
HAL Id: hal-03898632
https://hal.science/hal-03898632v1

Submitted on 14 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

VNFs reconfiguration in 5G networks
Kristina Kumbria, Denis Demko, Dritan Nace, Artur Tomaszewski, Mustapha

Bouhtou, Hanane Biallach

To cite this version:
Kristina Kumbria, Denis Demko, Dritan Nace, Artur Tomaszewski, Mustapha Bouhtou, et al.. VNFs
reconfiguration in 5G networks. 12th International Workshop on Resilient Networks Design and
Modeling (RNDM 2022), Sep 2022, Compiegne, France. �10.1109/RNDM55901.2022.9927655�. �hal-
03898632�

https://hal.science/hal-03898632v1
https://hal.archives-ouvertes.fr


VNFs reconfiguration in 5G networks
Kristina Kumbria

Heudiasyc,
Université de Technologie de Compiègne

Compiègne, France
kristina.kumbria@etu.utc.fr

Denis Demko
Heudiasyc, UTC

Polytechnic University of Tirana
Tirana, Albania

denis.demko@fti.edu.al

Dritan Nace
Heudiasyc,

Université de Technologie de Compiègne
Compiègne, France

dritan.nace@hds.utc.fr

Artur Tomaszewski
Warsaw University of Technology

Warsaw, Poland
artur.tomaszewski@pw.edu.pl

Mustapha Bouhtou
Orange Labs

Châtillon, France
mustapha.bouhtou@orange.com

Hanane Biallach
Orange Labs - Heudiasyc

Châtillon, France
hanane.biallach@hds.utc.fr

Abstract—We consider a problem of allocating Virtual Net-
work Functions (VNFs) in 5G networks, treating it as a multi-
ple multidimensional knapsacks reconfiguration problem where
items represent VNFs and knapsacks represent servers on which
VNFs are able to run. Given an initial and final assignments of
items to knapsacks, the task is to define a sequence of steps for
moving items from a source knapsack and/or to a destination
knapsack. The objective is to minimize the total number of steps
in which items are not in the knapsack, which reflects the total
time that VNFs are not operational. We derive a non-compact
formulation and a new compact formulation of the problem, and
evaluate their performance with numerical experiments.

Index Terms—resource, allocation, migration, knapsack, VNFs

I. INTRODUCTION

Dynamic allocation of resources and dynamic adjustment
of control parameters are crucial for the operation of wire-
less network systems. Allocating spectrum and bandwidth,
changing modulation and coding schemes let the wireless
network adapt to varying network and traffic conditions and
use network resources efficiently while providing the required
Quality of Service (QoS). In 5G cellular networks, network
functions are also allocated dynamically. In view of network
programmability and function virtualization, network func-
tions are implemented as Virtual Network Functions (VNFs),
which are software components that perform user, transport,
and management tasks, and which are dynamically assigned
to and executed on pools of servers constituting a shared
computation infrastructure.

In this study, we consider the problem of ensuring continuity
of VNF operation. As network and traffic conditions and user
needs vary over time, so might the required characteristics of
VNFs. Regarding servers, the allocation of VNFs to servers
might sometimes need to be changed, either periodically or
on demand, in order to satisfy capacity constraints relating to
individual VNFs or to server characteristics.

This paper looks at the VNF migration problem. We assume
that the initial and final states that define the assignment of
the VNFs to their source and destination servers are known.
The goal is to define a sequence of steps in the migration

from the initial to the final state (see Figure 1). At each
step, VNFs can only be moved from their source server
and/or to their destination server. The objective is to minimize
the total time when VNFs are not assigned to a server and
therefore must be suspended. Another version of this problem
is where the destination state is not fixed, so defining the final
assignment of the VNFs to servers becomes an additional
part of the problem. All this is encapsulated in what we
call the Multiple Multidimensional Knapsacks Reconfiguration
(MMKR) problem, which is the focus of our paper; the
multiple knapsacks correspond to servers, and the multiple
dimensions are different capacity-related characteristics of the
VNFs and the server.

