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We study experimentally the compaction dynamics of a fully-immersed granular packing subjected
to a slow upward flow. We consider continuous flows as well as discountinous flows featuring short
flow bursts that act as flow “taps”. We monitor the compaction rate of initial packings prepared
by settling, and find that compaction is possible for a continuous flow with upward velocities below
the fluidization threshold. Flow bursts are found strongly to enhance the compaction efficiency,
especially when the bursts are above the fluidization threshold.

I. INTRODUCTION.

How identical spheres arrange in a dense packing is a
long standing scientific question that aroused many fun-
damental works since the famous Kepler conjecture: even
if the solid fraction in the tetrahedral arrangement of four
equal spheres in contact is 0.78, the highest solid fraction
that can be achieved in a large packing is 0.74. This value
corresponds to the densest periodic arrangement of equal
spheres. In contrast, disordered packings correspond to
much lower solid fractions. Random packings of equal
spheres have a solid fraction of about 0.6 with a Random
Loose Packing limit (RLP) of about 0.56 and a Random
Close Packing (RCP) of about 0.64. For granular sys-
tems that are athermal and dissipative, the exploration
of the different possible arrangements cannot be driven
by temperature and must be driven by an external input
of mechanical energy. This can be achieved by different
modes of loading. The most classical way of compaction
is the mechanical shaking of the container by successive
taps [1–6] or harmonic vibrations [7]. The solid frac-
tion first sharply increases, and then keep increasing but
more slowly toward a plateau. Two main empirical laws
are used for describing the time evolution of the solid
fraction from the initial packing value ϕ0 to the final one
ϕ∞. The first law is expressed using a logarithmic time
dependence, as [1, 2]:

ϕ(t)− ϕ0

ϕ∞ − ϕ0
= 1− 1

1 +B ln (1 + t/τ)
, (1)

where τ is a characteristic time of the compaction dy-
namics and the parameter B is related to the compaction
efficiency. The second law involve an exponential time
dependence, as [1, 3–5]:

ϕ(t)− ϕ0

ϕ∞ − ϕ0
= 1− e(−t/τ)β , (2)

involving a characteristic time τ and an exponent β re-
lated to the compaction efficiency.

The logarithmic evolution of Eq. (1) may be explained
from simple theoretical arguments [8, 9], e.g. by consid-
ering the process where a grain can jump into a hole only
if the hole is large enough and by considering a distribu-
tion of hole sizes of Poisson type with a characteristic free
volume [8]. The stretched exponential law is frequently

used in a large range of relaxations of disordered thermal
systems such as glasses [3]. The logarithmic evolution is
experimentally observed for “confined” packings where
the container-to-grain size ratio D/2a is not very large
(D/2a ≲ 10), whereas the stretched exponential is ob-
served for “unconfined” packings (D/2a ≳ 10). In the
tapping experiments of monodisperse spheres, the solid
packing fraction typically increases from ϕ0 ≃ 0.58 to
0.61 ≲ ϕ∞ ≲ 0.63. The characteristic time τ decreases
with increasing level of vibrations so that compaction is
quicker for larger vibrations. By contrast, the final solid
fraction ϕ∞ decreases with increasing level of vibrations
so that compaction is higher for smaller vibrations [2, 3].
Thus, an optimal way of compaction is to apply first large
vibration levels for a first quick compaction before low vi-
bration levels to achieve a final higher compaction up to
about ϕ∞ ≃ 0.65.

Compaction has been shown to be also possible by
shearing the granular packing from lateral wall deforma-
tion (e.g. [10, 11]). This process appears to be quite
efficient, with compaction ranging from ϕ0 ≃ 0.59 up
to 0.66 ≲ ϕ∞ ≲ 0.69 depending on the shear ampli-
tude after a few 104 cycles typically. Such high values of
solid fraction are beyond the RCP limit and ordering is
observed with some crystalline clusters at the walls but
also in the bulk. In these shearing experiments, the com-
paction dynamics is complex and does not follow any of
the model equations (1-2) mentionned above.

