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MULTIPLE CURVE LÉVY FORWARD PRICE MODEL

ALLOWING FOR NEGATIVE INTEREST RATES

ERNST EBERLEIN, CHRISTOPH GERHART, AND ZORANA GRBAC

Abstract. In this paper we develop a framework for discretely compound-
ing interest rates which is based on the forward price process approach. This
approach has a number of advantages, in particular in the current market
environment. Compared to the classical as well as the Lévy Libor market
model, it allows in a natural way for negative interest rates and has superb
calibration properties even in the presence of extremely low rates. Moreover,
the measure changes along the tenor structure are simplified significantly.
These properties make it an excellent base for a post-crisis multiple curve
setup. Two variants for multiple curve constructions based on the mul-
tiplicative spreads are discussed. Time-inhomogeneous Lévy processes are
used as driving processes. An explicit formula for the valuation of caps is de-
rived using Fourier transform techniques. Relying on the valuation formula,
we calibrate the two model variants to market data.

Traditionally the spreads between Euribor and EONIA OIS rates were in the
order of magnitude of a few basis points and therefore from the point of view of
modeling could be considered to be negligible. This changed definitively with
the 2007-2009 financial crisis. The beginning of the crisis can easily be dated
by looking at the dynamics of these spreads for different tenors (see Figure
1). Its graph looks like a fever chart. Depending on the specific tenors, the
spreads jumped to values between 40 and 70 basis points in early August 2007.
The fever chart reached its peak in mid-September 2008 with the collapse of
Lehman Brothers where values beyond 200 basis points were reached.

The market had realized that there is substantial risk where it had not been
recognized before. The mechanism of choice of the Euribor panel banks is such
that one could assume that these banks are essentially risk-free. With the crisis
it became clear that these banks are prone to liquidity and credit risk as well
and consequently this risk must be priced correctly. This is directly reflected
in the spreads. The presence of these spreads forces the financial industry to
revise the classical single curve fixed-income models and consider multiple curve
approaches.

Hereafter we develop such a model on the basis of the forward price process
(for short forward process) in the spirit of the Lévy forward process framework

introduced in Eberlein and Özkan (2005). Figure 2 shows the historical evolu-
tion of FRA rates starting in 2005 (subfigure (a)) through 2007, 2009, 2012,
2014 up to 2016 (subfigure (f)). These curves are obtained via bootstrapping
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from market quotes of deposits, forward rate agreements and swaps (for techni-
cal details see Gerhart and Lütkebohmert (2018)). Deposit rates are needed for
the short end, forward rate agreements for short and mid maturities, whereas
the mid and long maturity part of the term structure is derived from swap
quotes. As one can clearly see, in 2007 the risky tenor-dependent curves (three
months and six months) started to depart from the basic discount curve. Fig-
ures (c)-(f) show a significant spread between the basic and the three-month
curve and the three-month and the six-month curve. In addition we emphasize
that all three term structures are negative up to some maturity in 2016. There-
fore the model to be developed has to be able to cope with negative rates and
tenor-dependent term structures. The curves as shown in Figure 2 represent
the starting values for the model.

As in the Libor market model (LMM), in the present paper the interest
rates are constructed via backward induction along a discrete tenor structure.
The forward process approach is chosen because it is analytically, as well as
numerically, superior to the LMM, which is the industry standard as a model
for discretely compounded interest rates. From the analytical point of view,
the main advantage is that a more tractable measure change technique applies,
which preserves the structure of the driving process and consequently allows
to avoid any approximation such as the frozen drift assumption. From the
economic perspective, in view of the current market environment it has to
be underlined that the forward process approach allows in a natural way for
negative interest rates. Since the basic quantity which is modelled is a scaled
and shifted interest rate, this approach is similar in spirit to the shifted LMM,
which has become the industry response to the current situation of low and
negative rates. Whereas in the shifted LMM an arbitrary choice or statistical
estimation of the lower boundary for negative values is required, here the range
of negative rates arises from the definition of the forward process as a positive
quantity (see equation (2.2) below).

Another important property is related to calibration. The increments of the
driving process translate directly into increments of the interest rates, which
allows for superb calibration results. This is not the case for the LMM, where
the increments of the driving process are scaled by the current level of the rates
(for explicit expressions see the introduction of Eberlein, Eddahbi, and Lalaoui
Ben Cherif (2016)). In particular, in a market with extremely low rates this
creates serious problems. Huge movements of the driving process are needed
even for small changes of the rates (exploding volatility in calibration). As far
as the use of Lévy processes is concerned we mention also that - compared to
models driven by a Brownian motion - these processes are flexible enough to
generate the empirically observable levels of correlations between rates with
different maturities. This aspect has been intensively studied in Beinhofer,
Eberlein, Janssen, and Polley (2011). Let us emphasize again that the forward
process approach has in addition the advantage of a smooth measure change
along the tenor structure.

The first papers dealing with the multiple curve issue and proposing term
structure models in this setup followed soon after the onset of the crisis and
the appearance of the spreads. We mention here Kijima, Tanaka, and Wong
(2009), Kenyon (2010) and Filipović and Trolle (2013) for short rate multiple
curve models, Crépey, Grbac, and Nguyen (2012) for a multiple curve HJM
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framework and Bianchetti (2010) and Mercurio (2010) for multiple curve Libor
market models. For an exhaustive literature overview on multiple curve models
we refer to the two monographs by Henrard (2014) and Grbac and Rung-
galdier (2015) and the article collection by Bianchetti and Morini (2013). The
idea of multiplicative spreads was introduced in Henrard (2010) and further
used in Cuchiero, Fontana, and Gnoatto (2016, 2017), with spreads defined
on continuous tenor structures in the context of a short rate (spot spreads)
and a Heath-Jarrow-Morton framework. In Cuchiero et al. (2016) an approach
based on multiplicative spreads with semimartingales as driving processes is
developed, whereas in Cuchiero et al. (2017) the authors study an affine model
setup. Some constraints on the state space of the driving process are needed
in the latter one in order to ensure the desired behavior of the multiple curve
spreads such as positivity and monotonicity of the tenor-dependent curves. The
Lévy forward price framework instead allows for full flexibility in choosing the
driving process. Another multiple curve affine LIBOR model with a focus on
the positivity of spreads is developed in Grbac, Papapantoleon, Schoenmakers,
and Skovmand (2015). In Eberlein and Gerhart (2018) a fully fledged model
with an arbitrary number of monotone tenor-dependent curves is developed. In
addition this model considers multiple curves in the context of a two-price econ-
omy and therefore allows to exploit bid and ask quotes. All these approaches
consider modelling directly under the risk-neutral measure, whereas in Crépey,
Macrina, Nguyen, and Skovmand (2016) and Nguyen and Seifried (2015) mul-
tiple curve models based on the pricing kernel approach under the real-world
measure have been developed. A more recent paper by Macrina and Mahomed
(2018) extends this approach further in order to achieve consistent derivative
pricing in an economy segmented into several distinct markets. This is obtained
via a curve-conversion factor (similar to, but going beyond, an exchange rate
in FX markets) that constitutes a link between these markets which precludes
arbitrage.

In this paper the discretely compounded multiplicative forward spreads are
modelled on a discrete tenor structure extending in a suitable manner the
forward process approach. The paper is organized as follows. In Section 1 we
introduce the driving process and discuss its main properties. The model is
presented in Section 2. Section 3 deals with interest rate option pricing. The
last Section 4 is dedicated to the implementation and calibration of the model.

