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TERM STRUCTURE MODELING FOR MULTIPLE CURVES

WITH STOCHASTIC DISCONTINUITIES

CLAUDIO FONTANA, ZORANA GRBAC, SANDRINE GÜMBEL, AND THORSTEN SCHMIDT

Abstract. We develop a general term structure framework taking stochastic discon-

tinuities explicitly into account. Stochastic discontinuities are a key feature in interest

rate markets, as for example the jumps of the term structures in correspondence to

monetary policy meetings of the ECB show. We provide a general analysis of multiple

curve markets under minimal assumptions in an extended HJM framework and provide a

fundamental theorem of asset pricing based on NAFLVR. The approach with stochastic

discontinuities permits to embed market models directly, unifying seemingly different

modeling philosophies. We also develop a tractable class of models, based on affine

semimartingales, going beyond the requirement of stochastic continuity.

1. Introduction

This work aims at providing a general analysis of interest rate markets in the post-

crisis environment. These markets exhibit two key characteristics. The first one is the

presence of stochastic discontinuities, meaning jumps occurring at predetermined dates.

Indeed, a view on historical data of European reference interest rates (see Figure 1) shows

surprisingly regular jumps: many of the jumps occur in correspondence of monetary policy

meetings of the European Central Bank (ECB), and the latter take place at pre-scheduled

dates. This important feature, present in interest rate markets even before the crisis, has

been surprisingly neglected by existing stochastic models.

The second key characteristic is the co-existence of different yield curves associated to

different tenors. This phenomenon originated with the 2007 – 2009 financial crisis, when

the spreads between different yield curves reached their peak beyond 200 basis points.

Since then the spreads have remained on a non-negligible level, as shown in Figure 2.

This was accompanied by a rapid development of interest rate models, treating multiple

yield curves at different levels of generality and following different modeling paradigms.

The most important curves to be considered in the current economic environment are the

overnight indexed swap (OIS) rates and the interbank offered rates (abbreviated as Ibor,

such as Libor rates from the London interbank market) of various tenors. In the European

market these are respectively the Eonia-based OIS rates and the Euribor rates.

It is our aim to propose a general treatment of markets with multiple yield curves in the

light of stochastic discontinuities, meanwhile unifying the existing multiple curve modeling

approaches. The building blocks of this study are OIS zero-coupon bonds and forward rate

Date: December 23, 2019.

2010 Mathematics Subject Classification. 60G44, 60G48, 60G57, 91B70, 91G20, 91G30.

JEL classification: C02, C60, E43, G12.

Key words and phrases. HJM model, semimartingale, affine process, NAFLVR, large financial market,

multiple yield curves, stochastic discontinuities, forward rate agreement, market models, Libor rate.

The authors are thankful to two anonymous referees, an Associate Editor and the Editor for valuable

remarks that helped improving the paper. The financial support from the Europlace Institute of Finance

and the DFG project No. SCHM 2160/9-1 is gratefully acknowledged.

1

ar
X

iv
:1

81
0.

09
88

2v
3 

 [
q-

fi
n.

M
F]

  2
0 

D
ec

 2
01

9



2 C. FONTANA, Z. GRBAC, S. GÜMBEL & T. SCHMIDT
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Figure 1. Historical series of the Eonia rate, the ECB deposit facility

rate, the ECB marginal lending facility rate and the ECB main refinancing

operations rate from January 1999 – June 2019. Source: European Central

Bank.

agreements (FRAs), which constitute the basic traded assets of a multiple curve financial

market. While OIS bonds are bonds bootstrapped from quoted OIS rates, a FRA is an

over-the-counter derivative consisting of an exchange of a payment based on a floating

rate against a payment based on a fixed rate. FRAs can be regarded as the fundamental

components of all interest rate derivatives written on Ibor rates.

The main contributions of the present paper can be outlined as follows:

‚ A general forward rate setup for the term structure of FRAs and OIS bond prices

inspired by the seminal Heath-Jarrow-Morton (HJM) approach of Heath et al.

(1992), suitably extended to allow for stochastic discontinuities. We derive a set

of necessary and sufficient conditions characterizing risk-neutral measures with

respect to a general numéraire process (Theorem 3.7). This framework unifies and

generalizes the existing approaches in the literature.

‚ We study market models in general and, on the basis of minimal assumptions,

derive necessary and sufficient drift conditions in the presence of stochastic discon-

tinuities (Theorem 4.1). This approach covers modeling under forward measures

as a special case. Moreover, the generality of our forward rate formulation with

stochastic discontinuities enables us to directly embed market models.

‚ We propose a new class of model specifications, based on affine semimartingales

as recently introduced in Keller-Ressel et al. (2018), going beyond the classical

requirement of stochastic continuity. We illustrate the potential for practical ap-

plications by means of some simple examples.
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Figure 2. Euribor - Eonia OIS Spread for different maturities (1 month

to 12 months) from January 2005 – September 2018. Source: Bloomberg

and European Central Bank.

‚ Finally, we provide a general description of a multiple curve financial market under

minimal assumptions and a characterization of absence of arbitrage. We prove the

equivalence between the notion of no asymptotic free lunch with vanishing risk

(NAFLVR) and the existence of an equivalent separating measure (Theorem 6.3).

To this effect, we rely on the theory of large financial markets and we extend

to multiple curves and to an infinite time horizon the main result of Cuchiero,

Klein and Teichmann (2016). To the best of our knowledge, this represents the

first rigorous formulation of an FTAP in the context of multiple curve financial

markets.

1.1. The modeling framework. We briefly illustrate the ingredients of our modeling

framework, referring to the sections in the sequel for full details. First, forward rate

agreements (FRAs) are quoted in terms of forward rates. More precisely, the forward Ibor

rate Lpt, T, δq at time t ď T with tenor δ and settlement date T is given as the unique

value of the fixed rate which assigns the FRA value zero at inception t. This leads to the

fundamental representation of FRA prices

ΠFRApt, T, δ,Kq “ δ
`

Lpt, T, δq ´K
˘

P pt, T ` δq, (1.1)

where P pt, T ` δq is the price at time t of an OIS zero-coupon bond with maturity T ` δ

and K is a fixed rate. Formula (1.1) implicitly defines the yield curves T ÞÑ Lpt, T, δq for

different tenors δ, thus explaining the terminology multiple yield curves. In the following,

we will simply call the associated markets multiple curve financial markets (compare with

Definition 2.2 below).
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The forward rate formulation makes some additional assumptions on the yield curves.

More specifically, it postulates that the right-hand side of (1.1) admits the representation

ΠFRApt, T, δ,Kq “ Sδt e
´
ş

pt,T s fpt,u,δqηpduq ´ e
´
ş

pt,T`δs fpt,uqηpduqp1` δKq. (1.2)

Here, fpt, T q denotes the OIS forward rate, so that P pt, T q “ e
´
ş

pt,T s fpt,uqηpduq, while

fpt, T, δq is the δ-tenor forward rate and Sδ is a multiplicative spread. We extend the usual

HJM formulation by considering a measure η containing atoms which by no-arbitrage will

be precisely related to the set of stochastic discontinuities in the dynamics of forward rates

and multiplicative spreads.

Representations (1.1) and (1.2) constitute two seemingly different starting points for

multiple curve modeling: market models and HJM models, respectively. In the following,

we shall derive no-arbitrage drift restrictions for both classes. Moreover, we will show that

the two classes can be analyzed in a unified setting (see Appendix B).

1.2. Stochastic discontinuities in interest rate markets. One of the main novelties

of our approach consists in the presence of stochastic discontinuities, representing events

occurring at announced dates but with a possibly unanticipated informational content.

The importance of jumps at predetermined times is widely acknowledged in the financial

literature, see for example Merton (1974), Piazzesi (2001, 2005, 2010), Kim and Wright

(2014), Duffie and Lando (2001) (see also the introductory section of Keller-Ressel et al.

(2018)). However, to the best of our knowledge, stochastic discontinuities have never

been taken explicitly into account in stochastic models for the term structure of interest

rates. This feature is extremely relevant in financial markets. For instance, the Governing

Council (GC) of the European Central Bank (ECB) holds its monetary policy meetings

on a regular basis at predetermined dates, which are publicly known for about two years

ahead. At such dates the GC takes its monetary policy decisions and determines whether

the main ECB interest rates will change. In turn, these key interest rates are principal

determinants of the Eonia rate, as illustrated by Figure 1.

A closer inspection of Figure 1 reveals the presence of two different types of stochastic

discontinuities in the Eonia rate. On the one hand, there are structural jumps in cor-

respondence to monetary policy decisions. This type of discontinuity is evidenced by a

step-like jump of the Eonia rate in correspondence to a new level of the ECB lending rate

(see Figure 3, right panel). On the other hand, there are spiky jumps which are unre-

lated to the monetary policy and occur at the end of the maintenance periods of banks’

deposits. Indeed, in the Eurosystem banks are required to hold deposits on accounts with

their national central bank over fixed maintenance periods. Banks who fail to keep suffi-

cient reserves during the period need to borrow in the interbank market before the close

of the maintenance period, thereby generating a temporary liquidity pressure in interbank

lending which leads to a jump in the Eonia rate (see e.g. Beirne (2012) and Hernandis

and Torró (2013)). This second type of stochastic discontinuity is evidenced by the spikes

in the left panel of Figure 3. More formally, we distinguish these two kinds of stochastic

discontinuities as follows: jumps of type I are step-like jumps to a new level and jumps

of type II are upward/downward jumps followed by a fast continuous decay/ascent to the

pre-jump level.

Our framework allows for the possibility of both type I and type II stochastic disconti-

nuities. In addition, by relaxing the classical assumption that the term structure of bond

prices is absolutely continuous (see equation (1.2)), we also allow for discontinuities in
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Figure 3. Eonia and ECB rates from January 2010 – December 2010 (left

panel) and July 2015 – June 2016 (right panel). The exposed discontinuities

on the left panel are of type II, while the exposed discontinuity on the right

panel is of type I. Source: European Central Bank.

time-to-maturity at predetermined dates. In a credit risky setting, term structures with

stochastic discontinuities have been recently studied in Gehmlich and Schmidt (2018) and

Fontana and Schmidt (2018). Finally, besides stochastic discontinuities as described above,

we also allow for totally inaccessible jumps, representing events occurring as a surprise

to the market and generated by a general random measure with absolutely continuous

compensator. Such jumps have been already considered in several multiple curve models

(see e.g. Crépey et al. (2012) and Cuchiero, Fontana and Gnoatto (2016)).

1.3. Overview of the literature. The literature on multiple curve models has witnessed

a tremendous growth over the last years. Therefore, we only give an overview of the contri-

butions that are the most related to the present paper, referring to the volume of Bianchetti

and Morini (2013) and the monographs by Henrard (2014) and Grbac and Runggaldier

(2015) for further references and a guide to post-crisis interest rate markets. Multiplica-

tive spreads for modeling multiple curves have been first considered in Henrard (2007).

Adopting a short rate approach, an insightful empirical analysis has been conducted by

Filipović and Trolle (2013), showing that spreads can be decomposed into credit and liq-

uidity components. The extended HJM approach developed in Section 3 generalizes the

framework of Cuchiero, Fontana and Gnoatto (2016), who consider Itô semimartingales as

driving processes and, therefore, do not allow for stochastic discontinuities (see Remark

3.12 for a detailed comparison). HJM models taking into account multiple curves have

been proposed in Crépey et al. (2015) with Lévy processes as drivers and in Moreni and

Pallavicini (2014) in a Gaussian framework. In the market model setup, the extension to

multiple curves was pioneered by Mercurio (2010) and further developed in Mercurio and

Xie (2012). More recently, Grbac et al. (2015) have developed an affine market model in a

forward rate setting, further generalized by Cuchiero et al. (2019). All these models, both

HJM and market models, can be easily embedded in the general framework proposed in

this paper.
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1.4. Outline of the paper. In Section 2, we introduce the basic assets in a multiple curve

financial market. The general multi-curve framework inspired by the HJM philosophy,

extended to allow for stochastic discontinuities, is developed and fully characterized in

Section 3. In Section 4, we introduce and analyze general market models with multiple

curves. In Section 5, we propose a flexible class of models based on affine semimartingales,

in a setup which allows for stochastic discontinuities. In Section 6, we prove a version of the

fundamental theorem of asset pricing for multiple curve financial markets, by relying on

the theory of large financial markets. Finally, the two appendices contain some technical

results and a result on the embedding of market models into the extended HJM framework.

2. A general analysis of multiple curve financial markets

In this section, we provide a general description of a multiple curve market under

minimal assumptions. We assume that the interbank offered rates (Ibor) are quoted for

a finite set of tenors D :“ tδ1, . . . , δmu, with 0 ă δ1 ă . . . ă δm. Typically, about seven

tenors, ranging from 1 day to 12 months, are available in the market. For a tenor δ P D,

the Ibor rate for the time interval rT, T ` δs fixed at time T is denoted by LpT, T, δq. For

0 ď t ď T ă `8, we denote by P pt, T q the price at date t of an OIS zero-coupon bond

with maturity T .

Definition 2.1. A forward rate agreement (FRA) with tenor δ, settlement date T , strike

K and unitary notional amount, is a contract in which a payment based on the Ibor rate

LpT, T, δq is exchanged against a payment based on the fixed rate K at maturity T ` δ.

The price of a FRA contract at date t ď T ` δ is denoted by ΠFRApt, T, δ,Kq and the

payoff at maturity T ` δ is given by

ΠFRApT ` δ, T, δ,Kq “ δLpT, T, δq ´ δK. (2.1)

The two addends in (2.1) are typically referred to as floating leg and fixed leg, respec-

tively. We define the multiple curve financial market as follows.

Definition 2.2. The multiple curve financial market is the financial market containing

the following two sets of traded assets:

(i) OIS zero-coupon bonds, for all maturities T ě 0;

(ii) FRAs, for all tenors δ P D, all settlement dates T ě 0 and all strikes K P R.

The assets included in Definition 2.2 represent the quantities that we assume to be

tradable in the financial market. We emphasize that, in the post-crisis environment, FRA

contracts have to be considered on top of OIS bonds as they cannot be perfectly replicated

by the latter, due to the risks implicit in interbank transactions.

We work under the standing assumption that FRA prices are determined by a linear

valuation functional. This assumption is standard in interest rate modeling and is also

coherent with the fact that we consider clean prices, i.e., prices which do not model explic-

itly counterparty and liquidity risk (the counterparty and liquidity risk of the interbank

market as a whole is of course present in Ibor rates, recall Figure 2). Clean prices are

fundamental quantities in interest rate derivative valuation and they also form the basis

for the computation of XVA adjustments, see Section 1.2.3 in Grbac and Runggaldier

(2015) and Brigo et al. (2018).

Recalling (2.1), the value of the fixed leg of a FRA at time t ď T ` δ is given by

δKP pt, T ` δq. Hence, we obtain that ΠFRApt, T, δ,Kq is an affine function of K.
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Definition 2.3. The forward Ibor rate Lpt, T, δq at t P r0, T s for tenor δ P D and maturity

T ą 0 is the unique value K satisfying ΠFRApt, T, δ,Kq “ 0.

Due to the affine property of FRA prices combined with the above definition, the

fundamental representation

ΠFRApt, T, δ,Kq “ δ
`

Lpt, T, δq ´K
˘

P pt, T ` δq,

follows immediately for t ď T , while for t P rT, T ` δs we have of course

ΠFRApt, T, δ,Kq “ δpLpT, T, δq ´KqP pt, T ` δq.

