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METRIC PROPERTIES OF BOUNDARY MAPS, HILBERT ENTROPY AND NON-DIFFERENTIABILITY

We interpret the Hilbert entropy of a convex projective structure on a closed higher-genus surface as the Hausdorff dimension of the nondifferentiability points of the limit set in the full flag space FpR 3 q. Generalizations for regularity properties of boundary maps between locally conformal representations are also discussed. An ingredient for the proofs is the concept of hyperplane conicality that we introduce for a θ-Anosov representation into a reductive real-algebraic Lie group G. In contrast with directional conicality, hyperplane-conical points always have full mass for the corresponding Patterson-Sullivan measure.

Introduction

Consider a closed connected orientable surface S of genus at least two, and let ρ : π 1 S Ñ PSLp3, Rq be a faithful representation preserving an open convex set Ω " Ω ρ Ă PpR 3 q, properly contained in an affine chart. The group ρpπ 1 Sq is necessarily discrete and acts co-compactly on Ω: one says that ρ divides Ω.
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The geometry of such convex set Ω is well studied, by Benoist [START_REF] Benoist | Convexes divisibles I. In Algebraic groups and arithmetic[END_REF] it is strictly convex with C 1`ν boundary BΩ (that is not C 2 unless it is an ellipse), and the Hilbert metric of Ω is Gromov-hyperbolic. The geodesic flow of Ω{ρpπ 1 Sq is an Anosov flow and its topological entropy, the Hilbert entropy h H " ph H q ρ , satisfies h H ď 1, an inequality proved by Crampon [START_REF] Crampon | Entropies of compact strictly convex projective manifolds[END_REF] that is strict if Ω is not an ellipse.

A consequence of Theorem B below is a new geometric interpretation of the Hilbert entropy which we now explain. For each x P BΩ let Ξpxq P Gr 2 pR 3 q be the unique plane whose projectivisation is tangent to BΩ at x. By [START_REF] Benoist | Convexes divisibles I. In Algebraic groups and arithmetic[END_REF], the image curve ΞpBΩq Ă Gr 2 pR 3 q » PppR 3 q ˚q is also the boundary of a strictly convex divisible set Ω ˚and is thus again a C 1`ν -circle. The full-flag-curve tpx, Ξpxqq : x P BΩu Ă FpR 3 q, is the graph of a monotone map between C 1 circles and thus is a Lipschitz submanifold that is therefore differentiable almost everywhere. We establish the following:

Corollary A. Let ρ : π 1 S Ñ PSLp3, Rq divide a strictly convex set that is not an ellipse. Then, the set of non-differentiability points of the full flag curve has Hausdorff dimension ph H q ρ . Throughout the paper the Hausdorff dimension is computed with respect to a(ny) Riemannian metric on the flag space. When Ω is an ellipse the result does not apply as the associated curve is differentiable everywhere while h H " 1.

A classical result by Choi-Goldman [START_REF] Choi | Convex real projective structures on surfaces are closed[END_REF] states that the space of representations dividing a convex set forms a connected component of the character variety X `π1 S, PSLp3, Rq ˘of homomorphisms up to conjugation. This component is known today as the Hitchin component of PSLp3, Rq and is diffeomorphic to a ball of dimension ´8χpSq. Nie [START_REF] Nie | Entropy degeneration of convex projective surfaces[END_REF] and Zhang [START_REF] Zhang | The degeneration of convex RP 2 structures on surfaces[END_REF] have found paths pρ t q in this Hitchin component such that ph H q ρt Ñ 0 as t Ñ 8. Together with Corollary A this suggest that the closer Ω is to being an ellipse (the Fuchsian locus), the less differentiable the flag curve is whilst the furthest away from Fuchsian locus, the more regular the flag curve becomes.

The proof of Corollary A is outlined in § 1.4 and serves as a guide path for the strategy on the general case (Theorems A and B).

1.1. Locally conformal representations and concavity properties. Let K be R, C or the non-commutative field of Hamilton's quaternions H. Denote by a " pa 1 , . . . , a d q P R d :

ÿ i a i " 0 (
the Cartan subspace of the real-algebraic group SLpd, Kq, by τ i pa 1 , . . . , a d q " a i ´ai`1 (1.1) the i-th simple root and by a `Ă a the Weyl chamber whose associated set of simple roots is ∆ " tτ i : i P 1, d ´1 u. Let a : SLpd, Kq Ñ a `be the Cartan projection with respect to the choice of an inner (or Hermitian) product on K d . The e aipgq 's are the singular values of the matrix g, namely the square roots of the modulus of the eigenvalues of the matrix gg ˚. We also let d P denote the distance on PpK d q induced by the chosen Hermitian product.

Let Γ be a finitely generated word-hyperbolic group, consider a finite symmetric generating set and let | | be the associated word-length. For k P 1, d ´1 , a representation ρ : Γ Ñ SLpd, Kq is tτ k u-Anosov if there exist positive constants µ and c such that for all γ P Γ one has τ k `apρpγqq ˘ě µ|γ| ´c.

A tτ k u-Anosov representation is also tτ d´k u-Anosov. Under such assumption there exists an equivariant Hölder-continuous map ξ k ρ : BΓ Ñ Gr k pK d q, called the limit map in the Grassmannian Gr k pK d q of k-dimensional subspaces of K d , which is a homeomorphism onto its image. If k ď l P 1, d ´1 and ρ is also tτ l u-Anosov then the limit maps are compatible, i.e. ξ k ρ pxq Ă ξ l ρ pxq @x, see §4 for references and details. Definition 1.1. Fix p P 2, d ´1 . A tτ 1 , τ d´p u-Anosov representation ρ : Γ Ñ SLpd, Kq is p1, 1, pq-hyperconvex if for every pairwise distinct triple x, y, z P BΓ one has `ξ1 ρ pxq `ξ1 ρ pyq ˘X ξ d´p ρ pzq " t0u.

(

If in addition one has a 2 pρpγqq " a p pρpγqq @γ, we say that ρ is locally conformal.

Hyperconvex representations form an open subset of the character variety

X `Γ, SLpd, Kq ˘" hom `Γ, SLpd, Kq ˘{ SLpd, Kq and appear naturally. For example, when K " R, strictly convex divisible sets give rise to p1, 1, d ´1q-hyperconvex representations, while higher rank Teichmüller theory provides many examples of p1, 1, 2q-hyperconvex representations of surface groups, see Example 1.4. When p " 2 the second part of the definition is trivially true, so p1, 1, 2qhyperconvex representations over K are locally conformal, when p ą 2 the assumption constrains the Zariski closure of ρpΓq. However, Zariski-dense locally conformal representations exist (and form open sets) for the groups locally isomorphic to SLpn, Rq, SLpn, Cq, SLpn, Hq, SUp1, nq, Spp1, nq, SOpp, qq, see P.-S.-Wienhard [43, § 8] for details, and, of course, SOp1, nq where every convex co-compact representation is locally conformal.

A concrete example in SUp1, nq consist on considering a convex co-compact group in H n C whose limit set intersects the projectivization of any complex line in at most 2 points. These subgroups are locally conformal ([43, Proposition 8.3]) and their limit set (though fractal) is tangent to the contact distribution of BH n C . Consider also K P tR, C, Hu and positive integers d and d. Throughout the paper we mainly deal with a pair of locally conformal representations ρ : Γ Ñ SLpd, Kq and ρ : Γ Ñ SLpd, Kq, with equivariant maps ξ " ξ 1 ρ and ξ " ξ 1 ρ , and we study regularity properties of the equivariant Hölder-continuous homeomorphism Ξ " ξ ˝ξ´1 : ξpBΓq Ñ ξpBΓq.

To avoid confusion we denote the simple roots of SLpd, Kq by τ i : i P 1, d ´1 ( , and to simplify notation we identify γ with ρpγq and we let γ " ρpγq. We consider also the graph of Ξ, or equivalently the graph map, G : `ξ, ξ ˘: BΓ Ñ PpK d q ˆPpK d q.

