quantifies the deficit of the curvature of X with respect
to the Euclidean space R2, where inequality (2.3) is an equality. In other words, inequality (2.3)
quantifies how much the triangle 4(x, y, z) in X is thinner with respect to the triangle 4̄(x̄, ȳ, z̄)
in R2.

Example 2.4. Here are some examples of CAT(0) spaces [8, Example II.1.15].
• Euclidean spaces, Hilbert spaces (the only Banach spaces which are CAT(0)).
• Convex subsets of Hilbert spaces.
• Convex subsets of other CAT(0) spaces.
• The n-dimensional hyperbolic space, denoted Hn. It is the unique simply connected, n-
dimensional complete Riemannian manifold with a constant negative sectional curvature
equal to −1.

• Simply connected Riemannian manifolds with sectional curvature not greater than 0.
• Metric R-trees, i.e. any metric space T such that:

– there exists a unique geodesic segment joining each pair of points x, y ∈ T ; we denote
it by [x, y];

– if [x, y] ∩ [y, z] = {y}, then [x, y] ∪ [y, z] = [x, z].
• The 2-Wasserstein space over the real line, denoted P2(R) [26, Proposition 4.1].

Following [8, Proposition II.1.4], an important result which is a consequence of Definition 2.2 is
that in a CAT(0) space (X, d), any two points x, y ∈ X are connected by a unique geodesic joining
x and y.

Let (X, d) be a CAT(0) space. A subset C ⊂ X is said to be convex if for every x, y ∈ C, the
geodesic segment connecting x and y lies entirely in C.
In the Euclidean plane R2, the open balls are convex. Hence, from Definition 2.2, it is straighforward
to prove that the open balls of (X, d) are convex (see [8, Proposition II.1.4-(3)] for a detailed proof
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of this fact). Furthermore, any convex subset of X equipped with the distance d is also a CAT(0)
space [8, Examples II.1.15].

Another useful result concerning CAT(0) spaces is that any product of two CAT(0) spaces is a
CAT(0) space when equipped with the product distance, as the following lemma shows.

Lemma 2.5. ([8, Exercice II.1.16]). Let (Y, dY ) and (Z, dZ) be two CAT(0) spaces. Then the
product space (Y × Z, dY×Z), equipped with the distance

d2
Y×Z

(
(y1, z1), (y2, z2)

)
:= d2

Y (y1, y2) + d2
Z(z1, z2),

is a CAT(0) space. Moreover, if Y and Z are proper spaces then the product space is also a proper
space.

2.2 Gluing constructions. In this section, we will discuss the most obvious way of gluing
metric spaces, which is to attach them along isometric subsets. Furthermore, we will see that when
the underlying metric spaces are CAT(0) spaces, and the isometric subsets are complete CAT(0)
subspaces, then the resulting space by the gluing operation is a CAT(0) space. In this subsection,
the set I will denote an arbitrary index set (countable or uncountable). The following definition
can be found in [8, Definition I.5.23].

Definition 2.6. (Gluing operation). Let I be an index set. Let (Xλ, dλ)λ∈I be a familly of metric
spaces. Let Aλ ⊂ Xλ be fixed closed subsets. Let A be a metric space and suppose that for each
λ ∈ I, there exists an isometry iλ : A→ Aλ. Let ∪λ∈IXλ be the disjoint union of the metric spaces
Xλ, λ ∈ I. We define the space X as the quotient space of ∪IXλ by the equivalence relation R
defined the following way

∀x, y ∈ ∪IXλ, xR y ⇔ ∃ a ∈ A, λ, λ′ ∈ I : x ∈ Aλ, y ∈ Aλ′

and i−1
λ ({x}) = i−1

λ′ ({y}) = a,

where we identify each Xλ with its image in X. The space X is called the glued space along A and
is denoted

X :=
⊔
A

Xλ.

Some examples of glued spaces will be given below. The following theorem shows how to define
a distance on the glued space X and summarizes its main properties.

Theorem 2.7. ([8, Lemma I.5.24]). Let X =
⊔
AXλ. Let x ∈ Xλ and y ∈ Xλ′ . we define the

following function:

d(x, y) :=
{
dλ(x, y) if λ = λ′,

infa∈A {dλ(x, iλ(a)) + dλ′(x, iλ′(a))} if λ 6= λ′.

We have
(1) d is a distance on X;
(2) if I is finite and each (Xλ, dλ) is proper, then (X, d) is proper;
(3) if each space (Xλ, dλ) is a geodesic space and A is proper, then (X, d) is a geodesic space.

For CAT(0) spaces, we have a stronger result that we give in the next proposition.
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Proposition 2.8. ([8, Theorem II.11.3] Gluing families of CAT(0) spaces). Let I be an index set.
Let (Xλ, dλ)λ∈I be a family of CAT(0) spaces. Let Aλ ⊂ Xλ be closed subsets. Let A be a metric
space and suppose that for all λ ∈ I, there exist isometries iλ : A → Aλ. Let X = tAXλ be the
resulting glued space along A.

If A is a complete CAT(0) space, then the glued space X is a CAT(0) space, endowed with the
distance defined in Theorem 2.7.

Example 2.9. Let X1 and X2 be the following two proper CAT(0) spaces:{
X1 := {(x1, x2, x3) ∈ R3 : x3 = 0},
X2 := {(x1, x2, x3) ∈ R3 : x1 = x2 = 0}.

Let A := {0}. We consider the following glued space along A

X := X1
⊔
A

X2.

The resulting glued space X is a proper CAT(0) space represented in figure 2

•
X1

X2

A

Figure 2. (Example 2.9) - The space obtained by gluing X1 and X2 along A.

Indeed, X1 are X2 are Euclidean subspaces of R3. Hence they are proper CAT(0) spaces when
endowed with the induced Euclidean distances from R3. Furthermore, A is a complete CAT(0)
space since it is reduced to one point. Hence, according to Theorem 2.7 and Proposition 2.8, X is a
proper CAT(0) space when endowed with its geodesic distance. The resulting distance is obtained
thanks to Theorem 2.7 in the following way

(2.4) ∀x, y ∈ X, d(x, y) :=
{
|x− y|, if ∃ i ∈ {1, 2} : x, y ∈ Xi,

|x|+|y|, otherwise,

where |.| denotes the Euclidean norm on R3.
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Example 2.10. Let X1 and X2 be the following two proper CAT(0) spaces:{
X1 := {(x1, x2, x3) ∈ R3 : x3 = 0},
X2 := {(x1, x2, x3) ∈ R3 : x1 = x2 = 0, x3 ≥ 0}.

Let A := {0}. We consider the following glued space along A

X := X1
⊔
A

X2.

•
X1

X2

A

Figure 3. (Example 2.10) - The space X obtained by gluing X1 and X2 along A.

Figure 3 shows a representation of the space X. In this example, X2 is not an Euclidean space.
However, X2 is a closed convex set of an Euclidean space, then it is still a proper CAT(0) space
when endowed with the Euclidean distance of R. By similar arguments as in Example 2.9, the
resulting glued space X is a proper CAT(0) space endowed with its geodesic distance which is
similar to (2.4).

Example 2.11. Here are more examples covered by this setting:

Figure 4. (Example 2.11) - More examples of glued CAT(0) spaces.
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In Figure 4(left-hand side), the space

J =
⊔
Γ
Ji

is the result of gluing three copies of the half-line [0,+∞) along the subset Γ = {0}. In Fig-
ure 4(right-hand side), the space J is isometric to the Euclidean plane R2 obtained by gluing two
copies of the half-plane {(x, y) ∈ R2 : x ≥ 0}, along the subset Γ = {(x, y) ∈ R2 : x = 0}.

2.3 Tangent cone. In this section, we recall the notion of the tangent cone on geodesic spaces
and give its main properties in the case of CAT(0) spaces. The tangent cone is a central notion in
metric geometry, similar to the tangent space for differentiable manifolds or the Bouligand tangent
cone in convex analysis. We refer to the bibliography mentioned at the beginning of this section
for a more detailed discussion.

Let (X, d) be a geodesic space and let x ∈ X. We denote by Geox(X) the set of geodesics
emanating from x and defined in some neighborhood of the form [0, ε], with ε > 0. Let η, γ ∈
Geox(X). Then the following quantity

(2.5) dx(η, γ) := lim sup
t↓0

d(ηt, γt)
t

is a pseudo-distance on the space Geox(X). Moreover, dx defines an equivalence relation on Geox(X)
in the following way:

∀η, γ ∈ Geox(X), η ∼ γ if and only if dx(η, γ) = 0.

The quotient space Geox(X)/ ∼ endowed with quotient distance, still denoted by dx, is a metric
space. The equivalence class of a geodesic γ ∈ Geox(X) under the equivalence relation ∼ is denoted
by γ′0 ∈ Geox(X)/ ∼. It represents the initial velocity or direction of γ.

Definition 2.12 (Tangent cone). Let (X, d) be a geodesic space and x ∈ X. The tangent cone at
x is the metric space (TxX, dx), where TxX is the abstract completion of (Geox(X)/ ∼, dx), i.e.

TxX := Geox(X)/ ∼
dx
.

We denote by 0x ∈ TxX the equivalence class of the geodesic with speed equal to 0 in Geox(X)/ ∼.
It is called the origin or the apex of the tangent cone TxX.

Example 2.13. If (X, d) is a simply connected manifold with sectional curvature not greater than
0, then the tangent cone at a point x ∈ X is isometric to the usual tangent space.

When (X, d) is a general geodesic space, the structure of the tangent cone can be very wild, and
little can be said about it. However, when (X, d) is a CAT(0) space, then the tangent cone behaves
nicely. This fact is exploited to build a first order calculus in (X, d). First, we have the following
key result. If (X, d) is a CAT(0) space and x ∈ X, then the supremum limit in (2.5) is actually a
limit. In fact, we have a stronger result. The tangent cone at a given point x of a CAT(0) space is
a complete CAT(0) space when endowed with the distance dx [8, Theorem II-3.19]. Furthermore,
the tangent cone of a CAT(0) space has a structure resembling a Hilbert space. This is due to the
fact that it is a complete CAT(0) space and it has a cone structure.
To make the latter statement clearer, first notice that for any λ ≥ 0, the map sending the geodesics
(γt) : t 7→ γt ∈ Geox(X) to the geodesics (γλt) : t 7→ γλt ∈ Geox(X) can be passed to the quotient
Geox(X)/ ∼ and the resulting quotient map sending the equivalence class of (γt) to the equivalence
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class of (γλt) is λ-Lipschitz on Geox(X)/ ∼. Indeed, for any two geodesics (γt)t, (ηt)t that belong
to Geox(X), we have

lim
t↓0

d(γλt, ηλt)
t

= λ lim
t↓0

d(γλt, ηλt)
λt

= λ lim
s↓0

d(γs, ηs)
s

.

Therefore, by passing to the quotient, the map is λ-Lipschitz from Geox(X)/ ∼ to itself. Hence
it can be extended by continuity to TxX and can be seen as the operation of multiplication by a
positive scalar. We denote it the following way:

∀ v ∈ TxX, ∀λ ≥ 0, λv ∈ TxX.

Thus TxX has a structure of a cone. Moreover, for any v, w ∈ TxX and λ ∈ R+, we define the
norm and the scalar product on TxX the following way:

Norm : |v|x := dx(v, 0x),(2.6a)

Scalar product : 〈v, w〉x := 1
2(|v|2x+|w|2x − d2

x(v, w)).(2.6b)

Furthermore, we have the following results on the norm and scalar product.

Proposition 2.14. ([17, Proposition 2.11] Calculus on the tangent cone). Let (X, d) be a CAT(0)
space, let x ∈ X be a fixed point and TxX be the tangent cone of X at x. Then the operations (2.6a)
and (2.6b) are continuous in their variables. The operation (2.6b) is symmetric. Furthermore, we
have

|λv|x = λ|v|x,(2.7a)
〈λv,w〉x = 〈v, λw〉x = λ〈v, w〉x,(2.7b)
|〈v, w〉x| ≤|v|x|w|x and 〈v, w〉x =|v|x|w|x if and only if |w|xv =|v|xw,(2.7c)

for all v, w ∈ TxX and λ ∈ R+.