Fig. 1. MMKR – VNF reconfiguration problem

The contribution of the paper consists in proposing a new
method of solving the MMKR problem, based on a non-
compact Integer Linear Programming (ILP) problem formu-
lation and Column Generation, together with an alternative
new compact ILP formulation. We illustrate the resulting
effectiveness of solving the problem with a series of numerical
experiments, comparing the results to the results of applying
the compact ILP problem model reported in [1].



The paper is structured as follows. Section II presents
the MMKR problem together with a short review of the
related literature. Section III first recalls a known compact
ILP formulation of the MMKR problem and then derives its
non-compact ILP formulation and the corresponding Column
Generation algorithm, as well as a new, alternative compact
ILP formulation. Section IV presents the results of our nu-
merical experiments used to assess the effectiveness of the two
proposed formulations. Section V contains concluding remarks
and identifies further research perspectives.

II. MMKR PROBLEM

The KNAPSACK problem in its basic form has a prominent
place in the study of Integer Programming (IP) models with
binary variables. The problem consists in packing a given
set of items with given values and sizes (such as weights or
volumes) into a container with a given maximum capacity
C. With the total size of the items potentially exceeding the
capacity of the container, usually, it is not possible to pack all
of them. The problem is therefore to select a subset of items
with the greatest possible total value to place in the container.
The ILP formulation of the problem uses one binary decision
variable per item to indicate the items that are selected.

A variant of the standard KNAPSACK problem is the MUL-
TIPLE KNAPSACKS problem. Instead of a single knapsack,
here there are multiple knapsacks, where knapsack k (k =
1 . . .K, K being the number of knapsacks) has capacity Ck.
Not only must be selected the items to pack, but it must also
be decided which knapsack each item should be placed in.

Another often-studied version of the standard KNAPSACK
problem is the MULTIDIMENSIONAL KNAPSACK problem.
In this variant of the problem, the set of items selected for
packing into the knapsack should satisfy not one but sev-
eral capacity constraints corresponding to individual capacity
dimensions. And putting together multiple dimensions and
multiple knapsacks gives rise to the MULTIPLE MULTIDIMEN-
SIONAL KNAPSACKS problem, a problem that has so far been
very little addressed in the literature, but which appears to be
NP-hard and computationally challenging.

Finally, a reconfiguration aspect can be introduced into the
KNAPSACK problem. The idea behind reconfiguration is to
start from a given initial assignment of items to knapsacks
and to sequentially move items between knapsacks so as
to reach a given final assignment. Including reconfiguration
brings out the scheduling aspect of the problem which, in
conjunction with multiple multidimensional knapsacks, results
in the MMKR problem that is our concern here. The objective
will be to minimize the interruption time. It is a novel version
of the problem, and it turns out to be considerably more
difficult.

Arguably, versions of the problem examined in this work
have already appeared in other contexts linked to computer
networking. Sirdey et al. [2] looked at a process move problem
that arises in relation to the operability of a certain class of
high-availability real-time distributed systems. Given an initial
and a final system state defining which processes are assigned

to which processors in a distributed system, the goal is to find
a minimally disruptive sequence of operations (non-impacting
process migrations or temporary process interruptions) at the
end of which the system is in the final state; at no step can
the capacity of any processor be exceeded. Thinking of each
processor as a knapsack and of each process as an item, this
problem has a lot in common with the MMKR problem. The
main difference lies in the technical context: in our 5G VNF
reconfiguration problem migrations are realized according to
rules (known as hot and cold migration of VNFs) that impose
specific constraints upon feasible migration sequences.

Solano and Pióro [3] studied a problem of lightpath re-
configuration in optical transport networks. Lightpath recon-
figuration is a networking task that is performed in order
to improve resource utilization and limit network congestion.
The problem consists in finding an optimal transition from
an initial set of currently operational lightpaths to a new
set of lightpaths guaranteeing better network performance.
The problem becomes nontrivial when establishing the new
set of lightpaths requires the release of resources held by
the currently operational lightpaths while ensuring continuity
of traffic flows (an operational lightpath cannot be removed
before the corresponding new lightpath is set up). The re-
configuration scheduling seeks to make the maximum number
of simultaneously disrupted connections at any point during
the process as small as possible [3]. Although the application
context is different from that of the MMKR problem, the
formulations of the two problems have a lot in common. The
existing and the new lightpath connections can be seen as
items migrating over network links which, being bundles of
optical wavelengths, may be considered as knapsacks, insofar
as they provide the resources for the connections.