Starting from this expression, under no additional assumptions, we can decompose the

value of the floating leg of the FRA into a multiplicative spread and a tenor-dependent

discount factor. Indeed, setting K̄pδq :“ 1` δK, we can write

ΠFRApt, T, δ,Kq “
`

1` δLpt, T, δq
˘

P pt, T ` δq ´ K̄pδqP pt, T ` δq

“: Sδt P pt, T, δq ´ K̄pδqP pt, T ` δq, (2.2)

where Sδt represents a multiplicative spread and P pt, T, δq a discount factor satisfying

P pT, T, δq “ 1, for all T ě 0 and δ P D. More precisely, it holds that

Sδt “ P pt, t` δq
`

1` δLpt, t, δq
˘

“
1` δLpt, t, δq

1` δF pt, t, δq
,

where F pt, t, δq denotes the simply compounded OIS rate at date t for the period rt, t` δs.

The discount factor P pt, T, δq is therefore given by

P pt, T, δq “
P pt, T ` δq

P pt, t` δq

1` δLpt, T, δq

1` δLpt, t, δq
.

We shall sometimes refer to P p¨, T, δq as δ-tenor bonds. These bonds essentially span the

term structure, while Sδ accounts for the counterparty and liquidity risks in the interbank

market, which do not vanish as tÑ T .

Remark 2.4. In the classical pre-crisis single curve setup, the FRA price is given by the

textbook formula

ΠFRApt, T, δ,Kq “ P pt, T q ´ P pt, T ` δqK̄pδq.

The single curve setting can be recovered from our approach by setting Sδ ” 1 and

P pt, T, δq :“ P pt, T q, for all δ P D and 0 ď t ď T ă `8. This also highlights that, in a

single curve setup, FRA prices are fully determined by OIS bond prices.

Remark 2.5. Representation (2.2) allows for a natural interpretation via a foreign ex-

change analogy, following some ideas going back to Bianchetti (2010). Indeed, Ibor rates

can be thought of as simply compounded rates in a foreign economy, with the currency

risk playing the role of the counterparty and liquidity risks of interbank transactions. In

this perspective, P pt, T, δq represents the price at date t (in units of the foreign currency)

of a foreign zero-coupon bond with maturity T , while Sδt represents the spot exchange rate

between the foreign and the domestic currencies. The quantity Sδt P pt, T, δq appearing in

(2.2) corresponds to the value at date t (in units of the domestic currency) of a payment

of one unit of the foreign currency at maturity T . In view of Remark 2.4, the pre-crisis

scenario assumes the absence of currency risk, in which case Sδt P pt, T, δq “ P pt, T q. Re-

lated foreign exchange interpretations of multiplicative spreads have been discussed in

Cuchiero, Fontana and Gnoatto (2016), Macrina and Mahomed (2018) and Nguyen and

Seifried (2015).
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With the additional assumption that OIS and δ-tenor bond prices are of HJM form, we

obtain our second fundamental representation (1.2). In the following, we will show that

such a representation allows for a precise characterization of arbitrage-free multiple curve

markets and leads to interesting specifications by means of affine semimartingales.

3. An extended HJM approach to term structure modeling

In this section, we present a general framework for modeling the term structures of

OIS bonds and FRA contracts, inspired by the seminal work by Heath et al. (1992).

We work in an infinite time horizon (models with a finite time horizon T ă `8 can

be treated by stopping the relevant processes at T ). As mentioned in the introduction,

a key feature of the proposed framework is that we allow for the presence of stochastic

discontinuities, occurring in correspondence of a countable set of predetermined dates

pTnqnPN, with Tn`1 ą Tn, for every n P N, and limnÑ`8 Tn “ `8.

We assume that the stochastic basis pΩ,F ,F,Qq supports a d-dimensional Brownian

motion W “ pWtqtě0 together with an integer-valued random measure µpdt, dxq on R`ˆE,

with compensator νpdt, dxq “ λtpdxqdt, where λtpdxq is a kernel from pΩ ˆ R`,Pq into

pE,BEq, with P denoting the predictable sigma-field on Ω ˆ R` and pE,BEq a Polish

space with its Borel sigma-field. We refer to Jacod and Shiryaev (2003) for all unexplained

notions related to stochastic calculus.

As a first ingredient, we assume the existence of a general numéraire process X0 “

pX0
t qtě0, given by a strictly positive semimartingale admitting the representation

X0 “ E
`

B `H ¨W ` L ˚ pµ´ νq
˘

, (3.1)

where H “ pHtqtě0 is an Rd-valued progressively measurable process so that
şT
0 }Hs}

2ds ă

`8 a.s. for all T ą 0 and L : Ωˆ R` ˆ E Ñ p´1,`8q is a P b BE-measurable function

satisfying
şT
0

ş

EpL
2pt, xq^|Lpt, xq|qλtpdxqdt ă `8 a.s. for all T ą 0. Note that, in view of

(Jacod and Shiryaev, 2003, Theorem II.1.33), the last condition is necessary and sufficient

for the well-posedness of the stochastic integral L ˚ pµ ´ νq. The process B “ pBtqtě0 is

assumed to be a finite variation process of the form

Bt “

ż t

0
rsds`

ÿ

nPN
∆BTn1tTnďtu, for all t ě 0, (3.2)

where r “ prtqtě0 is an adapted process satisfying
şT
0 |rs|ds ă `8 a.s. for all T ą 0

and ∆BTn is an FTn-measurable random variable taking values in p´1,`8q, for each

n P N. Note that this specification of X0 explicitly allows for jumps at times pTnqnPN, the

stochastic discontinuity points of X0. The assumption that limnÑ`8 Tn “ `8 ensures

that the summation in (3.2) involves only a finite number of terms, for every t ě 0.

Remark 3.1. Requiring minimal assumptions on X0 enables us to unify different model-

ing approaches. Usually, it is postulated that X0 “ expp
ş¨

0 r
OIS
s dsq, with rOIS representing

the OIS short rate. In the setting considered here, X0 can also be generated by a sequence

of OIS bonds rolled over at dates pTnqnPN, compare (Klein et al., 2016, Definition 5) for

a precise notion. This allows to avoid the unnecessary assumption of existence of a bank

account. In market models, the usual choice for X0 is the OIS-bond with the longest avail-

able maturity, see Remark 4.2. Moreover, it is also possible to choose Q as the physical

probability measure and X0 as the growth-optimal portfolio. By this, we cover the bench-

mark approach to term structure modeling (see Bruti-Liberati et al. (2010) and Platen
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and Heath (2006)). While these examples refer to situations where the numéraire X0 is

tradable, we do not necessarily assume that X0 represents the price process of a traded

asset or portfolio (with the exception of Section 6). This generality yields additional flex-

ibility, since X0 may also represent a state-price density or pricing kernel in the spirit

of Constantinides (1992), embedding a choice of the discounting asset and a probability

change into a single process (compare also with Remark 3.11). As explained below, the

focus of Sections 3–5 will be on deriving necessary and sufficient conditions for the local

martingale property of X0-denominated prices under Q.

The reference probability measure Q is said to be a risk-neutral measure for the multiple

curve financial market with respect to X0 if the X0-denominated price process of every

asset included in Definition 2.2 is a Q-local martingale. One of our main goals consists in

deriving necessary and sufficient conditions for Q to be a risk-neutral measure. In Section

6, under the additional assumption that the numéraire X0 is tradable, we will prove a

fundamental theorem characterizing absence of arbitrage in the sense of NAFLVR, for

which the existence of a risk-neutral measure is a sufficient condition (see Remark 6.4).

In view of representation (2.2), modeling a multiple curve financial market requires the

specification of multiplicative spreads Sδ and δ-tenor bond prices, for δ P D. The multi-

plicative spread process Sδ “ pSδt qtě0 is assumed to be a strictly positive semimartingale,

for each δ P D. Similarly as in (3.1), we assume that Sδ admits the representation

Sδ “ Sδ0 E
`

Aδ `Hδ ¨W ` Lδ ˚ pµ´ νq
˘

, (3.3)

for every δ P D, where Aδ, Hδ and Lδ satisfy the same requirements of the processes B,

H and L, respectively, appearing in (3.1). In line with (3.2), we furthermore assume that

Aδt “

ż t

0
αδsds`

ÿ

nPN
∆AδTn1tTnďtu, for all t ě 0, (3.4)

where pαδt qtě0 is an adapted process satisfying
şT
0 |α

δ
s|ds ă `8 a.s., for all δ P D and

T ą 0, and ∆AδTn is an FTn-measurable random variable taking values in p´1,`8q, for

each n P N and δ P D.

We let P pt, T, 0q :“ P pt, T q, for all 0 ď t ď T ă `8. We assume that, for every T P R`
and δ P D0 :“ D Ť

t0u, the δ-tenor bond price process pP pt, T, δqq0ďtďT is of the form

P pt, T, δq “ exp

˜

´

ż

pt,T s
fpt, u, δqηpduq

¸

, for all 0 ď t ď T, (3.5)

where

ηpduq “ du`
ÿ

nPN
δTnpduq. (3.6)

Note that ηpr0, T sq ă `8, for all T ą 0. We adopt the convention
ş

pT,T s fpT, u, δqηpduq “

0, for all T P R` and δ P D0. For every T P R` and δ P D0, we assume that the forward

rate process pfpt, T, δqq0ďtďT satisfies

fpt, T, δq “ fp0, T, δq `

ż t

0
aps, T, δqds` V pt, T, δq `

ż t

0
bps, T, δqdWs

`

ż t

0

ż

E
gps, x, T, δq

`

µpds, dxq ´ νpds, dxq
˘

, (3.7)
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for all 0 ď t ď T , where V p¨, T, δq “ V pt, T, δq0ďtďT is a pure jump adapted process of the

form

V pt, T, δq “
ÿ

nPN
∆V pTn, T, δq1tTnďtu, for all 0 ď t ď T,

with ∆V pt, T, δq “ 0 for all 0 ď T ă t ă `8. Moreover, for all n P N, T P R` and δ P D0,

we also assume that
şT
0 |∆V pTn, u, δq|du ă `8.

Remark 3.2. (1) The above framework allows for a general modeling of type I and

type II stochastic discontinuities (see Section 1.2), as we illustrate by means of

explicit examples in Section 5. Moreover, the dependence on δ in equations (3.3)–

(3.7) allows the discontinuities to have a different impact on different yield curves.

This is consistent with the typical market behavior, which shows a dampening of

the discontinuities over longer tenors.

(2) The discontinuity dates pTnqnPN play two distinct but equally important roles.

On the one hand, they represent stochastic discontinuities in the dynamics of

all relevant processes. On the other hand, they represent discontinuity points in

maturity of bond prices (see equation (3.5)). As shown in Theorem 3.7 below,

absence of arbitrage will imply a precise relation between these two aspects.

Assumption 3.3. The following conditions hold a.s. for every δ P D0:

(i) the initial forward curve T ÞÑ fp0, T, δq is F0 b BpR`q-measurable, real-valued and

satisfies
şT
0 |fp0, u, δq|du ă `8, for all T P R`;

(ii) the drift process ap¨, ¨, δq : Ω ˆ R2
` Ñ R is a real-valued, progressively measurable

process, in the sense that the restriction

ap¨, ¨, δq|r0,ts : Ωˆ r0, ts ˆ R` Ñ R

is Ft b Bpr0, tsq b BpR`q-measurable, for every t P R`. Moreover, it satisfies for all

0 ď T ă t ă `8 that apt, T, δq “ 0, and
ż T

0

ż u

0
|aps, u, δq|ds ηpduq ă `8, for all T ą 0;

(iii) the volatility process bp¨, ¨, δq : ΩˆR2
` Ñ Rd is an Rd-valued progressively measurable

process, in the sense that the restriction

bp¨, ¨, δq|r0,ts : Ωˆ r0, ts ˆ R` Ñ Rd

is Ft b Bpr0, tsq b BpR`q-measurable, for every t P R`. Moreover, it satisfies for all

0 ď T ă t ă `8 that bpt, T, δq “ 0, and

d
ÿ

i“1

ż T

0

ˆ
ż u

0
|bips, u, δq|2ds

˙1{2

ηpduq ă `8, for all T ą 0;

(iv) the jump function gp¨, ¨, ¨, δq : ΩˆR`ˆEˆR` Ñ R is a PbBEbBpR`q-measurable

real-valued function satisfying gpt, x, T, δq “ 0 for all x P E and 0 ď T ă t ă `8.

Moreover, it satisfies
ż T

0

ż

E

ż T

0
|gps, x, u, δq|2ηpduqνpds, dxq ă `8, for all T ą 0.

Assumption 3.3 implies that the integrals appearing in the forward rate equation (3.7)

are well-defined for η-a.e. T P R`. Moreover, the integrability requirements appearing in

conditions (ii)–(iv) of Assumption 3.3 ensure that we can apply ordinary and stochastic
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Fubini theorems, in the versions of Veraar (2012) for the Brownian motion and Proposition

A.2 in Björk et al. (1997) for the compensated random measure. The mild measurability re-

quirement in conditions (ii)–(iii) holds if ap¨, ¨, δq and bp¨, ¨, δq are ProgbBpR`q-measurable,

for every δ P D0, with Prog denoting the progressive sigma-algebra on ΩˆR`, see (Veraar,

2012, Remark 2.1).

Remark 3.4. There is no loss of generality in taking a single measure η instead of different

measures ηδ for each tenor δ P D0. Indeed, dependence on the tenor can be embedded

in our framework by suitably specifying each forward rate fpt, T, δq in (3.7) and using a

common measure η “
ř

δPD0
ηδ.

For all 0 ď t ď T ă `8, δ P D0 and x P E, we set

āpt, T, δq :“

ż

rt,T s
apt, u, δqηpduq,

b̄pt, T, δq :“

ż

rt,T s
bpt, u, δqηpduq,

V̄ pt, T, δq :“

ż

rt,T s
∆V pt, u, δqηpduq,

ḡpt, x, T, δq :“

ż

rt,T s
gpt, x, u, δqηpduq.

As a first result, the following lemma (whose proof is postponed to Appendix A) gives

a semimartingale representation of the process P p¨, T, δq.

Lemma 3.5. Suppose that Assumption 3.3 holds. Then, for every T P R` and δ P D0,

the process pP pt, T, δqq0ďtďT is a semimartingale and admits the representation

P pt, T, δq “ exp

ˆ

´

ż T

0
fp0, u, δqηpduq ´

ż t

0
āps, T, δqds´

ÿ

nPN
V̄ pTn, T, δq1tTnďtu

´

ż t

0
b̄ps, T, δqdWs ´

ż t

0

ż

E
ḡps, x, T, δq

`

µpds, dxq ´ νpds, dxq
˘

`

ż t

0
fpu, u, δqηpduq

˙

, for all 0 ď t ď T. (3.8)

The δ-tenor bond price process pP pt, T, δqq0ďtďT admits an equivalent representation as

a stochastic exponential, which will be used in the following. The following corollary is a

direct consequence of Lemma 3.5 and (Jacod and Shiryaev, 2003, Theorem II.8.10), using

the fact that µptTnu ˆ Eq “ 0 a.s., for all n P N.