Since CAT(0) spaces are uniquely geodesic, meaning that any two points are connected by
a unique unit speed geodesic, we introduce the following notation which is going to be useful
throughout this paper.

Notation 2.15. Let (X, d) be a CAT(0) space, and let x, y ∈ X. The unique unit speed geodesic
connecting x and y is denoted by

t 7→ Gx,yt , ∀ t ∈ [0, d(x, y)].

Furthermore, we denote by
↑yx:= (Gx,y0 )′ ∈ TxX

the direction of Gx,y at x. The direction ↑yx has a norm equal to 1, meaning that

| ↑yx |x = 1.

2.4 DC calculus. In this section, we introduce the notion of real valued directionally differen-
tiable functions in CAT(0) spaces. Special attention will be given to Lipschitz functions that are
semiconvex or semiconcave since they are differentiable at every point according to this definition.
These functions are going to serve us as test functions in the definition of viscosity notion in the
next section.
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Let (X, d) be a CAT(0) space and x ∈ X. Let f : X → R be a function. We say that f has a
directional derivative at x along the geodesic γ : [0, ε] → X emanating from x, with ε > 0, if the
limit

d

dt

∣∣∣
t=0

f(γt) = lim
t↓0

f(γt)− f(γ0)
t

exists and is finite.
Definition 2.16. Let f : X → R be a function.

• We say that f is semiconvex if there exists λ ∈ R such that for every geodesic γ : [0, 1]→ X
the following inequality holds:

(2.8) f(γt) ≤ (1− t)f(γ0) + tf(γ1)− λ

2 t(1− t)d
2(γ0, γ1),

or equivalently, if the real-to-real function

t 7→ f(γt)−
λ

2 d
2(γ0, γ1)t2

is convex. We also say that f is λ-convex. If λ = 0 then we simply say that f is convex.
• We say that f is semiconcave (or λ-concave for some λ ∈ R) if and only if −f is semiconvex

(or (−λ)-convex).
• Finally, we say that f is a DC function if it can be represented as a difference of two
semiconvex functions.

In particular, every semiconvex function is a DC function and every semiconcave function is also
a DC function. Furthermore, we can define locally semiconvex and locally smiconcave functions as
well.
Definition 2.17. Let Ω ⊂ X be an open subset. A function f : Ω → R is said to be locally
semiconvex if for any point x ∈ X there exists a neighborhood Ux of x such that for all geodesics
γ : [0, 1] → Ω with endpoints in Ux we have that inequality (2.8) holds. Similarly, a function
f : Ω → R is is said to be locally semiconcave if and only if −f is locally semiconvex. Finally, a
function f : Ω→ R is said to be a locally DC function if it can be locally represented as a difference
of two semiconvex functions.

Let Ω ⊂ X be an open subset and x ∈ Ω. Let f : Ω → R be a locally Lipschitz and locally
semiconvex function. Then the directional derivative of f along any geodesic emanating from x
exists and is finite by [17, Proposition 2.16]. Furthermore, we define the differential function of f
at x from its directional derivatives as the map Dxf : (GeoxX/ ∼)→ R defined as

Dxf � γ′0 := d

dt

∣∣∣
t=0

f(γt) = lim
t↓0

f(γt)− f(γ0)
t

, ∀γ ∈ GeoxX, γ′0 ∈ GeoxX/ ∼ .

Notice that the above definition does not depend on the choice of the geodesic γ whose velocity is
γ′0. Moreover, the differential function is Lipschitz, convex and positively homogeneous. Thus it
can be uniquely extended to the whole tangent cone TxX by density. These properties are collected
in the next proposition.
Proposition 2.18. ([17, Proposition 2.16] Differential of semiconvex functions). Let f : Ω → R
be a locally Lipschitz and locally semiconvex function around x ∈ Ω. Then f is directionally
differentiable at x and the differential function Dxf : TxX → R is Lipschitz, convex and positively
homogeneous, i.e.,

Dxf � (λv) = λDxf � v, ∀v ∈ TxX and λ ≥ 0.
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Similarly, if f : Ω → R is locally Lipschitz and locally semiconcave, then it is directionally
differentiable at any x ∈ Ω and its differential function is Lipschitz, concave, positively homogeneous
and defined by

Dxf := −Dx(−f).
Finally, if f : Ω→ R is a locally Lipschitz and locally DC function, then f is directionally differen-
tiable at any x ∈ Ω and its differential function is Lipschitz, DC, and positively homogeneous.

In what follows we will refer to directionally differentiable functions simply by differentiable
functions.

We denote by DClip(Ω) the class of locally Lipschitz and locally DC functions on Ω. We also
denote by DC1(TxX) the class of Lipschitz, DC, and positively homogeneous functions on the
tangent cone TxX at some point x ∈ X. Finally we denote by DC1(TX) the set
(2.9) DC1(TX) := {(x, px) ∈ X ×DC1(TxX)},
which is the metric analog of the cotangent bundle in this setting.

Next, we give several examples of locally Lipschitz and locally DC functions in CAT(0) spaces
to demonstrate how abundant these functions are in this class of metric spaces. Moreover, we will
give the explicit expression of their differential function at every point.

In the Euclidean plane R2, for ȳ ∈ R2 fixed, the Euclidean distance function x̄ 7→ dR2(x̄, ȳ)
is Lipschitz continuous and convex and the squared Euclidean distance function x̄ 7→ d2

R2(x̄, ȳ),
is locally Lipschitz continuous and 2-convex. These properties are preserved in any CAT(0) space
(X, d). Indeed, it follows directly from Definition 2.2 that for any given y ∈ X, the distance function
x 7→ d(x, y) is Lipschitz continuous and convex [8, Proposition II.2.2] and from Remark 2.3 that the
squared distance function x 7→ d2(x, y) is locally Lipschitz continuous and 2-convex. Furthermore,
their differential functions are given explicitly in the next proposition, whose proof can be found in
[17, Proposition 2.17].

Proposition 2.19. Let (X, d) be a CAT(0) space. Let y ∈ X be a fixed point. The following
properties hold true.

• For all x ∈ X, we have

∀v ∈ TxX, Dxd(., y) � v =
{
−〈v, ↑yx〉x, if x 6= y,

|v|x, if x = y,

where ↑yx is given in Notation 2.15.
• For all x ∈ X, we have

∀v ∈ TxX, Dxd
2(., y) � v = −2d(x, y)〈v, ↑yx〉x.

More generally, if (X, d) is a CAT(0) space and C is a closed convex subset of X, then the
distance function to C is also Lipschitz and convex. We summarize the main properties of the
distance function to a closed convex subset in the next proposition.

Proposition 2.20. (Distance function to a convex set [8, Proposition II.2.4, Corollary II.2.5]). Let
(X, d) be a CAT(0) space. Let C be a closed convex subset of X. Then the following holds:

(1) for every x ∈ X, there exists a unique point π(x) called the projection of x onto C such that
d(x, π(x)) = d(x, C) := inf

y∈C
d(x, y);
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(2) for all x, y ∈ X, we have |d(x, C)− d(y, C)| ≤ d(x, y);
(3) the function x 7→ d(x, C) is convex.
(4) the function x 7→ π(x) is a retraction from X to C. In particular, it is continuous.

Since the distance to a closed convex subset in a CAT(0) space is Lipschitz and convex, then
according to Proposition 2.18, it is differentiable at every point. The next theorem is the first result
of this paper where we give the explicit expression of the differential of the distance function to a
closed convex subset in a CAT(0) space.

Theorem 2.21 (Differential of the distance function to a closed convex set). Let (X, d) be a CAT(0)
space. Let C be a closed convex subset of X. Then the following holds:

∀x ∈ X, ∀v ∈ TxX, Dxd(., C) � v =
{
−〈↑π(x)

x , v〉x, if x /∈ C,
dx(v, TxC), if x ∈ C,

where, π(x) is the projection of x onto C, TxC is the tangent cone of x ∈ C, when (C, d) is seen as
a complete CAT(0) space and

dx(v, TxC) := inf
w∈TxC

dx(v, w).

The tangent cone TxC is a closed convex subset of the CAT(0) space (TxX, dx).

Proof. The proof is decomposed into two steps. Let x ∈ X.

Step 1 . If x /∈ C, then we have

∀y ∈ X, d(y, C) ≤ d(y, π(x)),
which implies that

∀γ(.) ∈ Geox, lim
t↓0

d(γt, C)− d(x, C)
t

≤ lim
t↓0

d(γt, π(x))− d(x, π(x))
t

.

The last inequality is equivalent to
∀v ∈ Geox/ ∼, Dxd(., C) � v ≤ Dxd(., π(x)) � v.

By Lipschitz continuity of the differential functions, we get
∀v ∈ TxX, Dxd(., C) � v ≤ Dxd(., π(x)) � v,

and by Proposition 2.19 we have
∀v ∈ TxX, Dxd(., π(x)) � v = −〈↑π(x)

x , v〉x.
Therefore, we get

∀v ∈ TxX, Dxd(., C) � v ≤ −〈↑π(x)
x , v〉x.

For the other inequality, let v ∈ Geox/ ∼ and let γ : [0, r] → X be a geodesic such that γ′0 = v.
First, by [8, Lemma II.3.20] we have

lim
s→0

dx(↑π(γs)
x , ↑π(x)

x ) = 0.

Moreover, by Proposition 2.19 we have
Dxd(., π(x)) � v = −〈v, ↑π(x)

x 〉x.
Therefore, by the continuity of the scalar product asserted in Proposition 2.14 we get

Dxd(., π(x)) � v = −〈v, ↑π(x)
x 〉x = lim

s↓0
−〈v, ↑π(γs)

x 〉x.
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Furthermore, we have

Dxd(., π(x)) � v = lim
s↓0
−〈v, ↑π(γs)

x 〉x = lim
s↓0

lim
t↓0

d(γt, π(γs))− d(x, π(γs))
t

= lim
s↓0

inf
0<t<r

d(γt, π(γs))− d(x, π(γs))
t

.

The last equality is true since the real-to-real function
t 7→ d(γt, π(γs))

is convex, so the incremental ratio

(0, r] 3 t 7→ d(γt, π(γs))− d(x, π(γs))
t

is non-decreasing. The monotonicity property of the above incremental ratio also gives us

lim
s↓0

inf
0<t<r

d(γt, π(γs))− d(x, π(γs))
t

≤ lim
s↓0

inf
s≤t<r

d(γt, π(γs))− d(x, π(γs))
t

= lim
s↓0

d(γs, π(γs))− d(x, π(γs))
s

.

Moreover, we have
∀s ∈ [0, r], d(x, π(γs)) ≥ d(x, C), and d(γs, π(γs)) = d(γs, C).

Therefore, we get

Dxd(., π(x)) � v ≤ lim
s↓0

d(γs, π(γs))− d(x, π(γs))
s

≤ lim
s↓0

d(γs, C)− d(x, C)
s

= Dxd(., C) � v.

This is true for any v ∈ Geox/ ∼. Lastly, by the Lipschitz continuity of the differential of the
distance function, we get

∀v ∈ TxX, Dxd(., π(x)) � v ≤ Dxd(., C) � v,
which is the desired inequality.

Step 2 . Let x ∈ C. By the Lipschitz continuity of the differentials, it is enough to consider only
geodesic directions in TxX. Let γ : [0, r]→ X be a geodesic such that γ′0 = v ∈ Geox/ ∼. Then we
have

Dxd(., C) � v = lim
t↓0

d(γt, C)
t

= inf
0<t<r

d(γt, C)
t

,

where the last equality holds since the real-to-real function t 7→ d(γt, C) is convex. Consequently,
we have

Dxd(., C) � v = inf
0<t<r

d(γt, C)
t

= inf
0<t<r

inf
y∈C

d(γt, y)
t

.