There has also been a lot of work done on problems that
overlap with the MMKR problem. [4] proposes a resource
allocation and management mechanism for 5G networks using
Multi-access Edge Computing (MEC) technology. A simple
mathematical model of the MEC resource (re)allocation mech-
anism is proposed to meet the requirements of the user.

[5] considers a control problem in the reconfiguration of
photovoltaic arrays that involves changing the connections in
the solar panel equipped with the dynamic switching matrix.
The proposed formulation of the problem is based on the
well-known subset sum problem, which is a special case
of the KNAPSACK problem. The solution method uses a
dynamic programming algorithm that is capable of computing
an optimum reconfiguration (in marked contrast to [6], where
a solution method based on fuzzy logic under partial shading
conditions is put forward as a solution to the same problem).
The characteristic feature of this problem is that the final
configuration of the array is not given.

[7] considers centralized spectrum allocation in cognitive
radio networks as a MULTIPLE MULTIDIMENSIONAL KNAP-
SACKS problem. The formulation of the problem models the
behaviour of the Centralized Coordinator Node (CCN) that
shares spectrum availability information with a set of cognitive
users. Each primary user acts as a two-dimensional knapsack,



with bandwidth and temperature interference as the limiting
resources. CCN has to assign the cognitive users, considered
as items, to primary users in such a way that the overall traffic
throughput is maximized while the resource constraints are
satisfied. The proposed formulation is similar to our problem
formulation, but it is limited to the computation of a static
assignment of items to knapsacks and does not include the
scheduling aspect.

III. SOLUTION METHODS

In this section we discuss exact methods of solving the
MMKR problem. These methods are essentially based on
Integer Linear Programming. Table I lists the notation used.

A. First compact formulation

We start by recalling a compact ILP problem model reported
in [1]. We use the following variables. For each i ∈ I , xi is a
continuous positive variable denoting the interruption time of
item i. For all i ∈ I , t ∈ T , yti is a binary variable that equals
1 if, and only if, item i is interrupted at its source at time t,
and zti is a binary variable that equals 1 if, and only if, item i
is placed at its destination at time t. For all k ∈ K, t ∈ T , ctk is
a continuous positive variable denoting the residual capacity
of knapsack k at time t. The MMKR problem can then be
written as:

min
∑
i∈I

w(i)xi (1a)∑
i∈O(k)

w(i) + c1k = C(k) ∀k (1b)

∑
i∈O(k)

w(i)yti −
∑

i∈D(k)

w(i)zti + ctk = ct+1
k ∀k, ∀t < T (1c)

∑
t∈T

yti = 1 ∀i (1d)∑
t∈T

zti = 1 ∀i (1e)∑
t∈T

tzti −
∑
t∈T

tyti + 1 ≤ xi ∀i (1f)

xi ≥ 0 ∀i (1g)
yti , z

t
i ∈ {0, 1} ∀i, ∀t (1h)

ctk ≥ 0 ∀k, ∀t. (1i)

The objective is to minimize the weighted interruption time
over all items. Constraints (1f) force the interruption time of
the item to be greater than the difference between the time of
placing the item at the destination and the time of interrupting
at the source (increased by 1 because the VNF is not available
until the next time period after transfer); we note that the
nature of the objective forces this constraint to equality.

Constraints (1b) and (1c) serve to link residual capacities
overtime periods for each knapsack.

By constraints (1d) and (1e) we force each item to be
interrupted and transferred exactly once, which does not allow
any knapsack to be used as a temporary one during migrations.

K the number of knapsacks
K the set of knapsacks, K = {1, 2, . . . ,K}
k a specific knapsack
C(k) the resource capacity of knapsack k
I the number of items
I the set of items, I = {1, 2, . . . , I}
i a specific item
o(i) the source knapsack of item i
d(i) the destination knapsack of item i
w(i) the resource requirement of item i
O(k) the items with knapsack k as source, O(k) ⊆ I
D(k) the items with knapsack k as destination, D(k) ⊆ I
T the number of time periods
T the set of time periods, T = {1, 2, . . . , T}
t a specific time period

TABLE I: Notation

Unfortunately, formulation (1) does not scale well be-
cause of the large number of integer variables and equality
conditions. Our goal in this work is to propose alternative
solution methods. The following is a method based on Column
Generation.