1. The driving process

Let T ∗ ∈ R+ := [0,∞) be a finite time horizon and B := (Ω,G ,F =
(Ft)t∈[0,T ∗], P ) a stochastic basis that satisfies the usual conditions in the
sense of Jacod and Shiryaev (2003, Definition I.1.2 and Definition I.1.3). As
driving process, we consider a d-dimensional time-inhomogeneous Lévy pro-
cess L = (L1, . . . , Ld) on B with Li = (Lit)t∈[0,T ∗] for every i ∈ {1, . . . , d}.
This means that L is an F-adapted process with independent increments and
absolutely continuous characteristics (abbreviated as PIIAC, see Jacod and
Shiryaev (2003)). This type of stochastic processes is also known as additive
processes (with absolutely continuous characteristics) (see Sato (1999)). We
emphasise that L is a d-dimensional semimartingale.
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Figure 1. Left panel: Evolution of the spreads between EU-
RIBOR and EONIA OIS rates for different tenors. Right panel:
Divergence of FRA rate and forward rate.

Without loss of generality we can assume that the paths of each component
of L are càdlàg. We also postulate that each component Li starts in zero. The
law of Lt is determined by its characteristic function

E[ei〈u,Lt〉] = exp

( t∫
0

[
i〈u, bs(h)〉 − 1

2
〈u, csu〉

+

∫
Rd

(
ei〈u,x〉 − 1− i〈u, h(x)〉

)
Fs(dx)

]
ds

)
(u ∈ Rd).

(1.1)

Here, h is a truncation function, where usually one takes h(x) = x · 1{|x|≤1},

bs(h) = (b1s(h), . . . , bds(h)) : [0, T ∗] → Rd, cs = (cijs )i,j≤d : [0, T ∗] → Rd×d, a
symmetric nonnegative-definite d×d-matrix and Fs is a Lévy measure for every
s ∈ [0, T ∗], i.e. a nonnegative measure on (Rd,B(Rd)) that integrates (|x|2 ∧ 1)
and satisfies Fs({0}) = 0. We denote by 〈·, ·〉 the Euclidean scalar product on
Rd and |·| is the corresponding norm. The scalar product on Rd is extended

to complex numbers by setting 〈w, z〉 :=
∑d

j=1wjzj for every w, z ∈ Cd. Thus,

〈·, ·〉 is not the Hermitian scalar product here. We further assume that

T ∗∫
0

[
|bs(h)|+ ‖cs‖+

∫
Rd

(|x|2 ∧ 1)Fs(dx)
]
ds <∞,

where ‖·‖ denotes any norm on the set of d×d-matrices. The triplet (b, c, F ) =
(bs, cs, Fs)s∈[0,T ∗] represents the local characteristics of L. We also make the
following standing assumption on the exponential moments.
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Figure 2. Historical evolution of the bootstrapped tenor-
dependent FRA curves from market data.
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Assumption (EM). There exist constants M, ε > 0 such that

T ∗∫
0

∫
|x|>1

exp〈u, x〉Ft(dx) dt <∞,

for every u ∈ [−(1 + ε)M, (1 + ε)M ]d. In particular, we assume without loss of
generality that

∫
|x|>1 exp〈u, x〉Ft(dx) <∞, for all t ∈ [0, T ∗].

Assumption (EM) is equivalent to E[exp〈u, Lt〉] < ∞ for all t ∈ [0, T ∗] and
u ∈ [−(1 + ε)M, (1 + ε)M ]d. We will consider interest rate models with under-
lying processes that are exponentials of stochastic integrals with respect to L.
These underlying processes have to be martingales under the risk-neutral mea-
sure. Therefore, a priori they have to have finite expectations which is exactly
guaranteed by assumption (EM). An immediate consequence of (EM) is that
the random variable Lt has finite expectation. Therefore, the representation
(1.1) simplifies and can be written as

E[ei〈u,Lt〉] = exp

( t∫
0

[
i〈u, bs〉 −

1

2
〈u, csu〉

+

∫
Rd

(
ei〈u,x〉 − 1− i〈u, x〉

)
Fs(dx)

]
ds

)
. (1.2)

We emphasise that the characteristic b is now different from the one in (1.1).
We will always work with the local characteristics (b, c, F ) that appear in (1.2).
Another implication of assumption (EM) is that the process L is a special
semimartingale. Thus, its canonical representation is given by the simple form

Lt =

t∫
0

bsds+

t∫
0

√
csdWs +

t∫
0

∫
Rd

x(µL − ν)(ds, dx) (1.3)

(see Jacod and Shiryaev (2003, Corollary II.2.38)), where W = (Wt)t∈[0,T ∗]

is a standard d-dimensional Brownian motion,
√
cs is a measurable version

of the square root of cs, and µL is the random measure of jumps of L with
compensator ν(ds, dx) = Fs(dx)ds. Obviously, the integrals in (1.3) should be
understood componentwise. We stress that assumption (EM) is valid for all
processes of interest in implementing the model. In particular (EM) holds for
processes that are generated by generalised hyperbolic distributions. The (ex-
tended) cumulant process associated with the process L under the probability
measure P is denoted by θs and given by

θs(z) = 〈z, bs〉+
1

2
〈z, csz〉+

∫
Rd

(
e〈z,x〉 − 1− 〈z, x〉

)
Fs(dx)

for every z ∈ Cd where this function is defined which requires that Re(z) ∈
[−(1 + ε)M, (1 + ε)M ]d. A detailed analysis of the cumulant process for semi-
martingales is given by Kallsen and Shiryaev (2002). Note that if L is a (ho-
mogeneous) Lévy process, i.e. if the increments of L are stationary, the triplet
(bs, cs, Fs) and thus also θs do not depend on s. In this case, we write θ for
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short. It then equals the cumulant (also called log moment generating function)
of L1.

2. Multiple curve Lévy forward price model

In this section we apply the forward price process approach to develop an
arbitrage-free multiple curve model. The relevant quantities in the model are
the discretely compounded forward reference rates denoted by Ld and the cor-
responding forward price processes F d as well as the discretely compounded
risky forward rates Li which correspond to various tenor lengths indexed by i
in the sequel. The forward price processes are modelled according to the (single

curve) forward price approach of Eberlein and Özkan (2005) whereas the risky
forward rates are modelled by using a suitable extension of the forward price
approach via their multiplicative spreads.

As shown in Section 2.1 of Fontana, Grbac, Gümbel, and Schmidt (2018)
a multiple curve model is free of arbitrage if and only if there exists a risk-
neutral measure Q such that the discounted price processes of the relevant
multiple curve assets are local martingales. In their paper these assets are
identified to be the OIS zero-coupon bonds bootstrapped from the OIS swap
rates and the forward rate agreements (FRAs) of various tenors, cf. Definition
2.3 therein. The forward rates Li modelled in our paper correspond exactly to
the FRA rates and the zero-coupon bonds Bd defined below correspond to the
OIS zero-coupon bonds. Moreover, as in the current paper we deal with forward
prices, the natural measures to be used are the forward martingale measures
of different maturities (denoted by P d

Tk
) using bonds as numéraires instead

of the risk-neutral measure Q which uses the bank account as its numéraire.
The absence of arbitrage is thus characterized by suitable (local) martingale
conditions under the forward martingale measures, which are stated in this
section. We refer to Proposition 4.3 in Fontana et al. (2018) for the equivalence
between the characterizations of absence of arbitrage under the risk-neutral
measure and under the forward martingale measures.

2.1. Basic curve. Let T := {T0, . . . , Tn} denote an arbitrary discrete tenor
structure with n ∈ N and 0 ≤ T0 < T1 < · · · < Tn = T ∗. For any k ∈ {1, . . . , n}
we set δk := δ(Tk−1, Tk) to be the year fraction between dates Tk−1 and Tk
according to a specified day count convention (see Brigo and Mercurio, 2006,
Section I.1.2). We assume that the tenor structure is equidistant and we may
therefore specify δ := δk for every k ∈ {1, . . . , n}. Thus, the considered discrete
tenor structure T is unambiguously related to tenor δ.

