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Centre Borelli, ENS Paris-Saclay, Université Paris-Saclay, CNRS, France

ABSTRACT

We propose a block-based signal-dependent noise estimation
method on videos, that leverages inter-frame redundancy to
separate noise from signal. Block matching is applied to find
block pairs between two consecutive frames with similar sig-
nal. Then Ponomarenko’s method is extended by sorting pairs
by their low-frequency energy and estimating noise in the
high frequencies. Experiments on three datasets show that
this method improves on the state of the art.

Index Terms— Noise estimation, image processing,
video processing, noise level function

1. INTRODUCTION

Noise estimation is a key preliminary step for various applica-
tions in image and video processing. An accurate noise level
estimate can significantly boost the performance of down-
stream applications such as video denoising [1], forgery de-
tection [2], camera identification, camera characterization and
video quality assessment. Most noise estimation methods fo-
cus on single images [3]–[10]. These methods can be applied
on each frame for video noise estimation but video temporal
redundancy is not used. To this aim, we propose an exten-
sion of Ponomarenko’s method [11] to videos. Since two con-
secutive frames mostly contain the same signal up to a local
motion, noise can be separated by eliminating the underlying
scene content within a flexible frame-to-frame difference.

2. RELATED WORK

A significant part of the literature on noise estimation focuses
on single images, generally done by finding homogeneous re-
gions where noise dominates. Noise in these regions is esti-
mated in the spatial or frequency domain.

There are several approaches to identify homogeneous re-
gions. Tai et al. [3] use a Sobel operator to discard edges,
then apply a Laplacian operator to estimate noise. In [4], a
hybrid discrete wavelet transform is used for edge-region re-
moval. Colom et al. [5] select a small percentile of the im-
age’s blocks with the lowest standard deviations in the high
frequencies. The bias induced by this selection criteria is then
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corrected. Instead, in [6], [7] a small percentile of blocks with
the lowest low-frequency variances are selected. Noise is then
estimated on the high-frequencies. Mohan et al. [8] first per-
form intra-image patch matching, then estimate noise in the
discrete cosine transform (DCT) domain. Other methods use
Principal Component Analysis (PCA) to find homogeneous
patches. Pyatykh et al. [9] select patches with similar struc-
ture and small variance using PCA, then estimate noise from
the smallest eigenvalues. Similarly, Liu et al. [10] present a
PCA-based method to select low-rank patches with the small-
est high frequency energy based on their gradients.

The availability of numerous samples in video can im-
prove estimation. In [12], the noise level function (NLF) is
estimated by selecting and clustering homogeneous frame
regions. Inter-frame analysis then stabilizes temporal noise
variations. Buades et al. [1] extend [7] to estimate an NLF
using simultaneously all video frames. Temporal informa-
tion is further employed to improve accuracy and robustness.
In [13], the ideas presented in [14] are extended to the dif-
ferential image obtained from two consecutive frames. They
construct a homogeneity measure using high-pass operators
along several directions to select the most homogeneous
blocks for final estimation. Motion estimation is used to bet-
ter handle inter-frame scene changes. Yin et al. [15] estimate
noise on the residual of the motion estimation on half the
matched blocks, to avoid overestimation due to mismatches.
Xiao et al. [16] present an algorithm to suppress video mo-
tion by inter-frame block matching, and estimate noise level
within the inter-frame difference with PCA.

Several approaches exploit jointly the spatial and tempo-
ral domains. Ghazal et al. [17] sort 3D cubes by their response
to directional Laplacian operators. The homogeneous ones
are used to estimate the noise level in each direction. The
mean of these estimations yields a final estimate. An im-
proved version of this method [18] uses instead Laplacian
of Gaussian operators and a median estimator. Zlokolica
et al. [19] employ spatio-temporal gradients of image se-
quence content with wavelet transform analysis to determine
the noise variation. Spatio-temporal gradients are also used
in [20] to select homogeneous cuboids, followed by adaptive
noise estimation. Izadi et al. [21] address inter-frame corre-
lated noise and compute the noise level by a combination of
spatial and temporal variance estimations.



3. PROPOSED METHOD

Ponomarenko’s method [6], [7], [11] was designed to estimate
an NLF from a single image. We extend this method to lever-
age the temporal redundancy for video noise estimation. Like
in the Ponomarenko method, the signal is filtered out with the
low frequencies. Noise is then estimated in the high frequen-
cies. The key difference is that instead of using the raw blocks
in a single frame, we compute the residual of matched blocks
(or difference blocks) between two consecutive frames.