Definition 1.2. Fix b P p0, 1s. We will say that that Ξ is b-concave at x P BΓ, or that x is a b-concavity point for Ξ, if there exists a sequence py k q converging to x as k Ñ 8 such that the incremental quotient d P `ξpxq, ξpy k q dP `ξpxq, ξpy k q ˘b (1.3) is bounded away from t0, 8u. The set of b-concavity points is denoted by H b ρ,ρ .

Observe that Ξ can be b-concave at x for several b's and that it is a 1-concave point if one has y k Ñ x such that dpξpxq, ξpy k qq and d P pξpxq, ξpy k qq are comparable. In what follows we will compute the Hausdorff dimension of GpH b ρ,ρ q with respect to the product metric on PpK d q ˆPpK d q for b lying on an interval that we now define. The dynamical intersection between ρ and ρ with respect to τ 1 and τ 1 is defined by

I τ 1 pτ 1 q " lim tÑ8 1 #R t pτ 1 q ÿ γPRtpτ 1q τ 1 pλpγqq τ 1 pλpγqq
, where R t pτ 1 q " rγs P rΓs : τ 1 `λpγq ˘ď t ( and λ : SLpd, Kq Ñ a `is the Jordan projection. This concept (from Bridgeman-Canary-Labourie-S. [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF], Burger [START_REF] Burger | Intersection, the Manhattan curve, and Patterson-Sullivan Theory in rank 2[END_REF], Knieper [START_REF] Knieper | Volume growth, entropy and the geodesic stretch[END_REF], among others) generalizes Bonahon's intersection number between two elements in Teichmüller space.

Let us say that ρ and ρ are gap-isospectral if for all γ P Γ one has τ 1 `λpγq ˘" τ 1 `λpγq ˘.

Corollary 6.6 (a consequence of [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF] together with Proposition 6.3) implies that if ρ and ρ are not gap-isospectral, then I τ1 pτ 1 q ą `Iτ1 pτ 1 q ˘´1 . We will study b-concavity for any b P p0, 1s with

I τ1 pτ 1 q ą b ą `Iτ1 pτ 1 q ˘´1 .
Finally, consider the critical exponents

h τ1 " lim tÑ8 1 t log # γ P Γ : τ 1 `apγq ˘ď t ( , h 8,b " lim tÑ8 1 t log # γ P Γ : max bτ 1 `apγq ˘, τ 1 `apγq ˘( ď t ( .
Theorem A (Theorem 6.1). Let tK, Ku Ă tR, Cu and let ρ : Γ Ñ SLpd, Kq and ρ : Γ Ñ SLpd, Kq be locally conformal, R-irreducible and not gap-isospectral. Then for any b P p0, 1s with

I τ1 pτ 1 q ą b ą `Iτ1 pτ 1 q ˘´1 , one has bh 8,b ď dim Hff pGpH b ρ,ρ qq ď minth 8,b , bh 8,b `1 ´bu ă minth τ 1 , h τ1 {bu ď dim Hff pGpBΓqq " maxth τ1 , h τ 1 u.
If K " H (resp. K " H) we further assume that the Zariski closure if ρ (resp. ρ) does not have compact factors, then the same conclusion holds.

The proof of the above Theorem is completed in § 6.3. For representations in PSLp2, Cq we can furthermore give a geometric interpretation of the 1-weakly-bi-Hölder points, see § 8.4.

1.2. Surface-group representations. Observe that the first line of inequalities in Theorem A becomes an equality when b " 1. We pursue now this situation while further restricting the source and ambient groups.

Let then K " R and assume BΓ is homeomorphic to a circle. Real representations of Γ that are p1, 1, 2q-hyperconvex are necessarily locally conformal and form the prototype example of Anosov representations with C 1 limit sets: indeed we have the following result from P.-S.-Wienhard [START_REF] Pozzetti | Conformality for a robust class of non-conformal attractors[END_REF] and Zhang-Zimmer [START_REF] Zhang | Regularity of limit sets of Anosov representations[END_REF].

Theorem 1.3. Assume BΓ is homeomorphic to a circle and let ρ : Γ Ñ PGLpd, Rq be tτ 1 u-Anosov. [START_REF] Pozzetti | Conformality for a robust class of non-conformal attractors[END_REF], [START_REF] Zhang | Regularity of limit sets of Anosov representations[END_REF]:

If ρ is p1, 1, 2q-hyperconvex, then ξ 1 pBΓq Ă PpR d q is a C 1 submanifold tan- gent at ξ 1 pxq to ξ 2 pxq. [54]: If ρ is irreducible and ξpBΓq is a C 1 circle then ρ is p1, 1, 2q-hyperconvex.
The graph map G " `ξ, ξ ˘: BΓ Ñ PpR d q ˆPpR d q has image contained in the C 1`ν torus ξpBΓq ˆξpBΓq and GpBΓq is the graph of Ξ, a Hölder-continuous homeomorphism between C 1`ν -circles. By monotonicity of Ξ, GpBΓq is a Lipschitz curve and is thus differentiable almost everywhere. We let NDiff ρ,ρ Ă GpBΓq be the subset of points where the curve GpBΓq is not differentiable. The combination of Lemma 6.2 and Corollary 8.1 establishes that in the current situation (with mild additional assumptions) G `H1 ρ,ρ ˘" NDiff pρ,ρq , whence with Theorem A one obtains the following: Theorem B. Assume BΓ is homeomorphic to a circle and let ρ : Γ Ñ SLpd, Rq and ρ : Γ Ñ SLpd, Rq be p1, 1, 2q-hyperconvex and not gap-isospectral. Then,

dim Hff `NDiff ρ,ρ ˘" h 8,1 ă 1.
We emphasize that no irreducibility assumption is made on the representations ρ and ρ. On the other hand, if the representations are irreducible and gap-isospectral, we show that there exists an isomorphism between the Zariski closures of ρpΓq and of ρpΓq intertwining the two representations. It follows then that GpBΓq is the diagonal of the C1`ν torus, and thus differentiable everywhere. To prove this we give the following preliminary classification of Zariski-closures, established in § 7.3.

Recall that if G is a semi-simple real-algebraic group of non-compact type, then irreducible proximal representations Φ : G Ñ PGLpV q are determined by their highest restricted weight χ Φ . A special subset of dominant weights are the socalled fundamental weights t a : a P ∆u, and are indexed by the set of simple roots ∆ of G (see § 2.3 for definitions and details).

Theorem C. Assume BΓ is homeomorphic to a circle and let ρ : Γ Ñ PGLpd, Rq be irreducible and p1, 1, 2q-hyperconvex. Then the Zariski closure G of ρpΓq is simple and the highest weight of the induced representation Φ : G Ñ PGLpd, Rq is a multiple of a fundamental weight associated to a root whose root-space is one-dimensional.

In light of the following examples it is unclear if further restrictions can occur.

Example 1.4. Any pair of representations ρ : π 1 S Ñ G and Φ : G Ñ PGLpV q in each of the following classes (and small deformations), gives rise to a p1, 1, 2qhyperconvex representation via post-composition Φ ˝ρ. In particular the limit set of ρ in the specified flag manifold of G is a C 1`ν curve:

-G is split, ρ : π 1 S Ñ G is Hitchin, and Φ satisfies χ Φ " n a for any a P ∆ and n P N ą0 . This is non-trivial and requires results from Fock-Goncharov [START_REF] Fock | Moduli spaces of local systems and higher Teichmüller theory[END_REF] and Labourie [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF] together with Lusztig's canonical basis [36, Proposition 3.2] (see S. [50, § 5.8] for details). As a result the limit set of ρ in any maximal flag manifold F tau of G is a C 1`ν curve. -ρ : π 1 S Ñ POpp, qq is Θ-positive and Φ has highest weight a for any root a in the interior 1 of Θ (P.-S.-Wienhard [START_REF] Pozzetti | Anosov representations with Lipschitz limit set[END_REF]Theorem 10.3], see also Beyrer-P.