We denote by Bd
t (T ) the price at time t of a zero-coupon bond maturing at

T . For each pair of consecutive dates Tk−1, Tk ∈ T with k ∈ {1, . . . , n}, we
define the discretely compounded forward reference rate at time t ≤ Tk−1 by

Ld(t, Tk−1, Tk) :=
1

δ

(
Bd
t (Tk−1)

Bd
t (Tk)

− 1

)
(2.1)

and the forward price corresponding to this reference rate is specified as

F d(t, Tk−1, Tk) :=
Bd
t (Tk−1)

Bd
t (Tk)

.
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Obviously, we have the relation

F d(t, Tk−1, Tk) = 1 + δLd(t, Tk−1, Tk). (2.2)

The interest rate curve corresponding to the reference rate Ld will be referred
to as basic or discount curve. Hereafter, the aim is to develop a tractable model
for the forward price process F d(·, Tk−1, Tk). Note that modelling the forward
price processes means specifying the dynamics of ratios of successive bond
prices.

Let LT
∗

= (L1,T ∗ , . . . , Ld,T
∗
) be a time-inhomogeneous Lévy process defined

on the stochastic basis (Ω,FT ∗ ,F = (Ft)t∈[0,T ∗], P
d
T ∗) with local characteristics

(0, ct, F
T ∗
t ) and satisfying the exponential moment condition (EM). This pro-

cess will be used as driving process of the model. We interpret the probability
measure P d

T ∗ as the forward martingale measure associated with the basic curve
and settlement date T ∗. The following two ingredients are needed to develop
the model for the basic curve.

(DFP.1) The initial term structure of bond prices Bd
0 defined by

Bd
0 :

{
[0, T ∗]→ (0,∞)

T 7→ Bd
0(T )

is given.

The bootstrapping method considered by Ametrano and Bianchetti (2013) can
be used to construct the initial term structure. One typically takes the quotes
of OIS rates to derive this curve. The starting values of the forward processes
are then obtained by the relation

F d(0, Tk−1, Tk) =
Bd

0(Tk−1)

Bd
0(Tk)

, for every k ∈ {1, . . . , n}. (2.3)

(DFP.2) For any maturity Tk−1 ∈ T with k ∈ {1, . . . , n} there is a bounded,
continuous and deterministic function λd(·, Tk−1) given by

λd(·, Tk−1) :

{
[0, T ∗]→ Rd+
t 7→ λd(t, Tk−1) = (λd,1(t, Tk−1), . . . , λd,d(t, Tk−1))

which represents the volatility of the forward process F d(·, Tk−1, Tk).
We require that
n∑
k=1

λd,j(t, Tk−1) ≤M, for all t ∈ [0, T ∗] and j ∈ {1, . . . , d},

whereM is the constant from assumption (EM), and we set λd(t, Tk−1) =
(0, . . . , 0) for t > Tk−1.

To construct the forward price processes corresponding to the basic curve we
proceed by backward induction as in Eberlein and Özkan (2005). To this end
we start with the most distant tenor period [Tn−1, Tn] and, for any t ≤ Tn−1,
we postulate that

F d(t, Tn−1, Tn)

F d(0, Tn−1, Tn)
= exp

 t∫
0

λd(s, Tn−1)dLTns +

t∫
0

bd(s, Tn−1, Tn)ds


(2.4)
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where the time-inhomogeneous Lévy process LTn = LT
∗

can be written in
terms of its canonical representation

LT
∗

t =

t∫
0

√
csdW

T ∗
s +

t∫
0

∫
Rd

x(µL − νT ∗)(ds, dx)

with d-dimensional P d
T ∗-standard Brownian motion W T ∗ := (W T ∗

t )t∈[0,T ∗] and

integer-valued random measure µL associated to the jumps of LT
∗

having P d
T ∗-

compensator νT
∗
(dt, dx) := F T

∗
t (dx)dt.

Now the drift term bd(·, Tn−1, Tn) is specified in such a way that the forward
price process F d(·, Tn−1, Tn) becomes a P d

T ∗-(local) martingale. According to
the discussion at the beginning of the section this is needed to ensure that the
model is free of arbitrage. The martingality is achieved by setting

bd(t, Tn−1, Tn) =− 1

2
〈λd(t, Tn−1), ctλ

d(t, Tn−1)T〉

−
∫
Rd

(
e〈λ

d(t,Tn−1),x〉 − 1− 〈λd(t, Tn−1), x〉
)
F T

∗
t (dx).

(2.5)

Applying Jacod and Shiryaev (2003, Theorem II.8.10), one can express the
forward price process presented by an ordinary exponential (2.4) as a stochastic
exponential

F d(t, Tn−1, Tn) = F d(0, Tn−1, Tn)Et(H
d(·, Tn−1, Tn)), (2.6)

where the process Hd(·, Tn−1, Tn) given by the stochastic logarithm

Hd(·, Tn−1, Tn) = L

exp

 t∫
0

λd(s, Tn−1)dLTns +

t∫
0

bd(s, Tn−1, Tn)ds


is of the form

Hd(t, Tn−1, Tn) =

t∫
0

λd(s, Tn−1)
√
csdW

T ∗
s

+

t∫
0

∫
Rd

(
e〈λ

d(s,Tn−1),x〉 − 1
)

(µL − νT ∗)(ds, dx). (2.7)

Observe that by Jacod and Shiryaev (2003, Theorem I.4.61) and Eberlein,
Jacod, and Raible (2005) the forward price process as given in (2.6) is a true
P d
T ∗- martingale.
Hence, we can specify the forward martingale measure associated with date

Tn−1 defined on (Ω,FTn−1) and denoted by P d
Tn−1

by setting

dP d
Tn−1

dP d
Tn

:=
F d(Tn−1, Tn−1, Tn)

F d(0, Tn−1, Tn)
= ETn−1(Hd(·, Tn−1, Tn)).
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Restricted to the σ-field Ft with t ≤ Tn−1, we have

dP d
Tn−1

∣∣
Ft

dP d
Tn

∣∣
Ft

=
F d(t, Tn−1, Tn)

F d(0, Tn−1, Tn)
= Et(H

d(·, Tn−1, Tn)).

Applying Girsanov’s theorem for semimartingales (see Jacod and Shiryaev
(2003, Theorem III.3.24)) we can identify the predictable processes β and Y
that describe the change of measure from equation (2.7). One obtains

β(t) = λd(t, Tn−1) and Y (t, x) = exp
(
〈λd(t, Tn−1), x〉

)
.

In particular, these processes determine the characteristics of the semimartin-
gale LT

∗
relative to P d

Tn−1
from its semimartingale characteristics relative to

P d
T ∗ . Since the characteristics remain deterministic we conclude that LT

∗
re-

mains a process with independent increments after the measure change.

According to Girsanov’s theorem the process W Tn−1 := (W
Tn−1

t )t∈[0,T ∗] de-
fined by

W
Tn−1

t := W T ∗
t −

t∫
0

√
csλ

d(s, Tn−1)Tds

is a d-dimensional standard Brownian motion under P d
Tn−1

and furthermore

νTn−1(dt, dx) := exp
(
〈λd(t, Tn−1), x〉

)
νT
∗
(dt, dx) = F

Tn−1

t (dx)dt

defines the P d
Tn−1

-compensator of µL, where we set

F
Tn−1

t (dx) := exp
(
〈λd(t, Tn−1), x〉

)
F T

∗
t (dx).

Proceeding backwards along the discrete tenor structure T , we get, for any
k ∈ {1, . . . , n} and 0 ≤ t ≤ Tk−1, all forward price processes in the form

F d(t, Tk−1, Tk)

F d(0, Tk−1, Tk)
= exp

( t∫
0

λd(s, Tk−1)dLTks +

t∫
0

bd(s, Tk−1, Tk)ds
)
,

where the process LTk = (LTkt )t∈[0,T ∗] is given by

LTkt =

t∫
0

√
csdW

Tk
s +

t∫
0

∫
Rd

x(µL − νTk)(ds, dx) (2.8)

and the drift bd(·, Tk−1, Tk) is of the form

bd(t, Tk−1, Tk) =− 1

2
〈λd(t, Tk−1), ctλ

d(t, Tk−1)T〉

−
∫
Rd

(
e〈λ

d(t,Tk−1),x〉 − 1− 〈λd(t, Tk−1), x〉
)
F Tkt (dx).