Corollary 3.6. Suppose that Assumption 3.3 holds. Then, for every T P R` and δ P D0,

the process P p¨, T, δq “ pP pt, T, δqq0ďtďT admits the representation

P p¨, T, δq “ E
ˆ

´

ż T

0
fp0, u, δqηpduq ´

ż ¨

0
āps, T, δqds`

1

2

ż ¨

0
}b̄ps, T, δq}2ds

´

ż ¨

0
b̄ps, T, δqdWs ´

ż ¨

0

ż

E
ḡps, x, T, δq

`

µpds, dxq ´ νpds, dxq
˘

`

ż ¨

0

ż

E

`

e´ḡps,x,T,δq ´ 1` ḡps, x, T, δq
˘

µpds, dxq

`

ż ¨

0
fpu, u, δqdu`

ÿ

nPN

`

e´V̄ pTn,T,δq`fpTn,Tn,δq ´ 1
˘

1rrTn,`8rr

˙

.
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We are now in a position to state the central result of this section, which provides

necessary and sufficient conditions for the reference probability measure Q to be a risk-

neutral measure with respect to the numéraire X0. We recall that a random variable ξ on

pΩ,F ,Qq is said to be sigma-integrable with respect to a sigma-field G Ď F if there exists

a sequence of measurable sets pΩnqnPN Ď G increasing to Ω such that ξ 1Ωn P L
1pQq for

every n P N, see Definition 1.15 in He et al. (1992). A random variable ξ is sigma-finite

with respect to G if and only if the generalized conditional expectation EQrξ|G s is a.s.

finite. For convenience of notation, let α0
t :“ 0, H0

t :“ 0, L0pt, xq :“ 0 and ∆A0
Tn

:“ 0 for

all n P N, t P R` and x P E, so that S0 :“ EpA0 `H0 ¨W ` L0 ˚ pµ´ νqq ” 1. Let

Λps, x, T, δq :“
1` Lδps, xq

1` Lps, xq
e´ḡps,x,T,δq ` Lps, xq ´ Lδps, xq ` ḡps, x, T, δq ´ 1.

Theorem 3.7. Suppose that Assumption 3.3 holds. Then Q is a risk-neutral measure

with respect to X0 if and only if, for every δ P D0,
ż T

0

ż

E

ˇ

ˇΛps, x, T, δq
ˇ

ˇλspdxqds ă `8 (3.9)

a.s. for every T P R` and, for every n P N and T ě Tn, the random variable

1`∆AδTn
1`∆BTn

e
´
ş

pTn,T s
∆V pTn,u,δqηpduq (3.10)

is sigma-integrable with respect to FTn´, and the following four conditions hold a.s.:

(i) for a.e. t P R`, it holds that

rt ´ α
δ
t “ fpt, t, δq ´HJt H

δ
t ` }Ht}

2 `

ż

E

Lpt, xq

1` Lpt, xq

`

Lpt, xq ´ Lδpt, xq
˘

λtpdxq;

(ii) for every T P R` and for a.e. t P r0, T s, it holds that

āpt, T, δq “
1

2
}b̄pt, T, δq}2 ` b̄pt, T, δqJ

`

Ht ´H
δ
t

˘

`

ż

E

ˆ

1` Lδpt, xq

1` Lpt, xq

`

e´ḡpt,x,T,δq ´ 1
˘

` ḡpt, x, T, δq

˙

λtpdxq;

(iii) for every n P N, it holds that

EQ

«

1`∆AδTn
1`∆BTn

ˇ

ˇ

ˇ

ˇ

ˇ

FTn´

ff

“ e´fpTn´,Tn,δq;

(iv) for every n P N and T ě Tn, it holds that

EQ

«

1`∆AδTn
1`∆BTn

´

e
´
ş

pTn,T s
∆V pTn,u,δqηpduq

´ 1
¯

ˇ

ˇ

ˇ

ˇ

ˇ

FTn´

ff

“ 0.

Remark 3.8. By considering separately the cases δ “ 0 and δ P D, we can obtain a more

explicit version of condition (i) of Theorem 3.7, which is equivalent to the validity of the

two conditions, for every δ P D and a.e. t P R`,

rt “ fpt, t, 0q ` }Ht}
2 `

ż

E

L2pt, xq

1` Lpt, xq
λtpdxq; (3.11)

αδt “ fpt, t, 0q ´ fpt, t, δq `HJt H
δ
t `

ż

E

Lδpt, xqLpt, xq

1` Lpt, xq
λtpdxq. (3.12)
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The conditions of Theorem 3.7 together with Remark 3.8 admit the following inter-

pretation. First, for δ “ 0 condition (i) requires that the drift rate rt of the numéraire

process X0 equals the short end of the instantaneous yield fpt, t, 0q on OIS bonds, plus

two additional terms accounting for the volatility of X0 itself.1 For δ ‰ 0, condition (i)

requires that, at the short end, the instantaneous yield αδt ` fpt, t, δq on the floating leg

of a FRA equals the instantaneous yield fpt, t, 0q plus a risk premium determined by the

covariation between the numéraire process X0 and the multiplicative spread process Sδ.

Second, condition (ii) is a generalization of the well-known HJM drift condition. In

particular, if D “ H and the process X0 does not have local martingale components, then

condition (ii) reduces to the drift restriction established in Proposition 5.3 of Björk et al.

(1997) for single-curve jump-diffusion models.

Finally, conditions (iii) and (iv) are new and specific to our setting with stochastic

discontinuities. Together, they correspond to excluding the possibility that, at some pre-

determined date Tn, prices of X0-denominated assets exhibit jumps whose size can be

predicted on the basis of the information contained in FTn´. Indeed, such a possibility

would violate absence of arbitrage (compare with Fontana et al. (2019)).

Proof. of Theorem 3.7 Recall that P pt, T, 0q “ P pt, T q, 0 ď t ď T ă `8. By definition,

Q is a risk-neutral measure with respect to X0 if and only if the processes P p¨, T q{X0 and

ΠFRAp¨, T, δ,Kq{X0 are Q-local martingales, for every T P R`, δ P D and K P R. In view

of (2.2) and using the notational convention introduced above, this holds if and only if

the process SδP p¨, T, δq{X0 is a Q-local martingale, for every T P R` and δ P D0. An

application of Corollary A.1 together with Corollary 3.6 and equations (3.1)–(3.4) yields

SδP p¨, T, δq

X0
“Sδ0P p0, T, δq

¨ E
ˆ
ż ¨

0
kspT, δqds`K

p1qpT, δq `Kp2qpT, δq `MpT, δq

˙

, (3.13)

where pktpT, δqq0ďtďT is an adapted process given by

ktpT, δq :“ αδt´rt´āpt, T, δq`
1

2
}b̄pt, T, δq}2`fpt, t, δq`b̄pt, T, δqJ

`

Ht´H
δ
t

˘

´HJt H
δ
t`}Ht}

2,

pK
p1q
t pT, δqq0ďtďT is a pure jump finite variation process given by

K
p1q
t pT, δq :“

ż t

0

ż

E

´

e´ḡps,x,T,δq ´ 1` ḡps, x, T, δq
¯

µpds, dxq

`

ż ¨

0

ż

E

Lps, xq

1` Lps, xq

´

´Lδps, xq ´
`

e´ḡps,x,T,δq ´ 1
˘

` Lps, xq
¯

µpds, dxq

`

ż ¨

0

ż

E

Lδps, xq

1` Lps, xq

´

e´ḡps,x,T,δq ´ 1
¯

µpds, dxq

“

ż t

0

ż

E
Λps, x, T, δqµpds, dxq,

1Note that, at the present level of generality, the rate rt does not represent a riskless rate of return.
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and pK
p2q
t pT, δqq0ďtďT is a pure jump finite variation process given by

K
p2q
t pT, δq :“

ÿ

nPN
1tTnďtu

˜

∆AδTn
1`∆BTn

`
1

1`∆BTn

´

e´V̄ pTn,T,δq`fpTn,Tn,δq ´ 1
¯

´
∆BTn

1`∆BTn
`

∆AδTn
1`∆BTn

´

e´V̄ pTn,T,δq`fpTn,Tn,δq ´ 1
¯

¸

“
ÿ

nPN
1tTnďtu

˜

1`∆AδTn
1`∆BTn

e
´
ş

pTn,T s
∆V pTn,u,δqηpduq`fpTn´,Tn,δq

´ 1

¸

,

where in the last equality we made use of (3.7) together with the definition of the process

V̄ . The process MpT, δq “ pMtpT, δqq0ďtďT appearing in (3.13) is the local martingale

MtpT, δq :“

ż t

0

`

Hδ
s ´Hs ´ b̄ps, T, δq

˘

dWs

`

ż t

0

ż

E

`

Lδps, xq ´ Lps, xq ´ ḡps, x, T, δq
˘`

µpds, dxq ´ νpds, dxq
˘

.

Note that the set t∆Kp1qpT, δq ‰ 0u
Ş

t∆Kp2qpT, δq ‰ 0u is evanescent for every T P R`
and δ P D0, as a consequence of the fact that µptTnu ˆ Eq “ 0 a.s. for all n P N.

Suppose that SδP p¨, T, δq{X0 is a Q-local martingale, for every T P R` and δ P D0.

In this case, (3.13) implies that the finite variation process
ş¨

0 kspT, δqds ` Kp1qpT, δq `

Kp2qpT, δq is also a Q-local martingale. By means of (Jacod and Shiryaev, 2003, Lemma

I.3.11), this implies that the pure jump finite variation process Kp1qpT, δq `Kp2qpT, δq is

of locally integrable variation. Since the two processes Kp1qpT, δq and Kp2qpT, δq do not

have common jumps, it holds that

|∆KpiqpT, δq| ď |∆Kp1qpT, δq `∆Kp2qpT, δq|, for i “ 1, 2.

As a consequence of this fact, both processes Kp1qpT, δq and Kp2qpT, δq are of locally

integrable variation. Noting that

Kp2qpT, δq “
ÿ

nPN
∆K

p2q
Tn
pT, δq1rrTn,`8rr,

Theorem 5.29 of He et al. (1992) implies that the random variable ∆K
p2q
Tn
pT, δq is sigma-

integrable with respect to FTn´, for every n P N. This is equivalent to the sigma-

integrability of

1`∆AδTn
1`∆BTn

e
´
ş

pTn,T s
∆V pTn,u,δqηpduq`fpTn´,Tn,δq (3.14)

with respect to FTn´. Since fpTn´, Tn, δq is FTn´-measurable, the sigma-integrability of

(3.14) with respect to FTn´ can be equivalently stated as the sigma-integrability of (3.10)

with respect to FTn´. Moreover, the fact that Kp1qpT, δq is of locally integrable variation

is equivalent to the a.s. finiteness of the integral

ż T

0

ż

E

ˇ

ˇΛps, x, T, δq
ˇ

ˇλspdxqds,

thus proving the integrability conditions (3.9), (3.10). Having established that the two

processes Kp1qpT, δq and Kp2qpT, δq are of locally integrable variation, we can take their
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compensators (dual predictable projections), see (Jacod and Shiryaev, 2003, Theorem

I.3.18). This leads to

SδP p¨, T, δq

X0
“ Sδ0P p0, T, δq E

ˆ
ż ¨

0
k̂spT, δqds` pKp2qpT, δq `M 1pT, δq

˙

, (3.15)

where

M 1pT, δq :“MpT, δq`Kp1qpT, δq`Kp2qpT, δq´

ż ¨

0

`

k̂spT, δq´kspT, δq
˘

ds´ pKp2qpT, δq (3.16)

is a local martingale, pk̂tpT, δqq0ďtďT is an adapted process given by

k̂tpT, δq “ ktpT, δq `

ż

E
Λpt, x, T, δqλtpdxq

and, in view of (He et al., 1992, Theorem 5.29), pKp2qpT, δq “
ř

nPN ∆ pK
p2q
Tn
pT, δq1rrTn,`8rr

is a pure jump finite variation predictable process with

∆ pK
p2q
Tn
pT, δq “ efpTn´,Tn,δqEQ

«

1`∆AδTn
1`∆BTn

e
´
ş

pTn,T s
∆V pTn,u,δqηpduq

ˇ

ˇ

ˇ

ˇ

ˇ

FTn´

ff

´ 1,

for all n P N. If SδP p¨, T, δq{X0 is a Q-local martingale, then by equation (3.15) the

process
ş¨

0 k̂spT, δqds`
pKp2qpT, δqmust be null (up to an evanescent set), being a predictable

local martingale of finite variation, see (Jacod and Shiryaev, 2003, Corollary I.3.16). In

particular, analyzing separately its absolutely continuous and discontinuous parts, this

holds if and only if k̂tpT, δq “ 0 outside of a set of pQbdtq-measure zero and ∆ pK
p2q
Tn
pT, δq “

0 a.s. for every n P N. Let us first consider the absolutely continuous part

0 “ k̂tpT, δq

“ αδt ´ rt ´ āpt, T, δq `
1

2
}b̄pt, T, δq}2 ` fpt, t, δq

` b̄pt, T, δqJ
`

Ht ´H
δ
t

˘

´HJt H
δ
t ` }Ht}

2 `

ż

E
Λpt, x, T, δqλtpdxq.

The integral appearing in the last line is a.s. finite for a.e. t P r0, T s as a consequence of

(3.9). Taking T “ t leads to the requirement

rt ´ α
δ
t “ fpt, t, δq ´HJt H

δ
t ` }Ht}

2 `

ż

E

Lpt, xq

1` Lpt, xq

`

Lpt, xq ´ Lδpt, xq
˘

λtpdxq,

for a.e. t P R`, which gives condition (i) in the statement of the theorem. In turn,

inserting this last condition into the equation k̂tpT, δq “ 0 directly leads to condition (ii).

Considering then the pure jump part, the condition ∆ pK
p2q
Tn
pT, δq “ 0 a.s., for all n P N,

leads to

EQ

«

1`∆AδTn
1`∆BTn

e
´
ş

pTn,T s
∆V pTn,u,δqηpduq

ˇ

ˇ

ˇ

ˇ

ˇ

FTn´

ff

“ e´fpTn´,Tn,δq (3.17)

a.s. for all n P N. Condition (iii) in the statement of the theorem is obtained by taking

T “ Tn, while condition (iv) follows by inserting condition (iii) into (3.17).

Conversely, if the integrability conditions (3.9), (3.10) are satisfied then the finite vari-

ation processes Kp1qpT, δq and Kp2qpT, δq appearing in (3.13) are of locally integrable vari-

ation. One can therefore take their compensators and obtain representation (3.15). It is

then easy to verify that, if the four conditions (i)–(iv) hold, then the processes k̂pT, δq

and pKp2qpT, δq appearing in (3.15) are null, up to an evanescent set. This proves the local

martingale property of SδP p¨, T, δq{X0, for every T P R` and δ P D0. �



16 C. FONTANA, Z. GRBAC, S. GÜMBEL & T. SCHMIDT

Remark 3.9. The foreign exchange analogy introduced in Remark 2.5 carries over to

the conditions established in Theorem 3.7. In particular, in the special case where Ht “

Lpt, xq “ 0, for all pt, xq P R` ˆE, it can be easily verified that conditions (i)–(ii) reduce

exactly to the HJM conditions established in Koval (2005) in the context of multi-currency

HJM semimartingale models.

3.1. The OIS bank account as numéraire. In HJM models, the numéraire is usually

chosen as the OIS bank account expp
ş¨

0 r
OIS
s dsq, with rOIS denoting the OIS short rate.