[8, Remark 4.6]). In particular the limit set in any flag manifold of the form Is k pR p,q q for k ď p ´2 is a C 1`ν -curve. When ρ is moreover Zariski-dense, we can consider any Φ with χ Φ " n a for any a P int Θ and n P N ą0 . -for all k ě 1, k-positive representations ρ : π 1 S Ñ PSLpd, Rq introduced in Beyrer-P. [START_REF] Beyrer | Degenerations of k-positive surface group representations[END_REF] are p1, 1, 2q-hyperconvex.

For these examples also the following applies:

Corollary B. Assume BΓ is homeomorphic to a circle, let G be a simple Lie group and let ρ : Γ Ñ G have Zariski-dense image. Assume there exist ta, bu Ă ∆ distinct such that both Φ a ˝ρ and Φ b ˝ρ are p1, 1, 2q-hyperconvex. Then: (i) The image of ξ ta,bu : BΓ Ñ F ta,bu is Lipschitz and the Hausdorff dimension of the points where it is non-differentiable is h maxta,bu . (ii) If the opposition involution i on g is non-trivial and b " ia then h maxta,bu " h pa`bq{2 . Remark 1.5. A different approach to Theorem B, relying on Theorem C and Theorem 1.3, would be to code the action of π 1 S on Bπ 1 S via Bowen-Series and apply Jordan-Kesseböhmer-Pollicott-Stratmann [START_REF] Jordan | Sets of nondifferentiability for conjugacies between expanding interval maps[END_REF]Theorem 1.1]. This method, followed by Pollicott-Sharp [START_REF] Pollicott | Weil-Petersson metrics, Manhattan curves and Hausdorff dimension[END_REF] for two representations in the Teichmüller space of S, is not applicable for groups other than π 1 S, in particular this approach cannot be used in the generality of Theorem A.

1.3. Hyperplane vs directional conicality. To prove Theorems A and B we introduce the concept of hyperplane conicality, a generalization of directional conicality from Burger-Landesberg-Lee-Oh [START_REF] Burger | The Hopf-Tsuji-Sullivan dichotomy in higher rank and applications to Anosov subgroups[END_REF].

Let G be a real-algebraic semi-simple Lie group of non-compact type, a Ă g a Cartan subspace, Φ Ă a ˚the associated root system and ∆ Ă Φ a choice of simple roots with associated Weyl chamber a `.

Consider a non-empty θ Ă ∆ and let a θ be the associated Levi space. Fix a θ-Anosov representation ρ : Γ Ñ G and denote by L θ,ρ Ă a θ its θ-limit cone. We will recall in § 4.3 that, when ρpΓq is Zariski-dense, there are natural bijections int PpL θ,ρ q Ø Q θ,ρ " tϕ P pa θ q ˚: h ϕ " 1u Ø Patterson-Sullivan measures supported on ξ θ pBΓq ( .

For ϕ P Q θ,ρ we let u ϕ P int PpL θ,ρ q be the associated direction and µ ϕ the associated Patterson-Sullivan measure. Consider now a hyperplane W Ă a θ and assume, for the notion to be interesting, that W intersects the relative interior of L θ,ρ . Then x P BΓ is W-conical if there exists a conical sequence pγ n q 8 0 Ă Γ converging to x, a constant K and a sequence pw n q 8 0 P W such that for all n one has › › a θ `ρpγ n qq ´wn › › ď K, where a θ : G Ñ a θ is the θ-Cartan projection. The set of W -conical points will be denoted by B W,ρ Γ " B W Γ. Inspired by [START_REF] Burger | The Hopf-Tsuji-Sullivan dichotomy in higher rank and applications to Anosov subgroups[END_REF], in Theorem 4.16 we show the following.

Theorem D. Let ρ : Γ Ñ G be a Zariski-dense θ-Anosov representation and W be a hyperplane of a θ intersecting non-trivially the interior of L θ,ρ . Then for every ϕ P Q θ,ρ with u ϕ P PpWq one has µ ϕ pB W Γq " 1.

Strategy of the proof of Corollary A.

Corollary A is a consequence of Theorem B where ρ is the dual representation of ρ. We sketch a direct proof of Corollary A serving as a guide-path for the general result.

Let ρ : π 1 S Ñ SLp3, Rq be the holonomy of a strictly convex projective structure dividing the convex set Ω. We consider the L 8 distance on the product pPpR 3 q, d P qp PppR 3 q ˚q, d P q, which is equivalent to the Riemannian distance, and thus induces the same Hausdorff dimension.

As a replacement of Sullivan's shadows we use coarse cone type at infinity, inspired by Cannon's work on cone types [START_REF] Cannon | The combinatorial structure of cocompact discrete hyperbolic groups[END_REF] (see also §4.1). Fix a finite symmetric generating set on π 1 S and let | | be the associated word length. For γ P π 1 S and c ą 0, the coarse cone type at infinity C c 8 pγq of γ is the set of endpoints at infinity of pc, cq-quasi geodesic rays based at γ ´1 passing through the identity. See Figure 2.

We let ξ : Bπ 1 S Ñ BΩ be the natural identification via the action of ρpπ 1 Sq on Ω, and analogously ξ : π 1 S Ñ BΩ ˚. We denote by G :" pξ, ξq : π 1 S Ñ BΩ ˆBΩ the flag curve. Consider x P Bπ 1 S and let α i Ñ x be a geodesic ray on π 1 S. The following fact is a consequence of Proposition 5.6.

Fact.

For big enough i, the subset ξ `αi C c 8 pα i q ˘Ă BΩ is coarsely the intersection of a ball of radius e ´τ1pαiq about ξpxq with BΩ. By duality, one has ξ `αi C c 8 pα i q ˘Ă BΩ is coarsely the intersection of a ball of radius e ´τ2pαiq about ξpxq with BΩ ˚. The coarse constants and the minimal length i required in the above statement depend only on the representation and not on the point x. For any point x P Bπ 1 S we distinguish two complementary situations that don't depend on the choice of the geodesic ray pα i q iPN converging to x: i) For all R ą 0 there exists N P N with |τ 1 papα i qq ´τ2 papα i qq| ě R for all i ě N ; ii) There exists R ą 0 and an infinite set of indices I Ă N such that for all k P I one has |τ 1 papα k qq ´τ2 papα k qq| ď R. We say in this case that x is b-conical (b stands for 'barycenter of the chamber').

In the first case one is easily convinced by looking at Figure 3 that the rectangle becomes flatter along one of its sides (see § 8 for details in the general case). Furthermore, since τ 1 papα i qq ´τ1 papα i`1 qq is uniformly bounded, its sign is eventually constant, and thus the longer side only depends on the point. As a result x is necessarily a differentiability point of the graph curve G, with either horizontal or vertical derivative.

We are thus bound to understand the set of b-conical points. We show (see Corollary 8.1):

Fact. The non-differentiabilty points of the curve GpBπ 1 Sq and the b-conical points coincide.

The main idea for this is to show that if a b-conical point x were a differentiability point, then the derivative could not be horizontal nor vertical, and thus (by Proposition 7.2) Ξ would be bi-Lipschitz. In turn, this would force the periods of the two roots to agree, which in turn would imply that the representation is Fuchsian, contradicting the assumption that Ω is not an ellipse. Finding a lower bound for the Hausdorff dimension is more subtle; we use here an appropriate Patterson-Sullivan measure to study how the mass of a ball of radius r scales with r.

Since GpBπ 1 Sq is a subset the full flag space FpR 3 q and }v} 8 :" maxt|τ 1 pvq|, |τ 2 pvq|u is a norm on a PSLp3,Rq , we can apply results by Quint [START_REF] Quint | Divergence exponentielle des sous-groupes discrets en rang supérieur[END_REF] to determine a linear form ϕ 8 b P a ˚whose associated growth direction is the barycenter b " kerpτ 1 ´τ2 q. By Quint [ A key extra information available in the case of PSLp3, Rq is that the form ϕ 8 b is explicit and doesn't depend on ρ. For this we need a small parenthesis on the critical hypersurface Q ρ of ρ, depicted in Figure 4, and characterized by

Q ρ " ϕ P a ˚: h ϕ " 1 ( ,
where the critical exponent of a functional ϕ P a ˚is h ϕ :" lim tÑ8 1 t log # γ P π 1 S : ϕpapγqq ď tu P p0, 8s.