In order to ensure the absence of arbitrage, the drift is specified in such a
way that F d(·, Tk−1, Tk) is a P d

Tk
-martingale where in the respective previous
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step we have defined the forward measure P d
Tk

on (Ω,FT ∗ , (Ft)t∈[0,Tk]) by the
density

dP d
Tk

dP d
Tk+1

∣∣∣
Ft

:=
dP d

Tk

∣∣
Ft

dP d
Tk+1

∣∣
Ft

:=
F d(t, Tk, Tk+1)

F d(0, Tk, Tk+1)

which is related to P d
Tl

with l ∈ {k + 1, . . . , n} by

dP d
Tk

dP d
Tl

∣∣∣
Ft

=

l−1∏
j=k

F d(t, Tj , Tj+1)

F d(0, Tj , Tj+1)
=
Bd

0(Tl)

Bd
0(Tk)

l−1∏
j=k

F d(t, Tj , Tj+1).

Moreover, we get the relations

W Tk
t := W T ∗

t −
t∫

0

√
cs

n−1∑
j=k

λd(s, Tj)
Tds

and for the P d
Tk

-compensator νTk of µL

νTk(dt, dx) := exp

n−1∑
j=k

〈λd(t, Tj), x〉

 νT
∗
(dt, dx) = F Tkt (dx)dt,

where we have set F Tkt (dx) := exp
(∑n−1

j=k 〈λd(t, Tj), x〉
)
F T

∗
t (dx). Note that the

processes LTk are time-inhomogeneous Lévy processes with local characteristics

(0, ct, F
Tk
t ) under P d

Tk
that fulfil (EM) due to assumption (DFP.2). Formula

(2.8) gives the canonical representation with respect to P d
Tk

.

To end this subsection, we derive for any T, S ∈ T = {T0, . . . , Tn} with T ≤
S, a general representation for the relationship between the driving processes
LT and LS . Let us denote

J S
T := {h ∈ N| Th ∈ T and T < Th ≤ S} (2.9)

and define

w(s, T, S) :=− cs
∑
h∈J S

T

λd(s, Th−1)T

+

∫
Rd

x
[

exp
(
−
∑
h∈J S

T

〈λd(s, Th−1), x〉
)
− 1
]
F Ts (dx)
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for any s ≤ T . Note that w(s, T, S) ≡ 0 when T = S. By an application of
Girsanov’s theorem for semimartingales, we obtain

LT =−
·∫

0

cs
∑
h∈J S

T

λd(s, Th−1)Tds

+

·∫
0

∫
Rd

x
[

exp
(
−
∑
h∈J S

T

〈λd(s, Th−1), x〉
)
− 1
]
F Ts (dx)ds

+

·∫
0

√
csdW

S
s +

·∫
0

∫
Rd

x(µL − νS)(ds, dx)

=

·∫
0

w(s, T, S)ds+ LS . (2.10)

We emphasize that all driving processes LT remain time-inhomogeneous
Lévy processes under the corresponding forward measures since they differ
only by deterministic drift terms.

2.2. Risky tenor-dependent curves. Let m ∈ N be the number of curves.
For every i ∈ {1, . . . ,m}, we consider an equidistant discrete tenor structure
T i := {T i0, . . . , T ini

} corresponding to curve i, where ni, n ∈ N, T i ⊂ T =

{T0, . . . , Tn} and 0 ≤ T i0 = T0 < T i1 < · · · < T ini
= Tn = T ∗. As before, the year

fractions between the dates T ik−1 and T ik are denoted by δi := δi(T ik−1, T
i
k) for

all k ∈ {1, . . . , ni}. Furthermore, we postulate that T m ⊂ · · · ⊂ T 1 ⊂ T .
We consider the time-inhomogeneous Lévy process LT

∗
on (Ω,FT ∗ ,F =

(Ft)t∈[0,T ∗], P
d
T ∗) and probability measures P d

T1
, . . . , P d

Tn−1
from the last sub-

section. Observe that we have

F d(t, T ik−1, T
i
k) =

∏
j∈J i

k

F d(t, Tj−1, Tj), (2.11)

where J i
k is a short form of J

T i
k

T i
k−1

that is defined in (2.9).

For each i ∈ {1, . . . ,m} and k ∈ {1, . . . , ni}, let Li(T ik−1, T
i
k) denote the

T ik−1-spot Libor or Euribor rate corresponding to tenor δi. Let us assume that

Li(T ik−1, T
i
k) is an FT i

k−1
-measurable random variable. Then, we define

Li(t, T ik−1, T
i
k) := Ed

T i
k

[
Li(T ik−1, T

i
k)|Ft

]
(t ≤ T ik−1) (2.12)

where Ed
T i
k
[·] denotes the expectation under P d

T i
k
. Notice that this definition

corresponds to the valuation formula of the market rate of a (textbook) forward
rate agreement (see Mercurio, 2009) and we have

Li(T ik−1, T
i
k−1, T

i
k) = Li(T ik−1, T

i
k).

Furthermore, Li(·, T ik−1, T
i
k) is, by definition, a P d

T i
k
-martingale. This corre-

sponds to the absence of arbitrage for the FRA contracts in the multiple curve
market (cf. the discussion at the beginning of the section) and therefore com-
pletes the no-arbitrage requirements for the model. We refer to Li(t, T ik−1, T

i
k)
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as the discretely compounded forward rate corresponding to δi. These rates are
the key quantities of the model.

Lemma 2.1. An explicit representation of the forward price F d(t, T ik−1, T
i
k) in

tenor structure T i is given by

F d(t, T ik−1, T
i
k) = F d(0, T ik−1, T

i
k) exp

( t∫
0

∑
j∈J i

k

λd(s, Tj−1)dL
T i
k
s

+

t∫
0

∑
j∈J i

k

[
〈λd(s, Tj−1), w(s, Tj , T

i
k)〉+ bd(s, Tj−1, Tj)

]
ds

)

and F d(·, T ik−1, T
i
k) is a P d

T i
k
-martingale.

Proof. Considering representation (2.11) and applying equation (2.10), we ob-
tain this explicit formula for F d(t, T ik−1, T

i
k). Applying Jacod and Shiryaev

(2003, Proposition III.3.8) successively to the product in (2.11), the martin-
gale property is proved. �

Instead of modelling the dynamics of the forward rates Li directly, we specify
the evolution by modelling the forward spreads relative to Ld and F d. Typically,
these spreads can be considered in two ways, namely as

(1) additive forward spreads

si(t, T ik−1, T
i
k) := Li(t, T ik−1, T

i
k)− Ld(t, T ik−1, T

i
k)

or
(2) multiplicative forward spreads

Si(t, T ik−1, T
i
k) :=

1 + δiLi(t, T ik−1, T
i
k)

1 + δiLd(t, T ik−1, T
i
k)

=
1 + δiLi(t, T ik−1, T

i
k)

F d(t, T ik−1, T
i
k)

.

The natural choice in the forward price framework are multiplicative forward
spreads. Following this approach we can easily ensure the observed monotonic-
ity between each risky curve and the basic one by modelling the multiplicative
forward spreads as quantities which are larger than one.

We have

1 + δiLi(·, T ik−1, T
i
k) = Si(·, T ik−1, T

i
k)F

d(·, T ik−1, T
i
k). (2.13)

Lemma 2.2. For each pair of dates T ik−1, T
i
k ∈ T i with i ∈ {1, . . . ,m} and

k ∈ {1, . . . , ni}, the process Li(·, T ik−1, T
i
k) follows a P d

T i
k
-martingale if and only

if the multiplicative forward spread Si(·, T ik−1, T
i
k) is a P d

T i
k−1

-martingale.