In this context, an application of Theorem 3.7 enables us to characterize all equivalent

local martingale measures (ELMMs, see Section 6) with respect to the OIS bank account

numéraire. To this effect, let Q1 be a probability measure on pΩ,F q equivalent to Q and

denote by Z 1 its density process, i.e., Z 1t “ dQ1|Ft{dQ|Ft , for all t ě 0. We denote the

expectation with respect to Q1 by EQ1 and assume that

Z 1 “ E
ˆ

´ θ ¨W ´ ψ ˚ pµ´ νq ´
ÿ

nPN
Yn1rrTn,`8rr

˙

, (3.18)

for an Rd-valued progressively measurable process θ “ pθtqtě0 satisfying the integrability

condition
şT
0 }θs}

2ds ă `8 a.s. for all T ą 0, a P bBE-measurable function ψ : ΩˆR`ˆ
E Ñ p´8,`1q satisfying the integrability condition

şT
0

ş

Ep|ψps, xq| ^ ψ
2ps, xqqλspdxqds ă

`8 a.s. for all T ą 0, and a family pYnqnPN of random variables taking values in p´8,`1q

such that Yn is FTn-measurable and EQrYn|FTn´s “ 0, for all n P N. Denote

Λ˚ps, x, T, δq “
`

1´ ψps, xq
˘`

p1` Lδps, xqqe´ḡps,x,T,δq ´ 1
˘

´ Lδps, xq ` ḡps, x, T, δq.

Corollary 3.10. Suppose that Assumption 3.3 holds. Let Q1 be a probability measure on

pΩ,F q equivalent to Q, with density process Z 1 given in (3.18). Assume furthermore that
şT
0

ş

tψps,xqPr0,1su ψ
2ps, xq{p1 ´ ψps, xqqλspdxqds ă `8 a.s. for all T ą 0. Then, Q1 is an

ELMM with respect to the numéraire expp
ş¨

0 r
OIS
s dsq if and only if, for every δ P D0,

ż T

0

ż

E

ˇ

ˇΛ˚ps, x, T, δq
ˇ

ˇλspdxqds ă `8 (3.19)

a.s. for every T P R` and, for every n P N and T ě Tn, the random variable
`

1`∆AδTn
˘

e
´
ş

pTn,T s
∆V pTn,u,δqηpduq

is sigma-integrable under Q1 with respect to FTn´, and the following conditions hold a.s.:

(i) for a.e. t P R`, it holds that

rOIS
t “ fpt, t, 0q,

αδt “ fpt, t, 0q ´ fpt, t, δq ` θJt H
δ
t `

ż

E
ψpt, xqLδpt, xqλtpdxq;

(ii) for every T P R` and for a.e. t P r0, T s, it holds that

āpt, T, δq “
1

2
}b̄pt, T, δq}2 ` b̄pt, T, δqJ

`

θt ´H
δ
t

˘

`

ż

E

´

`

1´ ψpt, xq
˘`

1` Lδpt, xq
˘`

e´ḡpt,x,T,δq ´ 1
˘

` ḡpt, x, T, δq
¯

λtpdxq;

(iii) for every n P N, it holds that

EQ1“∆AδTn
ˇ

ˇFTn´

‰

“ e´fpTn´,Tn,δq ´ 1;
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(iv) for every n P N and T ě Tn, it holds that

EQ1
”

p1`∆AδTnq
´

e
´
ş

pTn,T s
∆V pTn,u,δqηpduq

´ 1
¯
ˇ

ˇ

ˇ
FTn´

ı

“ 0.

Proof. By means of Bayes’ formula, Q1 is an ELMM if and only if Z 1SδP p¨, T, δqe´
ş¨

0 r
OIS
s ds

is a local martingale under Q, for every T P R` and δ P D0. The result therefore follows

by applying Theorem 3.7 with respect to X0 :“ e
ş¨

0 r
OIS
s ds{Z 1. By applying Lemma A.1,

we obtain that

X0 “ E
ˆ
ż ¨

0

´

rOIS
s ` }θs}

2 `

ż

E

ψ2ps, xq

1´ ψps, xq
λspdxq

¯

ds` θ ¨W

`
ψ

1´ ψ
˚ pµ´ νq `

ÿ

nPN

Yn
1´ Yn

1rrTn,`8rr

˙

.

Note that
şT
0

ş

E ψ
2ps, xq{p1 ´ ψps, xqqλspdxqds ă `8 a.s., as a consequence of the as-

sumption that
şT
0

ş

tψps,xqPr0,1su ψ
2ps, xq{p1´ ψps, xqqλspdxqds ă `8 a.s. together with the

elementary inequality x2{p1 ´ xq ď |x| ^ x2, for x ď 0. The process X0 is of the form

(3.1), (3.2) with

rt “ rOIS
t ` }θt}

2 `

ż

E

ψ2pt, xq

1´ ψpt, xq
λtpdxq,

H “ θ, L “ ψ{p1´ ψq and ∆BTn “ Yn{p1´ Ynq. Since
ż T

0

ż

E

ψ2ps, xq

1´ ψps, xq
λspdxqds ă `8

a.s., for all T ą 0, it can be easily checked that condition (3.19) is equivalent to (3.9).

The corollary then follows from Theorem 3.7 noting that, for any FTn-measurable random

variable ξ which is sigma-integrable under Q1 with respect to FTn´, it holds that

EQ1rξ|FTn´s “
EQrZ 1Tnξ|FTn´s

Z 1Tn´
“ EQ“p1´ Ynqξ

ˇ

ˇFTn´

‰

“ EQ
„

ξ

1`∆BTn

ˇ

ˇ

ˇ

ˇ

FTn´



,

where we have used the fact that Z 1Tn “ Z 1Tn´p1´ Ynq, for every n P N. �

Remark 3.11. The proof of Corollary 3.10 permits to obtain a characterization of all

equivalent local martingale deflators for the multiple curve financial market, i.e., all strictly

positive Q-local martingales Z of the form (3.18) such that ZSδP p¨, T, δqe´
ş¨

0 r
OIS
s ds is a

Q-local martingale, for every T P R` and δ P D0.

Remark 3.12. The HJM framework of Cuchiero, Fontana and Gnoatto (2016) can be

recovered as a special case with no stochastic discontinuities, setting ηpduq “ du in (3.6),

taking the OIS bank account as numéraire and a jump measure µ generated by a given Itô

semimartingale. Cuchiero, Fontana and Gnoatto (2016) show that most of the existing

multiple curve models are covered by their framework, which a fortiori implies that they

can be easily embedded in our framework.

4. General market models

In this section, we consider market models and develop a general arbitrage-free frame-

work for modeling Ibor rates. As shown in Appendix B, market models can be embedded

into the extended HJM framework considered in Section 3, in the spirit of Brace et al.

(1997). This is possible due to the fact that the measure ηpduq in the term structure
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equation (3.5) may contain atoms. However, it turns out to be simpler to directly study

market models as follows.

In the spirit of market models, and differently from Definition 2.2, in this section we

assume that only finitely many assets are traded. For each δ P D, let T δ “ tT δ0 , . . . , T
δ
Nδu be

the set of settlement dates of traded FRA contracts associated to tenor δ, with T δ0 “ T0 and

T δ
Nδ “ T ˚, for 0 ď T0 ă T ˚ ă `8. We consider an equidistant tenor structure, i.e. T δi ´

T δi´1 “ δ, for all i “ 1, . . . , N δ and δ P D. Let us also define T :“
Ť

δPDT δ, corresponding

to the set of all traded FRAs. The starting point of our approach is representation (1.1),

ΠFRApt, T, δ,Kq “ δ
`

Lpt, T, δq ´K
˘

P pt, T ` δq, (4.1)

for δ P D, T P T δ, t P r0, T s and K P R. The financial market contains OIS zero-coupon

bonds for all maturities T P T 0 :“ T Ť

tT ˚ ` δi : i “ 1, . . . ,mu2 as well as FRA contracts

for all δ P D, T P T δ and K P R.

Let pΩ,F ,F,Qq be a filtered probability space supporting a d-dimensional Brownian

motion W and a random measure µ, as described in Section 3. We assume that, for every

tenor δ P D and maturity T P T δ, the forward Ibor rate Lp¨, T, δq “ pLpt, T, δqq0ďtďT
satisfies

Lpt, T, δq “ Lp0, T, δq `

ż t

0
aLps, T, δqds`

ÿ

nPN
∆LpTn, T, δq1tTnďtu

`

ż t

0
bLps, T, δqdWs `

ż t

0

ż

E
gLps, x, T, δq

`

µpds, dxq ´ νpds, dxq
˘

. (4.2)

In the above equation, aLp¨, T, δq “ paLpt, T, δqq0ďtďT is a real-valued adapted process

satisfying
şT
0 |a

Lps, T, δq|ds ă `8 a.s., bLp¨, T, δq “ pbLpt, T, δqq0ďtďT is a progressively

measurable Rd-valued process satisfying the integrability condition
şT
0 }b

Lps, T, δq}2ds ă

`8 a.s., p∆LpTn, T, δqqnPN is a family of random variables such that ∆LpTn, T, δq is FTn-

measurable, for each n P N, and gLp¨, ¨, T, δq : Ωˆ r0, T s ˆE Ñ R is a P bBE-measurable

function that satisfies
ż T

0

ż

E

´

`

gLps, x, T, δq
˘2
^ |gLps, x, T, δq|

¯

λspdxqds ă `8 a.s.

The dates pTnqnPN represent the stochastic discontinuities occurring in the market. We

assume that OIS bond prices are of the form (3.5) for δ “ 0, for all T P T 0, with the

associated forward rates fpt, T, 0q being as in (3.7).

The main goal of this section consists in deriving necessary and sufficient conditions for

a reference probability measure Q to be a risk-neutral measure with respect to a general

numéraire X0 of the form (3.1) for the financial market where FRA contracts and OIS

zero-coupon bonds are traded, and FRA prices are modeled via (4.1) and (4.2) for the

discrete set T of settlement dates. We recall that

b̄pt, T ` δ, 0q “

ż

rt,T`δs
bpt, u, 0qηpduq,

ḡpt, x, T ` δ, 0q “

ż

rt,T`δs
gpt, x, u, 0qηpduq.

2Note that we need to consider an extended set of maturities for OIS bonds since the payoff of a FRA

contract with settlement date T and tenor δ takes place at date T ` δ.
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Theorem 4.1. Suppose that Assumption 3.3 holds for δ “ 0 and for all maturities T P T 0.

Then Q is a risk-neutral measure with respect to X0 if and only if all the conditions of

Theorem 3.7 are satisfied for δ “ 0 and for all T P T 0, and, for every δ P D,

ż T

0

ż

E

ˇ

ˇ

ˇ
gLps, x, T, δq

˜

e´ḡps,x,T`δ,0q

1` Lps, xq
´ 1

¸

ˇ

ˇ

ˇ
λspdxqds ă `8 (4.3)

a.s. for all T P T δ, and, for each n P N and T δ Q T ě Tn, the random variable

∆LpTn, T, δq

1`∆BTn
e
´
ş

pTn,T`δs
∆V pTn,u,0qηpduq (4.4)

is sigma-integrable with respect to FTn´, and the following two conditions hold a.s.:

(i) for all T P T δ and a.e. t P r0, T s, it holds that

aLpt, T, δq “ bLpt, T, δqJ
`

Ht ` b̄pt, T ` δ, 0q
˘

´

ż

E
gLpt, x, T, δq

˜

e´ḡpt,x,T`δ,0q

1` Lpt, xq
´ 1

¸

λtpdxq;

(ii) for all n P N and T δ Q T ě Tn, it holds that

EQ
„

∆LpTn, T, δq

1`∆BTn
e
´
ş

pTn,T`δs
∆V pTn,u,0qηpduq

ˇ

ˇ

ˇ

ˇ

FTn´



“ 0.

Condition (i) of Theorem 4.1 is a drift restriction for the Ibor rate process. In the context

of a continuum of traded maturities, as in Theorem 3.7, this condition can be separated

into a condition on the short end and an HJM-type drift restriction (see conditions (i)

and (ii) in Theorem 3.7). Condition (ii), similarly to conditions (iii), (iv) of Theorem 3.7,

corresponds to requiring that, for each n P N, the size of the jumps occurring at date Tn
in FRA prices cannot be predicted on the basis of the information contained in FTn´.

Proof. In view of representation (4.1), Q is a risk-neutral measure with respect to X0 if and

only if P p¨, T q{X0 is a Q-local martingale, for every T P T 0, and Lp¨, T, δqP p¨, T ` δq{X0

is a Q-local martingale, for every δ P D and T P T δ. Considering first the OIS bonds,

Theorem 3.7 implies that P p¨, T q{X0 is a Q-local martingale, for every T P T 0, if and

only if conditions (3.9), (3.10) as well as conditions (i)–(iv) of Theorem 3.7 are satisfied

for δ “ 0 and for all T P T 0. Under these conditions, equation (3.15) for δ “ 0 gives that

P p¨, T q

X0
“ P p0, T q E

`

M 1pT, 0q
˘

, (4.5)

for every T P T 0, where the local martingale M 1pT, 0q is given by

M 1pT, 0q “ Kp2qpT, 0q ´

ż ¨

0

`

Hs ` b̄ps, T, 0q
˘

dWs

`

ż ¨

0

ż

E

˜

e´ḡps,x,T,0q

1` Lps, xq
´ 1

¸

`

µpds, dxq ´ νpds, dxq
˘

,

as follows from equation (3.16), with

Kp2qpT, 0q “
ÿ

nPN

˜

e
´
ş

pTn,T s
∆V pTn,u,0qηpduq`fpTn´,Tn,0q

1`∆BTn
´ 1

¸

1rrTn,`8rr.
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By relying on (4.2) and (4.5), we can compute

d

ˆ

Lpt, T, δq
P pt, T ` δq

X0
t

˙

“
P pt´, T ` δq

X0
t´

¨

ˆ

dLpt, T, δq ` Lpt´, T, δqdM 1
tpT ` δ, 0q ` d

“

Lp¨, T, δq,M 1pT ` δ, 0q
‰

t

˙

“
P pt´, T ` δq

X0
t´

ˆ

M2
t pT, δq ` jtpT, δqdt` dJ

p1q
t pT, δq ` dJ

p2q
t pT, δq

˙

, (4.6)

where M2pT, δq “ pM2
t pT, δqq0ďtďT is a local martingale given by

M2
t pT, δq :“

ż t

0
Lps´, T, δqdM 1

spT ` δ, 0q `

ż t

0
bLps, T, δqdWs

`

ż t

0

ż

E
gLps, x, T, δq

`

µpds, dxq ´ νpds, dxq
˘

,

jpT, δq “ pjtpT, δqq0ďtďT is an adapted real-valued process given by

jtpT, δq “ aLpt, T, δq ´ bLpt, T, δqJ
`

Ht ` b̄pt, T ` δ, 0q
˘

,

J p1qpT, δq “ pJ
p1q
t pT, δqq0ďtďT is a pure jump finite variation process given by

J
p1q
t pT, δq “

ż t

0

ż

E
gLps, x, T, δq

˜

e´ḡps,x,T`δ,0q

1` Lps, xq
´ 1

¸

µpds, dxq,

and J p2qpT, δq “ pJ
p2q
t pT, δqq0ďtďT is a pure jump finite variation process given by

J
p2q
t pT, δq “

ÿ

nPN
1tTnďtu

∆LpTn, T, δq

1`∆BTn
e
´
ş

pTn,T`δs
∆V pTn,u,0qηpduq`fpTn´,Tn,0q.