The proposed algorithm works independently on color
channels, estimating one NLF for each one. First, each frame
is divided into w×w blocks and block matching is performed
in two consecutive frames. The matched pairs are then clas-
sified into bins according to their intensities. The residual
between each block pair is computed; the DCT is then ap-
plied to calculate the frequency coefficients of each difference
block. Finally, in a similar way as in [6], [7], we select the
difference blocks with the lowest energy at low frequencies
and estimate the noise in the high frequencies of those blocks.

The signal-dependent noise in raw images can be modelled
as Poisson-Gaussian and can be approximated by a signal-
dependent Gaussian noise; its variance is an affine function
of the signal intensity [11]. After undergoing the in-camera
processing pipeline, the relation between the noise variance
and the expectation of intensity becomes non-linear, but the
noise is still signal-dependent. We denote a noisy pixel by
Ĩ = I+n where I is the true signal and n the noise. The NLF
g describing the relation between the signal intensity and the
noise variance is g(I)≜ Var(Ĩ) = Var(n).

Block matching Each frame is divided into overlapping
blocks of size w×w with stride 1. Let {Ũt

k : k = 1, . . . ,K}
denote the set of blocks extracted from frame t. The purpose
of block matching is to find, for each block Ũt

k in frame t, a
corresponding block Ũt+1

k′ in frame t + 1 having similar sig-
nal, so that the noise can be estimated from their difference
without interference of the scene. Indeed, if Ũt

k = Ut
k + nt

k,
where Ut

k is the true signal and nt
k is the noise, then:

Ũt
k − Ũt+1

k′ = (Ut
k −Ut+1

k′ )+(nt
k −nt+1

k′ )≈ nt
k −nt+1

k′ .

The usual way to determine k′ is to search the block of frame
t + 1 (within a certain range) that minimizes the similarity
distance. Here we use two metrics for the similarity distance:
(a) the sum of absolute differences (SAD) and (b) the sum of
gradient differences (SGD). Then,

k′ = argmin
c′∈candidates

Dist(Ũt
k, Ũ

t+1
c′ ) with Dist = SAD or SGD.

To use SGD, the gradient at each pixel G⃗(i, j) is first com-
puted using a 3×3 Sobel kernel, then the SGD of two patches
within the matching area S is

SGD(Ũt
k, Ũ

t+1
c′ ) = ∑

(i, j)∈S
arccos

(
G⃗t

k(i, j) · G⃗t+1
c′ (i, j)

||G⃗t
k(i, j)|| ||G⃗t+1

c′ (i, j)||

)
.

Fig. 1. Surrounding pixels (in red) as matching area S, and
central block (in yellow) of size w×w for noise estimation.

The quantization technique of [22] and integral image tech-
nique are applied to accelerate the gradient-based matching.

However, simply processing block matching within the
w×w blocks will lead to an underestimation of noise in the
block difference. Indeed, if several candidate blocks contain
the same signal as Ut

k, then the block matching will try to
find the block that also minimizes the noise difference. To
avoid this, we separate the pixels used for block matching
from those used for noise estimation. We use the surround-
ing pixels of the block as matching area S to find the best-
matching block (see Fig. 1). Finally, a set of matched block
pairs between two frames is obtained.

Block pair partitioning Since we are estimating the NLF of
a signal-dependent noise, we group the blocks by their inten-
sities; the noise levels are estimated accordingly. We partition
the matched blocks into b bins of same size depending on the
mean intensities of the block pairs. Given that noise is clipped
in saturated pixels, using saturated pixels would lead to noise
underestimation. Hence, we discard the block pairs with at
least one saturated pixel before grouping them into bins.

Noise estimation For each bin of block pairs B= {(Ũt
k, Ũ

t+1
(k) )}

where (k) is the index of the block in frame t +1 matched to
Ũt

k, the mean intensity of all the blocks is denoted by IB ∈ R.
Next we estimate the noise level from the difference

blocks {dk = Ũt
k − Ũt+1

(k) ,k = 1, . . . , |B|}, with a prefilter step
to select the difference blocks whose signals are well removed
by subtraction. This is necessary because block matching
cannot output perfectly-matched pairs due to noise, sam-
pling, or changes in the scene content over time. The DCT-II
is performed on the difference blocks to get the transformed
blocks {Dk = DCT(dk) ∈ Rw×w}. Then each block Dk is
divided into low and high frequency components by intro-
ducing a threshold T : Dk(i, j) is considered as low frequency
if i + j ≤ T or else as high frequency. The low-frequency
energy of Dk is computed as