On the other hand, we have

dx(v, TxC) := inf
w∈TxC

dx(v, w) = inf
β∈Geox(C)

lim
t↓0

d(γt, βt)
t

= inf
y∈C

lim
t↓0

d(γt, y)
t

= inf
y∈C

inf
0<t<r

d(γt, y)
t

,

where the last two equalities hold because
{βt | β : [0, r′]→ X ∈ Geox(C), for some r′ ≥ 0, and t ∈ [0, r′]} = C,
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and the real-to-real function t 7→ d(γt, y) is convex. Finally, notice that we have

inf
0<t<r

inf
y∈C

d(γt, y)
t

= inf
y∈C

inf
0<t<r

d(γt, y)
t

= inf
0<t<r
y∈C

d(γt, y)
t

,

which concludes that

Dxd(., C) � v = dx(v, TxC).

�

3 Stationary Hamilton-Jacobi equations in proper CAT(0) spaces

In this section, we study stationary first order Hamilton-Jacobi equations in proper CAT(0)
spaces. We recall that a metric space is proper if its closed bounded sets are compact. We use
subsets of Lipschitz and DC functions as test functions to define the viscosity notion. More precisely,
we use subsets of Lipschitz and semiconvex functions to test subsolutions and subsets of Lipschitz
and semiconcave functions to test supersolutions. With this class of test functions, we will see
that we can define a notion of viscosity for first order Hamilton-Jacobi equations in proper CAT(0)
spaces and recover the main features of the theory: the comparison principle and Perron’s method.
Throughout this section, (X, d) is a proper CAT(0) space and Ω is an open subset of X. We denote
by Ω its closure and we set ∂Ω := Ω \ Ω. The boundary ∂Ω might be empty.

First, we define the notion of viscosity used throughout this section. Let

H : R×DC1(TX)→ R

be a function called the Hamiltonian and let ` : ∂Ω→ R be a given bounded continuous function.
We consider the following Hamilton-Jacobi equation

H(u(x), x,Dxu) = 0, ∀x ∈ Ω,(3.1a)
u(x) = `(x), ∀x ∈ ∂Ω,(3.1b)

where u : Ω→ R is a Lipschitz and DC function which is the unknown of equation (3.1). We give
the following definition of classical solutions of equation (3.1).

Definition 3.1 (Classical solution). A continuous function u : Ω→ R such that u|Ω ∈ DClip(Ω) is
said to be a classical solution of (3.1) if for every x ∈ Ω we have

H(u(x), x,Dxu) = 0,

and u = ` on ∂Ω.

Let T EST − and T EST + be two subsets of DClip(Ω). T EST − and T EST + verify the following
definition.

Definition 3.2. (Test functions).
Let T EST − be a subset of DClip(Ω) such that

• constant functions belong to T EST −;
• for all φ(.), ψ(.) ∈ T EST − and a, b ≥ 0, aφ(.) + b ψ(.) ∈ T EST −;
• let y ∈ X be fixed. Then the function x 7→ d2(x, y) belongs to T EST −.

Let T EST + be a subset of DClip(Ω) such that
• T EST + = −T EST − := {−φ(.) : φ(.) ∈ T EST −}.
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Example 3.3. For example, one can take the following test functions

T EST − := {real valued locally Lipschitz and locally semiconvex functions},

and
T EST + = {real valued locally Lipschitz and locally semiconcave functions}.

We are now ready to define the notion of viscosity solutions. This definition is dependent upon
the choice of T EST − and T EST + from Definition 3.2.

Definition 3.4. (Viscosity solution).

• An upper semicontinuous function u : Ω→ R is said to be a viscosity subsolution of (3.1a)
if, for any φ ∈ T EST − such that u− φ attains a local maximum at x, we have

H(u(x), x,Dxφ) ≤ 0.
• Similarly, a lower semicontinuous function u : Ω→ R is said to be a viscosity supersolution
of (3.1a) if, for any φ ∈ T EST + such that u− φ attains a local minimum at x, we have

H(u(x), x,Dxφ) ≥ 0.

• A continuous function u : Ω → R is said to be a viscosity solution of (3.1) if it is both a
viscosity supersolution and a viscosity subsolution and satisfies the boundary condition

u = `, in ∂Ω.

In the classical viscosity solutions theory in an Euclidean space, the set of test functions used
to define the subsolution and the supersolution is the same, that is T EST − = T EST +. In our
setting, we allow the test functions to belong to the same set or to two different sets that satisfy
Definition 3.2.

3.1 Comparison principle. Let H : R × DC1(TX) → R be a Hamiltonian and Ω be an open
subset of X (recall that DC1(TX) is defined in (2.9)). We consider the following Hamilton-Jacobi
equation:

(3.2) H(u(x), x,Dxu) = 0, ∀x ∈ Ω.

We test subsolutions of (3.2) with T EST − functions and we test supersolutions of (3.2) with
T EST + functions. Next, we prove the comparison principle for the Hamilton-Jacobi equation
(3.2). We assume the following hypotheses on the Hamiltonian.

Hypothesis 3.5. The Hamiltonian H is such that there exists Kdb > 0 such that for all α > 0, for
all r ∈ R and for all x, y ∈ Ω, we have

H(r, x,Dx(−αd2(., y)))−H(r, y,Dy(αd2(x, .))) ≤ Kdbd(x, y)(1 + αd(x, y)).

Hypothesis 3.6. The Hamiltonian H is such that there exists γ > 0 such that

γ(r − s) ≤ H(r, x, p)−H(s, x, p) for all r ≥ s, x ∈ Ω, and p ∈ DC1(TxX).

Now, we prove the following key lemma. It allows using the variable doubling technique to
prove comparison type results. It was first proven in [13, Proposition 3.7] in the particular case of
Euclidean spaces. We prove it here for every metric space.
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Lemma 3.7. Let O be a subset of a metric space (Z, dZ). Let Φ : O → R be an upper semicontin-
uous function and Ψ : O → R be a lower semicontinuous function such that Ψ ≥ 0, and

Mαn = sup
z∈O
{Φ(z)− αn Ψ(z) },

with (αn)n ⊂ R+ \ {0} is an increasing sequence such that αn → +∞ as n → +∞. Suppose that
limαn→+∞Mαn exists and

−∞ < lim
αn→+∞

Mαn < +∞.

Let zαn ∈ O be chosen such that

lim
αn→+∞

(Mαn − (Φ(zαn)− αn Ψ(zαn))) = 0.

Then the following holds:
(i) limαn→+∞ αn Ψ(zαn) = 0,
(ii) Ψ(ẑ) = 0 and Φ(ẑ) = sup{Ψ(z)=0} Φ(z) = limαn→+∞Mαn ,

whenever ẑ ∈ O is an accumulation point of (zαn)αn .

Proof. The proof is exactly the same as in [13, Proposition 3.7] even though it was asserted for
Euclidean spaces. We give it hereafter for the sake of completeness. Let

δαn = Mαn − (Φ(zαn)− αn Ψ(zαn)),

so that limαn→+∞ δαn = 0. Since Ψ ≥ 0, Mαn decreases as αn increases and limαn→+∞Mαn exists
and is finite by assumption. Furthermore, we have:

Mαn
2
≥ Φ(zαn)− αn

2 Ψ(zαn) = Φ(zαn)− αn Ψ(zαn) + αn
2 Ψ(zαn) = Mαn − δαn + αn

2 Ψ(zαn),

which implies that αn Ψ(zαn) ≤ 2 (δαn +Mαn
2
−Mαn) and therefore

lim
αn→+∞

αn Ψ(zαn) = 0.

Suppose now that there exists a subsequence of (zαn)αn , not relabeled here, that converges to ẑ ∈ O.
Then limαn→+∞Ψ(zαn) = 0 and by lower semicontinuity and positivity of Ψ we also get Ψ(ẑ) = 0.
Moreover, since

Φ(zαn)− αn Ψ(zαn) = Mαn − δαn ≥ sup
{Ψ(z)=0}

Φ(z)− δαn ,

and Φ is upper semicontinuous, we get by letting αn →∞

sup
{Ψ(z)=0}

Φ(z) ≥ Φ(ẑ) ≥ lim
αn→∞

Mαn ≥ sup
{Ψ(z)=0}

Φ(z),

which forces equality everywhere. This ends the proof. �

In the next theorem, we start by proving the comparison principle on a bounded open subset of
X. The proof is similar to the proof of the comparison principle in the classical theory of viscosity.
The main differences here are that we use test functions that verify Definition 3.2 and we use the
differential of the test functions instead of their gradient as it is the case for the classical theory of
viscosity solutions.
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Theorem 3.8 (Comparison on bounded domains). Assume H satisfies Hypotheses 3.5 and 3.6,
and assume that Ω is bounded.

Consider u : Ω → R a bounded from above upper semicontinuous subsolution of (3.2), and
v : Ω→ R a bounded from below lower semicontinuous supersolution of (3.2).
Then u ≤ v in ∂Ω implies u ≤ v in Ω.

Proof. Let M := supΩ(u(x)− v(x)). Assume by contradiction that u ≤ v in ∂Ω and M > 0.
For every α > 0, define ψα : Ω× Ω→ R as

ψα(x, y) = u(x)− v(y)− α

2 d
2(x, y), ∀(x, y) ∈ Ω× Ω.

Since u and −v are bounded from above and u− v is upper semicontinuous, the supremum Mα :=
supΩ×Ω ψα is reached. Let (xα, yα) be such that Mα = ψα(xα, yα). We have

lim
α→+∞

(Mα − ψα(xα, yα)) = 0, and −∞ < M ≤Mα ≤ sup
Ω

(u) + sup
Ω

(−v) < +∞.

Since Ω is closed and bounded, then it is compact by the assumption of X being proper. Hence we
can take a subsequence ((xαn , yαn))αn that converges as αn → +∞. We have

lim
αn→+∞

(Mαn − ψαn(xαn , yαn)) = 0, and −∞ < lim
αn→+∞

Mαn < +∞.

Therefore, we can apply Lemma 3.7 via the correspondences

Z = X ×X, O = Ω× Ω, Φ(z) = u(x)− v(y), Ψ(z) = 1
2d

2(x, y),

and we get {
(i) limαn→+∞

αn
2 d

2(xαn , yαn) = 0,
(ii) limαn→+∞Mαn = M.

It follows that for αn big enough we have xαn , yαn ∈ Ω since u ≤ v in ∂Ω. Thus we get

(3.3) H
(
v(yαn), yαn , Dyαn

(−αn2 d2(xαn , .))
)
≥ 0 ≥ H

(
u(xαn), xαn , Dxαn

(αn2 d2(., yαn))
)
.

Hence, using Hypotheses 3.5 and 3.6 and inequality (3.3), we get

γ(u(xαn)− v(yαn))
3.6
≤ H

(
u(xαn), xαn , Dxαn

(αn2 d2(., yαn))
)

−H
(
v(yαn), xαn , Dxαn

(αn2 d2(., yαn))
)

(3.3)
≤ H

(
v(yαn), yαn , Dyαn

(−αn2 d2(xαn , .))
)

−H
(
v(yαn), xαn , Dxαn

(αn2 d2(., yαn))
)

3.5
≤ Kdbd(xαn , yαn)

(
1 + αn

2 d(xαn , yαn)
)
.

By letting αn → +∞, we get
γM ≤ 0,

a contradiction with M > 0. �

If Ω is an unbounded open set of X, then we need the following additional hypothesis to prove
the comparison principle.
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Hypothesis 3.9. The Hamiltonian H is such that there exists KL > 0 such that, for every x ∈ Ω
and r ∈ R, we have

∀px, qx ∈ DC1(TxX),
∣∣∣H(r, x, px)−H(r, x, qx)

∣∣∣ ≤ KL sup
|v|x=1

|px � v − qx � v|.

Remark 3.10. Note that the mapping
DC1(TxX) 3 px 7→ sup

|v|x=1
|px � v|

verifies all the axioms of a norm on DC1(TxX).