The critical hypersurface Q ρ Ă a ˚is a closed analytic curve that bounds a strictly convex set (S. [START_REF] Sambarino | Hyperconvex representations and exponential growth[END_REF] and Potrie-S. [START_REF] Potrie | Eigenvalues and entropy of a Hitchin representation[END_REF]), and thus by Quint [START_REF] Quint | Divergence exponentielle des sous-groupes discrets en rang supérieur[END_REF], the linear form ϕ 8 b is uniquely determined by

}ϕ 8 b } 1 " inf }ϕ} 1 : ϕ P Q ρ ( . (1.6) 
Again by [START_REF] Potrie | Eigenvalues and entropy of a Hitchin representation[END_REF] one has tτ 1 , τ 2 u Ă Q ρ . Since both Q ρ and the norm } } 1 are invariant by the opposition involution i (see again Figure 4) we deduce that, if we let H " pτ 1 `τ2 q{2, then

ϕ 8 b " h H ¨H ě h H mintτ 1 , τ 2 u. (1.7) Q ρ i a τ2 τ 1 H " τ 1 `τ2 2 ϕ 8 b " h H H Figure 4.
The critical hypersurface of a strictly convex projective structure on S. Since H is a convex combination of tτ1, τ2u one has }H} 1 " 1 and thus }ϕ 8 b } 1 " h H .

In particular, using Equation (1.6), we obtain that h maxtτ1,τ2u " h H . Moreover, since the geodesic flow is Anosov (by Benoist [START_REF] Benoist | Convexes divisibles I. In Algebraic groups and arithmetic[END_REF]) we can apply Bowen's characterization of entropy [START_REF] Bowen | The Ergodic Theory of Axiom A flows[END_REF] (and Remark 4.13), to obtain that the Hilbert entropy h H " h H . After this small parenthesis on the critical hypersurface, we come back to the lower bound on the Hausdorff dimension. Since G is a graph, GpBπ 1 Sq has the same intersection with the rectangle in Figure 3 than with the larger square of size e ´mintτ1papαiqq,τ2papαiqqu ; this square is now a ball (for the L 8 metric) of radius e ´mintτ1papαiqq,τ2papαiqqu . Thus for all i, G `αi C c 8 pα i q ˘is coarsely a ball of the latter radius and one has [START_REF] Burger | The Hopf-Tsuji-Sullivan dichotomy in higher rank and applications to Anosov subgroups[END_REF]Theorem 1.6] to obtain that µ 8 ptb-conicaluq " 1 and thus we have the desired lower bound dim Hff `tb-conicalu ˘ě h H , which combined with the upper bound (1.4) and the equality h maxtτ1,τ2u " h H , gives the proof of Corollary A.

µ 8 `
In the general case [START_REF] Burger | The Hopf-Tsuji-Sullivan dichotomy in higher rank and applications to Anosov subgroups[END_REF]Theorem 1.6] is not applicable and we replace it with Theorem D.

Structure of the paper. The preliminaries of the paper are standard facts about linear algebraic groups, recalled in §2, the work of S. [START_REF] Sambarino | A report on an ergodic dichotomy[END_REF] about linear cocycles over the boundary of a hyperbolic group (in §3), as well as basic facts about Anosov representations and their Patterson-Sullivan theory recalled from [START_REF] Guichard | Anosov representations: domains of discontinuity and applications[END_REF][START_REF] Bochi | Anosov Representations and dominated splittings[END_REF][START_REF] Pozzetti | Conformality for a robust class of non-conformal attractors[END_REF][START_REF] Sambarino | A report on an ergodic dichotomy[END_REF] in the first part of §4. In the rest of §4 we prove Theorem 4.16 a more precise statement than Theorem D, discussing the Patterson-Sullivan measure of pW, ϕqconical points. The heart of the proof is to construct and study a rank 2 flow whose recurrence set is related to pW, ϕq-conical points.

In §5 we consider two locally conformal representations. We prove Theorem 5.3, stating that for such a pair the Hausdorff dimension of the set of b-conical points belongs to rbh 8,b , minth 8,b , bh 8,b `1 ´bus. The lower bound is obtained by analyzing properties of the linear form ϕ 8 b whose associated growth direction is pb, 1q; its Patterson-Sullivan measure µ ϕ 8 b gives full mass to the set of b-conical points thanks to Theorem 4.16. Using cone-types we can show that for a fine set of balls µ ϕ 8 b pBpx, rqq ď Cr ´bh 8,b . The upper bound uses results of [START_REF] Pozzetti | Conformality for a robust class of non-conformal attractors[END_REF] to construct a fine covering of the set of b-conical points with balls of radius e ´maxtbτ,τ u . In §6 we prove Theorem A.

In §7 we prove that if the graph map between R-hyperconvex representations has an oblique derivative, then the map is bi-Lipschitz (Proposition 7.2). This only relies on basic properties of hyperconvex representations, and is crucial for the proof of Theorem B, achieved in §8, as it allows the identification of b-conical points and points of non-differentiability.
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Linear algebraic groups

Throughout the text G will denote a real-algebraic semi-simple Lie group of non-compact type and g its Lie algebra.

2.1. Linear algebraic groups. Fix a Cartan involution o : g Ñ g with associated Cartan decomposition g " k ' p. Let a Ă p be a maximal abelian subspace and let Φ Ă a ˚be the set of restricted roots of a in g. For a P Φ, we denote by g a " tu P g : ra, us " apaqu @a P au its associated root space. The (restricted) root space decomposition is g " g 0 ' À aPΦ g a , where g 0 is the centralizer of a. Fix a Weyl chamber a `of a and let Φ ànd ∆ be, respectively, the associated sets of positive and simple roots. Let W be the Weyl group of Φ and i : a Ñ a be the opposition involution: if u : a Ñ a is the unique element in W with upa `q " ´a`t hen i " ´u.

We denote by p¨, ¨q both the Killing form of g, its restriction to a, and its associated dual form on a ˚, the dual of a. For χ, ψ P a ˚let xχ, ψy " 2 pχ, ψq pψ, ψq .

The restricted weight lattice is defined by Π " tϕ P a ˚: xϕ, ay P Z @a P Φu.

It is spanned by the fundamental weights t a : a P ∆u, defined by

x a , by " d a δ ab (2.1)
for every a, b P ∆, where d a " 1 if 2a R Φ `and d a " 2 otherwise.

A subset θ Ă ∆ determines a pair of opposite parabolic subgroups P θ and Pθ whose Lie algebras are

p θ " à aPΦ `Yt0u g a ' à aPx∆´θy g ´a, pθ " à aPΦ `Yt0u g ´a ' à aPx∆´θy g a .
The group Pθ is conjugated to the parabolic group P iθ . We denote the flag space associated to θ by F θ " G{P θ . The G orbit of the pair prP θ s, r Pθ sq is the unique open orbit for the action of G in the product F θ ˆFiθ and is denoted by

F p2q θ .
2.2. Cartan and Jordan projection. Denote by K " exp k and A " exp a. The Cartan decomposition asserts the existence of a continuous map a : G Ñ a `, called the Cartan projection, such that every g P G can be written as g " ke apgq l for some k, l P K.

We will need the following uniform continuity of the Cartan projection:

Proposition 2.1 (Benoist [2, Proposition 5.1]).
For any compact L Ă G there exists a compact set H Ă a such that, for every g P G, one has apLgLq Ă apgq `H.