Proof. Proposition III.3.8 in Jacod and Shiryaev (2003) can be directly applied
together with

dP d
T i
k−1

dP d
T i
k

∣∣∣
Ft

=
F d(t, T ik−1, T

i
k)

F d(0, T ik−1, T
i
k)
.

�
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Consequently, recalling that Li(·, T ik−1, T
i
k) by definition (2.12) is a P d

T i
k
-

martingale, the evolution of Si(·, T ik−1, T
i
k) has to be specified in such a way

that it is a P d
T i
k−1

-martingale.

For the starting values of the forward rate, we set

Li(0, T ik−1, T
i
k) = Ed

T i
k

[
Li(T ik−1, T

i
k)
]

= FRA(0, T ik−1, T
i
k)

where FRA(0, T ik−1, T
i
k) denotes the current market rate of a textbook forward

rate agreement with respect to dates T ik−1 and T ik. The initial values of the
forward spreads are then given by

Si(0, T ik−1, T
i
k) =

1 + δiLi(0, T ik−1, T
i
k)

F d(0, T ik−1, T
i
k)

. (2.14)

As can be seen from formulas (2.3) and (2.11) the denominator F d(0, T ik−1, T
i
k)

is given by ratios of successive zero-coupon bond prices Bd
0(·). As far as the

numerator is concerned note that the δi-forward rates can be written as

Li(0, T ik−1, T
i
k) =

1

δi

(
Bi

0(T ik−1)

Bi
0(T ik)

− 1

)
where Bi

0(T ) denotes fictitious (non-traded) risky bond prices with time-to-
maturity T corresponding to tenor δi. The derivation of Bd

0(·) and Bi
0(·) based

on data from tenor specific deposits, forward rate agreements and swaps will
be explained in Section 4.1.

Below, we shall develop two modelling approaches offering different levels of
tractability in exchange for the properties which one wants to achieve in the
model.

2.2.1. Model (a). To get a maximum of tractability we allow in the first ap-
proach that the value of the multiplicative forward spreads may become less
than one which is equivalent to additive spreads being negative. To this end,
we model Si(·, T ik−1, T

i
k) below as an ordinary exponential.

We start with the following input which can be interpreted as the volatility
of Si(·, T ik−1, T

i
k).

(MFP.a) For each i ∈ {1, . . . ,m} and each maturity T ik−1 ∈ T i with k ∈
{1, . . . , ni}, there is a bounded, continuous and deterministic function
γi(·, T ik−1) given by

γi(·, T ik−1) :

{
[0, T ∗]→ Rd+
t 7→ γi(t, T ik−1) = (γi,1(t, T ik−1), . . . , γi,d(t, T ik−1))

where we require

ni∑
k=1

(
λd,j(t, T ik−1) + γi,j(t, T ik−1)

)
≤M, for all t ∈ [0, T ∗] and j ∈ {1, . . . , d}.

Again the constantM is from assumption (EM) and we set γi(t, T ik−1) =

(0, . . . , 0) for t > T ik−1.
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We postulate for any i ∈ {1, . . . ,m} and each pair of dates T ik−1, T
i
k that

Si(t, T ik−1, T
i
k)

Si(0, T ik−1, T
i
k)

= exp
( t∫

0

γi(s, T ik−1)dL
T i
k−1
s +

t∫
0

bi(s, T ik−1)ds
)

where LT
i
k−1 is defined in Subsection 2.1 and the drift term bi(·, T ik−1) is chosen

such that Si(·, T ik−1, T
i
k) is a P d

T i
k−1

-martingale, namely

bi(t, T ik−1) =− 1

2
〈γi(t, T ik−1), ctγ

i(t, T ik−1)T〉

−
∫
Rd

(
e〈γ

i(t,T i
k−1),x〉 − 1− 〈γi(t, T ik−1), x〉

)
F
T i
k−1

t (dx).

By Lemma 2.1, we have

F d(t, T ik−1, T
i
k)

F d(0, T ik−1, T
i
k)

= exp

( t∫
0

∑
j∈J i

k

λd(s, Tj−1)dL
T i
k
s

+

t∫
0

∑
j∈J i

k

[
〈λd(s, Tj−1), w(s, Tj , T

i
k)〉+ bd(s, Tj−1, Tj)

]
ds

)

and F d(·, T ik−1, T
i
k) is a P d

T i
k
-martingale. This forward price process represents

at the same time the density process for the following measure change, namely

dP d
T i
k−1

dP d
T i
k

∣∣∣
Ft

=
F d(t, T ik−1, T

i
k)

F d(0, T ik−1, T
i
k)
.
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Using representation (2.13) and applying (2.10), we obtain the forward rate
Li(·, T ik−1, T

i
k) from

1 + δiLi(t, T ik−1, T
i
k) = Si(t, T ik−1, T

i
k)F

d(t, T ik−1, T
i
k)

=
(
1 + δiLi(0, T ik−1, T

i
k)
)

exp

( t∫
0

γi(s, T ik−1)dL
T i
k−1
s +

t∫
0

bi(s, T ik−1)ds

)

× exp

( t∫
0

∑
j∈J i

k

λd(s, Tj−1)dL
T i
k
s

+

t∫
0

∑
j∈J i

k

[
〈λd(s, Tj−1), w(s, Tj , T

i
k)〉+ bd(s, Tj−1, Tj)

]
ds

)

=
(
1 + δiLi(0, T ik−1, T

i
k)
)

exp

( t∫
0

[ ∑
j∈J i

k

λd(s, Tj−1) + γi(s, T ik−1)
]
dL

T i
k
s

+

t∫
0

[
bi(s, T ik−1) + 〈γi(s, T ik−1), w(s, T ik−1, T

i
k)〉

+
∑
j∈J i

k

[
〈λd(s, Tj−1), w(s, Tj , T

i
k)〉+ bd(s, Tj−1, Tj)

]]
ds

)
.

Remark. In this model, the forward reference rates as well as the δi-forward
rates can become negative in accordance with the current market situation. In
particular, the initial rates can already be negative. Note that starting from
positive (negative) initial rates does not mean that the rates remain positive
(negative) over time.

2.2.2. Model (b). Now we will specify a model which ensures that the multi-
plicative forward spreads are larger than one if the initial spreads are already
larger than one. This is equivalent to the positivity of the additive spreads.
We mention already at this point that the pricing of derivatives becomes only
slightly less tractable than in model (a).

As in model (a) we need the volatility functions to satisfy the following
conditions

(MFP.b) For each i ∈ {1, . . . ,m} and each maturity T ik−1 ∈ T i with k ∈
{1, . . . , ni}, there is a bounded, continuous and deterministic function
γ̄i(·, T ik−1) given by

γ̄i(·, T ik−1) :

{
[0, T ∗]→ Rd+
t 7→ γ̄i(t, T ik−1) = (γ̄i,1(t, T ik−1), . . . , γ̄i,d(t, T ik−1))

where we require
ni∑
k=1

(
λd,j(t, T ik−1) + γ̄i,j(t, T ik−1)

)
≤M, for all t ∈ [0, T ∗] and j ∈ {1, . . . , d}.

We set γ̄i(t, T ik−1) = (0, . . . , 0) for t > T ik−1.
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For any i ∈ {1, . . . ,m} and each pair of dates T ik−1, T
i
k we assume that

Si(t, T ik−1, T
i
k)− 1

Si(0, T ik−1, T
i
k)− 1

= exp
( t∫

0

γ̄i(s, T ik−1)dL
T i
k−1
s +

t∫
0

b̄i(s, T ik−1)ds
)
,

(2.15)

where

b̄i(t, T ik−1) =− 1

2
〈γ̄i(t, T ik−1), ctγ̄

i(t, T ik−1)T〉

−
∫
Rd

(
e〈γ̄

i(t,T i
k−1),x〉 − 1− 〈γ̄i(t, T ik−1), x〉

)
F
T i
k−1

t (dx).