When grains are cohesive, the observed packing frac-
tions are much lower, with reported values as low as
0.1, and display some compaction under vibrations by
a two stage process with two timescales, a short one and
a large one, which are associated to collective and indi-
vidual grain motions [12].

When the grains are fully immersed into a liquid, the
bed packing that arises from settling depends on the hy-
drodynamic forces that come into play, which themselves
depend on the particle Reynolds number and Stokes num-
ber [13, 14], that compare fluid inertia and particle in-
ertia, respectively, to viscous dissipation. Using fluidiza-
tion/sedimentation cycles Schröter et al.[15] studied the
fluctuation statistics of the solid fraction of the obtained
bed packings which display small relative variations of
about 0.1%. As for dry packings, compaction of liquid
immersed granular packings can be achieved by taps [16]
or harmonics vibrations [17]. In these compaction exper-
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FIG. 1. (a) Sketch of the experimental set-up. (b) Continuous
flow with the constant upward velocity UF ̸= 0. (c) Bursting
flow with the time period T = Tw + Tf made of successive
flow time Tf sepatated by non flow time Tw.

iments where glass beads of about half a millimeter in
diameter are immersed in a viscous liquid from one time
to one thousand time the viscosity of water, the frequency
is about the same (∼ 50 Hz) and the maximal acceler-
ation is about the same (∼ 10g, where g is the gravity
acceleration), but the oscillation amplitudes are smaller
than the grain size [17] whereas the tap amplitudes are
larger than the grain size [16]. The solid fraction is ob-
served to increase from about ϕ0 ≃ 0.57 [16] or 0.58 [17]
up to 0.60 ≲ ϕ∞ ≲ 0.62 [17] or 0.64 ≲ ϕ∞ ≲ 0.65 [16],
but the compaction dynamics is however more complex
than in the dry case and cannot be given by the previous
model equations (1-2). Indeed, a first quick dynamics
followed by a second slow dynamics are observed and the
resulting dynamics has to be fitted by either a change
in the exponent β of Eq. (2) [17] or by a change in the
parameter B of Eq. (1) [16].

Despite all the previous reported studies, the com-
paction dynamics of granular packings is not fully under-
stood. Yet the solid fraction of granular packings is a key
parameter in numerous phenomena such as avalanches
[18, 19], impact cratering [20] or animal locomotion [21].
In some of these recent experiments, either air flow pulses
[21] or a combination of continuous air flow and vi-
brations [19] are used to generate different compaction
states.

In the present paper, we look at the possible com-
paction of liquid immersed granular packings by upward
flows which are either continuous or discontinuous with
short flow bursts that act as flow “taps”. In section II,
we present the experimental set-up that allow to prepare
the initial packing from the settling of a fluidized bed be-
fore applying the upward flow. Then we show results for
the compaction dynamics of the packing when submitted
to a continuous flow below the fluidization threshold in
section III, and to successive short flow bursts in section
IV.