By the Jordan's decomposition, every element g P G can be uniquely written as a commuting product g " g e g ss g u where g e is conjugate to an element in K, g ss is conjugate to an element in exppa `q and g u is unipotent. The Jordan projection λ " λ G : G Ñ a `is the unique map such that g ss is conjugated to exp `λpgq ˘.

Definition 2.2. Let Γ Ă G be a discrete subgroup, then its limit cone L Γ is the smallest closed cone of the closed Weyl chamber a `that contains tλpgq : g P Γu.

We will need the following results by Benoist.

Theorem 2.3 (Benoist [START_REF] Benoist | Propriétés asymptotiques des groupes linéaires[END_REF][START_REF] Benoist | Propriétés asymptotiques des groupes linéaires II[END_REF]). Let Γ Ă G be a Zariski-dense sub-semigroup, then its limit cone L Γ has non-empty interior. Moreover, the group generated by the Jordan projections tλpgq : g P Γu is dense in a.

Representations of G.

The standard references for the following are Fulton-Harris [START_REF] Fulton | Representation theory, a first course[END_REF], Humphreys [START_REF] Humphreys | Introduction to Lie algebras and representation theory[END_REF] and Tits [START_REF] Tits | Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconqe[END_REF].

Let Φ : G Ñ PGLpV q be a finite dimensional rational 3 irreducible representation and denote by φ Φ : g Ñ slpV q the Lie algebra homomorphism associated to Φ. The weight space associated to χ P a ˚is the vector space V χ " tv P V : φ Φ paqv " χpaqv @a P Au.

We say that χ P a ˚is a restricted weight of Φ if V χ ‰ 0. Tits [START_REF] Tits | Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconqe[END_REF]Theorem 7.2] states that the set of weights has a unique maximal element with respect to the partial order χ ą ψ if χ ´ψ is a N-linear combination of positive roots. This is 3 Namely a rational map between algebraic varieties. called the highest weight of Φ and denoted by χ Φ . By definition, for every g P G one has

λ 1 `Φpgq ˘" χ Φ pλpgq ˘, (2.2) 
where λ 1 is the logarithm of the spectral radius of Φpgq. We denote by Πpφq the set of restricted weights of the representation φ Φ

Πpφq " χ P a ˚: V χ ‰ t0u ( , these are all bounded above by χ Φ (see for example Humphreys [27, §13.4 Lemma B]), namely every weight χ P Πpφq has the form

χ Φ ´ÿ aP∆ n a a for n a P N.
The level of a weight χ is the integer ř a n a , the highest weight is thus the only weight of level zero. Additionally, if χ P Πpφ Φ q and a P Φ `then the elements of Πpφ Φ q of the form χ `ja, j P Z form an unbroken string χ `ja, j P ´r, q and r ´q " xχ, ay. One can then recover algorithmically the set Πpφ Φ q level by level starting from χ Φ , as follows:

-Assume the set of weights of level at most k is known and consider a weight χ of level k. -For each a P ∆ compute xχ, ay, this gives the length r ´q of the a-string through χ. The weights of the form χ `ja, for positive j, have level smaller than k and are thus known, thus we can decide whether χ ´a is a weight or not, determining the set of weights of level k `1.

The following lemma follows at once from the algorithmic description above. Let g " À i g i be the decomposition in simple factors of a semi-simple real Lie algebra of non-compact type. Recall that if a i Ă g i is a Cartan subspace, then a " À i a i is a Cartan subspace of g. Any ϕ P pa i q ˚extends to a functional on a, still denoted ϕ, by vanishing on the remaining factors. The restricted root system of g is then ∆ g " Ť ∆ gi . The associated simple factor to a P ∆ g is g i such that a P ∆ i .

Lemma 2.4. Let g be a semi-simple real Lie algebra of non-compact type and φ be an irreducible representation of g whose highest restricted weight is a multiple of a fundamental weight, χ φ " k a for some a P ∆. Then φ factors as a representation of the simple factor associated to a.

Proof. Proceeding by induction on the levels of φ, one readily sees that for every τ P ∆ j for j ‰ i and all χ P Πpφq one has xχ, τ y " 0. Thus the associated root space pg j q ´τ acts trivially on every weight space of φ and so the whole factor g j acts trivially.

The following set of simple roots plays a special role in representation theory.

Definition 2.5. Let Φ : G Ñ PGLpV q be a representation. We denote by θ Φ the set of simple roots a P ∆ such that χ Φ ´a is still a weight of Φ. Equivalently

θ Φ " a P ∆ : xχ Φ , ay ‰ 0 ( . (2.3) 
The following lemma will be needed in the proof of Theorem C.

Lemma 2.6. Let g be semi-simple of non-compact type and φ : g Ñ glpV q an irreducible representation. For a P θ φ and v P V χ φ ´t0u, the map n Þ Ñ φpnqv is injective when defined on g ´a.

Proof. By definition of χ φ every n P g a acts trivially on V χ φ . For y P g ´a ´t0u, there exists x P g a such that tx, y, h a u spans a Lie algebra isomorphic to sl 2 pRq, where h a is defined by ϕph a q " xϕ, ay for all ϕ P a ˚. If φpyqv " 0 then, since φpxqV χ φ " 0 one concludes φph a qv " 0 and since V χ φ is a weight-space one has φph a qV χ φ " 0. This in turn implies that xχ φ , ay " χ φ ph a q " 0, contradicting that a P θ φ .

We denote by } } Φ an Euclidean norm on V invariant under ΦK and such that ΦA is self-adjoint, see for example Benoist-Quint's book [START_REF] Benoist | Random walks on reductive groups. Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF]Lemma 6.33]. By definition of χ Φ and } } Φ , and Equation (2.2) one has, for every g P G, that log }Φg} Φ " χ Φ papgqq.

(2.4)

Here, with a slight abuse of notation, we denote by } } Φ also the induced operator norm, which doesn't depend on the scale of } } Φ . Denote by W χΦ the ΦA-invariant complement of V χΦ . The stabilizer in G of W χΦ is PθΦ , and thus one has a map of flag spaces

pζ Φ , ζ Φq : F p2q θΦ pGq Ñ Gr p2q dim Vχ Φ pV q.
(2.5) This is a proper embedding which is an homeomorphism onto its image. Here, as above, Gr

p2q dim Vχ Φ
pV q is the open PGLpV q-orbit in the product of the Grassmannian of pdim V χΦ q-dimensional subspaces and the Grassmannian of pdim V ´dim V χΦ qdimensional subspaces. One has the following proposition (see also Humphreys [28, Chapter XI]).

Proposition 2.7 (Tits [START_REF] Tits | Représentations linéaires irréductibles d'un groupe réductif sur un corps quelconqe[END_REF]). For each a P ∆ there exists a finite dimensional rational irreducible representation Φ a : G Ñ PSLpV a q, such that χ Φa is an integer multiple l a a of the fundamental weight and dim V χΦ a " 1.

We will fix from now on such a set of representations and call them, for each a P ∆, the Tits representation associated to a.

2.4.

The center of the Levi group P θ X Pθ . We now consider the vector subspace

a θ " č aP∆´θ ker a.
Denoting by W θ " tw P W : wpvq " v @v P a θ u the subgroup of the Weyl group generated by reflections associated to roots in ∆ ´θ, there is a unique projection π θ : a Ñ a θ invariant under W θ .

The dual pa θ q ˚is canonically identified with the subspace of a ˚of π θ -invariant linear forms. Such space is spanned by the fundamental weights of roots in θ, pa θ q ˚" tϕ P a ˚: ϕ ˝πθ " ϕu " x a |a θ : a P θy.

We will denote, respectively, by

a θ " π θ ˝a : G Ñ a θ λ θ " π θ ˝λ : G Ñ a θ ,
the compositions of the Cartan and Jordan projections with π θ .

2.5. The Buseman-Iwasawa cocycle. The Iwasawa decomposition of G states that every g P G can be written uniquely as a product lzu with l P K, z P A and u P U ∆ , where U ∆ is the unipotent radical of P ∆ .