VL
k =

w

∑
i=1

w

∑
j=1

[Dk (i, j)]21{i+ j≤T},

where 1{·} is the indicator function. A percentile q of
difference blocks with the lowest low-frequency energies
are selected as signal-free blocks, noted as B′ = {D[k],k =
1, . . . ,⌊q|B|⌋}, where [k] are the indices of the blocks sorted
by increasing values of VL

k . The variance of high frequency



coefficients is calculated across the signal-free blocks by

VH(i, j) =
1
|B′|

|B′|

∑
k=1

[Dk (i, j)]2 ,

for i+ j > T . Finally, the noise variance of the bin n is esti-
mated by Vn =

1
2 median({V H(i, j), i+ j > T}). Here the me-

dian value is halved since the noise of a block difference has
double the original variance. The estimates of all the bins give
us a sequence of intensities {In} and the corresponding noise
variances {Vn}.

The assumption behind the proposed method, inherited
from [6], is that visual signals usually have more low fre-
quency components than high frequency components. By se-
lecting the lowest low-frequency-energy difference blocks we
are selecting the blocks having the least residual signal. For
these blocks, the influence of the signal on the high-frequency
components will be the smallest.

4. EXPERIMENTS

To evaluate the performance of the proposed method, we
conducted experiments on three datasets: the CRVD indoor
dataset [23], the Colom dataset [24], and a dataset of synthetic
drone videos (Synth-Drone). The datasets contain low-noise
images or videos. For the CRVD indoor dataset, one im-
age was taken from each of the 11 scenes. These images are
mostly low textured. The Colom dataset contains 16 noiseless
images captured from various scenes, some of which highly
textured. The synthetic drone dataset consists of 15 videos
captured by moving drones in bird’s eye view (see Fig. 2).

We added intensity-dependent simulated noise with a

Fig. 2. Some test images of the CRVD indoor (1st row),
Colom (2nd row) and Synth-Drone (3rd row) datasets. For
color images, each channel is evaluated independently, result-
ing in one NLF per channel.

NLF of the form g(I) = a + b × I (see Sec. 3) as ground
truth for evaluation. We used three noise models, (a,b) ∈
{(0.2,0.2), (0.8,0.8), (3.2,3.2)}, to simulate the noise level
at different ISO settings, which cover noise standard devia-
tions between 0.5 (the darkest signal) and 28 (the brightest
signal). For each noise model, a sequence of 20 noisy frames
was generated from a clean image or from a video sequence.
Random jitter in the range of ±2 pixel had been simulated on
each noiseless frame to simulate more realistic videos.

The parameters of the proposed method selected as the
best ones are: block size for noise estimation w = 8, thickness
of surrounding area for block matching is 3, size of search
window is 11×11, number of bins b = 16, threshold for low
and high frequency T = 5, percentile of blocks with lowest
low-frequency energy q= 5%. We compared with seven other
methods: [1], [5], [7], [9], [10], [12], [16]. Buades et al. [1]

CRVD Colom Synth-DroneMethod
a = 0.2 a = 0.8 a = 3.2 a = 0.2 a = 0.8 a = 3.2 a = 0.2 a = 0.8 a = 3.2
b = 0.2 b = 0.8 b = 3.2 b = 0.2 b = 0.8 b = 3.2 b = 0.2 b = 0.8 b = 3.2

Frame pair-wise estimates

Proposed SAD (3.36s) 3.8 2.2 2.2 8.3 8.3 11.7 5.5 2.9 3.0
Proposed SGD (3.35s) 2.5 1.7 2.0 6.2 6.4 9.4 3.4 1.8 1.6

Ponomarenko [7] (0.28s) 3.1 2.2 2.1 18.0 9.7 13.1 2.9 2.2 2.1
Percentile [5] (1.40s) 8.7 8.1 7.2 28.5 14.0 12.0 6.5 4.5 4.0
Pyatykh [9] (0.28s) 8.0 7.2 15.0 36.8 19.8 21.2 23.5 36.6 51.7

Liu [10] (0.83s) 3.3 4.4 5.0 12.7 8.8 10.6 4.9 4.0 4.1
Amer [12] (0.07s) 9.1 7.7 6.7 14.6 11.0 10.8 9.7 7.0 6.9
Xiao [16] (3.61s) 5.3 8.2 11.3 8.0 9.9 14.8 5.6 7.4 10.1