II. EXPERIMENTAL SET-UP

The experimental set-up is sketched in Fig. 1. Glass
beads of radius a = (1 ± 0.05)mm and density ρp =
2.3 × 103 kg/m3 are dispersed in a water-glycerol mix-
ture of 90% in mass of glycerol, with thus a density
ρ = 1235±1 kg/m3 and viscosity η = (0.156±0.012)Pa · s
at (24± 1) ◦C. For the whole set of experiments, the to-
tal mass Mp of particles has been kept constant with the
value Mp = 360± 0.01 g. The liquid immersed beads are
contained in a vertical parallelepipedic cell of 50 cm high
and of rectangular cross-section S = 8×2 cm2. The liquid
is injected through a 2 cm high porous medium located
at the bottom of the cell and fitted with its rectangular
section. The porous medium opening is 50µm, with a
permeability which is two orders of magnitude lower than
the permeability of the granular bed. The upward vol-
ume flow rate Q is fixed using a gear pump allowing fluid
circulation without any significant noise and dependence
to pressure loss which mainly comes from the porous me-
dia. The pump is controlled with a wave form generator
which allows any requisite flow variations. For periodic
bursts, we have checked that the flow rate in the cell is
the one set, with no overshoot and very short time rise
(smaller than 1/15 s) when the flow is turned on, and
the same very quick response when the flow is turned
off. We do not observe any mechanical disturbance when
the flow is turned on or off. The experimental tank is
lightened from behind and images of the cell are taken
at the maximum rate of 15 images per second thanks
to a camera located 1 meter from the cell and with its
axis horizontal and perpendicular to the largest side of
the cell. The global solid volume fraction of the bed is
measured through image analysis. From each individ-
ual image taken at time t, the bed surface is tracked
and averaged spatially to obtain the mean instantaneous
heigth h(t) of the bed. We do not observe any signifi-
cant curvature of the bed surface across the width and
the thickness of the cell, but a flat profile. The mean
solid volume fraction ϕ(t) of the bed at time t is then
deduced from h(t) as ϕ(t) = Mp/ρpSh(t), with an accu-
racy δϕ/ϕ = δh/h ≃ 10−3. Indeed in our experiments,
the initial height value of the packing is about h0 ≃ 16
cm for ϕ0 ≃ 0.6 and the accuracy of its measurement is
δh ≃ 0.1 mm.

Considering the particles and the fluid used, the typ-
ical settling velocity of one isolated spherical particle is
expected to be given by the Stokes velocity Us = 2(ρp −
ρ)ga2/9η ≃ 15mm/s corresponding to a viscous regime
with a low particulate Reynolds Rep = ρUsa/η ≃ 0.1.
The Stokes number corresponding to the ratio of particle
inertia to viscous dissipation is St = 2ρpUsa/9η ≃ 0.05,
thus very far below the critical value Stc ≃ 10 cor-
responding to the bouncing transition [22, 23]. This
means that all kinetic energy is dissipated in the fluid
in the grain contact process. In a low Re fluidized bed,
the solid volume fraction ϕ is imposed by the upward
flow velocity UF = Q/S according to the Richardson-
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Zaki law (RZ in the following) which reads [24, 25] :
ϕ = 1 − (UF /Us)

1/n. As shown in Fig. 2, our exper-
imental data ϕ(UF ) agree fairly well with the RZ law
with the exponent value n ≃ 4.2 and the experimental
Stokes velocity Us ≃ 16mm/s close to the previously es-
timated value for a perfect monodisperse suspension of
spheres.
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FIG. 2. Solid fraction of the granular bed ϕ as a function of
the upward fluid velocity UF normalized by the Stokes veloc-
ity Us (bottom axis) or the critical fluidization velocity UFc

(top axis). (◦) Experimental data for fluidized beds above the
fluidization threshold UFc/Us = 0.02 and (—) best fit by RZ

law ϕ = 1−(UF /Us)
1/n with n ≃ 4.2 and Us ≃ 16mm/s. (×)

Final value ϕ∞ from best fit by Eq. (1) of ϕ(t) data of Fig. 3
corresponding to compaction experiments at UF < UFc. In-
set: Zoom on flow range UF /UFc ⩽ 2.

Each initial granular pile is prepared following the
same procedure. First, a fluidized suspension of solid
fraction ϕ ≃ 0.22 is obtained by imposing a constant
upward velocity UF ≃ 5.7mm/s ≃ 0.35Us. Then the
upward flow is switched off and the suspension set-
tles achieving a granular pile of solid fraction ϕ0 =
0.605 ± 0.005. The critical fluidization velocity deduced
from the RZ law for beds of initial packing fraction
ϕ0 = 0.605 ± 0.005 is UFc ≃ (0.02 ± 0.001)Us. For
UF > UFc, the granular pile expands again towards a
fluidized suspension of solid fraction ϕ < ϕ0 according to
the RZ law. In the following, we present experimental re-
sults for the compaction dynamics of the initial packing
resulting from either a continuous flow (Fig. 1b) below
the fluidization threshold (UF < UFc) or successive flow
bursts (Fig. 1c).
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FIG. 3. Time evolution of the normalized solid fraction ϕ/ϕ0