B. Non-compact formulation

To use the Column Generation method, we need an alter-
native non-compact problem formulation. The main challenge
is deciding on the format of the columns. We are seeking to
represent (over the relevant time periods) the movement of an
item from the source knapsack to the destination knapsack as a
path in a graph with (knapsack, time) tuples as nodes. For each
knapsack and each time period there will be a specific node
in the graph, and at each time period the item is to be found
in at least one knapsack, and in at most two (there are two
knapsacks when the migration occurs). A path in this graph
therefore represents the placement of the item over all time
periods. The arcs (and consequently the paths) allowed in the
graph should reflect all possible item migrations. We have T
time periods and K+1 knapsacks replicated at each period, the
knapsack (K+1) being a virtual knapsack of infinite capacity,
containing all the interrupted items. If an arc enters a node
(k, t) the corresponding item consumes resources of knapsack
k at time period t. Since the number of possible paths is large,
they cannot all be included in the problem formulation, and
the Column Generation method deals neatly with this situation.
We start with a basic feasible set of paths and then search for
a new path that improves the objective function.

Each column takes the form a = (a1,1, . . . , aK+1,1,
a1,2, . . . , aK+1,2, . . . , a1,T , a2,T , . . . , aK+1,T ), where ak,t is
1 if item i is placed at knapsack k at time t, and 0 otherwise.

Each of these columns represents a specific path p that some
item i can use to migrate from its source to its destination
knapsack. Since at the outset there will be only a small set
of paths guaranteeing an initial feasible solution, we need
to search for new paths (columns) in the above format to
be included in the path set Pi for item i, with a view to



obtaining a better objective function value. When searching
for such a column all its elements ak,t will be set as binary
variables. In addition, each column in the Master Problem has
a corresponding binary path variable yip that indicates whether
path p for item i is used (yip=1) or not used (yip=0).

Fig. 2. Graph representation

The graph in Figure 2 shows a migration from source
knapsack 2 to destination knapsack 3 at time period 3. At
time period 3 resources are thus consumed in both knapsack
2 and knapsack 3. For the sake of clarity only a subset of arcs
are shown just to give an idea of the allowed arcs and paths.
We can move from the source knapsack to other knapsacks
during each time period except the last one. If this move is
to the destination knapsack, then the item will stay there until
the end. If the move is to the interruption knapsack, then we
are forced to migrate back to the destination knapsack before
the last time period, with vertical moves coming out from
knapsack (K + 1).

1) Master Problem: Now that we have a better theoretical
grasp of the context of the problem, we are able to put
forward a corresponding non-compact Linear Programming
(LP) formulation as the first step in our column generation
algorithm. For sake of simplicity, the one-dimensional case is
assumed.

min
∑
t∈T

∑
i:(K+1,t)∈p,p∈Pi

w(i)yip (2a)

∑
i:(k,t)∈p,p∈Pi

w(i)yip ≤ C(k) ∀k, ∀t (λkt) (2b)

∑
p∈Pi

yip = 1 ∀i (γi) (2c)

yip ≥ 0. (2d)

The objective function aims at minimizing the overall path
weights going through the interruption knapsack summed over
all time periods, which is equivalent to minimizing the total
interruption cost. For a specific time period t the second sum

iterates over all items that have (K+1, t) in a path p belonging
to their pathset Pi.