(2.16)

Note that

Si(t, T ik−1, T
i
k) =

1 + (Si(0, T ik−1, T
i
k)− 1) exp

( t∫
0

γ̄i(s, T ik−1)dL
T i
k−1
s +

t∫
0

b̄i(s, T ik−1)ds
)

and one sees that Si(·, T ik−1, T
i
k) is a P d

T i
k−1

-martingale by the choice of the

exponential compensator defined via (2.16).
In an analogous way as in the previous subsection, we get a representation

for 1 + δiLi(t, T ik−1, T
i
k), namely

1 + δiLi(t, T ik−1, T
i
k) = Dd(t, T ik−1, T

i
k) exp

( t∫
0

∑
j∈J i

k

λd(s, Tj−1)dL
T i
k
s

)

+Di(t, T ik−1, T
i
k) exp

( t∫
0

[ ∑
j∈J i

k

λd(s, Tj−1) + γ̄i(s, T ik−1)
]
dL

T i
k
s

)
,

where we set

Dd(t, T ik−1, T
i
k) :=F d(0, T ik−1, T

i
k) exp

( t∫
0

∑
j∈J i

k

[
bd(s, Tj−1, Tj)

+ 〈λd(s, Tj−1), w(s, Tj , T
i
k)〉
]
ds

)
and

Di(t, T ik−1, T
i
k) := F d(0, T ik−1, T

i
k)(S

i(0, T ik−1, T
i
k)− 1) exp

( t∫
0

di(s, T ik−1, T
i
k)ds

)
with

di(s, T ik−1, T
i
k) :=

∑
j∈J i

k

[
〈λd(s, Tj−1), w(s, Tj , T

i
k)〉+ bd(s, Tj−1, Tj)

]
+ b̄i(s, T ik−1) + 〈γ̄i(s, T ik−1), w(s, T ik−1, T

i
k)〉.
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Note that for the initial values we have the relation

F d(0, T ik−1, T
i
k)(S

i(0, T ik−1, T
i
k)− 1) =

1 + δiLi(0, T ik−1, T
i
k)−

∏
j∈J i

k

[1 + δLd(0, Tj−1, Tj)].

3. Pricing formula for caps

Let l ∈ {1, . . . ,m}. The time-t price of a caplet with tenor δl, maturity
T ∈ T l and strike K, for t ≤ T and T + δl = Tk ∈ T l for some k ∈ {1, . . . , n},
is given by

Cpl(t, T, δl,K) := δlBd
t (Tk)Ed

Tk

[ (
Ll(T, Tk)−K

)+ ∣∣Ft

]
= Bd

t (Tk)Ed
Tk

[ (
1 + δlLl(T, T, Tk)− (1 + δlK)

)+ ∣∣Ft

]
= Bd

t (Tk)Ed
Tk

[(
F d(T, T, Tk)S

l(T, T, Tk)− K̃ l
)+∣∣Ft

]
= Bd

t (Tk)(Z
k
t )−1Ed

T ∗
[
ZkT

(
F d(T, T, Tk)S

l(T, T, Tk)− K̃ l
)+∣∣Ft

]
(3.1)

where K̃ l := 1 + δlK and

ZkT :=


∏
j∈J T∗

Tk

F d(T,Tj−1,Tj)

F d(0,Tj−1,Tj)
, Tk < T ∗

1, Tk = T ∗.

We make the following

Assumption (VOL). For every l ∈ {1, . . . ,m} and all T ∈ [0, T ∗], the volatil-
ity functions are decomposable in the form

λd(t, T ) = λd1(T )λ(t)

γl(t, T ) = γl1(T )λ(t)

and

γ̄l(t, T ) = γ̄l1(T )λ(t)

where λd1, γl1 and γ̄l1 : [0, T ∗]→ R+ and λ : [0, T ∗]→ Rd are deterministic and
continuous functions. The vector λ(t) is bounded in the sense of

|λk(t)| ≤M ′

for every t ∈ [0, T ∗], k ∈ {1, . . . , d} and a constant M
′
< M . Furthermore, we

assume that

Λl(T, Tn) :=
∑

j∈J Tn
T

λd1(Tj−1) + γl1(T ) < R

for R = 1 + M−M ′

M ′
and all T ∈ T . In the same way we assume

Λ̄l(T, Tn) :=
∑

j∈J Tn
T

λd1(Tj−1) + γ̄l1(T ) < R

for all T ∈ T .
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Let us define the random variable XT :=
∫ T

0 λ(s)dLT
∗

s and consider its ex-

tended characteristic function ϕXT
under P d

T ∗ which can be expressed as

ϕXT
(z) = exp

 T∫
0

θs (izλ(s)) ds

 . (3.2)

For details of this representation compare Eberlein and Raible (1999, Lemma
3.1).

Recall that the extended cumulant of LT
∗

with respect to P d
T ∗ is given by

θt(z) =
1

2
〈z, ctz〉+

∫
Rd

(
e〈z,x〉 − 1− 〈z, x〉

)
F T

∗
t (dx)

for any z ∈ C where it is defined.
We will apply the Fourier based valuation method in order to make the

formula for the time-0 price of a caplet numerically accessible. We write the

right-hand side of (3.1) for t = 0 as an expected value of a payoff function fk,lK
applied to XT . Since Zk0 ≡ 1 we obtain

Cpl(0, T, δl,K) = Bd
0(Tk)Ed

T ∗
[
fk,lK (XT )

]
. (3.3)

The explicit form of the function fk,lK will be derived with the help of (2.10),
the respective form of the expression

1 + δlLl(T, T, Tk) = F d(T, T, Tk)S
l(T, T, Tk)

and the density (for k ≤ n− 1)

ZkT = exp

( T∫
0

∑
j∈J T∗

Tk

λd(s, Tj−1)dLT
∗

s +

T∫
0

[ ∑
j∈J T∗

Tk

bd(s, Tj−1, Tj)

+ 1{k≤n−2}
∑

j∈J
Tn−1
Tk

〈λd(s, Tj−1), w(s, Tj , T
∗)〉
]
ds

)
.

3.1. Numerics. In this and the following subsection we derive numerically
efficient forms of the caplet price formula (3.3) for the two model variants.

3.1.1. Model (a). For any k ∈ {1, . . . , n− 1}, we have

fk,lK (x) :=

(
D̄l(T, T, Tk) exp(

[ ∑
j∈J Tn

T

λd1(Tj−1) + γl1(T )
]
x)

− K̃ lAd(T, Tk) exp
( ∑
j∈J Tn

Tk

λd1(Tj−1)x
))+

and

fn,lK (x) :=

(
D̂l(T, T, Tn) exp(

[ ∑
j∈J Tn

T

λd1(Tj−1) + γl1(T )
]
x)− K̃ l

)+
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where we set

D̄l(T, T, Tk) := D̂l(T, T, Tk)A
d(T, Tk)Ĉ

l(T, Tk)

with

D̂l(T, T, Tk) :=
(

1 + δlLl(0, T, Tk)
)

exp

( T∫
0

[
bl(s, T ) + 〈γl(s, T ), w(s, T, Tk)〉

+
∑

j∈J
Tk
T

[
〈λd(s, Tj−1), w(s, Tj , Tk)〉+ bd(s, Tj−1, Tj)

]]
ds

)

Ad(T, Tk) := exp

( T∫
0

[ ∑
j∈J T∗

Tk

bd(s, Tj−1, Tj)

+ 1{k≤n−2}
∑

j∈J
Tn−1
Tk

〈λd(s, Tj−1), w(s, Tj , T
∗)〉
]
ds

)

and

Ĉ l(T, Tk) := exp

( T∫
0

〈
∑

j∈J
Tk
T

λd(s, Tj−1) + γl(s, T ), w(s, Tk, T
∗)〉ds

)
.