of the packing submitted to an upward continuous flow at
three different velocities UF /UFc = 0.4 (□), 0.6 (♢) and 0.7 (◦)
from an initial packing fraction ϕ0 = 0.606 (□), 0.607 (♢), and
0.603 (◦). (—) Best fit by Eq. (1) with ϕ∞ = 0.74 and (□)
B = 0.019 and τ = 55 s, (♢) B = 0.027 and τ = 25 s, (◦)
B = 0.037 and τ = 7 s. The horizontal grey stripe corresponds
to RCP.

III. EXPERIMENTAL RESULTS

A. Continuous flow

Figure 3 displays the time evolution of the packing
fraction ϕ(t) of the granular bed when normalized by its
initial value ϕ0 for three upward continuous flow veloc-
ities, UF /UFc = 0.4, 0.6 and 0.7, below the fluidization
threshold. In each case ϕ increases with time with thus
a compaction of the granular bed by the weak upward
flow. This means that an upward continuous flow below
the minimum of fluidization leads continuously to local
rearrangements that result in an increase of the solid frac-
tion ϕ. The compaction process is continuous during the
long experiments that last typically a day, and no satura-
tion that would lead to a final plateau value is seen. The
compaction is higher for higher fluid velocity provided
that the fluidization threshold is not overcome. For the
highest possible flow rate UF /UFc = 0.7, compaction is
significant but rather slow as ϕ increases by about 2%
after one minute (from 0.605 up to about 0.62), by about
4% after one hour (up to ϕ ≃ 0.63) and by about 6%
(up to ϕ ≃ 0.645) after one day. We have tested the
two compaction laws reported in the introduction and
have found that the one based on a stretched exponen-
tial (Eq. 2) does not fit well our data but the one based
on a logarithm (Eq. 1) does. This is not surprising as
our system is rather confined with only 10 bead diame-
ters in the smallest dimension [3]. For each data series,
the best fit is found for the maximal possible volume
fraction ϕ∞ = 0.74 but different values of the two other
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FIG. 4. a) Amplitude B and b) dimensionless characteristic
time τUFc/a of the compaction dynamics by upward con-
tinuous flow as a function of the dimensionless flow velocity
UF /UFc. (◦) Experimental data and (—) best linear fits.

parameters B and τ . This means that in our compaction
process the predicted final packing is the highest achiev-
able one, even if our highest measured solid fraction was
ϕ ≃ 0.64 for UF /UFc ≃ 0.7 after one day. The RZ law by
which the solid fraction is related to the upward velocity
for a fluidized bed for UF > UFc seems thus no more
valid for a bed packing for UF < UFc. The values of the
compaction efficiency B and of the characteristic time
of compaction τ when normalized by the characteristic
settling time a/UFc ≃ 3 s are shown in Fig. 4 as a func-
tion of the dimensionless upward velocity UF /UFc. For
increasing UF /UFc, B increases while τ decreases, which
means that compaction is stronger and quicker for larger
UF /UFc provided that UF /UFc < 1. Note that we do not
observe any significant dependence of B and τ with ϕ0.
Note also that it was not possible to perform experiments
below UF /UFc = 0.4 because the pump does not deliver
a continuous flow anymore at too low flow rates. In this
limited flow range, the compaction time τ appears to de-
crease with increasing UF and a linear fit of the data leads
to a vanishing τ for UF /UFc = 0.85±0.15, rather close to
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FIG. 5. Normalized solid fraction ϕ/ϕ0 as a function of
time t for upward flow bursts of dimensionless velocity (∗)
UF /UFc = 0.4 (T = 15 s) and (×) UF /UFc = 2.6 (T = 11, 6
s) corresponding to the same dimensionless flow displacement
TfUF /a = 0.54 with accordingly varying burst time duration
Tf , and the same waiting time Tw = T − Tf = 11 s. (- - -)
Best fits by Eq. (1) with ϕ∞ = 0.74 and with (∗) B = 0.07
and τ = 945 s, and (×) B = 0.21 and τ = 37 s. (□) Same
data and fit as in Fig. 3 for continuous flow at UF /UFc = 0.4.
The horizontal thick grey line corresponds to RCP.