2) Pricing Problem: The second step in the algorithm
requires defining the Pricing Problem. As mentioned above,
the Pricing Problem will be an Integer Linear Programming
using the dual variables found in the first step as parameters
and column elements akt as variables.

min w(i)
∑
k∈K

∑
t∈T

λk,tak,t − γi ≡ (3a)

min
∑
k∈K

∑
t∈T

λk,tak,t ≡ (3b)

min
∑

(k,t)∈p∈Pi

λk,t (3c)

∑
k∈K

ak,t ≥ 1 ∀t (3d)

ak,t ∈ {0, 1} ∀k, ∀t. (3e)

The above model is complemented with the following
constraint if no interruptions are allowed∑

t∈T

∑
k∈{1,...,K}

ak,t ≤ T + 1, (4)

and with the following one if interruptions are allowed∑
t∈T

∑
k∈{1,...,K+1}

ak,t ≤ T + 2. (5)

As we can see from the above, the objective function above
is a graph shortest path problem, where the arc weights are
denoted by dual variables λk,t. We are searching for a shortest
path from source to destination knapsack in a directed graph
where each incoming arc at node (k, t) has a weight λk,t.

The condition (3d) indicates that an item should be placed
in at least one knapsack at each time period.

The conditions (4) and (5) restrict the movements of items
between knapsacks. Only one knapsack change, denoted by
a vertical move in the graph, is allowed if there are no
interruptions (i.e., knapsack (K+1) is not used). But, if we are
searching for a path with interruption (i.e., knapsack (K +1)
is used), then we allow at most two vertical moves.

3) Achieving an integer solution: As the final step in the
column generation algorithm, we need to obtain an integer
solution to the problem.

a) Final ILP: One good way of not shifting the results
too much in relation to the continuous results is to solve
the final Master Problem as an Integer Linear Programming
problem. In this final Master Problem we use the final set of
paths found by iteratively solving the continuous version of
Column Generation until optimality. The path variables are
then forced to binary. This method is referred to below as
Solving the Final Master Problem (Final ILP).



b) Post optimization: The main idea in this method is
to start with an initial solution obtained by rounding and
to add new paths until a possible solution is reached. This
initial solution may be infeasible after rounding the variables.
We therefore identify the knapsack in which the capacity
constraint has been violated and the items that it contains. We
then modify the paths of some of the items in the knapsack
by adding interruptions in them to make the solution feasible.
This is noted with PostOpt.

c) A mixed method: Another method involves solving the
Master Problem one more time, but now with the addition of
the paths established using the heuristic method. A comparison
of the objective functions of the different methods shows that
solving the Master Problem once again in this way gives us
the lowest cost. The ILP version of the final Master Problem
(after the addition of paths identified by the post optimization
method) is consequently the best version, maintaining feasi-
bility and having the lowest interruption cost, that is to say
the closest to the continuous interruption cost. This method is
noted as PostOpt + Final ILP.

C. Second compact formulation

Below we introduce a new compact ILP model of the
MMKR problem. We define the following variables. For all
i ∈ I, t ∈ T , xt

i is a binary variable that equals 1 if, and
only if, item i is at its source at time t, yti is a binary variable
that equals 1 if, and only if, item i is at its destination at
time t, and zti is a binary variable that equals 1 if, and only
if, item i is interrupted at time t. Then, using the observable
monotonicity of the values of variables x and y with time
periods, the MMKR problem can be formulated as:

min
∑
i∈I

∑
t∈T

w(i)zti (6a)

xt
i ≥ xt+1

i ∀i, ∀t < T (6b)

yti ≥ yt−1
i ∀i, ∀t > 1 (6c)

xt
i + yti + zti ≥ 1 ∀i, ∀t (6d)∑

t∈T
(xt

i + yti + zti) ≥ T + 1 ∀i (6e)∑
i∈O(k)

w(i)xt
i +

∑
i∈D(k)

w(i)yti ≤ C(k) ∀k, ∀t (6f)

xt
i, y

t
i , z

t
i ∈ {0, 1} ∀i, ∀t. (6g)

Once again, the objective is to minimize the weighted
interruption time over all items. While constraints (6d) require
that each item is either in a knapsack or is interrupted,
constraints (6e) result from the mentioned specifics of VNF
migration that the VNF is not available until the next time
period after transfer, and require that after the item has been
moved to the destination knapsack and the item is not still in
the source knapsack it must be regarded as interrupted.