The Buseman-Iwasawa cocycle of G is the map b : G ˆF Ñ a such that, for all g P G and krP ∆ s P F, bpg, krP ∆ sq " logpzq where log : A Ñ a denotes the inverse of the exponential map, and gk " lzu is the Iwasawa decomposition of gk. Quint [45, Lemmes 6.1 and 6.2] proved that the function b θ " π θ ˝b factors as a cocycle b θ : G ˆFθ Ñ a θ .

The Buseman-Iwasawa cocycle can also be read from the representations of G. Indeed, Quint [START_REF] Quint | Mesures de Patterson-Sullivan en rang supérieur[END_REF]Lemme 6.4] shows that for every g P G and x P F θ one has

l a a pbpg, xqq " log }Φ a pgqv} Φ }v} Φ , (2.6) 
where v P ζ Φa pxq P PpV a q is non-zero, and l a is as in Proposition 2.7.

2.6. Gromov product and Cartan attractors. Let K be either C or R. For a decomposition K d " ' V into a line and a hyperplane V together with an inner (Hermitian) product o on K d , one defines the Gromov product by

GpV, q " G o pV, q :" log |ϕpvq| }ϕ}}v} " log sin > o p , V q, for any non-vanishing v P and ϕ P pK d q ˚with ker ϕ " V. This induces, for any semisimple Lie group G and subset θ ă ∆, a Gromov product G θ : F p2q θ Ñ a θ defined, for every px, yq P F From S. [47, Lemma 4.12] one has, for all g P G and px, yq P F p2q θ , G θ pgx, gyq ´Gθ px, yq " ´`i b iθ pg, xq `bθ pg, yq ˘.

(2.7)

If g " k exppapgqql is a Cartan decomposition of g P G we define its θ-Cartan attractor (resp. repeller ) by U θ pgq " krP θ s P F θ and U iθ pg ´1q " l ´1r Pθ s P F iθ .

The Cartan basin of g is defined, for α ą 0, by B θ,α pgq " x P F θ : a G θ `Uiθ pg ´1q, x ˘ą ´α, @a P θ ( .

(2.8)

Remark 2.8. Observe that a statement of the form a G θ px, yq ě ´κ for all a P θ is a quantitative version (depending on the choice of K) of the transversality between x and y; in particular it implies that x and y are transverse.

Neither the Cartan attractor nor its basin are uniquely defined unless for all a P θ one has a `apgq ˘ą 0, regardless one has the following: Remark 2.9. Given α ą 0 there exists a constant K α such that if y P F θ belongs to B θ,α pgq then one has › › a θ pgq ´bθ pg, yq

› › ď K α .
(2.9) Indeed, using Tits's representations of G and Equations (2.4) and (2.6) 

Hölder cocycles on BΓ

Let Γ be a finitely generated group, and fix a finite generating set S. A group Γ is Gromov hyperbolic if its Cayley graph CaypΓ, Sq is a Gromov hyperbolic geodesic metric space. In this case we denote by BΓ its Gromov boundary, namely the equivalence classes of (quasi)-geodesic rays. It is well known that, up to Hölder homeomorphism, BΓ doesn't depend on the choice of the generating set S. We will denote by B 2 Γ the set of distinct pairs in BΓ:

B 2 Γ :" tpx, yq P BΓ ˆBΓ| x ‰ yu.
For a finitely generated, non-elementary, word-hyperbolic group Γ we denote by g " `gt : UΓ Ñ UΓ ˘tPR the Gromov-Mineyev geodesic flow of Γ (see Gromov [START_REF] Gromov | Hyperbolic groups[END_REF] and Mineyev [START_REF] Mineyev | Flows and joins of metric spaces[END_REF]). Throughout this section we will have the same assumptions as in S. [49, § 3], namely that g is metric-Anosov and that the lamination induced on the quotient by r W cu " tpx, ¨, ¨q P Ă UΓu is the central-unstable lamination of g. Since we will mostly recall needed results from S. [49, § 3] we do not overcharge the paper with the definitions of metric-Anosov and central-unstable lamination: by Bridgeman-Canary-Labourie-S. [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF], word-hyperbolic groups admitting an Anosov representation verify the required assumptions. Definition 3.1. Let V be a finite dimensional real vector space. A Hölder cocycle is a function c : Γ ˆBΓ Ñ V such that:

-for all γ, h P Γ one has c `γh, x ˘" c `h, x ˘`c `γ, hpxq ˘, -there exists α P p0, 1s such that for every γ P Γ the map cpγ, ¨q is α-Hölder continuous.

Recall that every hyperbolic element 5 γ P Γ has two fixed points on BΓ, the attracting γ `and the repelling γ ´. If x P BΓ ´tγ ´u then γ n x Ñ γ `as n Ñ 8. The period of a Hölder cocycle for a hyperbolic γ P Γ is c pγq :" c `γ, γ `˘. A cocycle c ˚: Γ ˆBΓ Ñ R is dual to c if for every hyperbolic γ P Γ one has c ˚pγ q " c `γ´1 ˘. 4 Recall from Equation (1.1) that we denote by τ i the simple roots of GL d pRq 5 Namely an infinite order element 3.1. Real-valued coycles. Assume now V " R and consider a cocycle κ with non-negative (and not all vanishing) periods. For t ą 0 we let R t pκq " rγs P rΓs hyperbolic : κ pγq ď t ( and define the entropy of κ by

h κ " lim sup tÑ8 1 t log #R t pκq P p0, 8s.
For such a cocycle consider the action of Γ on B 2 Γ ˆR via κ: γ ¨px, y, tq " pγx, γy, t ´κ pγ, yqq .

(3.1)
The following is a straightforward consequence of S. [49, Theorem 3.2.2].

Proposition 3.2. Let κ be a Hölder cocycle with non-negative periods and finite entropy. Then, the above action of Γ on B 2 Γ ˆR is properly-discontinuous and cocompact. If moreover c is another Hölder cocycle with non-negative periods and finite entropy then there exists a Γ-equivariant bi-Hölder-continuous homeomorphism E : B 2 Γ ˆR Ñ B 2 Γ ˆR which is an orbit equivalence between the R-translation actions.

We recall the notion of dynamical intersection, a concept from Bridgeman-Canary-Labourie-S. [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF] for Hölder functions over a metric-Anosov flow, that can be pulled back to this setting via the existence of the Ledrappier potential of κ from S. [49, § 3.1].

The dynamical intersection of two real valued cocycles κ, c is

Ipκ, cq " lim tÑ8 1 R t pκq ÿ γPRtpκq c pγq κ pγq . (3.2)
We record in the following proposition various needed facts about I:

Proposition 3.3 ([11, § 3 
]). The dynamical intersection defined above is well defined, linear in the second variable and for all positive s satisfies Ipsκ, cq " Ipκ, cq{s.

If also c has non-negative periods and finite entropy then Ipκ, cq ě h κ {h c . Moreover, if Ipκ, cq " h κ {h c then for every γ P Γ one has h κ κ pγq " h c c pγq.

We will also need the following definitions.

Definition 3.4.

-A Patterson-Sullivan measure for κ of exponent δ P R `is a probability measure µ on BΓ such that for every γ P Γ one has dγ ˚µ dµ p¨q " e ´δ¨κpγ ´1 , ¨q.

-Let κ ˚be a cocycle dual to κ, then a Gromov product for the ordered pair pκ ˚, κq is a function r¨, ¨s : B 2 Γ Ñ R such that for all γ P Γ and px, yq P B 2 Γ one has rγx, γys ´rx, ys " ´`κ ˚pγ, xq `κpγ, yq ˘.

3.2.