If Lp¨, T, δqP p¨, T ` δq{X0 is a local martingale, for every δ P D and T P T δ, then (4.6)

implies that the processes J p1qpT, δq and J p2qpT, δq are of locally integrable variation. Sim-

ilarly as in the proof of Theorem 3.7, this implies the validity of conditions (4.3) and (4.4),

due to Theorem 5.29 in He et al. (1992). Let us denote by pJ piqpT, δq the compensator of

J piqpT, δq, for i P t1, 2u, δ P D and T P T δ. We have that

pJ p1qpT, δq “

ż ¨

0

ż

E
gLps, x, T, δq

˜

e´ḡps,x,T`δ,0q

1` Lps, xq
´ 1

¸

λspdxqds,

pJ p2qpT, δq “
ÿ

nPN

ˆ

EQ
„

∆LpTn, T, δq

1`∆BTn
e
´
ş

pTn,T`δs
∆V pTn,u,0qηpduq

ˇ

ˇ

ˇ

ˇ

FTn´



efpTn´,Tn,0q1rrTn,`8rr

˙

.

The local martingale property of Lp¨, T, δqP p¨, T ` δq{X0 together with equation (4.6)

implies that the predictable finite variation process
ż ¨

0
jspT, δqds` pJ p1qpT, δq ` pJ p2qpT, δq (4.7)

is null (up to an evanescent set), for every δ P D and T P T δ. Considering separately the

absolutely continuous and discontinuous parts, this implies the validity of conditions (i),

(ii) in the statement of the theorem.

Conversely, by Theorem 3.7, if conditions (3.9), (3.10) as well as conditions (i)–(iv)

of Theorem 3.7 are satisfied for δ “ 0 and for all T P T 0, then P p¨, T q{X0 is a Q-

local martingale, for all T P T 0. Furthermore, if conditions (4.3), (4.4) are satisfied and

conditions (i), (ii) of the theorem hold, then the process given in (4.7) is null. In turn, by
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equation (4.6), this implies that Lp¨, T, δqP p¨, T ` δq{X0 is a Q-local martingale, for every

δ P D and T P T δ, thus proving that Q is a risk-neutral measure with respect to X0. �

Remark 4.2. In market models, the numéraire is usually chosen as the OIS zero-coupon

bond with the longest available maturity T ˚ (terminal bond). In addition, the refer-

ence probability measure Q is the associated T ˚-forward measure, see Section 12.4 in

Musiela and Rutkowski (1997). Exploiting the generality of the process X0, this setting

can be easily accommodated within our framework. Indeed, if
şT˚

0

ş

E |e
´ḡps,x,T˚,0q ´ 1 `

ḡps, x, T ˚, 0q|λspdxqds ă `8 a.s., Corollary 3.6 shows that X0 “ P p¨, T ˚q{P p0, T ˚q holds

as long as the processes appearing in (3.1) and (3.2) are specified as

Ht “ ´b̄pt, T
˚, 0q,

Lpt, xq “ e´ḡpt,x,T
˚,0q ´ 1,

∆BTn “ e
´
ş

pTn,T˚s
∆V pTn,u,0qηpduq`fpTn´,Tn,0q

´ 1,

rt “ fpt, t, 0q ´ āpt, T ˚, 0q `
1

2
}b̄pt, T ˚, 0q}2

`

ż

E

`

e´ḡpt,x,T
˚,0q ´ 1` ḡpt, x, T ˚, 0q

˘

λtpdxq.

Under this specification, a direct application of Theorem 4.1 yields necessary and sufficient

conditions for Q to be a risk-neutral measure with respect to the terminal OIS bond as

numéraire.

4.1. Martingale modeling. Typically, market models start directly from the assumption

that each Ibor rate Lp¨, T, δq is a martingale under the pT ` δq-forward measure QT`δ

associated to the numéraire P p¨, T `δq. In our context, this assumption is generalized into

a local martingale requirement under the pT ` δq-forward measure, whenever the latter

is well-defined. More specifically, suppose that P p¨, T ` δq{X0 is a true martingale and

define the pT ` δq-forward measure by dQT`δ|FT`δ
:“ pP p0, T ` δqX0

T`δq
´1dQ|FT`δ

. As

a consequence of Girsanov’s theorem (see (Jacod and Shiryaev, 2003, Theorem III.3.24))

and equation (4.5), the forward Ibor rate Lp¨, T, δq satisfies under the measure QT`δ

Lpt, T, δq “ Lp0, T, δq `

ż t

0
aL,T`δps, T, δqds`

ÿ

nPN
∆LpTn, T, δq1tTnďtu

`

ż t

0
bLps, T, δqdW T`δ

s `

ż t

0

ż

E
gLps, x, T, δq

`

µpds, dxq ´ νT`δpds, dxq
˘

, (4.8)

for some adapted real-valued process aL,T`δp¨, T, δq, where the process W T`δ is a QT`δ-

Brownian motion defined by W T`δ :“W `
ş¨

0pHs` b̄ps, T ` δ, 0qqds and the compensator

νT`δpds, dxq of the random measure µpds, dxq under QT`δ is given by

νT`δpds, dxq “
e´ḡps,x,T`δ,0q

1` Lps, xq
λspdxqds.

In this context, Theorem 4.1 leads to the following proposition, which provides a charac-

terization of the local martingale property of forward Ibor rates under forward measures.

Proposition 4.3. Suppose that Assumption 3.3 holds for δ “ 0 and for all T P T 0.

Assume furthermore that P p¨, T q{X0 is a true Q-martingale, for every T P T 0. Then the

following are equivalent:

(i) Q is a risk-neutral measure;
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(ii) Lp¨, T, δq is a local martingale under QT`δ, for every δ P D and T P T δ;

(iii) for every δ P D and T P T δ, it holds that

aL,T`δpt, T, δq “ 0,

outside a subset of Ωˆ r0, T s of pQb dtq-measure zero, and, for every n P N and

T δ Q T ě Tn, the random variable ∆LpTn, T, δq satisfies

EQT`δ r∆LpTn, T, δq|FTn´s “ 0 a.s.

Proof. Under these assumptions, Q is a risk-neutral measure if and only if Lp¨, T, δqP p0, T`

δq{X0 is a local martingale under Q, for every δ P D and T P T δ. The equivalence

piq ô piiq then follows from the conditional version of Bayes’ rule (see (Jacod and Shiryaev,

2003, Proposition III.3.8)), while the equivalence piiq ô piiiq is a direct consequence of

equation (4.8) together with (He et al., 1992, Theorem 5.29). �

5. Affine specifications

One of the most successful classes of processes in term-structure modeling is the class of

affine processes. This class combines a great flexibility in capturing the important features

of interest rate markets with a remarkable analytical tractability, see e.g. Duffie and Kan

(1996), Duffie et al. (2003), as well as Filipović (2009) for a textbook account. In the

literature, affine processes are by definition stochastically continuous and, therefore, do

not allow for jumps at predetermined dates. In view of our modeling objectives, we need

a suitable generalization of the notion of affine process. To this effect, Keller-Ressel et al.

(2018) have recently introduced affine semimartingales by dropping the requirement of

stochastic continuity. Related results on affine processes with stochastic discontinuities in

credit risk may be found in Gehmlich and Schmidt (2018). In the present section, we aim

at showing how the class of affine semimartingales leads to flexible and tractable multiple

curve models with stochastic discontinuities.

We consider a countable set T “ tTn : n P Nu of discontinuity dates, with Tn`1 ą Tn,

for every n P N, and limnÑ`8 Tn “ `8. We assume that the filtered probability space

pΩ,F ,F,Qq supports a d-dimensional special semimartingale X “ pXtqtě0 which is further

assumed to be an affine semimartingale in the sense of Keller-Ressel et al. (2018) and to

admit the canonical decomposition

X “ X0 `B
X `Xc ` x ˚

`

µX ´ νX
˘

,

where BX is a finite variation predictable process, Xc is a continuous local martingale

with quadratic variation CX and µX ´ νX is the compensated jump measure of X. Let

BX,c be the continuous part of BX and νX,c the continuous part of the random measure

νX , in the sense of (Jacod and Shiryaev, 2003, § II.1.23). In view of (Keller-Ressel et al.,
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2018, Theorem 3.2), under weak additional assumptions it holds that

BX,c
t pωq “

ż t

0

´

β0psq `
d
ÿ

i“1

Xi
s´pωqβipsq

¯

ds,

CXt pωq “

ż t

0

´

α0psq `
d
ÿ

i“1

Xi
s´pωqαipsq

¯

ds,

νX,cpω, dt, dxq “
´

µ0pt, dxq `
d
ÿ

i“1

Xi
t´pωqµipt, dxq

¯

dt,

ż

Rd

`

exu,xy ´ 1
˘

νXpω, ttu, dxq “

˜

exp
´

γ0pt, uq `
d
ÿ

i“1

xXi
t´pωq, γipt, uqy

¯

´ 1

¸

.

(5.1)

In (5.1), we have that βi : R` Ñ Rd and αi : R` Ñ Rdˆd, for i “ 0, 1, . . . , d, γ0 : R`ˆCd Ñ
C´ and γi : R` ˆCd Ñ Cd, for i “ 1, . . . , d. µipt, dxq is a Borel measure on Rdzt0u for all

i “ 0, 1, . . . , d, such that for all t P R`,
ş

Rdzt0up1`|x|
2qµipt, dxq ă `8. Finally, we assume

that νXpttu ˆ Rdq vanishes a.s. outside the set of stochastic discontinuities pTnqnPN.

We use the affine semimartingale X as the driving process of a multiple curve model, as

presented in Section 3. In particular, we focus here on modeling the δ-tenor bond prices

P pt, T, δq and the multiplicative spreads Sδt in such a way that the resulting model is affine

in the sense of the following definition, which extends the approach of (Keller-Ressel et al.,

2018, Section 5.3).

Definition 5.1. The multiple curve model is said to be affine if

fpt, T, δq “ fp0, T, δq `

ż t

0
ϕps, T, δqdXs, for all δ P D0, (5.2)

Sδt “ Sδ0 exp

ˆ
ż t

0
ψδsdXs

˙

, for all δ P D, (5.3)

for all 0 ď t ď T ă `8, where ϕ : Ω ˆ R2
` ˆ D0 Ñ Rd and ψδ : Ω ˆ R` ˆ D Ñ Rd are

predictable processes such that, for every i “ 1, . . . , d and T P R`,

ψδ P LpXq and

ż T

0
|ψδt ||dB

X,c
t | ă `8 a.s., for all δ P D,

and, for all δ P D0 and T P R`,

ˆ
ż T

0
|ϕip¨, u, δq|2ηpduq

˙1{2

P LpXiq and

ż T

0

ż T

0
|ϕpt, u, δq|ηpduq|dBX,c

t | ă `8 a.s.,

with LpXq denoting the set of Rd-valued predictable processes which are integrable with

respect to X in the semimartingale sense, and similarly for LpXiq. The measure η is

specified as in equation (3.6).

For all 0 ď t ď T ă `8 and δ P D0, let us also define

ϕ̄pt, T, δq :“

ż

rt,T s
ϕpt, u, δqηpduq.
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We furthermore assume that
şT
0 e

pψδt q
Jx1tpψδt qJxą1uν

X,cpdt, dxq ă `8 a.s., for all T P R`,

which ensures that Sδ is a special semimartingale (see (Jacod and Shiryaev, 2003, Propo-

sition II.8.26)). To complete the specification of the model, we suppose that X0 takes the

form

X0
t “ exp

´

ż t

0
rsds`

ÿ

nPN
ψJTn∆XTn1tTnďtu

¯

, for all t ě 0, (5.4)

where prtqtě0 is an adapted real-valued process satisfying
şT
0 |rt|dt ă `8 a.s., for all

T P R`, and ψTn is a d-dimensional FTn´-measurable random vector, for all n P N.

We aim at characterizing when Q is a risk-neutral measure for an affine multiple curve

model. By Remark 3.8, we see that a necessary condition is that

rt “ fpt, t, 0q, for a.e. t ě 0. (5.5)

Under the present assumptions and in the spirit of Theorem 3.7, the following proposi-

tion provides sufficient conditions for Q to be a risk-neutral measure for the affine multiple

curve model introduced above. For convenience of notation we let ψ0
t :“ 0 for all t P R`

and S0
0 :“ 1, so that S0 :“ S0

0 expp
ş¨

0 ψ
0
sdXsq ” 1.

Proposition 5.2. Consider an affine multiple curve model as in Definition 5.1 and sat-

isfying (5.5). Assume furthermore that

ż T

0

ż

Rdzt0u

ˇ

ˇ

ˇ
epψ

δ
sq
Jx
`

e´ϕ̄ps,T,δq
Jx ´ 1

˘

` ϕ̄ps, T, δqJx
ˇ

ˇ

ˇ
νX,cpds, dxq ă `8 a.s. (5.6)

for every δ P D0 and T P R`. Then Q is a risk-neutral measure with respect to X0 given

as in (5.4) if the following three conditions hold a.s. for every δ P D0:

(i) for a.e. t P R`, it holds that

rt ´ fpt, t, δq “ pψ
δ
t q
J

˜

β0ptq `
d
ÿ

i“1

Xi
t´βiptq

¸

`
1

2
pψδt q

J

˜

α0ptq `
d
ÿ

i“1

Xi
t´αiptq

¸

ψδt

`

ż

Rdzt0u

´

epψ
δ
t q
Jx ´ 1´ pψδt q

Jx
¯

˜

µ0pt, dxq `
d
ÿ

i“1

Xi
t´µipt, dxq

¸

;

(ii) for every T P R`, a.e. t P r0, T s and for every i “ 0, 1, . . . , d, it holds that

ϕ̄pt, T, δqJβiptq “ ϕ̄pt, T, δqJαiptq

ˆ

1

2
ϕ̄pt, T, δq ´ ψδt

˙

`

ż

Rdzt0u

´

epψ
δ
t q
Jx

´

e´ϕ̄pt,T,δq
Jx ´ 1

¯

` ϕ̄pt, T, δqJx
¯

µipt, dxq; (5.7)

(iii) for every n P N and T ě Tn, it holds that

´fpTn´, Tn, δq “ γ0

´

Tn, ψ
δ
Tn ´ ψTn ´

ż

pTn,T s
ϕpTn, u, δqηpduq

¯

`

d
ÿ

i“1

A

Xi
Tn´, γi

´

Tn, ψ
δ
Tn ´ ψTn ´

ż

pTn,T s
ϕpTn, u, δqηpduq

¯E

.

Proof. For all δ P D0, the present integrability assumptions ensure that ψδ ¨X and Sδ are

special semimartingales. Hence, (Jacod and Shiryaev, 2003, Theorem II.8.10) implies that
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Sδ admits a stochastic exponential representation of the form (3.3), (3.4), with

αδt “ pψ
δ
t q
J

˜

β0ptq `
d
ÿ

i“1

Xi
t´βiptq

¸

`
1

2
pψδt q

J

˜

α0ptq `
d
ÿ

i“1

Xi
t´αiptq

¸

ψδt

`

ż

Rdzt0u

´

epψ
δ
t q
Jx ´ 1´ pψδt q

Jx
¯

˜

µ0pt, dxq `
d
ÿ

i“1

Xi
t´µipt, dxq

¸

,

∆AδTn “ epψ
δ
Tn
qJ∆XTn ´ 1, for all n P N,

and Lδpt, xq “ pepψ
δ
t q
Jx ´ 1q1Jcptq, for all pt, xq P R` ˆ Rdzt0u, where we define the set

Jc :“ R`zT. Due to (5.4), condition (i) of Theorem 3.7 reduces to aδt “ fpt, t, 0q´fpt, t, δq,

for a.e. t P R` and δ P D (see also equation (3.12) in Remark 3.8), from which condition

(i) directly follows. The integrability conditions appearing in Definition 5.1 enable us to

apply the stochastic Fubini theorem in the version of Theorem IV.65 of Protter (2004)

and, moreover, ensure that ϕp¨, T, δq ¨X is a special semimartingale, for every δ P D0 and

T P R`. This permits to obtain a representation of P pt, T, δq as in Lemma 3.5, namely

P pt, T, δq “ exp

ˆ

´

ż T

0
fp0, u, δqηpduq ´

ż t

0
ϕ̄ps, T, δqdBX,c

s

´
ÿ

nPN
ϕ̄pTn, T, δq

J∆XTn1tTnďtu ´

ż t

0
ϕ̄ps, T, δqdXc

s

´

ż t

0

ż

Rdzt0u
ϕ̄ps, T, δqJx1Jcpsq

`

µXpds, dxq ´ νXpds, dxq
˘

`

ż t

0
fpu, u, δqηpduq

˙

.