IV. NUMERICAL RESULTS

This section is devoted to numerical results. We ran our
methods on a set of realistic problem instances, using ran-

domly generated topologies to build both acyclic and cyclic
graphs. The graphs, of different sizes (small and medium),
were generated randomly using NetworkX, (a Python lib),
based on [8]. To solve the linear programming models we have
used the PuLP library, based on [9], an open source package
that allows mathematical programs to be described in Python
programming language.

The nodes of the graph represents the servers, and the links
represent the VNF migration. The node and link capacities
were generated randomly, (1 − 50) for CPU capacity and
(10 − 90) for RAM capacity. The type number of the VNFs
was randomly generated in the range (25 − 220) and the
number of servers in the range (10 − 100). The datasets are
presented in Table II. Another element included in the tables
is the number of periods (Periods) allowed for the migration.
This aspect may be important in some situations where the
migrations have to be realized in the shortest possible time.
In theory, the maximum number of periods is bounded by
the number of migrations (items), but in practice several
migrations can be processed in parallel. An assessment of
the Column Generation method together with its several post-
optimization methods for both cyclic and acyclic graphs can be
seen in Table III and Table IV, respectively. It will be remarked
that the mixed method (that is PostOpt + Final ILP) performed
significantly better. This method is used below for the purposes
of comparison with the ILP formulations.

Cyclic Graphs Acyclic Graphs
Instance Server Item Periods Server Item Periods
1 10 30 I/4 10 25 I
2 20 45 I/5 20 35 I/4
3 40 70 I/8 40 60 I/9
4 50 90 I/10 50 80 I/10+1
5 80 146 I/18 80 150 5I/32
6 100 220 I/32-1 100 200 I/25

TABLE II: Datasets of cyclic and acyclic graphs

Instance Final ILP PostOpt PostOpt + Final ILP
1 12 5 2
2 0 4 0
3 28 34 16
4 0 17 0
5 70 63 46
6 16 33 11

TABLE III: Cyclic Graphs – Interruption cost



Instance Final ILP PostOpt PostOpt + Final ILP
1 0 19 0
2 0 0 0
3 5 11 1
4 0 5 0
5 0 38 0
6 14 28 5

TABLE IV: Acyclic Graphs – Interruption cost

In the following, we report comparative numerical results
for the three methods, namely column generation completed
with mixed post optimization method (noted as ColGen++),
first compact ILP, and second compact ILP. The notation TL
stands for the out of time limit, the limit being set to 3600
seconds.

Fig. 3. Cyclic Graphs – Computation time (in seconds)

Fig. 4. Acyclic Graphs – Computation time (in seconds)

Inst ColGen++ Compact I Compact II
1 2 0 0
2 0 0 0
3 16 TL 2
4 0 TL 0
5 46 TL 2
6 11 TL 1

TABLE V: Cyclic Graphs – Interruption cost

Inst ColGen++ Compact I Compact II
1 0 0 0
2 0 0 0
3 1 0 0
4 0 0 0
5 0 0 0
6 5 TL 0

TABLE VI: Acyclic Graphs – Interruption cost

From the tables it may be concluded that the Column
Generation method gives better results than the first compact
formulation, while keeping the interruption cost under control.
In the case of acyclic graphs, the cost is zero in most cases.
However, it will also be remarked that the second compact
formulation achieves the optimal solution in a very short time
for the fixed target migration plan.

V. CONCLUDING REMARKS AND PERSPECTIVE

In this paper we have presented some new results on an
optimization problem relating to resource allocation in 5G
networks. We model the problem as a Multiple Multidi-
mensional Knapsacks Reconfiguration problem and formulate
it through Integer Linear Programming compact and non-
compact models.

One of the main issues here is that solution choices have a
high combinatorial potential, which may make the optimiza-
tion problem computationally intractable for large problem
instances. Indeed, from the experimental results we see that
the first compact formulation becomes intractable when the
number of items and the number of servers increase. We pro-
pose a Column Generation solution approach. This formulation
is tractable and gives a smaller optimality gap comparing to
compact formulations.

Nevertheless, the computation times remain significantly
higher to those exhibited by the second compact formulation.