Remark 3.11. Hypothesis 3.9 asserts that the Hamiltonian H is Lipschitz continuous with respect
to the variable px. When X = RN and the test functions are continuously differentiable, then
Hypothesis 3.9 is the same as the Lipschitz assumption on px usually required for the Hamiltonian
in the classical theory of viscosity.

Theorem 3.12 (Comparison on unbounded domains). Assume H satisfies Hypotheses 3.5, 3.6
and 3.9. Let u : Ω → R be a bounded from above upper semicontinuous subsolution of (3.2), and
v : Ω→ R a bounded from below lower semicontinuous supersolution of (3.2). Then

u ≤ v in ∂Ω implies u ≤ v in Ω.

Proof. Let M := supΩ(u(x)− v(x)). Assume by contradiction that M > 0 and u ≤ v in ∂Ω.
Let

ε ∈

(
0,min

{
M,
( γ

γ + 4KL
M
)2
, 1
})

,

where γ and KL are given in Hypotheses 3.6 and 3.9. Let xε ∈ Ω be such that
u(xε)− v(xε) ≥M − ε > 0.

For α > 0, set

ψα(x, y) = u(x)− v(y)−
(
d2(x, xε) + d2(y, xε)

)
− α

2 d
2(x, y), ∀(x, y) ∈ Ω× Ω.

It is clear that ψα is upper semicontinuous and bounded from above. Set Mα := supΩ×Ω ψα. We
have

0 < ψα(xε, xε), and ψα(x, y) ≤ 0 ∀x, y ∈ Ω \B (xε, δ) ,
where δ =

√
| supΩ(u)|+| supΩ(−v)|. Hence, the supremum of ψα is reached on the compact set

B (xε, δ) and we will denote by (xα, yα) a maximum of ψα. We have
lim

α→+∞
(Mα − ψα(xα, yα)) = 0 and −∞ < M − ε ≤Mα ≤ sup

Ω
(u) + sup

Ω
(−v) < +∞.

Since xα, yα are in a compact set, then there exists e a subsequence (xαn , yαn) that converges as
αn → +∞ and such that

lim
αn→+∞

(Mαn − ψαn(xαn , yαn)) = 0, and −∞ < lim
αn→+∞

Mαn < +∞.

Therefore, we can apply Lemma 3.7 via the correspondences

Z = X ×X, O = Ω× Ω, Φ(z) = u(x)− v(y)−
(
d2(x, xε) + d2(y, xε)

)
, Ψ(z) = 1

2d
2(x, y),
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and we get{
(i) limαn→+∞

αn
2 d

2(xαn , yαn) = 0, and xαn , yαn → x̂ ∈ Ω,
(ii) limαn→+∞Mαn = supx∈Ω u(x)− v(x)− 2d2(x, xε) = u(x̂)− v(x̂)− 2d2(x̂, xε) > 0.

On the other hand, notice first that x̂ ∈ Ω since we have u(x̂)− v(x̂) > 0. It follows that for αn big
enough we have xαn , yαn ∈ Ω since x̂ ∈ Ω. Furthermore, we have

M − ε ≤ u(x̂)− v(x̂)− 2d2(x̂, xε) =⇒ 2d2(x̂, xε) ≤ ε =⇒ d(x̂, xε) ≤
√
ε,

and

(3.4) H
(
v(yαn), yαn , Dyαn

(−αn2 d2(xαn , .)− d2(., xε))
)
≥ 0

0 ≥ H
(
u(xαn), xαn , Dxαn

(αn2 d2(., yαn) + d2(., xε))
)
.

Hence, it follows from Hypotheses 3.5, 3.6, 3.9 and the above inequality

γ(u(xαn)− v(yαn))
3.6
≤ H

(
u(xαn), xαn , Dxαn

(αn2 d2(y.,αn) + d2(., xε))
)
−

H
(
v(yαn), xαn , Dxαn

(αn2 d2(., yαn) + d2(., xε))
)

(3.4)
≤ H

(
v(yαn), yαn , Dyαn

(−αn2 d2(., xαn)− d2(., xε))
)
−

H
(
v(yαn), xαn , Dxαn

(αn2 d2(., yαn) + d2(., xε))
)

≤ Kdbd(xαn , yαn)(1 + αn
2 d(xαn , yαn)) + 2KL(d(xαn , xε) + d(xαn , xε)),

where the last inequality is obtained thanks to Proposition 2.19 and Hypotheses 3.5 and 3.9. Fur-
thermore, notice that we have for all αn

γ(M − ε) ≤ γ(u(xε)− v(xε)) ≤ γ(u(xαn)− v(yαn)).
Whence, by letting αn → +∞, we get

γ(M − ε) ≤ 4KL

√
ε.

Moreover, we have
γ(M −

√
ε) ≤ γ(M − ε),

since 0 < ε < 1 by assumption. We get

γ(M −
√
ε) ≤ γ(M − ε) ≤ 4KL

√
ε =⇒

√
ε ≥ γ

γ + 4KL
M.

This is a contradiction with
√
ε < γ

γ+4KLM , which ends the proof. �

3.2 Existence of a viscosity solution: Perron’s method. In this subsection we suppose
that Ω is an arbitrary open subset of X (bounded or unbounded). Let H : R×DC1(TX)→ R be
a Hamiltonian and ` : ∂Ω → R be a bounded and continuous function. We consider the following
Hamilton-Jacobi equation with Dirichlet boundary condition

(3.5)
{
H(u(x), x,Dxu) = 0, ∀x ∈ Ω,
u(x) = `(x), ∀x ∈ ∂Ω.

We consider the following hypotheses on the Hamiltonian H.
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Hypothesis 3.13. The Hamiltonian H is such that:
• (i)− For every φ : Ω→ R such that φ ∈ T EST −, the function

(r, x) 7→ H(r, x,Dxφ)
is lower semicontinuous;

• (ii)− For every φ : Ω→ R such that φ ∈ T EST +, the function
(r, x) 7→ H(r, x,Dxφ)

is upper semicontinuous.

Hypothesis 3.14. The Hamiltonian H is such that for every φ1, φ2 ∈ DC1(TX), and every (x, r) ∈
Ω× R, we have

∀η ∈ TxX, Dxφ2 � η ≤ Dxφ1 � η =⇒ H(r, x,Dxφ1) ≤ H(r, x,Dxφ2).

Remark 3.15. Hypothesis 3.13 on the Hamiltonian depends on the choice of the test functions
adopted in the definition of viscosity. It is a generalization of the continuity assumption usually
required for H(r, ., .) when X = RN and

T EST − = T EST + = {Twice continuously differentiable functions}.
Indeed, when X = RN and the test functions are twice continuously differentiable, Hypothesis 3.13
is automatically verified as a consequence of the continuity of the Hamiltonian and the regularity
of the test functions. In a general CAT(0) space, Hypothesis 3.13 is a more suitable assumption.

Hypothesis 3.14 is needed in the case of general proper CAT(0) spaces in order to generalize
Perron’s method in this setting. More precisely, Hypothesis 3.14 gives us the following useful result
given below, which asserts that any classical subsolution is a viscosity subsolution, and any classical
supersolution is a viscosity supersolution.

Lemma 3.16. Assume that the Hamiltonian H verifies Hypothesis 3.14. Let φ : Ω → R be a
DClip(Ω) function.

• If the inequality
H(φ(x0), x0, Dx0φ) ≤ 0,

is verified at every x0 ∈ Ω, then φ is a viscosity subsolution in Ω in the sense of Definition
3.4.

• Similarly, if the inequality
H(φ(x0), x0, Dx0φ) ≥ 0,

is verified at every x0 ∈ Ω, then φ is a viscosity supersolution in Ω in the sense of Definition
3.4.

Proof. We will only prove the first part of the lemma. The other part is done in the exact same
way.

Let x0 ∈ Ω and let φtest ∈ T EST − such that φ− φtest attains a local maximum at x0. Then in
a small neighborhood V of x0, we have

∀y ∈ V, φ(y)− φ(x0) ≤ φtest(y)− φtest(x0).
The last inequality implies that for any geodesic β : [0, r′]→ X emanating from x0 we have

lim
t↓0

φ(β(t))− φ(x0)
t

≤ lim
t↓0

φtest(β(t))− φtest(x0)
t

⇐⇒ Dx0φ � β′0 ≤ Dx0φtest � β
′
0.
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Consequently, by Proposition 2.18, the Lipschitz continuity of the differentials gives us
∀η ∈ Tx0X, Dx0φ � η ≤ Dx0φtest � η.

Finally, by Hypothesis 3.14, we get
H(φ(x0), x0, Dx0φtest) ≤ H(φ(x0), x0, Dx0φ) ≤ 0.

This ends the proof. �

We will derive the existence of the solution of (3.5) from the comparison result proven in Theorem
3.12. First, we define the half-relaxed limits of a familly of locally bounded functions.

Definition 3.17. (Half-relaxed limits).
Let (uε)ε>0 be a family of uniformly locally bounded functions such that uε : Ω → R. We define
the following half-relaxed limits of the family (uε)ε as:

lim sup∗uε (x) = lim sup
ε→0

Ω3z→x

uε(z);

lim inf∗uε (x) = lim inf
ε→0

Ω3z→x

uε(z).

It is clear from the above definition that lim sup∗uε is an upper semicontinuous function and
that lim inf∗uε is a lower semicontinuous function. Before getting to Perron’s method, we need two
key lemmas. They are classical results when X = RN (see for example [6]).

Lemma 3.18. Let (vε)ε>0 be a family of uniformly locally bounded upper semicontinuous functions
on Ω and v̄ := lim sup∗ vε. Let y ∈ Ω be a strict local maximum point of v̄ on Ω. Then there exists
a subsequence (vεn)εn and a sequence (yεn)εn such that for all εn, yεn is a local maximum point of
vεn in Ω, the sequence (yεn)εn converges to y and vεn(yεn) converges to v̄(y) as εn → 0.

Proof. Since y is a strict local maximum point of v̄ on Ω, there exists r > 0 such that B(y, r) ⊂ Ω
and

∀ z ∈ B(y, r) \ {x}, v̄(z) < v̄(y).
On the other hand, B(y, r) is compact and vε is upper semicontinuous bounded from above on
B(y, r), therefore for any ε > 0 there exists a maximum point yε of vε on B(y, r), i.e.,

∀ z ∈ B(y, r), vε(z) ≤ vε(yε).
Hence, by taking the limsup for z → y and ε→ 0, we get:

v̄(y) ≤ lim sup
ε

vε(yε).

Next, we consider the right-hand side of the last inequality. By extracting a subsequence of (yε)ε,
denoted by (yεn)εn , we have lim supε→0 vε(yε) = limεn→0 vεn(yεn). Furthermore, since B(y, r)
is compact, we may assume that (yεn)εn converges to some ȳ. But using again the definition of
lim sup∗ at ȳ we get,

v̄(y) ≤ lim sup
ε→0

vε(yε) = lim
εn→0

vεn(yεn) ≤ v̄(ȳ).

Since y is a strict maximum point of v̄, we get ȳ = y and vεn(yεn)→ v̄(y). �

Lemma 3.19. Assume H satisfies Hypothesis 3.13. Let (uε)ε>0 be a family of uniformly locally
bounded upper semicontinuous functions on Ω, and set u = lim sup∗uε. If for all ε > 0, uε is a
subsolution of (3.5), then u is a subsolution of (3.5).
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Proof. Let φ ∈ T EST − be a function such that u − φ attains a local maximum at x ∈ Ω. Then
ψ(.) = φ(.) + d2(., x) is also a T EST − function such that u− ψ attains a strict local maximum at
x. Since ψ is continuous we have u−ψ = lim sup∗(uε−ψ). Applying the lemma above, there exists
a subsequence (xεn)εn such that xεn → x, uxεn (xεn)→ u(x) and uεn −ψ attains a local maximum
at xεn . So we get

H(uεn(xεn), xεn , Dxεn
(φ(.) + d2(., x))) = H(uεn(xεn), xεn , Dxεn

ψ) ≤ 0.