The critical hypersurface and intersection. Let now c : Γ ˆBΓ Ñ V be a Hölder cocycle. Its limit cone is denoted by

L c " ď γPΓ R `¨ c pγq
and its dual cone by `Lc ˘˚" tψ P V ˚: ψ| Lc ě 0u. Observe that for every ϕ P int `Lc ˘˚, ϕ ˝c is a real-valued cocycle, so the concepts from Section 3.1 apply. We denote by

Q c " ! ϕ P int `Lc ˘˚: h ϕ˝c " 1 ) , (3.4) 
D c " ! ϕ P int `Lc ˘˚: h ϕ˝c P p0, 1q
) ,

respectively the critical hypersurface and the convergence domain of c. For ϕ P int `Lc ˘˚we consider the linear map I ϕ " I c ϕ : V ˚Ñ R defined by I c ϕ pψq :" Ipϕ ˝c, ψ ˝cq, as in Equation (3.2). The natural identification between the set of hyperplanes in V ˚and PpV q is used in the next proposition. Corollary 3.5 (S. [START_REF] Sambarino | A report on an ergodic dichotomy[END_REF]Cor. 3.4.3]). Assume L c has non-empty interior and that there exists ψ P `Lc ˘˚such that h ψ ă 8. Then D c is a strictly convex set with boundary Q c . The latter is an analytic co-dimension one sub-manifold of V. The map We fix ϕ P Q c and denote by u ϕ P u ϕ the unique vector in L c Xu ϕ with ϕpu ϕ q " 1. We define then the directional flow ω ϕ " `ωϕ t : Γz `B2 Γ ˆV ˘Ñ Γz `B2 Γ ˆV ˘˘tPR by t ¨px, y, vq " px, y, v ´tu ϕ q.

u c : Q c Ñ PpV q defined by ϕ Þ Ñ u c ϕ :" T ϕ Q c " ker I ϕ is an analytic diffeomorphism between Q c and int `PpL c q ˘. 3 
Assumption 3.7. We assume there exists: -a dual cocycle pϕ ˝cq ˚,

-a Gromov product r , s ϕ for such a pair, -Patterson-Sullivan measures, µ ϕ and µ ϕ , respectively for each of the cocycles; (the exponent of both measures is then necessarily h ϕ " 1 S. [49, Proposition 3.3.2]).

Consider then the ϕ-Bowen-Margulis measure Ω ϕ on Γz `B2 Γ ˆV ˘defined as the measure induced on the quotient by the measure

e ´r¨,¨sϕ µ ϕ b µ ϕ b Leb V , (3.5) 
for a V -invariant Lebesgue measure on V. We denote by Kpω ϕ q the recurrence set of the directional flow ω ϕ :

Kpω ϕ q :" t p P Γz `B2 Γ

ˆV ˘ˇD B open bounded, t n Ñ 8 with ω ϕ tn ppq P Bu. Corollary 3.8 (S. [START_REF] Sambarino | A report on an ergodic dichotomy[END_REF]Cor. 3.6.1]). Assume that c is non-arithmetic, and that there exists ϕ P Q c satisfying Assumptions 3.7. If dim V ď 2 then the directional flow ω ϕ is Ω ϕ -ergodic, and Kpω ϕ q has total mass. If dim V ě 4 then Kpω ϕ q has measure zero. Remark 4.2. It is easy to verify that a sequence tγ n u nPN converges conically to x P BΓ if and only if it lies in an uniform neighborhood of any geodesic ray pα n q 8 0 converging to x, namely there exists K ą 0 and a subsequence tα n k u such that for all k one has d Γ pα n k , γ k q ă K.

Given γ P Γ we denote by Cpγq the cone type of γ P Γ, namely Cpγq :" th P Γ| dpe, γhq " dpe, γq `dpe, hqu.

Cannon showed [START_REF] Cannon | The combinatorial structure of cocompact discrete hyperbolic groups[END_REF] the set of cone types of a Gromov hyperbolic group is finite, see for example Bridson-Haefliger's book [12, P. 455]. We denote by C 8 pγq Ă BΓ the set of points x that can be represented by a geodesic ray contained in Cpγq.

We will also need a coarse version of these. Recall that a sequence pα j q 8 0 is a pc, Cq-quasigeodesic if for every pair j, l it holds 1 c |j ´l| ´C ď d Γ pα j , α l q ď c|j ´l| `C.

The coarse cone type at infinity of an element γ is the set of endpoints at infinity of quasi-geodesic rays based at γ ´1 passing through the identity:

C c 8 pγq " ! rpα j q 8 0 s P BΓ| pα i q 8 0 is a pc, cq-quasi-geodesic, α 0 " γ ´1, e P tα j u

) .

B c peq Anosov representations were introduced by Labourie [START_REF] Labourie | Anosov Flows, Surface Groups and Curves in Projective Space[END_REF] and further developed by Guichard-Wienhard [START_REF] Guichard | Anosov representations: domains of discontinuity and applications[END_REF]. They have played a central role in understanding the Hitchin component of split groups (see below) and are considered nowadays as the higher-rank generalization of convex co-compact groups. We refer the reader to the surveys by Kassel [31] and Wienhard [START_REF] Wienhard | An invitation to higher Teichmüller theory[END_REF] for further information.

γ ´1 Γ C c 8 pγq
Remark 4.4. A Zariski-dense representation ρ : Γ Ñ G is θ-Anosov if and only if ρ is a quasi-isometric embedding and its limit cone L ρ does not meet any wall ker a for a P θ : this follows from the definition since by Benoist [START_REF] Benoist | Propriétés asymptotiques des groupes linéaires[END_REF], if ρpΓq is Zariski-dense then the limit cone L ρ equals the asymptotic cone.

A useful property of θ-Anosov representations is that their limit set Λ Γ Ă F θ , namely the minimal Γ-invariant subset in F θ , is parametrized by the Gromov boundary of the group Γ, see Kapovich-Leeb-Porti [START_REF] Kapovich | Anosov subgroups: Dynamical and geometric characterizations[END_REF], Guéritaud-Guichard-Kassel-Wienhard [START_REF] Guéritaud | Anosov representations and proper actions[END_REF]. We will need the following precise statement. Proposition 4.5 (Bochi-Potrie-S. [9, Proposition 4.9 ]). If ρ : Γ Ñ G is θ-Anosov, then for any geodesic ray pα n q 8 0 with endpoint x, the limits ξ θ ρ pxq :" lim nÑ8 U θ pα n q ξ iθ ρ pxq :" lim nÑ8 U iθ pα n q exist and do not depend on the ray; they define continuous ρ-equivariant transverse maps ξ θ : BΓ Ñ F θ , ξ iθ : BΓ Ñ F iθ . If γ P Γ is hyperbolic, then γ is θ-proximal with attracting point ξ θ pγ `q " pγq θ .

We conclude the section with a number of quantitative results that will be needed in the paper. For an Anosov representation ρ there exists a constant δ ρ quantifying transversality of Cartan-attractors along (quasi)-geodesic rays: The following two results will be needed in Section 7.1. Proposition 4.10. Let ρ : Γ Ñ SLpd, Kq be projective Anosov. For every α ą 0 there exist C and µ ą 0 such that for every 1 , 2 P PpK d q with

G ` i , U d´1 pγ ´1q ˘ě ´α, i " 1, 2
it holds d P pρpγq 1 , ρpγq 2 q ď Ce ´µ|γ| dp 1 , 2 q.

Proof. For an Hermitian product on C d , and every α ą 0 there exists C ą 0 such that if h P GLpd, Cq is such that τ 1 paphqq ą 0, then for all 1 , 2 P PpC d q with >p i , U d´1 ph ´1qq ą α one has

d P ph 1 , h 2 q ď Ce ´τ1paphqq d P p 1 , 2 q,
(a proof follows, for instance, by applying [43, Lemma 2.8] to g " h ´1, P " U 1 phq and Q " hU d´1 phq). The result then follows by applying Definition 4.3.

The following technical result will be useful in the proof of Proposition 4.23. Given an Anosov representation, we can use the Gromov product to determine the endpoint of a conical sequence (recall Definition 4.1): Lemma 4.11. Let ρ : Γ Ñ G be θ-Anosov. If tγ n u Ă Γ is a conical sequence, x P BΓ, and there exists a P θ such that a G θ `Uiθ pγ n q, ξ θ pxq ˘Ñ ´8, then γ n Ñ x.