In view of the affine structure (5.1) and comparing with (3.8), it holds that

āpt, T, δq “ ϕ̄pt, T, δqJ
´

β0ptq `
d
ÿ

i“1

Xi
t´βiptq

¯

,

}b̄pt, T, δq}2 “ ϕ̄pt, T, δqJ
´

α0ptq `
d
ÿ

i“1

Xi
t´αiptq

¯

ϕ̄pt, T, δq,

b̄pt, T, δqJHδ
t “ ϕ̄pt, T, δqJ

´

α0ptq `
d
ÿ

i“1

Xi
t´αiptq

¯

ψδt ,

and ḡpt, x, T, δq “ ϕ̄pt, T, δqJx1Jcptq, for all 0 ď t ď T ă `8, δ P D0 and x P Rdzt0u. In

the present setting condition (ii) of Theorem 3.7 takes the form

ϕ̄pt, T, δqJ
ˆ

β0ptq `
d
ÿ

i“1

Xi
t´βiptq

˙

“ ϕ̄pt, T, δqJ
ˆ

α0ptq `
d
ÿ

i“1

Xi
t´αiptq

˙ˆ

1

2
ϕ̄pt, T, δq ´ ψδt

˙

`

ż

Rdzt0u

´

epψ
δ
t q
Jx
`

e´ϕ̄pt,T,δq
Jx ´ 1

˘

` ϕ̄pt, T, δqJx
¯´

µ0pt, dxq `
d
ÿ

i“1

Xi
t´µipt, dxq

¯

.

(5.8)

Clearly, condition (ii) of the proposition is sufficient for (5.8) to hold, for every T P R`
and a.e. t P r0, T s. In the present setting, conditions (iii), (iv) of Theorem 3.7 can be
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together rewritten as follows, for every δ P D0, n P N and T ě Tn,

e´fpTn´,Tn,δq “ EQ

«

1`∆AδTn
1`∆BTn

e
´
ş

pTn,T s
ϕpTn,u,δqJ∆XTn ηpduq

ˇ

ˇ

ˇ

ˇ

FTn´

ff

“ EQ

«

exp

˜

ˆ

ψδTn ´ ψTn ´

ż

pTn,T s
ϕpTn, u, δqηpduq

˙J

∆XTn

¸

ˇ

ˇ

ˇ

ˇ

FTn´

ff

,

from which condition (iii) of the proposition follows by making use of (5.1). Finally, in

the present setting the integrability condition (3.9) appearing in Theorem 3.7 reduces to

condition (5.6). In view of Theorem 3.7, we can conclude that Q is a risk-neutral with

respect to X0. �

Remark 5.3. Condition (ii) is only sufficient for the necessary condition (5.8). Only if

the coordinates of Xi are linearly independent, then this condition is also necessary.

The following examples illustrate the conditions of Proposition 5.2.

Example 5.4 (A single-curve Vasiček specification). As first example we study a classical

single-curve (i.e., D “ H) model without jumps, driven by a one-dimensional Gaussian

Ornstein-Uhlenbeck process. Let ξ be the solution of

dξt “ κpθ ´ ξtqdt` σdWt,

where W is a Brownian motion and κ, θ, σ are positive constants. As driving process in

(5.2) we choose the three-dimensional affine process

Xt “

ˆ

t,

ż t

0
ξsds, ξt

˙J

, t ě 0.

The coefficients in the affine semimartingale representation (5.1) are time-homogeneous,

i.e. αiptq “ αi and βiptq “ βi, i “ 0, . . . , 3, given by

β0 “

¨

˝

1

0

κθ

˛

‚, β1 “

¨

˝

0

0

0

˛

‚, β2 “

¨

˝

0

0

0

˛

‚, β3 “

¨

˝

0

1

´κ

˛

‚, α0 “

¨

˝

0 0 0

0 0 0

0 0 σ2

˛

‚,

and α1 “ α2 “ α3 “ 0. The drift condition (5.7) implies

ϕ̄1pt, T, 0q “
σ2

2

`

ϕ̄3pt, T, 0q
˘2
´ κθϕ̄3pt, T, 0q,

ϕ̄2pt, T, 0q “ κϕ̄3pt, T, 0q.

We are free to specify ϕ3pt, T, 0q and choose

ϕ̄3pt, T, 0q “
1

κ

´

1´ e´κpT´tq
¯

.

This in turn implies that

ϕ1pt, T, 0q “
σ2

κ

´

e´κpT´tq ´ e´2κpT´tq
¯

´ κθe´κpT´tq,

ϕ2pt, T, 0q “ κe´κpT´tq,

ϕ3pt, T, 0q “ e´κpT´tq.

It can be easily verified that this corresponds to the Vasiček model, see Section 10.3.2.1

in Filipović (2009). Note that this also implies fpt, t, 0q “ ξt. Choosing rt “ fpt, t, 0q

leads to the numéraire X0 “ expp
ş¨

0 fps, s, 0qdsq. Hence, all conditions in Proposition 5.2



TERM STRUCTURES WITH MULTIPLE CURVES AND STOCHASTIC DISCONTINUITIES 27

are satisfied and the model is free of arbitrage. An extension to the multi-curve setting is

presented in Example 5.6.

Example 5.5 (A single-curve Vasiček specification with discontinuity). As next step, we

extend the previous example by introducing a discontinuity at time 1. Our goal is to

provide a simple, illustrative example with jump size depending on the driving process ξ

and we therefore remain in the single-curve framework.

We assume that there is a multiplicative jump in the numéraire at time T1 “ 1 de-

pending on exppaξ1 ` εq, where a P R and ε „ N p0, b2q is an independent normally

distributed random variable with variance b2. As driving process in (5.2) we consider the

five-dimensional affine process

Xt “

ˆ
ż t

0
ηpdsq,

ż t

0
ξsds, ξt,1ttě1uξ1,1ttě1uε

˙J

,

where ηpdsq “ ds` δ1pdsq. The size of the jump in X0 is specified by

ψJt ∆Xt “ 1tt“1upaξ1 ` εq,

which can be achieved by ψJ1 “ p0, 0, 0, a, 1q. The coefficients in the affine semimartingale

representation (5.1) αi, βi, i “ 0, . . . , 3, are as in Example 5.4, with zeros in the additional

rows and columns. In addition we have β4 “ β5 “ 0 and α4 “ α5 “ 0. Moreover,
ż

exu,xyνXpttu, dxq “ 1tt“1u exp

ˆ

u1 ` u4X
3
1 `

u2
5b

2

2

˙

, u P R5.

Finally, we choose for t ď T

ϕ3pt, T, 0q “

$

’

’

&

’

’

%

0 for t “ 1 ď T,

ae´κp1´tq for t ă 1 “ T,

e´κpT´tq otherwise,

ϕ1p1, 1, 0q “ b2{2, ϕ4pt, T, 0q “ p1´aq1tt“T“1u, and ϕ5pt, T, 0q “ 0. ϕ1pt, T, 0q for pt, T q ‰

p1, 1q and ϕ2pt, T, 0q for t ď T can be derived from ϕ3pt, T, 0q as in the previous example

by means of the drift condition (5.7). Condition (iii) is the interesting condition for this

example. This condition is equivalent to

aX3
1 ´

b2

2
“ fp1´, 1, 0q, (5.9)

which can be satisfied by choosing fp0, 1, 0q “ ´b2{2. Equation (5.9), together with the

specification of ϕipt, T, 0q for i “ 1, . . . , 5 ensures that fpt, t, 0q “ ξt. Choosing rt “

fpt, t, 0q we obtain that the model is free of arbitrage and the term structure is fully

specified: indeed, we recover for 1 ď t ď T and 0 ď t ď T ă 1 the bond pricing formula

from the previous example

P pt, T, 0q “ exp
´

´ApT ´ t, 0q ´BpT ´ t, 0qX3
t

¯

,

while, for 0 ď t ă 1 ď T ,

P pt, T, 0q “ exp
´

´ApT ´ 1, 0q ´A
`

1´ t,´BpT ´ 1, 0q ´ a
˘

´B
`

1´ t,´BpT ´ 1, 0q ´ a
˘

X3
t `

b2

2

¯

.



28 C. FONTANA, Z. GRBAC, S. GÜMBEL & T. SCHMIDT

The coefficients Apτ, uq and Bpτ, uq are the well-known solutions of the Riccati equations,

such that

EQ
”

e´
şτ
0 ξsds`uξτ

ı

“ e´Apτ,uq´Bpτ,uqξ0 , for τ ě 0,

see Section 10.3.2.1 and Corollary 10.2 in Filipović (2009) for details and explicit formulae.

The example presented here extends Example 6.15 of Keller-Ressel et al. (2018) to a fully

specified term-structure model.

Example 5.6 (A simple multi-curve Vasiček specification). We extend Example 5.4 to

the multi-curve setting and consider D “ tδu. For simplicity, we choose as driving diffusive

part a two-dimensional Gaussian Ornstein-Uhlenbeck process:

dξit “ κipθi ´ ξ
i
tqdt` σidW

i
t , i “ 1, 2,

where pW 1,W 2qJ is a two-dimensional Brownian motion with correlation ρ. The driving

process X in (5.2) is specified as

Xt “

ˆ

t,

ż t

0
ξ1
sds, ξ

1
t ,

ż t

0
ξ2
sds, ξ

2
t

˙J

.

The coefficients αi and βi, i “ 0, . . . , 5 are time-homogeneous and obtained similarly as in

Example 5.4 from (5.1). Note that

α0 “

¨

˚

˚

˚

˚

˚

˝

0 0 0 0 0

0 0 0 0 0

0 0 σ2
1 0 ρσ1σ2

0 0 0 0 0

0 0 ρσ1σ2 0 σ2
2

˛

‹

‹

‹

‹

‹

‚

.

The coefficients ϕ1pt, T, 0q, . . . , ϕ3pt, T, 0q are chosen as in Example 5.4, while ϕ4pt, T, 0q “

ϕ5pt, T, 0q “ 0. We note that fpt, t, 0q “ ξ1
t and set rt “ fpt, t, 0q. Moreover, we choose

ϕ2pt, T, δq “ ϕ3pt, T, δq “ 0 and

ϕ̄5pt, T, δq “
1

κ2

´

1´ e´κ2pT´tq
¯

.

Now, choose pψδt q
J “ p0, 1, 0,´1, 0q, so that ϕ1pt, T, δq and ϕ4pt, T, δq can be calculated

from ϕ̄5pt, T, δq by means of the drift condition (5.7). At this stage, the model is fully

specified. It is not difficult to verify that we are in the affine framework computed in

detail in Section 4.2 of Brigo and Mercurio (2001), where explicit expressions for bond

prices may be found. Moreover, we obtain fpt, t, δq “ ξ2
t “ X5

t and condition (ii) (and

(iii), trivially) from Proposition 5.2 is satisfied. Condition (i) also holds: in this regard,

note that

pψδt q
J

˜

β0 `

5
ÿ

i“1

Xi
tβi

¸

“ pψδt q
J

¨

˚

˚

˚

˚

˚

˝

1

X3
t

κ1θ1 ´ κ1X
3
t

X5
t

κ2θ2 ´ κ2X
5
t

˛

‹

‹

‹

‹

‹

‚

“ fpt, t, 0q ´ fpt, t, δq.

Since all conditions of Proposition 5.2 are now satisfied, we can conclude that the model

is free of arbitrage.
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Example 5.7 (A multi-curve Vasiček specification with discontinuities). We extend the

previous example by allowing for discontinuities, which can be of type I as well as of type

II (see Section 1.2) and can have a different impact on the OIS and on the Ibor curves.

As in Example 5.6, we consider a two-dimensional Gaussian Ornstein-Uhlenbeck process:

dξit “ κipθi ´ ξ
i
tqdt` σidW

i
t , i “ 1, 2.

The driving process X in (5.2) is enlarged as follows:

Xt “

ˆ
ż t

0
ηpdsq,

ż t

0
ξ1
sds, ξ

1
t ,

ż t

0
ξ2
sds, ξ

2
t ,

ż t

0
Jsds, Jt

˙J

,

where the process J is defined as

Jt “
ÿ

Tiďt

εie
´κ3pt´Tiq, t ě 0,

for some κ3 ě 0. A large value of κ3 corresponds to a high speed of mean-reversion in J and

generates a spiky behavior, corresponding to discontinuities of type II (recall Figure 3).

On the contrary, a small value of κ3 generates long-lasting jumps, which are in line with

discontinuities of type I. For simplicity, the random variables pεiqiě1 are i.i.d. standard

normal, independent of ξ1 and ξ2. The set of stochastic discontinuities is described by the

time points pTnqnPN and the measure ηpduq is defined as in (3.6). The coefficients αi and

βi are time-homogeneous and

β0 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1

0

κ1θ1

0

κ2θ2

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, β3 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0

1

´κ1

0

0

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, β5 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0

0

0

1

´κ2

0

0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, β7 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0

0

0

0

0

1

´κ3

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

β1 “ β2 “ β4 “ β6 “ 0,

α0 “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 σ2
1 0 ρσ1σ2 0 0

0 0 0 0 0 0 0

0 0 ρσ1σ2 0 σ2
2 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

,

and αi “ 0 for i “ 1, ..., 7. Moreover,
ż

R7

exu,xyνXpttu, dxq “
ÿ

nPN
1tt“Tnu exp

ˆ

u1 `
u2

7

2

˙

, u P R7,

so that

γ0pTn, uq “ u1 `
u2

7

2
, u P R7

and γjpTn, uq “ 0 for all j “ 1, . . . , 7 and n P N.

We assume that jumps in X0 and in the spread occur at the stochastic discontinuities

pTnqnPN and are specified by

ψJt ∆Xt “
ÿ

nPN
1tt“Tnucεn, pψδt q

J∆Xt “
ÿ

nPN
1tt“Tnuaεn,
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which can be achieved by choosing

ψJt “ p0, 0, 0, 0, 0, 0, cq and pψδt q
J “ p0, 0, 0, 1, 0, 0, aq.

From this specification, it follows that the spread is given by

Sδt “ Sδ0 exp

ˆ
ż t

0
ξ2
sds` aJt

˙

.