Global estimates

Proposed SAD (64.00s) 3.5 1.7 1.9 7.3 7.5 11.1 5.3 2.7 2.9
Proposed SGD (63.96s) 2.3 1.2 1.6 5.8 6.0 9.1 3.2 1.5 1.4

Buades [1] (8.93s) 3.7 1.9 1.5 17.9 8.9 12.1 2.2 1.4 1.6

Table 1. Mean relative errors on the three datasets (unit: %). “Proposed SAD” and “Proposed SGD” use respectively SAD and
SGD metric for block matching. The best results are in bold red, and the second best in underlined blue. The computational
time of each method per noise curve estimate is also indicated, benchmarked on a machine with 8 CPUs of 3.8GHz and 8GB
memory for the Synth-Drone dataset.
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Fig. 3. Noise curves for red, green and blue channels estimated by Ponomarenko and the proposed method with SGD matching.
The images are from Colom dataset, respectively from left to right: building2, flowers1, flowers2 and traffic.

uses all the frames of a sequence to estimate the NLF, while
the other methods, including ours, only use one frame or the
difference of two frames for estimation. In order to do a fair
comparison with Buades’ method, we computed a global NLF
from all the inter-frame estimates of our method. To do so,
for each channel, given the 19 inter-frames NLF estimates,
{(I(k)n ,V (k)

n )} where n denotes the n-th bin and k the k-th frame
pair, we first computed the median intensity for each n-th bin
over the 19 frame pairs, Imd

n = mediankI(k)n . Then, for each
of the 19 NLFs, we computed the variances corresponding to
{Imd

n } by interpolation. Finally, {V md
n } was obtained as the

median of these 19 interpolated values. For the rest of the
methods, we compared the frame pair-wise estimates.

The mean relative error (MRE) was used to measure the
accuracy of an estimated noise curve, MRE= 1

b ∑
b
n=1

|Vn−g(In)|
g(In)

with {In} and {Vn} the intensities and noise variances of a
noise curve. The reason for using the relative error instead of
the absolute error was to make a fair comparison of the noise
estimates on the whole curve. Indeed, noise levels at low
intensities usually have smaller values and thus smaller abso-
lute errors whereas the relative errors can be high. The mean
of MREs over different sequences, color channels and frame
pairs was evaluated for frame pair-wise estimates. For global
noise curve estimates, the mean of MREs over the sequences
and color channels was evaluated. The results in Tab. 1 show
that the proposed method using the SGD metric outperforms
or performs as well as the existing SOTA methods in most
cases, especially in the highly textured Colom dataset. Since
the proposed method is a variant of Ponomarenko method,
we focus on the comparison with it. For the CRVD dataset,
where images are less textured, the use of difference blocks
only provides a slight improvement over the use of raw
blocks because there are enough homogeneous blocks in the
image itself for Ponomarenko method to estimate noise in
high frequencies. However, in the textured Colom dataset

the high-frequency signals in the blocks greatly degrades the
noise estimation.

Example noise curves of some images of the Colom
dataset are shown in Fig. 3. We can see that Ponomarenko
method usually overestimates the noise variance, particularly
for flowers1 where very few blocks are smooth. The
strong textures in the selected blocks lead to a large bias of
noise variance estimates. On the other hand, our method is
able to suppress the textured signal by estimating within the
difference of matched blocks, which leads to a more accu-
rate noise curve. Note that the Ponomarenko method outputs
“smoother” noise curves compared to ours. This is due to
its filtering step, which attenuates the impact of outlying
estimates while our method preserves the raw estimations.

5. CONCLUSION

In the proposed method, block matching is used to suppress
signal in block differences, and is combined with Pono-
marenko’s principle of sorting blocks by their low-frequency
energies and estimating noise in the DCT high frequencies of
difference blocks. Using the SGD gradient direction match-
ing metric outperforms the compared methods in accuracy.

Nevertheless, textured blocks present a wider range of
intensities, hence, the pixel-wise Gaussian noise for these
blocks is not homoscedastic. In this case, noise in high
and low frequencies will be correlated. Then, selecting the
blocks with the lowest energy in low-frequencies will cause
a slight underestimation of the noise measured in the high-
frequencies. We plan to further study this effect in the future.

In addition, a fast patch matching approaches such as [25]
could be used for computational acceleration. Besides, our
method can be complementary to the blind denoisers trained
on homoscedastic noise [26] by applying variance stabili-
sation transform with our estimated NLF, so that the noise
model satisfies the homoscedastic hypothesis.
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