the value 1 corresponding to the experimental fluidization
threshold. Note that at UF /UFc ≃ 0.9, thus very close
to the fluidization threshold, we observe some intermit-
tency with successive irregular phases of compaction and
decompaction. This behavior is not surprising and may
be driven by some noise [26], and a similar intermittency
with successive phase of mixing and segregation have
been observed in fluidized beds with two grain sizes [27].
When the flow rate is significantly below the critical flu-
idization value (UF < 0.9UFc), we think that compaction
arises from packing inhomogeneities that lead to perme-
ability inhomogeneities and thus to flow inhomogeneities:
some local zones of lower packing fractions (higher per-
meabilities) are submitted to higher upward flow rates
above the critical one that lead to local fluidization with
possible local rearrangments.

B. Flow bursts

Let us now consider the effect of successive flow bursts.
Our bursting experiments consist of a short flow time Tf

followed by a long resting (no flow) Tw time before the
next flow time, with thus the time period T = Tf + Tw

as sketched in Fig. 1c. A constant upward velocity UF

is kept during each flow burst. The burst flow time Tf

has been chosen such as the resulting fluid displacement
is about one grain size, Tf ∼ a/UF , whereas the wait-
ing time Tw has been chosen large enough for the grains
to settle before the next flow burst, thus larger than
the typical setling time a/UFc ∼ 3 s. In practice, Tw
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is kept constant with the large enough value Tw = 11 s
whereas Tf is adjusted with the UF value in the range
0.5 ≲ Tf ≲ 4 s. Figure 5 displays the time evolution
of the normalized solid fraction ϕ(t)/ϕ0 for two burst
experiments with flow velocity below (UF /UFc = 0.4)
and above (UF /UFc = 2.6) the critical fluidization ve-
locity together with the continuous experiments of Fig.
3 corresponding to the same flow velocity below thresh-
old. Two amazing facts arise from the results. The first
amazing thing is that burst flow leads to a much more
efficient compaction than continuous flow at the same
value (UF /UFc = 0.4) below the threshold of fluidiza-
tion. Indeed, after one day experiments corresponding
here to about N = t/T ≃ 6 × 103 flow bursts, the in-
crease is of about 5%, whereas the increase is less than
3% by continuous flow. Burst flow is even more effi-
cient for compaction when considering the injected fluid
amount which is reduced by the factor Tf/T ≃ 0.27 when
compared to continuous flow. The second amazing thing
is that compaction is still observed for flow bursts above
the threshold of fluidization and that the resulting com-
paction is much more efficient than the one below. In-
deed, after one day the compaction is of about 12% at
UF /UFc = 2.6 (see Fig. 5), thus 2.5 times higher than
at UF /UFc = 0.4. In that case, the bed solid fraction is
observed to be above the random close packing value as
ϕRCP ≃ 0.64 is reached after about only 4 minutes cor-
responding to only N ≃ 20 flow bursts, and ϕ ≃ 0.68 is
reached after about one day experiment (N ≃ 7 × 103).
At such high solid fraction there should be some local
crystallisation as reported recently in compaction by pe-
riodic shear [11].

The detailed action of the flow bursts is shown in Fig. 6
where the time evolution of the top position of the pack-
ing h relative to is initial value h0 and made dimension-
less by the bead radius a, (h−h0)/a, is plotted for a few
first burst periods. When the burst flow velocity UF is
above the critical fluidization velocity UFc, the packing
is slightly fluidized during each flow burst with a small
decompaction of about 0.1a before a much larger com-
paction during the rest time Tw. By contrast, when the
burst flow velocity is below the critical fluidization veloc-
ity (UF < UFc), there is no fluidization as expected but
a slow and about continuous compaction.