On the other hand, Proposition 2.19 implies

Dxd
2(., x) = 0.

Hence, by Hypothesis 3.13 we get

H(u(x), x,Dxφ) ≤ lim inf
εn→0

H(uεn(xεn), xεn , Dxεn
ψ) ≤ 0,

which is the required result. �

Remark 3.20. The above lemma indicates a stability result for subsolutions of equation (3.5). A
similar stability result can also be proved in the exact same way for a familly of locally bounded
lower semicontinuous supersolutions.

In the next theorem, we derive the existence of the solution from the comparison principle
asserted in Theorem 3.12. The proof is similar to the one in the classical theory of viscosity. The
difficulties here are the lack of continuity of the Hamiltonian and the fact that test functions are
not continuously differentiable. However, with the use of Hypotheses 3.13 and 3.14, we are able to
recover the same result as in the classical setting.

Theorem 3.21 (Perron’s method). Let Ω be an open set of X and set ∂Ω = Ω \ Ω. Suppose
that the Hamiltonian H satisfies Hypotheses 3.5, 3.6, 3.9, 3.13 and 3.14. Assume that there exist
u : Ω → R a bounded upper semicontinuous subsolution of (3.5) and u : Ω → R a bounded lower
semicontinuous supersolution of (3.5). If

lim inf∗u(x) ≥ `(x) ≥ lim sup∗u(x), ∀x ∈ ∂Ω,

then there exists a unique continuous and bounded viscosity solution of (3.5).

Proof. We define the set

S = {h : Ω→ R : u ≤ h ≤ u and h is a subsolution of (3.5)}.

The set S is nonempty since u ∈ S. For x ∈ Ω, we set

u(x) = sup{h(x), h ∈ S}.

We will show that v := lim sup∗ {u} is the viscosity solution of (3.5). First, we show that v is a
subsolution. Notice that v is obviously upper semicontinuous. Let φ : Ω→ R be a T EST − function
such that v − φ attains a local maximum at x0 ∈ Ω. Without loss of generality, we can suppose
that

v(x0) = φ(x0).
By definition of v, there exists a sequence of points xj → x0 and a sequence of functions uj ∈ S
such that

v(x0) = lim
j→∞

uj(xj).
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In particular lim sup∗{uj} (x0) ≥ v(x0). On the other hand, by construction we have v ≥ lim sup∗{uj}.
Therefore, at x0 we have lim sup∗{uj} (x0) = v(x0). For the other points on a small enough neigh-
borhood of x0, we have

φ ≥ v ≥ lim sup∗{uj}.
Therefore, by using Lemma 3.19 on a small enough open neighborhood of x0, we get that lim sup∗{uj}
is a subsolution at x0, since Hypothesis 3.13 holds. Therefore, by definition we have

H(v(x0), x0, Dx0φ) ≤ 0.
This shows that v is a subsolution at x0.

Now we show that v∗ := lim inf∗v is a supersolution. We argue by contradiction. Suppose that
there exists a point x0 ∈ Ω and a function ψ ∈ T EST + such that v∗ − ψ attains a local minimum
at x0, and

H(v∗(x0), x0, Dx0ψ) < 0.
Without loss of generality, we can suppose that ψ(x0) = v∗(x0). Thus we have

H(ψ(x0), x0, Dx0ψ) < 0.
So, by Hypothesis 3.14, ψ is a strict viscosity subsolution of (3.5) at x0. Indeed, let ψtest ∈ T EST −
such that ψ − ψtest attains a local maximum at x0. Then for all y ∈ X in a small enough open
neighborhood of x0, we have

ψ(y)− ψ(x0) ≤ ψtest(y)− ψtest(x0).
This implies that for any geodesic β : [0, r′]→ X emanating from x0 we have

lim
t↓0

ψ(β(t))− ψ(x0)
t

≤ lim
t↓0

ψtest(β(t))− ψtest(x0)
t

⇐⇒ Dx0ψ � β′0 ≤ Dx0ψtest � β
′
0.

Consequently, by Proposition 2.18, the Lipschitz continuity of the differentials gives us
∀η ∈ Tx0X, Dx0ψ � η ≤ Dx0ψtest � η.

Hence by Hypothesis 3.14, we get
H(ψ(x0), x0, Dx0ψtest) ≤ H(ψ(x0), x0, Dx0ψ) < 0.

Furthermore from Hypothesis 3.13, it is also a strict subsolution of (3.5) in a small enough open
neighborhood of x0 by upper semicontinuity of the Hamiltonian. Indeed, the function

g : x 7→ H(ψ(x), x,Dxψ)
is upper semicontinuous. So the set {x ∈ Ω : g(x) < 0} is open. In particular, there exists a small
enough neighborhood of x0 such that for all x ∈ X that belong to this neighborhood, we have

H(ψ(x), x,Dxψ) < 0.
Therefore, by Lemma 3.4, ψ is a strict viscosity subsolution, i.e. for any ψtest ∈ T EST − such that
ψ − ψtest attains a local maximum at x ∈ X belonging to a small enough neighborhood of x0, we
get

H(ψ(x), x,Dxψtest) < 0.
Moreover, for δ > 0 small enough, ψ̃ = ψ+ δ is a subsolution on a small enough open neighborhood
of x0 denoted by B(x0, r) ⊂ Ω, with r > 0 small enough, since the function

s 7→ H(s, x,Dxψ),
is upper semicontinuous also by Hypothesis 3.13.
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We have ψ̃(x0) > v∗(x0). This implies that there are points at every neighborhood of x0 such
that ψ̃(x) > v(x). Let

w(x) :=
{

max{v, ψ̃}(x), if x ∈ B(x0,
r
2 ),

v(x), otherwise.
By Lemma 3.19, w a subsolution of (3.5). Consequently, we have

v, w ∈ S.

However, w > v at some points, which is a contradiction. Therefore, v∗ is a viscosity supersolution
of (3.5). Finally, observe that

lim inf∗u(x) ≤ lim inf∗v(x) ≤ lim sup∗v(x) ≤ lim sup∗u(x), ∀x ∈ ∂Ω,

implies that v(x) = `(x) on ∂Ω. In the end, by Theorem 3.8, v is continuous, bounded, and is the
unique viscosity solution to equation (3.5). �

3.3 Examples. We give hereafter some examples showing the degree of generality of this new
setting. The first two examples treat the Hamilton-Jacobi-Bellman equation and the Hamilton-
Jacobi-Isaacs equation in the case where the state space is RN , with the change being that we use
different sets of test functions from the classical theory. The remaining examples are taken in more
general CAT(0) spaces.

Example 3.22. For (X, d) = (RN , dRN ), with dRN the Euclidean distance, consider the Hamilton-
ian

H(u(x), x,Dxu) := γu(x) + sup
α∈A
{−Dxu � f(x, α) + b(x, α) }, x ∈ RN ,

where γ > 0, A is a compact metric space and f : RN ×A → RN is a Lipschitz bounded function.
The function b : RN ×A → R is a Lipschitz bounded function. We consider

T EST − = {Locally Lipschitz and locally semiconvex functions of RN },(3.6a)
T EST + = {Locally Lipshitz and locally semiconcave functions of RN }.(3.6b)

T EST − and T EST + satisfy all the requirements of Definition 3.2. Furthermore, it is straightfor-
ward to check that the Hamiltonian H satisfies Hypotheses 3.5, 3.6, 3.9 and 3.14.
It remains to prove that the Hamiltonian H satisfies Hypothesis 3.13. We start by Hypothesis
3.13-(i).
Let φ ∈ T EST −. φ is a locally Lipschitz and semiconvex function. Hence it is Clarke regular [12,
Definition 10.12]. Therefore, the function

(x, v) 7→ Dxφ � v

is upper semicontinuous [12, Proposition 10.2]. Consequently, the function

(x, α) 7→ −Dxφ � f(x, α)

is lower semicontinuous. Finally the function

x 7→ sup
α∈A
{−Dxφ � f(x, α) + b(x, α)}

is lower semicontinuous as the pointwise supremum of a family of lower semicontinuous functions,
which implies Hypothesis 3.13-(i).
Now we turn our attention to Hypothesis 3.13-(ii). Let φ ∈ T EST +. φ is a locally Lipschitz and
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locally semiconcave function. So −φ is a locally Lipschitz and locally semiconvex function. Hence
it is Clarke regular, i.e. the function

(x, v) 7→ −Dxφ � v

is upper semicontinuous. Consequently, the function
(x, α) 7→ −Dxφ � f(x, α) + b(x, α)

is also upper semicontinuous. Now, let x ∈ RN and (xn)n ⊂ RN be a sequence converging to x.
Let (αn)n ⊂ A be a sequence such that

∀n ∈ N, sup
α∈A
{−Dxnφ � f(xn, α) + b(xn, α)} = −Dxnφ � f(xn, αn) + b(xn, αn).

Since A is a compact metric space, then we can assume, without loss of generality, that the sequence
(αn)n converges to some ᾱ ∈ A. Finally, we have

sup
α∈A
{−Dxφ � f(x, α) + b(x, α)} ≥ −Dxφ � f(x, ᾱ) + b(x, ᾱ) ≥

lim sup
xn→x
αn→ᾱ

−Dxnφ � f(xn, αn) + b(xn, αn) ≥ lim sup
xn→x

sup
α∈A
{−Dxnφ � f(xn, α) + b(xn, α)}.

This implies Hypothesis 3.13-(ii).
On the other hand, u(x) = −C, u(x) = C are a bounded upper semicontinuous subsolution and a

bounded lower semicontinuous supersolution respectively for C > 0 big enough. Consequently, The-
orem 3.21 applies and there exists a unique continuous and bounded viscosity solution to equation
(3.5), with the Hamiltonian defined above.

Example 3.23. In the previous example, we considered a Bellman-type Hamiltonian. In the classi-
cal theory of viscosity theory in Euclidean spaces, the Bellman Hamiltonian depends on the gradient
and enjoys a convexity structure. In our setting, the Hamiltonian depends on the differential, and
the convexity of the Hamiltonian is never required. To support further this remark, we consider now
a Hamiltonian in Isaacs form. We will show that the assumptions are satisfied for this Hamiltonian
in a similar way it is for Bellman’s Hamiltonian.

For (X, d) = (RN , dRN ), with dRN the Euclidean distance, consider the Hamiltonian
H(u(x), x,Dxu) := γu(x) + inf

α∈A
sup
β∈B
{−Dxu � f(x, α, β) + b(x, α, β) }, x ∈ RN ,

where γ > 0, A,B are compact metric spaces and f : RN × A × B → RN is a Lipschitz bounded
function. The function b : RN ×A× B → R is a Lipschitz bounded function. In this example, we
consider again the same sets of test functions defined in (3.6).

It is straightforward to check that the Hamiltonian H satisfies Hypotheses 3.5, 3.6, 3.9 and 3.14.
It remains to prove that the Hamiltonian H satisfies Hypotheses 3.13. We start by Hypothesis
3.13-(i). Let φ ∈ T EST − a locally Lipschitz and semiconvex function. Hence φ is Clarke regular
[12, Proposition 10.2 and Definition 10.12]. As we have seen from Example 3.22, we have

(x, α) 7→ sup
β∈B
{−Dxφ � f(x, α, β) + b(x, α, β)},

is lower semicontinuous. Now, let (xn)n ⊂ RN be a sequence converging to x ∈ RN . Let (αn)n ⊂ A
be a sequence such that for all n ∈ N we have

inf
α∈A

sup
β∈B
{−Dxnφ � f(xn, α, β) + b(xn, α, β)} = sup

β∈B
−Dxnφ � f(xn, αn, β) + b(xn, αn, β).
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Since A is a compact metric space, then we can assume, without loss of generality, that the sequence
(αn)n converges to some ᾱ ∈ A. Finally, we have

inf
α∈A

sup
β∈B
{−Dxφ � f(x, α) + b(x, α)} ≤ sup

β∈B
{−Dxφ � f(x, ᾱ, β) + b(x, ᾱ, β)}

≤ lim inf
xn→x
αn→ᾱ

sup
β∈B
{−Dxnφ � f(xn, αn, β) + b(xn, αn, β)}

≤ lim inf
xn→x

inf
α∈A

sup
β∈B
{−Dxnφ � f(xn, α, β) + b(xn, α, β)}.