In line with Remark 3.2, the parameters c and a control the different impact of the

stochastic discontinuities on the numéraire (and, hence, on the OIS curve) and on the

spread (and, hence, on the Ibor curve). The functions ϕipt, T, 0q, for i “ 1, ..., 7 and t ď T ,

are chosen as

ϕ1pt, T, 0q “

$

’

’

’

’

&

’

’

’

’

%

´θ1κ1e
´κ1pT´tq ´

σ2
1
κ1
pe´2κ1pT´tq ´ e´κ1pT´tqq, for t, T R T,

ce´κ3pT´tq ´ 1
κ3
pe´2κ3pT´tq ´ e´κ3pT´tqq, for t P T S T,

c2

2 , for t “ T P T,
0, otherwise,

ϕ3pt, T, 0q “ ϕ3pt, T, δq “

#

e´κ1pT´tq, for t, T R T,
0, otherwise,

ϕ6pt, T, 0q “

#

κ3e
´κ3pT´tq, for t, T R T,

0, otherwise,

ϕ7pt, T, 0q “

#

e´κ3pT´tq, for T R T,
0, otherwise,

ϕ2pt, T, 0q “ ϕ2pt, T, δq “ κ1ϕ3pt, T, 0q and ϕ4pt, T, 0q “ ϕ5pt, T, 0q “ 0. For ϕpt, T, δq we

choose

ϕ1pt, T, δq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

´ θ1κ1e
´κ1pT´tq ´

σ2
1

κ1

´

e´2κ1pT´tq ´ e´κ1pT´tq
¯

` θ2κ2e
´κ2pT´tq ´

σ2
2

κ2

´

e´2κ2pT´tq ´ e´κ2pT´tq
¯

`
ρσ1σ2

κ1κ2

´

´ κ1e
´κ1pT´tq ´ κ2e

´κ2pT´tq

` pκ1 ` κ2qe
´pκ1`κ2qpT´tq

¯

,

for t, T R T,

p1` aκ3q

κ3

´

p1` cκ3qe
´κ3pT´tq ´ p1` aκ3qe

´2κ3pT´tq
¯

, for t P T S T,

1
2pa´ cq

2, for t “ T P T,

0, otherwise,

ϕ5pt, T, δq “

#

´e´κ2pT´tq, for t, T R T,
0, otherwise,



TERM STRUCTURES WITH MULTIPLE CURVES AND STOCHASTIC DISCONTINUITIES 31

ϕ6pt, T, δq “

#

κ3p1` aκ3qe
´κ3pT´tq, for t, T R T,

0, otherwise,

ϕ7pt, T, δq “

#

p1` aκ3qe
´κ3pT´tq, for T R T,

0, otherwise,

and ϕ4pt, T, δq “ κ2ϕ5pt, T, δq. With this specification, it can be checked that condition

(ii) of Proposition 5.2 is satisfied. Furthermore, it can be verified that

fpt, t, 0q “ ξ1
t ` Jt and fpt, t, δq “ ξ1

t ´ ξ
2
t ` p1` aκ3qJt.

Therefore, condition (i) of Proposition 5.2 is satisfied by setting rt “ ξ1
t `Jt. By choosing

fp0, Tn, 0q “ ´c
2{2 and fp0, Tn, δq “ ´

1
2pa´ cq

2 and calculating
ż

pTn,T s
ϕ1pTn, u, 0qηpduq “ ´

c

κ3

`

e´κ3pT´Tnq ´ 1
˘

`
1

2κ2
3

`

e´κ3pT´Tnq ´ 1
˘2
,

ż

pTn,T s
ϕ7pTn, u, 0qηpduq “ ´

1

κ3

`

e´κ3pT´Tnq ´ 1
˘

,

ż

pTn,T s
ϕ1pTn, u, δqηpduq “

pa´ cqp1` aκ3q

κ3

`

e´κ3pT´Tnq ´ 1
˘

`
p1` aκ3q

2

2κ2
3

`

e´κ3pT´Tnq ´ 1
˘2
,

ż

pTn,T s
ϕ7pTn, u, δqηpduq “ ´

p1` aκ3q

κ3

`

e´κ3pT´Tnq ´ 1
˘

,

we can see that condition (iii)

´fpTn´, Tn, 0q “ ´

ż

pTn,T s
ϕ1pTn, u, 0qηpduq `

1

2

˜

´c´

ż

pTn,T s
ϕ7pTn, u, 0qηpduq

¸2

,

´fpTn´, Tn, δq “ ´

ż

pTn,T s
ϕ1pTn, u, δqηpduq `

1

2

˜

a´ c´

ż

pTn,T s
ϕ7pTn, u, δqηpduq

¸2

,

is satisfied for all n P N and T ě Tn. We can conclude that the term structure is fully

specified and, by Proposition 5.2, the model is free of arbitrage.

6. An FTAP for multiple curve financial markets

In this section, we characterize absence of arbitrage in a multiple curve financial market.

At the present level of generality, this represents the first rigorous analysis of absence of

arbitrage in post-crisis fixed-income markets.

As introduced in Definition 2.2, a multiple curve financial market is a large financial

market containing uncountably many securities. An economically convincing notion of

no-arbitrage for large financial markets has been introduced in Cuchiero, Klein and Teich-

mann (2016) under the name of no asymptotic free lunch with vanishing risk (NAFLVR),

generalizing the classic requirement of NFLVR for finite-dimensional markets (see Delbaen

and Schachermayer (1994) and Cuchiero and Teichmann (2014)). In this section, we ex-

tend the main result of Cuchiero, Klein and Teichmann (2016) to an infinite time horizon

and apply it to a general multiple curve financial market.
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Let pΩ,F ,F,Pq be a filtered probability space satisfying the usual conditions of right-

continuity and P-completeness, with F :“
Ž

tě0 Ft. Let us recall that a process Z “

pZtqtě0 is said to be a semimartingale up to infinity if there exists a process Z “ pZtqtPr0,1s
satisfying Zt “ Zt{p1´tq, for all t ă 1, and such that Z is a semimartingale with respect to

the filtration F “ pF tqtPr0,1s defined by

F t “

#

F t
1´t
, for t ă 1,

F , for t “ 1,

see Definition 2.1 in Cherny and Shiryaev (2005). We denote by S the space of real-valued

semimartingales up to infinity equipped with the Emery topology, see Stricker (1981). For

a set C Ă S, we denote by C
S

its closure with respect to the Emery topology.

We denote by I :“ R` ˆ D0 ˆ R the parameter space characterizing the traded assets

included in Definition 2.2. We furthermore assume the existence of a tradable numéraire

with strictly positive adapted price process X0. For notational convenience, we represent

OIS zero-coupon bonds by setting ΠFRApt, T, 0,Kq :“ P pt^ T, T q, for all pt, T q P R2
` and

K P R. We also set ΠFRApt, T, δ,Kq “ ΠFRApT ` δ, T, δ,Kq for all δ P D, K P R and

t ě T ` δ.

For n P N, we denote by In the family of all subsets A Ă I containing n elements. For

each A “ ppT1, δ1,K1q, . . . , pTn, δn,Knqq P In, we define the collection of X0-discounted

prices SA “ pS1, . . . , Snq by

Si :“ pX0q´1ΠFRAp¨, Ti, δi,Kiq, for i “ 1, . . . , n.

For each A P In, n P N, we assume that SA is a semimartingale on pΩ,F,Pq and we denote

by L8pS
Aq the set of all R|A|-valued, predictable processes θ “ pθ1, . . . , θ|A|q which are

integrable up to infinity with respect to SA, in the sense of Definition 4.1 in Cherny and

Shiryaev (2005). We assume that trading occurs in a self-financing way and we say that

a process θ P L8pS
Aq is a 1-admissible trading strategy if θ0 “ 0 and pθ ¨ SAqt ě ´1 a.s.

for all t ě 0. The set XA
1 of wealth processes generated by 1-admissible trading strategies

with respect to SA is defined as

XA
1 :“

 

θ ¨ SA : θ P L8pS
Aq and θ is 1-admissible

(

Ă S.

The set of wealth processes generated by trading in at most n arbitrary assets is given by

X n
1 “

Ť

APInXA
1 . By allowing to trade in arbitrary finitely many assets and letting the

number of assets increase to infinity, we arrive at generalized portfolio wealth processes.

The corresponding set of 1-admissible wealth processes is given by X1 :“
Ť

nPNX n
1

S
, so

that all admissible generalized portfolio wealth processes in the multiple curve financial

market are finally given by

X :“
ď

λą0

λX1.

Remark 6.1. The set X can be equivalently described as the set of all admissible general-

ized portfolio wealth processes which can be constructed in the financial market consisting

of the following two subsets of assets:

(i) OIS zero-coupon bonds, for all maturities T P R`,

(ii) FRAs, for all tenors δ P D, all settlement dates T P R` and strike K 1,

for some fixed arbitrary strike K 1 P R. This follows from our standing assumption of linear

valuation of FRAs together with the associativity of the stochastic integral.
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Since each elementX P X is a semimartingale up to infinity, the limitX8 exists pathwise

and is finite. We can therefore define K0 :“ tX8 : X P X u and C :“ pK0´L
0
`q

Ş

L8, the

convex cone of bounded claims super-replicable with zero initial capital.

Definition 6.2. We say that the multiple curve financial market satisfies no asymptotic

free lunch with vanishing risk (NAFLVR) if

C
Ş

L8` “ t0u,

where C denotes the norm closure in L8 of the set C.

The following result provides a general formulation of the fundamental theorem of asset

pricing for multiple curve financial markets.

Theorem 6.3. The multiple curve financial market satisfies NAFLVR if and only if there

exists an equivalent separating measure Q, i.e., a probability measure Q „ P on pΩ,F q

such that EQrX8s ď 0 for all X P X .

Proof. We divide the proof into several steps, with the goal of reducing our general multiple

curve financial market to the setting considered in Cuchiero, Klein and Teichmann (2016).

1) In view of Remark 6.1, it suffices to consider FRA contracts with fixed strike K “ 0,

for all tenors δ P D and settlement dates T P R`. Consequently, the parameter space

I “ R` ˆ D0 ˆ R can be reduced to I 1 :“ R` ˆ t0, 1, . . . ,mu, which can be further

transformed into a subset of R` via I 1 Q pT, iq ÞÑ i` T {p1` T q P r0,m` 1q “: J .

2) Without loss of generality, we can assume that pX0q´1ΠFRAp¨, T, δ, 0q is a semimartin-

gale up to infinity, for every T P R` and δ P D0. Indeed, let n P N and A P J n. Similarly

as in the proof of (Cherny and Shiryaev, 2005, Theorem 5.5), for each i “ 1, . . . , n, there

exists a deterministic function Ki ą 0 such that pKiq´1 P LpSiq and Y i :“ pKiq´1 ¨Si P S.

Setting Y A “ pY 1, . . . , Y nq, the associativity of the stochastic integral together with

(Cherny and Shiryaev, 2005, Theorem 4.2) allows to prove that

XA
1 “

 

φ ¨ Y A : φ P L8pY
Aq,φ0 “ 0 and pφ ¨ Y Aqt ě ´1 a.s. for all t ě 0

(

.

Henceforth, we shall assume that SA P S, for all A P J n and n P N.

3) For t P r0, 1q and u P r0,`8q, let αptq :“ t{p1´tq and βpuq :“ u{p1`uq. The functions

α and β are two inverse isomorphisms between r0, 1q and r0,`8q and can be extended

to r0, 1s and r0,`8s. For A P J n, n P N, let us define the process S
A
“ pS

A
t qtPr0,1s

by S
A
t :“ SAαptq, for all t P r0, 1s. Since SA P S, the process S

A
is a semimartingale on

pΩ,F,Pq. Let θ P L8pS
Aq. We define the process θ “ pθtqtPr0,1s by θt :“ θαptq, for all

t ă 1, and θ1 :“ 0. As in the proof of (Cherny and Shiryaev, 2005, Theorem 4.2), it holds

that θ P LpS
A
q. Moreover, it can be shown that

pθ ¨ S
A
qt “ pθ ¨ S

Aqαptq, (6.1)

for all t P r0, 1s. Conversely, if θ P LpS
A
q, the process θ “ pθtqtě0 defined by θt :“ θβptq,

for t ě 0, belongs to L8pS
Aq and it holds that

pθ ¨ SAqt “ pθ ¨ S
A
qβptq,

for all t ě 0. Furthermore, pθ ¨ SAq8 “ pθ ¨ S
A
q1 holds if θ1 “ 0.

4) In view of step 3), we can consider an equivalent financial market indexed over r0, 1s

in the filtration F. To this effect, for each A P J n, n P N, let us define

XA
1 :“

 

θ ¨ S
A

: θ P LpS
A
q, θ0 “ θ1 “ 0 and pθ ¨ S

A
qt ě ´1 a.s. @t P r0, 1s

(
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and the sets

X n
1 :“

ď

APIn
XA

1 , X 1 :“
ď

nPN
X n

1

S
, X :“

ď

λą0

λX 1

and K0 :“ tX1 : X P X u, where the closure in the definition of X 1 is taken in the semi-

martingale topology on the filtration F. Let pXkqkPN Ď
Ť

nPNX n
1 be a sequence converging

to X in the topology of S (on the filtration F). By definition, for each k P N, there exists

a set Ak such that Xk “ θk ¨ SAk for some 1-admissible strategy θk P L8pS
Akq. In view

of (6.1), it holds that

Xk
αptq “ pθ

k
¨ S

Ak
qt “: X

k
t ,

for all t P r0, 1s. Since the topology of S is stable with respect to changes of time (see

Proposition 1.3 in Stricker (1981)), the sequence pX
k
qkPN converges in the semimartingale

topology (on the filtration F) to X “ Xαp¨q P X 1. This implies that K0 Ď K0. An

analogous argument allows to show the converse inclusion, thus proving that K0 “ K0. In

view of Definition 6.2, this implies that NAFLVR holds for the original financial market if

and only if it holds for the equivalent financial market indexed over r0, 1s on the filtration

F.

5) It remains to show that, for every A P J n, n P N, the set XA
1 satisfies the requirements

of (Cuchiero, Klein and Teichmann, 2016, Definition 2.1). First, XA
1 is convex and, by

definition, each element X P XA
1 starts at 0 and is uniformly bounded from below by ´1.

Second, let X
1
, X

2
P XA

1 and two bounded F-predictable processes H1, H2 ě 0 such that

H1H2 “ 0. By definition, there exist processes θ
1

and θ
2

such that X
i
“ θ

i
¨ S

A
, for

i “ 1, 2. If Z :“ H1 ¨X
1
`H2 ¨X

2
ě ´1, then

Z “ pH1θ
1
`H2θ

2
q ¨ S

A
P XA

1 ,

so that the required concatenation property holds. Moreover, XA1

Ă XA2

if A1 Ă A2. The

theorem finally follows from (Cuchiero, Klein and Teichmann, 2016, Theorem 3.2). �

Remark 6.4. An equivalent local martingale measure (ELMM) is a probability measure

Q „ P on pΩ,F q such that pX0q´1ΠFRAp¨, T, δ,Kq is a Q-local martingale, for all T P R`,

δ P D0 and K P R. Under additional conditions (namely of locally bounded discounted

price processes, see (Cuchiero, Klein and Teichmann, 2016, Section 3.3)), it can be shown

that NAFLVR is equivalent to the existence of an ELMM. In general, one cannot replace in

Theorem 6.3 a separating measure with an ELMM, as shown by an explicit counterexample

in Cuchiero, Klein and Teichmann (2016). However, as a consequence of Fatou’s lemma,

the existence of an ELMM always represents a sufficient condition for NAFLVR. Assuming

that the numéraire X0 is tradable, an ELMM corresponds to a risk-neutral measure (see

Section 3), which has been precisely characterized in the previous sections of the paper.