The drawback of the work done until now stands in fixing
the target migration plan with respect to some placement of
VNF in the servers. Computing the target placement may be
done easily as a multiknapsack problem while minimizing the
number of migrations. For the operator may be interesting to
let the final placement free and let the algorithm find the best
reconfiguration leading to minimum number of interruptions.
This is called the free target migration plan and is the focus
of our current work. At this stage, we have noticed that the
second compact ILP problem model becomes computationally
difficult comparing to the free target migration plan case, while
the column generation method scales very well. Work is in
progress on this issue.

ACKNOWLEDGMENT

The work of Artur Tomaszewski was supported by
the National Science Centre, Poland, under grant no.
2017/25/B/ST7/02313: ”Packet routing and transmission
scheduling optimization in multi-hop wireless networks with
multicast traffic”.



REFERENCES

[1] Hanane Biallach, Mustapha Bouhtou and Dritan Nace, “Optimization of
the virtual network function reconfiguration plan in 5G network slicing,”
ICN International Conference on Networks, 2022, (to appear)

[2] Renaud Sirdey, Jacques Carlier, Hervé Kerivin and Dritan Nace, “On a
resource-constrained scheduling problem with application to distributed
systems reconfiguration,“ European Journal of Operational Research,
2006

[3] Fernando Solano and Michał Pióro, “Lightpath reconfiguration in WDM
networks,“ Journal of Optical Communications and Networking, vol. 2,
no. 12, 2010

[4] Rickson S. Pereira, Douglas D. Lieira, Marco A. C. da Silva, Adinovam
H. M. Pimenta, Joahannes B. D. da Costa, Denis Rosário, Leandro
Villas and Rodolfo I. Meneguette, “RELIABLE: Resource allocation
mechanism for 5G network using Mobile Edge Computing,” 2020,
DOI:10.3390/s20195449

[5] Eleonora Riva Sanseverino, Thanh Ngo Ngoc, Marzia Cardinale, Vin-
cenzo Li Vigni, Domenico Musso, Pietro Romano and Fabio Viola, “Dy-
namic programming and Munkres algorithm for optimal photovoltaic
arrays reconfiguration“, Solar Energy, vol. 122, 2015

[6] Loubna Bouselham, Abdelhamid Rabhi, Bekkay Hajji and Adel Mellit,
“Photovoltaic array reconfiguration method based on fuzzy logic and
recursive least squares: An experimental validation,“ Energy, vol. 232,
2021

[7] Yang Song, Chi Zhang and Yuguang Fang, “Multiple multidimensional
knapsack problem and its applications in cognitive radio networks,”
2008, DOI: 10.1109/MILCOM.2008.4753629

[8] Jiankai Sun, Deepak Ajwani, Patrick K. Nicholson, Alessandra
Sala and Srinivasan Parthasarathy, “Breaking cycles in noisy
hierarchies,“ ACM on Web Science Conference, 2017,
DOI:10.1145/3091478.3091495, source code available at
https://github.com/zhenv5/breaking cycles in noisy hierarchies.

[9] “Optimization with PuLP,“ URL: http://coin-or.github.io/pulp
[10] Guy Desaulniers, Jacques Desrosiers and Marius M. Solomon, “Column

generation,“ GERAD 25th Anniversary Series, 2005.
[11] Marco Caserta and Stefan Voß, “The robust multiple-choice multidimen-

sional knapsack problem,” 2018, DOI:10.1016/j.omega.2018.06.014
[12] Markus Leitner, Ivana Ljubić, Markus Sinnl and Axel Werner, “ILP

heuristics and a new exact method for bi-objective 0/1 ILPs: Application
to FTTx-network design,” 2016, DOI:10.1016/j.cor.2016.02.006

[13] Xiaokang Cao, Antoine Jouglet and Dritan Nace, “A multi-period
renewal equipment problem,” 2011, DOI: 10.1016/j.ejor.2011.12.011

[14] Timo Berthold, “Primal heuristics for Mixed Integer Program,” 2006
[15] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford

Stein, “Single-source shortest paths. Introduction to Algorithms, Third
Edition (pp. 643-707),“ The MIT Press, 2009

[16] Fernando Solano and Michał Pióro, “WDM network re-optimization
avoiding costly traffic disruptions,“ Telecommunication Systems, vol.
52, 2011