By fitting the ϕ(t) data points of Fig. 5 obtained
by flow bursts by the same logarithmic law as for
continuous flows (Eq. 1), we can extract the three
parameters ϕ∞, B and τ . As for the packing compaction
by a weak continuous flow, best fits of data series for
burst flows lead always to the highest possible value
for the ultimate solid fraction: ϕ∞ = 0.74. The values
of the two other parameters B and τ when normalized
by the typical settling time a/UFc are plotted in Fig. 7
as a function of the dimensionless burst flow velocity
UF /UFc. We observe that B increases and τ decreases
when UF increases below the critical fluidization velocity
(UF /UFc < 1) as for the continuous flow (Fig. 4).
The B and τ values for compaction by flow bursts are
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FIG. 6. Time evolution of the top position h of the packing
relative to its initial value h0 made dimensionless by the bead
radius a during a few first flow bursts for a burst flow velocity
UF below (- - - ), UF /UFc = 0.6, Tf/T = 0.26) and above
(—), UF /UFc = 2.6, Tf/T = 0.08) the fluidization threshold
UFc. The waiting time Tw = 11 s has been kept constant
whereas the flow time Tf has been varied to keep constant
the fluid displacement TfUF .

however quite different from the ones by continuous flow.
Indeed, B and τUFc/a are about 4 times larger, but the
effect of a larger B seems to be more important than
the effect of a larger τ so that the compaction dynamics
by flow bursts is larger than by continuous flow. Above
the critical fluidization velocity (UF /UFc > 1), the
compaction efficiency parameter seems to saturate at a
high plateau value B ≃ 0.2, whereas the characteristic
time τ is very low (τUFc/a < 3). When looking at the
characteristic number of bursts Nc = τ/T (see inset of
Fig. 6b), Nc decreases quite abruptly from about 60
when UF /UFc < 1 to Nc = 5 ± 1 when UF /UFc > 1.
This almost constant value may be due to the fact
that the burst time Tf has been adjusted to the UF

value, such as the fluid displacement is the same and
corresponds to about one grain size: Tf ≃ a/UF .

IV. CONCLUSION

We have tested the possible compaction of liquid im-
mersed granular packings, initially prepared by settling,
from either continuous or bursting upward flow at low
Reynolds number. The time evolution of the packing
fraction was shown to follow a logarithmic evolution with
three parameters corresponding to the ultimate solid
packing, the compaction efficiency and the characteristic
time. We have shown that compaction is possible with a
continuous upward flow below the fluidization threshold,
and that this compaction is stronger and faster close
to this threshold. In this regime where the grains are
no more in suspension but form a dense packing with
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FIG. 7. a) Compaction amplitude B and b) dimensionless
characteristic time τUFc/a of the compaction dynamics as
a function of the dimensionless flow velocity UF /UFc with
the same fluid displacement during flow burst TfUF /a = 0.5.
Inset: Corresponding characteristic number of bursts Nc =
τUFc/a as a function of UF /UFc.

permanent contact, the usual law of Richardson and Zaki
(RZ) that relates the solid fraction to the upward fluid
velocity for fluidized suspensions seems no more valid.
Indeed, the observed logarithmic compaction process
seems to go beyond the predicted RZ value for the solid
fraction. A key point is that the compaction is even
more efficient when the continuous flow is replaced by
flow bursts. An even stronger and faster compaction is
observed when the flow bursts are above the fluidization
threshold, and seems to be the same when changing
the flow rate but keeping constant the resulting fluid
displacement for each burst flow (about one grain size).
Complementary experiments should now be performed
to explore the effect of the fluid displacement during
each burst and to investigate the particle motions that
lead to progressive compaction. An interesting point to
investigate further would be the evolution of the packing
state related to the different critical transitions [28] such
as the glass transition, the jamming transition and the
intermediate Gardner transition [29] recently observed
experimentally in granular media [30].
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