The dampened payoff function is defined by

gk,lK (x) := e−Rxfk,lK (x)

for any x ∈ R and some R ∈ R.

Proposition 3.1. The time-0 price of the caplet is given by

Cpl(0, T, δl,K) =
Bd

0(Tk)

π

∞∫
0

Re
(
ϕXT

(u− iR)f̂k,lK (iR− u)
)
du (3.4)

where f̂k,lK denotes the extended Fourier transform of fk,lK admitting the repre-
sentation

f̂k,lK (z) = eizxk
[
− D̄l(T, T, Tk)

e

[∑
j∈JTn

T

λd1(Tj−1)+γl1(T )
]
xk∑

j∈J Tn
T
λd1(Tj−1) + γl1(T ) + iz

+ K̃ lAd(T, Tk)
e

∑
j∈JTn

Tk

λd1(Tj−1)xk∑
j∈J Tn

Tk

λd1(Tj−1) + iz

]
for any k ∈ {1, . . . , n− 1} and

f̂n,lK (z) = eizxn
[
− D̂l(T, T, Tn)

e

[∑
j∈JTn

T

λd1(Tj−1)+γl1(T )
]
xn∑

j∈J Tn
T
λd1(Tj−1) + γl1(T ) + iz

+
K̃ l

iz

]
,
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where z ∈ C with∑
j∈J Tn

T

λd1(Tj−1) + γl1(T ) < Im(z)

for all T ∈ T , xk is the unique root of the function

hk,l(x) :=D̂l(T, T, Tk)Ĉ
l(T, Tk) exp

([ ∑
j∈J

Tk
T

λd1(Tj−1) + γl1(T )
]
x
)
− K̃ l,

xn is the unique root of the function

hn,l(x) :=D̂l(T, T, Tn) exp
([ ∑

j∈J Tn
T

λd1(Tj−1) + γl1(T )
]
x
)
− K̃ l

and R = 1 + M−M ′

M ′
.

Proof. The explicit form of the Fourier transforms f̂k,lK and f̂n,lK follows from a
simple integration exercise. In order to get the caplet formula we apply Theo-
rem 2.2 of Eberlein, Glau, and Papapantoleon (2010). Consequently, conditions

(C1) : gk,lK ∈ L1
bc(R), (C2) : MXT

(R) < ∞ and (C3) : ĝk,lK ∈ L1(R) of this
theorem have to be verified.

The functions hk,l are strictly increasing and continuous with varying sign
and therefore possess a unique root xk ∈ R for every k ∈ {1, . . . , n}. Using
assumption (EM), the explicit form of MXT

derived from (3.2) and the bound-

edness of λ one can find an R ∈ (0, 1 + M−M ′

M ′
] such that condition (C2) is

satisfied. We chose R = 1 + M−M ′

M ′
in assumption (VOL). Recall

Λl(T, Tn) < R

for all T ∈ T . The dampened functions gk,lK are obviously continuous and for
k ∈ {1, . . . , n− 1} bounded by

gk,lK (x) ≤ D̄l(T, T, Tk)e
(Λl(T,Tn)−R)xk .

Therefore these functions are also integrable. For k = n we have to replace
D̄l(T, T, Tk) by D̂l(T, T, Tn). To verify condition (C3), we use Lemma 2.5 of
Eberlein, Glau, and Papapantoleon (2010). Let us consider the Sobolev space

H1(R) := {g ∈ L2(R)|∂g exists and ∂g ∈ L2(R)}

where ∂g denotes the weak derivative of the function g. Due to this Lemma

it suffices to show that gk,lK ∈ H1(R), but this is clear because of the form of
the function and the upper bounds given above. Hence Theorem 2.2. in the
mentioned paper implies

Cpl(0, T, δl,K) =
Bd

0(Tk)

2π

∫
R

ϕXT
(u− iR)f̂k,lK (iR− u)du.

An obvious symmetry property of the integrand leads to representation (3.4).
�
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3.1.2. Model (b). For any k ∈ {1, . . . , n− 1}, we have

fk,lK (x) :=

(
D̃d(T, T, Tk) exp

( ∑
j∈J Tn

T

λd1(Tj−1)x
)

+ D̃l(T, T, Tk) exp
(

[
∑

j∈J Tn
T

λd1(Tj−1) + γ̄l1(T )]x
)

− K̃ lAd(T, Tk) exp
( ∑
j∈J Tn

Tk

λd1(Tj−1)x
))+

and

fn,lK (x) =

(
Dd(T, T, Tn) exp

( ∑
j∈J Tn

T

λd1(Tj−1)x
)

+Dl(T, T, Tn) exp
([ ∑

j∈J Tn
T

λd1(Tj−1) + γ̄l1(T )
]
x
)
− K̃ l

)+

,

where we set

D̃d(T, T, Tk) := Dd(T, T, Tk)A
d(T, Tk)C

d(T, Tk)

D̃l(T, T, Tk) := Dl(T, T, Tk)A
d(T, Tk)C

l(T, Tk)

with

Cd(T, Tk) := exp

( T∫
0

∑
j∈J

Tk
T

〈λd(s, Tj−1), w(s, Tk, T
∗)〉ds

)

and

C l(T, Tk) := exp

( T∫
0

〈
∑

j∈J
Tk
T

λd(s, Tj−1) + γ̄l(s, T ), w(s, Tk, T
∗)〉ds

)
.

Proposition 3.2. The time-0 price of the caplet is given by

Cpl(0, T, δl,K) =
Bd

0(Tk)

π

∞∫
0

Re
(
ϕXT

(u− iR)f̂k,lK (iR− u)
)
du (3.5)
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where f̂k,lK denotes the extended Fourier transform of fk,lK that admits the rep-
resentation

f̂k,lK (z) = eizxk
[
− D̃d(T, T, Tk)

e

∑
j∈JTn

T

λd1(Tj−1)xk∑
j∈J Tn

T
λd1(Tj−1) + iz

− D̃l(T, T, Tk)
e

[
∑

j∈JTn
T

λd1(Tj−1)+γ̄l1(T )]xk∑
j∈J Tn

T
λd1(Tj−1) + γ̄l1(T ) + iz

+ K̃ lAd(T, Tk)
e

∑
j∈JTn

Tk

λd1(Tj−1)xk∑
j∈J Tn

Tk

λd1(Tj−1) + iz

]
for any k ∈ {1, . . . , n− 1} and

f̂n,lK (z) = eizxn
[
−Dd(T, T, Tn)

e

∑
j∈JTn

T

λd1(Tj−1)xn∑
j∈J Tn

T
λd1(Tj−1) + iz

−Dl(T, T, Tn)
e

[
∑

j∈JTn
T

λd1(Tj−1)+γ̄l1(T )]xn∑
j∈J Tn

T
λd1(Tj−1) + γ̄l1(T ) + iz

+
K̃ l

iz

]
,

where z ∈ C with∑
j∈J Tn

T

λd1(Tj−1) + γ̄l1(T ) < Im(z)

for all T ∈ T , xk is the unique root of the function

hk,l(x) :=Dd(T, T, Tk)C
d(T, Tk) exp

( ∑
j∈J

Tk
T

λd1(Tj−1)x
)

+Dl(T, T, Tk)C
l(T, Tk) exp

(
[
∑

j∈J
Tk
T

λd1(Tj−1) + γ̄l1(T )]x
)

− K̃ l,

xn is the unique root of the function

hn,l(x) :=Dd(T, T, Tn) exp
( ∑
j∈J Tn

T

λd1(Tj−1)x
)

+Dl(T, T, Tn) exp
([ ∑

j∈J Tn
T

λd1(Tj−1) + γ̄l1(T )
]
x
)
− K̃ l

and R = 1 + M−M ′

M ′
.