This implies Hypothesis 3.13-(i).
Next, we turn our attention to Hypothesis 3.13-(ii). Let φ ∈ T EST +. φ is a locally Lipschitz

and semiconcave function. Therefore, from Example 3.22, we have
x 7→ sup

β∈B
{−Dxφ � f(x, α, β) + b(x, α, β)},

is upper semicontinuous. Hence, the function
x 7→ inf

α∈A
sup
β∈B
−Dxφ � f(x, α, β),

is also upper semicontinuous since it is the pointwise infimum of a family of upper semicontinuous
functions, which implies Hypothesis 3.13-(ii).

On the other hand, u(x) = −C and u(x) = C are a bounded upper semicontinuous subsolution
and a bounded lower semicontinuous supersolution respectively for C > 0 big enough. Consequently,
Theorem 3.21 applies and there exists a unique continuous viscosity solution to equation (3.5).

Remark 3.24. In the above two examples, the only change we made from the classical theory of
viscosity solutions, was to change the sets of test functions in RN . The interest here is limited, as we
could also have chosen the test functions to be twice continuously differentiable functions for both
the supersolution and the subsolution in the current setting as in the classical theory of viscosity.
Indeed, a result due to Alexandrov [1] shows that twice continuously differentiable functions are
locally DC functions. Actually they are locally both semiconvex and semiconcave functions. In other
words, twice continuously differentiable functions constitute a subset of the intersection between the
sets of locally semiconvex and semiconcave functions in RN . So the present setting and the classical
theory of viscosity coincide in RN . Therefore, The present setting can be applied to more general
Hamilton-Jacobi equations defined in RN , by taking test functions that are twice continuously
differentiable functions to test both the supersolutions and the subsolutions.

Example 3.25 (Eikonal-type equation in proper geodesically extendable CAT(0) spaces). As men-
tioned in Section 1, Eikonal equations have been studied, in the literature, in very general metric
spaces. We describe here a stationary Eikonal-type equation in a CAT(0) setting. To prove the
existence and uniqueness of the viscosity solution in the sense of Definition 3.4, we need first to show
that the Hamiltonian function satisfies the hypotheses 3.5, 3.6, 3.9, 3.13 and 3.14. As we will see
hereafter, most Hypotheses are satisfied in any proper CAT(0) space. However, Hypothesis 3.13-(ii)
requires an additional assumption on the geodesic extendability of the space (see Remark 2.1).

Let (X, d) be a proper, geodesically extendable CAT(0) space (see Remark 2.1 for the precise
definition of geodesically extendable). Consider the Hamiltonian
(3.7) H(u(x), x,Dxu) := γu(x) + sup

v∈TxX
|v|x=1

{−Dxu � v} − b(x), x ∈ X,
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where γ > 0 and b : X → R is a Lipschitz function of constant Lip(b) and bounded. We consider

T EST − = {Locally Lipschitz and locally semiconvex functions of X },(3.8a)
T EST + = {Locally Lipshitz and locally semiconcave functions of X }.(3.8b)

The sets T EST − and T EST + satisfy all the requirements of Definition 3.2.

First, we prove that the Hamiltonian defined in (3.7) verifies Hypothesis 3.5. Let α > 0, r ∈ R
and x, y ∈ X. By Proposition 2.19, it comes that

H(r, x,−Dx(αd2(., y)))−H(r, y,Dy(αd2(x, .))) =

d(x, y)
(

sup
v∈TxX
|v|x=1

{−2α〈v, ↑yx〉x} − sup
v∈TyX
|v|y=1

{2α〈v, ↑xy〉y}
)

+ b(y)− b(x).

By inequality (2.7c), we have

sup
v∈TxX
|v|x=1

{−2α〈v, ↑yx〉x} ≤ sup
v∈TxX
|v|x=1

{2α |v|x | ↑yx|x} = 2α,

and
sup

v∈TyX
|v|y=1

{2α〈v, ↑xy〉y} = 2α, reached at v =↑xy .

Hence, we get

H(r, x,−Dx(αd2(., y)))−H(r, y,Dy(αd2(x, .))) ≤ b(y)− b(x) ≤ Lip(b)d(x, y),

which implies the result.

Hypotheses 3.6, 3.9 and 3.14 are straightforward. It remains to prove that the Hamiltonian
verifies Hypotheses 3.13.

We start by Hypothesis 3.13-(i). The proof is inspired from [29, Lemma 1.3.4]. Let φ ∈ T EST −.
So φ is a locally Lipschitz and locally semiconvex function which implies that ψ := −φ is a lo-
cally Lipschitz and locally semiconcave function. Let x ∈ X. Suppose that ψ is 2λ-concave in a
neighberhood of x, for some λ ∈ R. Let ε > 0 and let y ∈ X near x such that

y 6= x, |λ|d(x, y) < ε, and ψ(y)− ψ(x)
d(x, y) ≥ sup

v∈TxX
|v|x=1

{Dxψ � v} − ε.

Let (xn)n and (yn)n be two sequences converging to x and y respectively. Let [0, d(xn, yn)] 3 t 7→
Gxn,ynt be the unit speed geodesic connecting xn and yn. By definition, the 2λ-concavity of ψ
implies that the real-to-real function

[0, d(xn, yn)] 3 t 7→ ψ(Gxn,ynt )− λt2

is concave. Therefore, the incremental ratio

(0, d(xn, yn)] 3 t 7→ ψ(Gxn,ynt )− λt2 − ψ(xn)
t

is non-increasing. Hence, the 2λ-concavity of ψ gives

Dxnψ� ↑ynxn≥
ψ(yn)− ψ(xn)− λd2(xn, yn)

d(xn, yn) ≥ ψ(y)− ψ(x)
d(x, y) − ε,
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where the last inequality is obtained when n is large enough. Hence we get

sup
v∈TxnX
|v|xn=1

{Dxnψ � v} ≥ Dxnψ� ↑ynxn≥ sup
v∈TxX
|v|x=1

{Dxψ � v} − 2ε.

By taking the infimum limit in the left-hand side of the last inequality, we get

lim inf
xn→x∈X
rn→r∈R

γrn + sup
v∈TxnX
|v|xn=1

{−Dxnφ � v} − b(xn) ≥ γr + sup
v∈TxX
|v|x=1

{−Dxφ � v} − b(x)− 2ε.

Since ε is arbitrary, we get that Hypothesis 3.13-(i) is verified.

Now, we prove Hypothesis 3.13-(ii). Let φ ∈ T EST +. So φ is a locally Lipschitz and locally
semiconcave function which implies that ψ := −φ is a locally Lipschitz and locally semiconvex
function.

Let x ∈ X. Suppose that ψ is 2λ-convex around x for some λ ∈ R . Let 0 < ε < M be two
strictly positive constants, (xn)n ⊂ X be a sequence converging to x and (yn)n ⊂ X be a sequence
such that

d(x, yn) ≤M, and ∀n ∈ N, Dxnψ� ↑ynxn≥ sup
v∈TxnX
|v|xn=1

{Dxnψ � v} − ε.

Since (X, d) is geodesically extendable, we can also always choose yn such that

d(x, yn) ≥ ε, ∀n ∈ N.

Since (yn)n ⊂ B(x,M), then we can suppose, without loss of generality, that it converges to some
y ∈ X. Moreover y 6= x since we have d(x, yn) ≥ ε for all n ∈ N. Let t 7→ Gxn,ynt be the unique
unit speed geodesic between xn and yn. By the extendability property of X, we can extend all
geodesics Gxn,yn to be defined in the same interval [0,K], with K > M large enough. Then by
Arzela–Ascoli theorem [9, Theorem 2.5.14] there exists a converging subsequence (not relabeled
here) of the sequence of curves (Gxn,yn)n. Moreover, by [9, Proposition 2.5.17], the limit curve
is Gx,y; the unit speed geodesic starting from x and passing through y, and defined in [0,K].
Furthermore, the 2λ-convexity of ψ gives

sup
v∈TxnX
|v|xn=1

{Dxnψ � v} − ε ≤ Dxnψ� ↑ynxn= Dxnψ� ↑
Gxn,ynt
xn

≤ ψ(Gxn,ynt )− ψ(xn)− λd2(xn, Gxn,ynt )
d(xn, Gxn,ynt ) ≤ ψ(Gx,yt )− ψ(x)

d(x,Gx,yt ) + ε,

where the last inequality holds when taking t small enough and n big enough. Hence we get

lim sup
xn→x

sup
v∈TxnX
|v|xn=1

{Dxnψ � v} ≤ lim
t↓0

ψ(Gx,yt )− ψ(x)
d(x,Gx,yt ) + 2ε = lim

t↓0

ψ(Gx,yt )− ψ(x)
t

+ 2ε

≤ sup
v∈TxX
|v|x=1

{Dxψ � v}+ 2ε.

Finally, we get

lim sup
xn→x∈X
rn→r∈R

γrn + sup
v∈TxnX
|v|xn=1

{Dxnψ � v} − b(xn) ≤ γr + sup
v∈TxX
|v|x=1

{Dxψ � v} − b(x) + 2ε,
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which is equivalent to

lim sup
xn→x∈X
rn→r∈R

γrn + sup
v∈TxnX
|v|xn=1

{−Dxnφ � v} − b(xn) ≤ γr + sup
v∈TxX
|v|x=1

{−Dxφ � v} − b(x) + 2ε.

Since ε is arbitrary, we get the result.
In summary, the Hamiltonian H verifies all Hypotheses 3.5, 3.6, 3.9, 3.13 and 3.14. Furthermore,

the functions u(x) = −C, u(x) = C are bounded upper semicontinuous subsolution and bounded
lower semicontinuous supersolution respectively for C > 0 big enough. Hence by Theorem 3.21,
there exists a unique bounded and continuous viscosity solution to the Hamilton-Jacobi equation

H(u(x), x,Dxu) = 0, ∀x ∈ X,

in the sense of Definition 3.4 and with the test functions given in (3.8).

Example 3.26. Let us analyze the Eikonal equation in a particular proper, geodesically extendable
CAT(0) space (X, d) given in Example 2.9. The space (X, d) is obtained by gluing the two proper
CAT(0) spaces {

X1 := {(x1, x2, x3) ∈ R3 : x3 = 0},
X2 := {(x1, x2, x3) ∈ R3 : x1 = x2 = 0},

along the closed convex subset A := {0}. The distance d is given in (2.4). The tangent cone at a
point x ∈ X is:

TxX =


X1 if x ∈ X1 \A,
X2 if x ∈ X2 \A,
X if x ∈ A.

We will consider the Eikonal equation as in Example 3.25. Let γ > 0 and b : X → R be a Lipschitz
bounded function. As discussed in Example 3.25, the Eikonal equation

(3.9) γu(x) + sup
v∈TxX
|v|x=1

{−Dxu � v} − b(x) = 0, x ∈ X,

admits a unique solution of a viscosity solution associated with the sets of test functions defined in
(3.8). Now, we consider smaller sets of test functions defined as follows.