Remark 6.5. Absence of arbitrage in large financial markets has also been studied by

Kabanov and Kramkov (1998) in the sense of no asymptotic arbitrage of the first kind

(NAA1), which is a weaker requirement than NAFLVR, see (Cuchiero, Klein and Teich-

mann, 2016, Section 4). Differently from Kabanov and Kramkov (1998), we work on a

fixed filtered probability space pΩ,F ,F,Pq and not on a sequence of probability spaces.

On the other hand, we allow for uncountably many traded assets (see Definition 2.2).



TERM STRUCTURES WITH MULTIPLE CURVES AND STOCHASTIC DISCONTINUITIES 35

7. Conclusions

The aim of this paper has been to introduce stochastic discontinuities into term structure

modeling in a multi-curve setup. Stochastic discontinuities are a key feature in interest

rate markets and we introduced two types for the classification of these jumps. To this

end, we provided a general analysis of post-crisis multiple curve markets under minimal

assumptions.

Three key results have been developed in our work: first, we provide a characterization

of absence of arbitrage in an extended HJM setting. Second, we provide a similar charac-

terization for market models. Both results rely on a fundamental theorem of asset pricing

for multiple curve financial markets. Third, we provide a flexible class of multi-curve

models based on affine semimartingales, a setup allowing for stochastic discontinuities.

While the focus of our analysis is a fundamental treatment of pricing in multiple curve

markets, it is worth emphasizing that this framework has a large potential for many other

applications such as risk management, requiring further studies. In particular for the

latter, a proper modeling of the market price of risk and taking macro-economic variables

into account are equally important.

Appendix A. Technical results

The following technical result on ratios and products of stochastic exponentials easily

follows from Yor’s formula, see (Jacod and Shiryaev, 2003, § II.8.19).

Corollary A.1. For any semimartingales X, Y and Z with ∆Z ą ´1, it holds that

EpXqEpY q
EpZq

“ E

˜

X ` Y ´ Z ` xXc, Y cy ´ xY c, Zcy ´ xXc, Zcy ` xZc, Zcy

`
ÿ

0ăsď¨

ˆ

∆Zsp´∆Xs ´∆Ys `∆Zsq `∆Xs∆Ys
1`∆Zs

˙

¸

.

Proof. of Lemma 3.5 Due to Assumption 3.3 it can be verified by means of Minkowski’s

integral inequality and Hölder’s inequality that the stochastic integrals appearing in (3.8)

are well-defined, for every T P R` and δ P D0. Let F pt, T, δq :“
ş

pt,T s fpt, u, δqηpduq, for

all 0 ď t ď T ă `8. For t ă T , equation (3.7) implies that

F pt, T, δq “

ż

pt,T s

ˆ

fp0, u, δq `

ż t

0
aps, u, δqds` V pt, u, δq `

ż t

0
bps, u, δqdWs

`

ż t

0

ż

E
gps, x, u, δq

`

µpds, dxq ´ νpds, dxq
˘

˙

ηpduq

“

ż T

0
fp0, u, δqηpduq `

ż T

0

ż t

0
aps, u, δqdsηpduq `

ż T

0
V pt, u, δqηpduq

`

ż T

0

ż t

0
bps, u, δqdWsηpduq `

ż T

0

ż t

0

ż

E
gps, x, u, δq

`

µpds, dxq ´ νpds, dxq
˘

ηpduq

´

ż t

0
fp0, u, δqηpduq ´

ż t

0

ż u

0
aps, u, δqdsηpduq ´

ż t

0
V pu, u, δqηpduq

´

ż t

0

ż u

0
bps, u, δqdWsηpduq ´

ż t

0

ż u

0

ż

E
gps, x, u, δq

`

µpds, dxq ´ νpds, dxq
˘

ηpduq.

Due to Assumption 3.3, we can apply ordinary and stochastic Fubini theorems, in the

versions of Theorem 2.2 in Veraar (2012) for the stochastic integral with respect to W
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and in the version of Proposition A.2 in Björk et al. (1997) for the stochastic integral with

respect to the compensated random measure µ´ ν. We therefore obtain

F pt, T, δq “

ż T

0
fp0, u, δqηpduq ´

ż t

0
fpu, u, δqηpduq `

ż t

0

ż

rs,T s
aps, u, δqηpduqds

`

ż T

0
V pt, u, δqηpduq `

ż t

0

ż

rs,T s
bps, u, δqηpduqdWs

`

ż t

0

ż

E

ż

rs,T s
gps, x, u, δqηpduq

`

µpds, dxq ´ νpds, dxq
˘

“

ż T

0
fp0, u, δqηpduq `

ż t

0
āps, T, δqds`

ÿ

nPN
V̄ pTn, T, δq1tTnďtu `

ż t

0
b̄ps, T, δqdWs

`

ż t

0

ż

E
ḡps, x, T, δq

`

µpds, dxq ´ νpds, dxq
˘

´

ż t

0
fpu, u, δqηpduq

“: Gpt, T, δq. (A.1)

In (A.1), the finiteness of
ş¨

0 fpu, u, δqηpduq follows by Assumption 3.3 together with an

analogous application of ordinary and stochastic Fubini theorems.

To complete the proof, it remains to establish (3.8) for t “ T P R`. To this effect,

it suffices to show that ∆GpT, T, δq “ ∆F pT, T, δq for all T P R`, where ∆GpT, T, δq :“

GpT, T, δq ´ GpT´, T, δq, and similarly for ∆F pT, T, δq. By (Jacod and Shiryaev, 2003,

Proposition II.1.17), νptT uˆEq “ 0 implies that, for every T P R`, QrµptT uˆEq ‰ 0s “ 0.

Therefore, it holds that Qr∆GpT, T, δq ‰ 0s ą 0 only if T “ Tn, for some n P N. For

T “ T1, equations (A.1) and (3.7) together imply that

∆GpT1, T1, δq “ V̄ pT1, T1, δq ´ fpT1, T1, δq “ ´fpT1´, T1, δq “ ´F pT1´, T1, δq

“ ∆F pT1, T1, δq,

where the last equality follows from the convention F pT1, T1, δq “ 0. By induction over n,

the same reasoning yields that

∆GpTn, Tn, δq “ ∆F pTn, Tn, δq,

for all n P N. Finally, the semimartingale property of δ-tenor bond prices pP pt, T, δqq0ďtďT
follows from (A.1). �

Appendix B. Embedding of market models into the HJM framework

The general market model considered in Section 4, as specified by equation (4.2), can be

embedded into the extended HJM framework of Section 3. For simplicity of presentation,

let us consider a market model for a single tenor (i.e., D “ tδu) and suppose that the

forward Ibor rate Lp¨, T, δq is given by (4.2), for all T P T δ “ tT1, . . . , TNu, with Ti`1´Ti “

δ for all i “ 1, . . . , N ´1. Always for simplicity, let us assume that there is a fixed number

N ` 1 of discontinuity dates, coinciding with the set of dates T 0 :“ T δ Ť tTN`1u, with

TN`1 :“ TN ` δ. We say that tLp¨, T, δq : T P T δu can be embedded into an extended HJM

model if there exists a sigma-finite measure η on R`, a spread process Sδ and a family of

forward rates tfp¨, T, δq : T P T δu such that

Lpt, T, δq “
1

δ

ˆ

Sδt
P pt, T, δq

P pt, T ` δq
´ 1

˙

, for all 0 ď t ď T P T δ, (B.1)
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where P pt, T, δq is given by (3.5), for all 0 ď t ď T P T δ. In other words, in view of

equation (2.2), the HJM model generates the same forward Ibor rates as the original

market model, for every date T P T δ.

We remark that, since a market model involves OIS bonds only for maturities T 0 “

tT1, . . . , TN`1u, there is no loss of generality in taking the measure η in (3.5) as a purely

atomic measure of the form

ηpduq “
N`1
ÿ

i“1

δTipduq. (B.2)

More specifically, if OIS bonds for maturities T 0 are defined through (3.5) via a generic

measure of the form (3.6), then there always exists a measure η as in (B.2) generating the

same bond prices, up to a suitable specification of the forward rate process.

The following proposition explicitly shows how a general market model can be embedded

into an HJM model. For t P r0, TN s, we define

iptq :“ mintj P t1, . . . , Nu : Tj ě tu,

so that Tiptq is the smallest T P T δ such that T ě t.

Proposition B.1. Suppose that all the conditions of Theorem 4.1 are satisfied, with re-

spect to the measure η given in (B.2), and assume furthermore that Lpt, T, δq ą ´1{δ

a.s. for all t P r0, T s and T P T δ. Then, under the above assumptions, the market model

tLp¨, T, δq : T P T δu can be embedded into an HJM model by choosing

(i) a family of forward rates tfp¨, T, δq : T P T δu with initial values

fp0, Ti, δq “ fp0, Ti`1, 0q ´ log

ˆ

1` δLp0, Ti, δq

1` δLp0, Ti´1, δq

˙

, for i “ 1, . . . , N,

and satisfying equation (3.7) where, for all i “ 1, . . . , N , the volatility process

bp¨, Ti, δq, the jump function gp¨, ¨, Ti, δq and p∆V pTn, Ti, δqqn“1,...,N are respectively

given by

bpt, Ti, δq “

$

&

%

bpt, Ti, 0q ` bpt, Ti`1, 0q ´ δ
bLpt,Ti,δq

1`δLpt´,Ti,δq
, if i “ iptq,

bpt, Ti`1, 0q ´ δ
´

bLpt,Ti,δq
1`δLpt´,Ti,δq

´
bLpt,Ti´1,δq

1`δLpt´,Ti´1,δq

¯

, if i ą iptq,

gpt, x, Ti, δq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

gpt, x, Ti`1, 0q ` gpt, x, Ti, 0q

´ log

ˆ

1`
δgLpt, x, Ti, δq

1` δLpt´, Ti, δq

˙

,
if i “ iptq,

gpt, x, Ti`1, 0q ´ log

˜

1`
δgLpt,x,Ti,δq

1`δLpt´,Ti,δq

1`
δgLpt,x,Ti´1,δq

1`δLpt´,Ti´1,δq

¸

, if i ą iptq,

∆V pTn, Ti, δq “ ∆V pTn, Ti`1, 0q ´ log

¨

˝

1`δLpTn,Ti,δq
1`δLpTn´,Ti,δq

1`δLpTn,Ti´1,δq
1`δLpTn´,Ti´1,δq

˛

‚, for i ě n` 1,

and the process ap¨, Ti, δq is determined by condition (ii) of Theorem 3.7;

(ii) a spread process Sδ with initial value Sδ0 “
`

1 ` δLp0, 0, δq
˘

P p0, δq and satisfying

(3.3), (3.4), where the processes αδ, Hδ, the function Lδ and the random variables

p∆AδTnqn“1,...,N are respectively given by

αδt “ 0, Hδ
t “ 0, Lδpt, xq “ 0,
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∆AδTn “

ˆ

1` δLpTn, Tn, δq

1` δLpTn´, Tn, δq

˙

efpTn´,Tn,0q´fpTn´,Tn,δq´∆V pTn,Tn`1,0q ´ 1.

Moreover, the resulting HJM model satisfies all the conditions of Theorem 3.7.

Proof. Since the proof involves rather lengthy computations, we shall only provide a sketch.

For T P T δ, by means of Theorem 4.1 and the assumption Lpt, T, δq ą ´1{δ a.s. for all

t P r0, T s, the process p1` δLp¨, T, δqqP p¨, T ` δq{X0 is a strictly positive Q-local martin-

gale, so that Lpt´, T, δq ą ´1{δ a.s. for all t P r0, T s and T P T δ. Let us define the process

Y pT, δq “ pYtpT, δqq0ďtďT by YtpT, δq :“ Sδt P pt, T, δq{P pt, T ` δq. An application of Corol-

lary A.1, together with equation (3.3) and Corollary 3.6, yields a stochastic exponential

representation and a semimartingale decomposition of the process Y pT, δq.

For the spread process Sδ given in (3.3), we start by imposing Hδ “ 0 and Lδ “ 0. We

then proceed to determine the processes describing the forward rates tfp¨, T, δq : T P T δu

satisfying (3.7). In view of (B.1), for each T P T δ, we determine the process bp¨, T, δq by

matching the Brownian part of Y pT, δq with the Brownian part of δLp¨, T, δq, while the

jump function gp¨, ¨, T, δq is obtained in a similar way by matching the totally inaccessible

jumps of Y pT, δq with the totally inaccessible jumps of δLp¨, T, δq. The drift process

ap¨, T, δq is then univocally determined by imposing condition (ii) of Theorem 3.7. As a

next step, for each n “ 1, . . . , N , the random variable ∆AδTn appearing in (3.3), (3.4) is

determined by requiring that

∆YTnpTn, δq “ δ∆LpTn, Tn, δq. (B.3)

Then, for each n “ 1, . . . , N´1 and T P tTn`1, . . . , TNu, the random variable ∆V pTn, T, δq

is determined by requiring that

∆YTnpT, δq “ δ∆LpTn, T, δq, (B.4)

while ∆V pTn, T, δq :“ 0 for T ď Tn. Note that ∆V pTn, TN`1, δq “ 0 for δ ‰ 0 and n “

1, . . . , N `1. At this stage, the forward rates tfp¨, T, δq : T P T δu are completely specified.

With this specification, it can be verified that conditions (4.3) and (4.4) respectively

imply that conditions (3.9) and (3.10) of Theorem 3.7 are satisfied, using the fact that

Assumption 3.3 as well as conditions (3.9), (3.10) are satisfied for δ “ 0 and T P T 0 by

assumption. Moreover, it can be checked that, if condition (ii) of Theorem 4.1 is satisfied,

then the random variables ∆AδTn and ∆V pTn, T, δq resulting from (B.3), (B.4) satisfy

conditions (iii), (iv) of Theorem 3.7, for every n P N and T P T δ. It remains to specify the

process αδ appearing in (3.4). To this effect, an inspection of Lemma 3.5 and Corollary

3.6 reveals that, since the measure η is purely atomic, the terms fpt, t, δq and fpt, t, 0q do

not appear in condition (i) of Theorem 3.7 and in condition (3.11), respectively. Since

(3.11) holds by assumption, αδ “ 0 follows by imposing condition (i) of Theorem 3.7. We

have thus obtained that the two processes

`

1` δLp¨, T, δq
˘P p¨, T ` δq

X0
and

SδP p¨, T, δq

X0

are two local martingales starting from the same initial values, with the same continuous

local martingale parts and with identical jumps. By means of (Jacod and Shiryaev, 2003,

Theorem I.4.18 and Corollary I.4.19), we conclude that (B.1) holds for all 0 ď t ď T P

T δ. �

We want to point out that the specification described in Proposition B.1 is not the

unique HJM model which allows embedding a given market model tLp¨, T, δq : T P T δu.
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Indeed, bpt, Tiptq, δq and Hδ
t can be arbitrarily specified as long as they satisfy

bpt, Tiptq, δq ´H
δ
t “ bpt, Tiptq, 0q ` bpt, Tiptq`1, 0q ´ δ

bLpt, Tiptq, δq

1` δLpt´, Tiptq, δq
,

together with suitable integrability requirements. An analogous degree of freedom exists

concerning the specification of the functions gpt, x, Tiptq, δq and Lδpt, xq. Note also that

the random variable ∆AδTn given in Proposition B.1 can be equivalently expressed as

∆AδTn “
1` δLpTn, Tn, δq

1` δLpTn´1, Tn´1, δq

P pTn, Tn`1q

P pTn´1, Tnq
´ 1, for n “ 1, . . . , N.
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