Proof. The proof is analogous to the proof of Proposition 3.1. In this case we
define

Λd(T, Tn) :=
∑

j∈J Tn
T

λd1(Tj−1),

and recall that

Λ̄l(T, Tn) < R
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for all T ∈ T . Then, for k ∈ {1, . . . , n− 1} the functions gk,lK are bounded by

gk,lK (x) ≤ D̃d(T, T, Tk)e
(Λd(T,Tn)−R)xk + D̃l(T, T, Tk)e

(Λ̄l(T,Tn)−R)xk

and thus integrable. For k = n the factors D̃d and D̃l have to be replaced by Dd

and Dl. The representation (3.5) follows once again by the symmetry property
of the integrand. �

4. Model Calibration

We calibrate the model variants (a) and (b) to European market data ob-
served on September 15, 2016, which is provided by Bloomberg. In the following
the data is related to the basic and the 6-month curve.

4.1. Bootstrapping of Initial Curves. In order to derive the initial curves
Bd

0(·) and B6m
0 (·) we follow the bootstrapping method described in Gerhart and

Lütkebohmert (2018) (see also Ametrano and Bianchetti (2013) and Henrard
(2014) for further multiple curve bootstrapping methods).

For a discrete tenor structure T = {T0, . . . , Tn} with tenor δ the quoted
overnight indexed swap rate, denoted by Son

0 (T ), can be expressed in the form

Son
0 (T ) =

Bd
0(T0)−Bd

0(Tn)∑n
k=1 δB

d
0(Tk)

. (4.1)

The quotes of the swap rates are given for increasing maturities. We then
successively derive the bond prices Bd

0(·) from the representation (4.1) via
bootstrapping (for details see Gerhart and Lütkebohmert (2018)). The initial
bond price curve Bd

0(·) is plotted as Figure 3. Note that the discount curve is
increasing at the beginning because of the negativity of the rates. The lowest
curve in Figure 2(f) shows the term structure T 7→ Ld(0, T, T + 0.5) which can
be derived from formula (2.1).

0.85

0.90

0.95

1.00

1.05

2016−09−15

2017−09−15

2018−09−15

2019−09−15

2020−09−15

2021−09−15

2022−09−15

2023−09−15

2024−09−15

2025−09−15

2026−09−15

Maturity

B
as

ic
 D

is
co

un
t C

ur
ve

Figure 3. Bootstrapped basic curve on September 15, 2016.
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In order to determine the initial 6-month tenor curve we begin with its value
at the maturity of six months. By using the quoted deposit rate R6m

0 (0.5) with
maturity of six months we apply the formula

B6m
0 (0.5) =

1

1 + 0.5 ·R6m
0 (0.5)

.

For mid and long term maturities from one year upwards we proceed by boot-
strapping. We inductively use quoted swap rates based on a 6-month floating
leg, denoted by S0(T 6m,T ), according to the formula

S0(T 6m,T ) =
0.5
∑n6m

k=1B
d
0(T 6m

k )L6m(0, T 6m
k−1, T

6m
k )

δ
∑n

l=1B
d
0(Tl)

where

L6m(0, T 6m
k−1, T

6m
k ) =

1

0.5

(
B6m

0 (T 6m
k−1)

B6m
0 (T 6m

k )
− 1

)
.

The values for the maturities of one and three months are added by using
rates of forward rate agreements and applying the last formula (for more de-
tails see again Gerhart and Lütkebohmert (2018)). The resulting curve T 7→
L6m(0, T, T + 0.5) is shown as the upper curve in Figure 2(f). Exact cubic
splines are used for interpolation. This approach guarantees enough smooth-
ness of the curves. Furthermore, the bootstrapped initial values for tradable
assets are a priori arbitrage-free since they are derived from risk-neutral pric-
ing formulas. The monotonicity which results from the interpolation via cubic
splines guarantees arbitrage-free values between the pillars.

4.2. Model Specification. First let us specify the driving process LT
∗

under
P d
T ∗ . We will use a normal inverse Gaussian (NIG) Lévy process with param-

eters α, β, δ and µ (see for example Eberlein (2009)) which have to satisfy
0 ≤ |β| < α, δ > 0 and µ ∈ R. The last parameter µ does not enter into
the valuation formulas. We choose it such that the expectation of LT

∗
1 is equal

to zero. The distributions of a NIG process are completely determined by its
cumulant function

θ(z) = µz + δ
(√

α2 − β2 −
√
α2 − (β + z)2

)
where Re(z) ∈ (−α−β, α−β). We emphasize that only parameters which lead
to a Lévy measure F T

∗
that satisfies Assumption (EM) are admissible.

According to Assumption (VOL) the volatility structures are defined if we
specify λ, λd1, γl1 and γ̄l1. We choose

λ(t) = exp(at), λd1(T ) =
√
|ad|T , γl1(T ) =

√
|al|T , γ̄l1(T ) =

√
|āl|T .

Consequently four real-valued parameters a, ad, al and āl describe the volatil-
ities. We emphasize that the volatility functions have to satisfy boundedness
restrictions according to Assumption (VOL). Thus calibration requires a non-
linear optimization under several constraints.
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4.3. Calibration. We use cap quotes indexed on Euribor for a number of
maturities and strikes. The cap quotes are given in form of the model dependent
implied volatilities (in bps). More specifically we will consider cap volatility
quotes indexed on six-month Euribor on September 15, 2016. As mentioned
above two term structures will be taken into account, namely the basic and
the six-month curves. Since we observe a period with negative interest rates
the standard log-normal market model can no longer be used in this case.
Following market practice we use a multiple curve form of the Bachelier model
to derive the market prices of caps from the volatility quotes. Finally the market
prices of the caplets are derived from the cap prices. We also highlight that the
considered cap contracts contain negative strike rates.

Hereafter we describe the calibration procedure. Caplet model prices are
derived by using formulas (3.4) and (3.5). Note that the values of the basic
curve along the tenor structure which we derived in 4.1 are needed for these
formulas. Let Θ be the set of admissible model parameters, T the maturities
and K the strike rates of the considered caps. We minimise the sum of the
squared relative errors between model and mid market caplet prices∑

T∈T ,K∈K

(
caplet model price(ϑ, T,K)− caplet market price(T,K)

caplet market price(T,K)

)2

with respect to ϑ ∈ Θ. This optimisation is done by using a randomised Powell
algorithm (see Powell (1978)). We use then the calibrated model parameters

ϑ̂ to determine the model implied volatilities of caps. The differences between
the implied volatilities of the model prices and the quoted volatilities specify
the accuracy of the calibration. This procedure is done for both model variants
(a) and (b).

In both graphs of Figure 4 the grid represents the market volatility surface on
September 15, 2016. The points in the graphs indicate the implied volatilities of
the calibrated model. In particular the graphs show also that both models are
able to cope with negative strike rates as well as negative interest rates which
prevailed in September 2016. The parameters corresponding to the calibrated
models are given in Table 1. We note that a sensitivity analysis for the valuation
formulas in the Lévy forward process model has been conducted in the paper
by Eberlein, Eddahbi, and Lalaoui Ben Cherif (2016), which can be used to
prove the stability of the parameters under small perturbation of the data.
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Figure 4. Calibration results of both model variants on Sep-
tember 15, 2016.

Calibrated Parameters

Model Variant (a)

NIG Volatility Structure
α 53.667 a −3.498
β -47.625 ad −0.009
δ 0.105 al 0.001

Model Variant (b)

NIG Volatility Structure
α 2.354 a -6.004
β 0.880 ad 0.002
δ 14.624 āl 0.002

Table 1. September 15, 2016.
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eral Lévy Processes. Mathematical Finance, 9(1):31–53, 1999.

Ernst Eberlein, Jean Jacod, and Sebastian Raible. Lévy Term Structure Mod-
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