T EST − = {φ : X → R : Locally Lipschitz and locally semiconvex functions of X such that
φ|Xi\A is twice continuously differentiable with i = 1, 2 },(3.10a)

T EST + = {φ : X → R : Locally Lipschitz and locally semiconcave functions of X such that
φ|Xi\A is twice continuously differentiable, with i = 1, 2 }.(3.10b)

One can check that T EST − and T EST + satisfy all the requirements of Definition 3.2. Furthermore,
it is straightforward to see that the unique viscosity solution of (3.9) with the sets of test functions
defined in (3.8) is also the unique viscosity solution with the test functions (3.10). Taking into
account the structure of the set X, the expression of the tangent cone at each point x ∈ X, and
the structure of the sets of test functions, equation (3.9) is equivalent to

γu(x)+|∇xu| − b(x) = 0, if x ∈ X1 \A,
γu(x)+|∇xu| − b(x) = 0, if x ∈ X2 \A,
γu(x) + supv∈X

|v|=1
{−Dxu � v} − b(x) = 0, if x ∈ A,
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where ∇xu denotes the classical gradient of u at x ∈ X \ {A}.
This example shows that Hamilton-Jacobi equations can be considered in more general networks

than the ones considered so far in the literature (see [?, ?, 11, 24, 27] and the references therein).
Indeed, in the existing literature on this topic, the network is a collection of manifolds of the same
dimension d glued on a manifold (called junction or interface) of a lower dimension d − 1). Here,
we claim that our setting allows more general situations where the network may be constituted by
manifolds of different dimensions.

Finally, let us stress on the fact that the property of geodesically extendable is satisfied by all
the examples presented in Exemples 2.9,2.10 and 2.11. Therefore, the viscosity solution associated
with the set of the test functions (3.8) exists and is unique for different structures of the proper
CAT(0) geodesically extendable space X.

Example 3.27 (Nonconvex Hamiltonian). Let (X, d) be a proper, geodesically extendable CAT(0)
space. An interesting remark, is that in our setting, nonconvex Hamiltonian functions can be
considered in the same framework as the convex functions. A simple example is the Hamiltonian

H(u(x), x,Dxu) := min
{
γu(x) + sup

v∈TxX
|v|x=1

{−Dxu � v} − b1(x), u(x)− b2(x)
}
, x ∈ X,

where γ > 0 and b1 : X → R and b2 : X → R are Lipschitz and bounded functions. From Example
3.25, the Hamiltonian

H1(u(x), x,Dxu) := γu(x) + sup
v∈TxX
|v|x=1

{−Dxu � v} − b1(x),

verifies all Hypotheses 3.5, 3.6, 3.9, 3.13 and 3.14 with the test function defined in (3.8). Further-
more, it is easy to check that the Hamiltonian

H2(u(x), x,Dxu) := u(x)− b2(x),

also verifies all Hypotheses 3.5, 3.6, 3.9, 3.13 and 3.14 with the same sets of test functions. Con-
sequently, the Hamiltonian H verifies all the mentioned Hypotheses as well since it is in the form
of a minimum of two Hamiltonians that verify the same Hypotheses. Furthermore, the functions
u(x) = −C, u(x) = C are bounded upper semicontinuous subsolution and bounded lower semicon-
tinuous supersolution respectively for C > 0 big enough. Hence, by Theorem 3.21, there exists a
unique bounded and continuous viscosity solution to the equation

H(u(x), x,Dxu) = 0, ∀x ∈ X.

Remark 3.28. The above example shows that by taking test functions that are piecewise twice
continuously differentiable and in the class of DC functions on the whole space, then we recover
the same setting considered in [24, 27, 31, 11].

Example 3.29. In this examples, we treat an example of a Hamilton-Jacobi equation more general
than the Eikonal-type equations. Now, let us take the proper, geodesically extendable CAT(0) space
(X, d) given in Example 2.9. The space (X, d) is obtained by gluing two proper CAT(0) spaces{

X1 := {(x1, x2, x3) ∈ R3 : x3 = 0},
X2 := {(x1, x2, x3) ∈ R3 : x1 = x2 = 0},
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along the closed convex subset A := {0}. We define the function g : X → R the following way

∀x ∈ X, g(x) =
{

1+|x− e3|2e−|x−e3|
2
, if x ∈ X2 \B(A, 1),

1, otherwise.

Consider the following Hamiltonian H : R×DC1(TX)→ R

H(u(x), x,Dxu) = γu(x) + sup
v∈TxX
|v|x=1

{−Dxu � (g(x)v)} − b(x),

where γ > 0, and b : X → R is a Lipschitz bounded function.
Notice that if x /∈∈ B(A, 1), then the above Hamiltonian is equal to the Hamiltonian defined in

Example 3.25. Furthermore, on X1 \ A or X2 \ A, the Hamiltonian can be seen as a Hamiltonian
defined in a Euclidean space and is of the form given in Example 3.22. Consequently, with similar
arguments as in Examples 3.25 and 3.22, the Hamiltonian H verifies all Hypotheses 3.5, 3.6, 3.9,
3.13 and 3.14 by taking the same sets of test functions as in (3.8). Furthermore, the functions u(x) =
−C, u(x) = C are bounded upper semicontinuous subsolution and bounded lower semicontinuous
supersolution respectively for C > 0 big enough. Hence by Theorem 3.21, there exists a unique
bounded and continuous viscosity solution to the Hamilton-Jacobi equation

H(u(x), x,Dxu) = 0, ∀x ∈ X.

Remark 3.30. The above example is of fundamental importance. Indeed the Hamilton-Jacobi
equation of this example cannot be treated by any notion of viscosity solutions developed in [19, 3,
20, 28, 21, ?, 11, 27]. This demonstrates that the current setting is different and sometimes more
general than what exists currently in the literature.

4 time-dependent Hamilton-Jacobi equations in proper CAT(0) spaces

In this section, we discuss time-dependent Hamilton-Jacobi equations in a proper CAT(0) space
(X, d). First, notice that by means of Lemma 2.5, the product space [0,+∞)×X is also a CAT(0)
space. One could consider the time variable as being one of the state variables and use the setting
developed for the stationary case. Although it is possible to do it, we choose to treat the time-
dependent case separately, as it has its own specificities.

Let H : DC1(TX)→ R be a Hamiltonian and ` : X → R be a bounded and continuous function.
We consider the following Hamilton-Jacobi equation:

(4.1)
{
∂tu+H(x,Dxu) = 0, ∀ (t, x) ∈ (0,+∞)×X,
u(0, x) = `(x), x ∈ X,

where u : [0,+∞) ×X is a Lipschitz and DC function. The term ∂tu is the usual right derivative
with respect to time, i.e.

∂tu = lim
r↓0

u(t+ r, x)− u(t, x)
r

.

Notice that in this section, for simplicity, we consider that the Hamiltonian is defined on DC1(TX),
however all the results of this section can be extended to the case when the Hamiltonian depends
also on the value of the solution u(x). Let C2((0,+∞)) denotes the space of twice continuously
differentiable functions of (0,+∞). We will take test functions that are C2((0,+∞)) with respect
to the time variable and in the class of DC functions with respect to the space variable and verify
Definition 3.2.
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Definition 4.1. Let T EST x− and T EST x+ be two subsets of DClip(X) as in Definition 3.2. Let
T EST − and T EST + be two subsets of DClip((0,∞)×X) such that:

T EST − := {(t, x) 7→ φ1(t) + φ2(x) : φ1 ∈ C2((0,+∞)) and φ2 ∈ T EST x−},

and

T EST + := {(t, x) 7→ φ1(t) + φ2(x) : φ1 ∈ C2((0,+∞)) and φ2 ∈ T EST x+}.

Remark 4.2. In the above definition, we considered test functions that are twice continuously
differentiable with respect to time since the time variable belongs to the open set (0,+∞) of the
Euclidean space R.

4.1 Comparison principle. Next, we prove a comparison result in the time-dependent case.
Since the Hamiltonian in (4.1) does not depend on u(x), there is no need to assume Hypothesis
3.6 on the Hamiltonian. By assuming only Hypotheses 3.5 and 3.9, we can prove the comparison
principle for the time-dependent case, as the following theorem shows.

Theorem 4.3. Assume H satisfies Hypotheses 3.5 and 3.9. Let u : [0,+∞)×X → R be a bounded
from above upper semicontinuous subsolution of (4.1), and v : [0,+∞) × X → R a bounded from
below lower semicontinuous supersolution of equation (4.1). Then it holds:

sup
[0,+∞)×X

(u− v)+ ≤ sup
{0}×X

(u− v)+,

where (r)+ = max(r, 0).

Proof. Without loss of generality, we can suppose that sup{0}×X(u− v)+ = 0.
Let M := sup[0,+∞)×X(u(t, x)− v(t, x)). It suffices to prove that M ≤ 0. Assume by contradiction
that M > 0. Let λ > 0 sufficiently small so that

sup
[0,+∞)×X

(u(t, x)− v(t, x)− λt) > 0.

Let (t0, x0) ∈ [0,+∞)×X) be such that

u(t0, x0)− v(t0, x0)− λt0 > 0.

Let ε ∈ (0,M). For every α > 0, define ψα : [0,+∞)2 ×X2 → R as

ψα(t, s, x, y) = u(t, x)− v(s, y)− λ

2 (t+ s)− ε

2
(
d2(x, x0) + d2(y, x0)

)
− α

2 |t− s|
2 − α

2 d
2(x, y).

It is clear that ψα is upper semicontinuous and bounded from above. We denote by Mα := supψα,
where the supremum is taken over [0,+∞)2 ×X2. Furthermore, we have

0 < ψα(t0, t0, x0, x0),

and for all x, y /∈ B
(
x0,
√

2 | sup(u)|+| sup(−v)|
ε

)
or t, s ≥ 2 | sup(u)|+| sup(−v)|

λ we have

ψα(t, s, x, y) ≤ 0.

Hence, the supremum of ψα is reached in a compact set independent of α. Let (tα, sα, xα, yα) be
such that Mα = ψα(tα, sα, xα, yα). We have

lim
α→+∞

(Mα − ψα(tα, sα, xα, yα)) = 0
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and
−∞ < u(t0, x0)− v(t0, x0)− λt0 ≤Mα ≤ sup

[0,+∞)×X
(u) + sup

[0,+∞)×X
(−v) < +∞.

Since (tα, sα, xα, yα) is in a compact set, we take a subsequence (tαn , sαn , xαn , yαn) such that
(tαn , sαn , xαn , yαn) converges as αn → +∞ and

lim
αn→+∞

(Mαn − ψαn(tαn , sαn , xαn , yαn)) = 0, and −∞ < lim
αn→+∞

Mαn < +∞.

Therefore, we can apply Lemma 3.7 via the correspondences

Z = O = [0,+∞)2 ×X2, Φ(z) = u(t, x)− v(s, y)− λ

2 (t+ s)− ε

2
(
d2(x, x0) + d2(y, x0)

)
,

Ψ(z) = 1
2 |t− s|

2 + 1
2d

2(x, y),

and we get 
(i) limαn→+∞

αn
2 d

2(xαn , yαn) + αn
2 |tαn − sαn |

2 = 0,
and xαn , yαn → x̂ ∈ X, tαn , sαn → t̂ ∈ [0,+∞),

(ii) limαn→+∞Mαn ≥ u(t0, x0)− v(t0, x0)− λt0 > 0.

Moreover, we have

(4.2) 0 < u(t0, x0)− v(t0, x0)− λt0 ≤ u(t̂, x̂)− v(t̂, x̂)− λt̂− εd2(x̂, x0).

This implies
εd2(x̂, x0) ≤M =⇒ εd(x̂, x0) ≤

√
M ε.

On the other hand, notice that t̂ 6= 0 since u(t̂, x̂) − v(t̂, x̂) > 0. It follows that for αn big enough
we have tαn 6= 0. Furthermore, we have

(4.3) − λ

2 + αn(tαn − sαn) +H
(
yαn , Dyαn

(−αn2 d2(xαn , .)−
ε

2d
2(., xε))

)
≥ 0 ≥

λ

2 + αn(tαn − sαn) +H
(
xαn , Dxαn

(αn2 d2(., yαn) + ε

2d
2(., xε))

)
.

Hence, it follows from Hypotheses 3.5 and 3.9 and the inequality above

λ
(4.3)
≤ H

(
yαn ,−Dyαn

(αn2 d2(xαn , .) + ε

2d
2(., xε))

)
−H

(
xαn , Dxαn

(αn2 d2(., yαn) + ε

2d
2(., xε))

)
3.5, 3.9
≤ Kdbd(xαn , yαn)(1 + αn

2 d(xαn , yαn)) +KLε(d(yαn , x0) + d(xαn , x0)).

By letting αn → +∞, we get

λ ≤ 2KL

√
M ε.

The last inequality is valid for any 0 < ε < M , a contradiction. �
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4.2 Perron’s method. Next, we prove Perron’s method on the product space [0,+∞) × X.
First, notice that if we assume that the Hamiltonian H verifies Hypothesis 3.13, then the same
hypothesis is verified by the full Hamiltonian

∂tu+H(x,Dxu),
in the product space [0,+∞) × X since it is a CAT(0) space and the test functions chosen in
Definition 4.1 are continuously differentiable with respect to the time variable.

Theorem 4.4. Let Ω = (0,+∞) × X and set ∂Ω = {0} × X. Assume H satisfies Hypotheses
3.5 and 3.9. Suppose that there exist u : Ω → R a locally bounded and bounded from above upper
semicontinuous subsolution of (4.1) and u : Ω→ R a locally bounded and bounded from below lower
semicontinuous supersolution of (4.1) such that

lim inf∗ u(t, x) ≥ `(x) ≥ lim sup∗ u(t, x), ∀(t, x) ∈ ∂Ω.
Then there exists a unique continuous viscosity solution of (4.1).

Proof. We define the set
S = {h : Ω→ R : u ≤ h ≤ u and h is a subsolution of (4.1)}.

The set S is nonempty since u ∈ S. For x ∈ Ω, we set
u(t, x) = sup{h(t, x), h ∈ S}.

We will show that v := lim sup∗ {u} is the viscosity solution of (4.1). First, we show that v is a
subsolution. Notice that v is obviously upper semicontinuous. Let φ : Ω→ R be a T EST − function
such that v−φ attains a local maximum at (t0, x0) ∈ Ω. Without loss of generality, we can suppose
that

v(t0, x0) = φ(t0, x0).
By definition of v, there exists a sequence of points (tj , xj)→ x0 and a sequence of functions uj ∈ S
such that

v(t0, x0) = lim
j→∞

uj(tj , xj).

In particular, lim sup∗{uj} (t0, x0) ≥ v(t0, x0). On the other hand, by construction we have v ≥
lim sup∗{uj}. Therefore, at (t0, x0) we have lim sup∗{uj} (t0, x0) = v(t0, x0). For the other points
on a small enough neighborhood of (t0, x0), we have

φ ≥ v ≥ lim sup∗{uj}.
Therefore, by using Lemma 3.19 on a small enough bounded open neighborhood of (t0, x0), we get
that lim sup∗{uj} is a subsolution at (t0, x0), since Hypothesis 3.13 holds. Therefore, by definition,
we have

∂t0φ+H(x0, Dx0φ) ≤ 0.
This shows that v is a subsolution at (t0, x0). Now we show that v∗ := lim inf∗v is a supersolution.
We argue by contradiction.
Suppose that there exists a point (t0, x0) ∈ Ω and a function ψ ∈ T EST + such that v∗ −ψ attains
a local minimum at (t0, x0), but

∂t0ψ +H(x0, Dx0ψ) < 0.
By Hypothesis 3.13 and the continuity of t 7→ ∂tψ, we get that the function

(t, x) 7→ ∂tψ +H(x,Dxψ)
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is upper semicontinuous. Hence, on a small open neighborhood of (t0, x0), denoted by (t0 − r, t0 +
r)×B(x0, r) we have

∀(t, x) ∈ (t0 − r, t0 + r)×B(x0, r), ∂tψ +H(Dxψ) < 0.
Furthermore, by Hypothesis 3.14, ψ is a strict viscosity subsolution of (4.1) on (t0 − r, t0 + r)×

B(x0, r).
Indeed, let ψ− ∈ T EST − such that ψ − ψ− attains a locall maximum at (t, x) ∈ (t0 − r, t0 + r)×
B(x0, r). Notice that since ψ ∈ T EST + and ψ− ∈ T EST −, then they are of the from

ψ(t, x) = f(t) + g(x), ψ−(t, x) = f−(t) + g−(x),
where f and f− are twice continuously differentiable functions, and g and g− are locally Lipschitz
and locally semiconcave and semiconvex respectively. we have for all (s, y) in a small neighborhood
of (t, x):

f(t) + g(x)− (f−(t) + g−(x)) ≥ f(s) + g(y)− (f−(s) + g−(y)) .
It follows from the above inequality that we have for all s in a small neighborhood of t:

f(t)− f−(t) ≥ f(s)− f−(s),
and for all y in a small neighborhood of x we get

g(x)− g−(x) ≥ g(y)− g−(y).
This implies that

∂tf = ∂tf− and ∂xg ≤ ∂xg−.
Therefore, by Hypothesis 3.14 we get

∂tψ− +H(x,Dxψ−) ≤ ∂tψ +H(x,Dxψ) < 0.
On the other hand, without loss of generality, we can suppose that ψ(t0, x0) = v∗(t0, x0).

Moreover, for δ > 0, ψ̃ = ψ + δ is also a viscosity subsolution on a small enough neighborhood
(t0 − r, t0 + r) × B(x0, r). We have ψ̃(t0, x0) > v∗(t0, x0). This implies that there are points at
every neighborhood of (t0, x0) such that ψ̃(t, x) > v(t, x). Let

w(t, x) :=
{

max{v, ψ̃}(t, x), if (t, x) ∈ (t0 − r
2 , t0 + r

2 )×B(x0,
r
2 ),

v(t, x), otherwise.

By Lemma 3.19, w a subsolution of (4.1). Consequently, we have
v, w ∈ S.

However, w > v at some points, which is a contradiction. Therefore, v∗ is a viscosity supersolution
of (4.1).
Finally, observe that

lim inf∗u(t, x) ≤ lim inf∗v(x) ≤ lim sup∗v(t, x) ≤ lim sup∗u(t, x), ∀(t, x) ∈ ∂Ω,
implies that v(t, x) = `(x) on ∂Ω. In the end, by Theorem 4.3, v is continuous, bounded and is the
unique viscosity solution to equation (4.1). �

Remark 4.5. A sufficient condition to guarantee the existence of a locally bounded and bounded
from above upper semicontinuous subsolution u and a locally bounded and bounded from below
lower semicontinuous supersolution u of (4.1), that verify all the conditions of Theorem 4.4, is to
suppose the following condition on the Hamiltonian H.
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Hypothesis 4.6. The Hamiltonian H is such that

X 3 x 7→ H(x, 0DC1(TxX)) is bounded.

Indeed if Hypothesis 4.6 holds, let

C := sup
x∈X
|H(x, 0DC1(TxX))|, and M := sup

x∈X
|`(x)|.

Then for (t, x) ∈ [0,+∞)×X, the following two functions

u(t, x) := M − Ct, and u(t, x) := −M + Ct

are respectively a locally bounded and bounded from above upper semicontinuous subsolution
and a locally bounded and bounded from below lower semicontinuous supersolution of (4.1) on
(0,+∞)×X and

M = lim inf∗u(t, x) ≥ `(x) ≥ lim sup∗u(t, x) = −M, ∀(t, x) ∈ {0} ×X.

Example 4.7 (time-dependent Eikonal equation in proper geodesically extendable CAT(0) spaces).
Let (X, d) be a proper, geodesically extendable CAT(0) space. All spaces given in Examples, 2.9,
2.10 and 2.11 verify this condition. Consider the Hamiltonian

H(x,Dxu) := sup
v∈TxX
|v|x=1

{−Dxu � v}, x ∈ X.

We consider the Hamilton-Jacobi equation (4.1) with the Hamiltonian H defined above: ∂tu+ supv∈TxX
|v|x=1

{−Dxu � v} = 0, (t, x) ∈ (0,+∞)×X,

u(0, x) = `(x), if x ∈ X.

This equation is the time-dependent Eikonal equation. We consider the test functions given
in Definition 4.1 for the viscosity notion. From Example 3.25, we know that the Hamiltonian
H verifies Hypotheses 3.5 and 3.9. Hence we can apply Theorem 4.3 for any bounded from above
upper semicontinuous subsolution and any bounded from below lower semicontinuous supersolution.
Furthermore, from Example 3.25, we know that the Hamiltonian verifies Hypotheses 3.13 and 3.14.
Finally, we have

∀x ∈ X, H(x, 0DC1(TxX)) = 0.

Consequently, Hypothesis 4.6 is also verified by the Hamiltonian. In conclusion, Theorem 4.4
applies and there exists a unique bounded and continuous viscosity solution to equation (4.1) with
the Hamiltonian H defined above.

Example 4.8. Let us analyze the Eikonal equation in a particular proper, geodesically extendable
CAT(0) space (X, d), in the form of a simple one dimensional network. Let e1, e2 and e3 be three
unit vectors of R2. Let us take the proper, geodesically extendable CAT(0) space obtained by gluing
together three half-lines, denoted by X1, X2 and X3 along the origin point A = {0}:

X1 := [0,+∞)e1, X2 := [0,+∞)e2, X3 := [0,+∞)e3.
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A

X1X2

X3

The glued space

X :=
⊔
A

Xi,

along A is a proper, geodesically extendable CAT(0) space when endowed with the following dis-
tance:

∀x, y ∈ X, d(x, y) :=
{
|x− y|, if ∃ i ∈ {1, 2, 3} : x, y ∈ Xi,

|x|+|y|, otherwise.

Notice that this distance is similar to the one introduced in [21, 24]. The tangent cone at a point
x ∈ X is:

TxX =
{

Rei if x ∈ Xi \A, and = 1, 2, 3,
X if x ∈ A.

We will consider the same Hamilton-Jacobi equation as in Example 4.7. However, we will take
smaller sets of test functions this time, in the following way.

T EST − = { (t, x) 7→ ψ(t) + φ(x) : ψ ∈ C2((0,+∞)) and φ Locally Lipschitz and locally semi-
convex functions of X such that φ|Xi\A is twice continuously differentiable with i = 1, 2, 3 }.

T EST − = { (t, x) 7→ ψ(t) + φ(x) : ψ ∈ C2((0,+∞)) and φ Locally Lipschitz and locally semi-
concave functions of X such that φ|Xi\A is twice continuously differentiable with i = 1, 2, 3 }.

T EST − and T EST + satisfy all the requirements of Definition 4.1.

The equation studied in Example 4.7 has the following expression, when considering the above
test functions.:  ∂tu+|∇xu| = 0, if x ∈ Xi \A,

∂tu+ + supv∈X
|v|=1

{−Dxu � v} = 0, if x ∈ A,

where ∇xu denotes the classical gradient of u at x in Rei, with i = 1, 2, 3. From Example 4.7,
the above equation admits a unique continuous and bounded viscosity solution.
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5 Conclusion

To conclude, we have used real-valued Lipschitz and DC functions of a proper CAT(0) space to
define a notion of viscosity solutions for first order Hamilton-Jacobi equations defined in this space.
With this new notion of viscosity, we proved the existence and uniqueness of the solution using the
comparison principle and Perron’s method in the same way as in the classical theory of viscosity
originally developed in RN . We have tried to keep the presentation leisurely and easy to follow.
In particular, the comparison results can be sharpened in order to get local comparison results
and one could consider a more general Hamilton-Jacobi equation in the time-dependent case. We
showed through several examples that the notion of viscosity defined here and the classical one
coincide in RN . Furthermore, several other examples of Hamilton-Jacobi equations are given in
a general proper, geodesically extendable CAT(0) space. In the future, we want to develop an
optimal control theory in this space that will allow us to give an optimal control interpretation of
the solutions of some examples of Hamilton-Jacobi equations given here. Furthermore, we want
to tackle the problem of well-posedness of discontinuous Hamilton-Jacobi equations defined on
networks and stratified domains, studied in [24, 21, 22, 27, ?, 7], using the framework developed in
this paper.
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