Proof. We denote by y the endpoint of the conical sequence γ n . Proposition 4.5 and Remark 4.2 imply that U iθ pγ n q Ñ ξ iθ pyq. Since, however, a G θ `Uiθ pγ n q, ξ θ pxq ˘Ñ ´8, we deduce that ξ iθ pyq is not transverse to ξ θ pxq (recall Remark 2.8). Since ξ θ is transverse, we deduce that x " y.

It will be useful in the proof of Proposition 4.23 to know that the endpoints of conical sequences belong to pushed Cartan basins: Lemma 4.12. Let ρ : Γ Ñ G be θ-Anosov, x P BΓ. If γ n Ñ x conically, then there exists α only depending on the sequence and the representation ρ such that for every n, ξ θ pxq P γ n B θ,α pγ n q.

Proof. We know from Remark 4.2 that γ n is contained in a neighbourhood of a geodesic ray to x, or equivalently there exist a constant c such that γ ´1x P C c 8 pγ n q. The result is then a consequence of Equation (4.1). Bridgeman-Canary-Labourie-S. [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF]Theorem 1.10] show that the Mineyev geodesic flow of a group Γ admitting an Anosov representations is metric-Anosov, and thus § 3 applies to β. Moreover, the following fact places β in the assumptions required in § 3.1 and § 3.2, see S. [START_REF] Sambarino | A report on an ergodic dichotomy[END_REF] for details.

Fact. The periods of the refraction cocycle equal the θ-Jordan projection: βpγ, γ `q " λ θ pγq. For any a P θ the real valued cocycle a β has finite entropy.

We import the following concepts of cocycles to the setting of Anosov representations:

-The limit cone of β will be denoted by L θ,ρ and referred to as the θ-limit cone of ρ; it is the smallest closed cone that contains the projected Jordan projections tλ θ pγq : γ P Γu. -The interior of the dual cone int `Lθ,ρ ˘˚Ă a θ consists of linear forms whose entropy h ϕ " lim tÑ8 1 t log # rγs P rΓs : ϕpλ θ pγqq ď t ( is finite. -The θ-critical hypersurface, resp. θ-convergence domain, of β will be denoted by

Q θ,ρ " ! ϕ P int `Lθ,ρ ˘˚: h ϕ " 1
) , D θ,ρ " ! ϕ P int `Lθ,ρ ˘˚: h ϕ P p0, 1q

) .

-If L θ,ρ has non-empty interior, then we have a duality diffeomorphism between Q θ,ρ and int PpL θ,ρ q given by ϕ Þ Ñ u ϕ " T ϕ Q ρ .

More information on these objets can be found on S. [ We observe that for ϕ P int `Lθ,ρ ˘˚Assumptions 3.7 are guaranteed for β ϕ :" ϕ ˝β. Indeed the cocycle βpγ, xq " i b iθ `γ, ξ iθ pxq ˘ is dual to β, from Equation (2.7) the function r¨, ¨sϕ : B 2 Γ Ñ R rx, ys ϕ " ϕ ´Gθ `ξiθ pxq, ξ θ pyq ˘īs a Gromov product for the pair pβ ϕ , β ϕ q, and we have the following result guaranteeing existence of Patterson-Sullivan measures µ ϕ and µ ϕ , as well as their values on Cartan basins defined in Equation (2.8).

Corollary 4.14 (S. [49, Cor. 5.5.3+Lemma 5.7.1]). For every ϕ P int `Lθ,ρ ˘˚there exists a β ϕ -Patterson-Sullivan measure µ ϕ of exponent h ϕ , moreover for every α there exists a constant C such that for every γ P Γ one has µ ϕ `pξ θ q ´1pγB θ,α pγqq ď Ce ´hϕϕ `apγq ˘.

4.4. Subspace-conicality. In this section we are interested in a notion of conicality along higher dimensional subspaces of the ambient Levi space. Definition 4.15. Let ρ : Γ Ñ G be θ-Anosov and consider a subspace W Ă a θ . A point x P BΓ is W-conical if there exists a conical sequence tγ n u 8 0 Ă Γ converging to x, a constant K and tw n u 8 0 Ă W such that for all n one has › › a θ `γn q ´wn › › ď K. The set of such points will be denoted by B W,ρ Γ " B W Γ.

Assume from now on that W intersects the relative interior of L θ,ρ , and consider ϕ P int `Lθ,ρ ˘˚with u ϕ Ă W. The intersection W ϕ " W X ker ϕ has co-dimension 1 in W and has trivial intersection with the limit cone L θ,ρ . Consider the quotient space V " a θ {W ϕ equipped with the quotient projection Π : a θ Ñ V. We say that ρ is pW, ϕq-nonarithmetic if the group spanned by Πpλ θ pγqq : γ P Γ ( is dense in V. In this section we prove the following. Theorem 4.16. Let ρ : Γ Ñ G be θ-Anosov, W be a subspace of a θ intersecting non-trivially the relative interior of L θ,ρ , and ϕ P pa θ q ˚with u ϕ Ă W. Assume ρ is pW, ϕq-non-arithmetic, then:

' if W has codimension 1 then µ ϕ pB W Γq " 1; ' if codim W ě 3 then µ ϕ pB W Γq " 0.
Remark 4.17. If ρ is Zariski-dense then Theorem 2.3 (Benoist [4]) guarantees pW, ϕq-non-arithmeticity for every ϕ P pa θ q ˚with u ϕ P PpWq, thus Theorem 4.16 readily implies Theorem D.

The remainder of the section is devoted to the proof of Theorem 4.16. Let V ˚" AnnpW ϕ q " tψ P pa θ q ˚: ψ|W ϕ " 0u, with a slight abuse of notation we will identify the dual of V with V ˚Ă pa θ q ˚Ă a ˚(recall from Section 2.4 that we are identifying pa θ q ˚with the subspace of a consisting of π θ -invariant linear forms). The composition of the refraction cocycle of ρ with Π is a V -valued Hölder cocycle v : Γ ˆBΓ Ñ V, vpγ, xq " Π `βpγ, xq ˘.

Its periods are vpγ, γ `q " Π `λθ pγq ˘, and thus its limit cone is L v " ΠpL θ,ρ q. By pW, ϕq-non-arithmeticity, L v Ă V has non-empty interior. The heart of the proof of Theorem 4.16 consits on relating pW, ϕq-conical points with elements of r K `ωϕ ˘, where ω ϕ is the directional flow on ΓzB 2 Γ ˆV associated to the cocycle v as in § 3.3. The first step is thus to observe that we can apply Corollary 3.8 to v, a task we enter at this point.

Since ϕ P Q θ,ρ , it has in particular finite entropy. Moreover, by definition of V one has ϕ P V ˚. Consequently, the cocycle v verifies assumptions in Corollary 3.5. One can moreover transfer existence properties from β to v, indeed one has the following.

Proposition 4.18. The cocycle v " Π ˝β is a dual cocycle for v. For each ψ P Q v there exist Paterson-Sullivan measures for v and v and the projection ψ `Π`r ¨, ¨s˘ȋ s a Gromov product for the pair ψ ˝v, ψ ˝v.

Proof. Since ψ P Q v " Q θ,ρ X V ˚we can apply Corollary 4.14 to ψ to obtain the desired Patterson-Sullivan measure, the remaining statements follow trivially as the equalities are linear.

Since we are assuming pW, ϕq-non-arithmeticity, the cocycle v is non-arithmetic and thus Corollary 3.8 gives the following dynamical information, observe that dim V " codim W `1.

Corollary 4.19. If codim W ď 1 then the directional flow ω ϕ is Ω ϕ -ergodic, in particular Kpω ϕ q has total mass. If codim W ě 3 then Kpω ϕ q has measure zero.

Observe that modulo the understood identifications

Q v " Q θ,ρ X V ˚, hence T ϕ Q v " pT ϕ Q θ,ρ q X V ånd thus the map u v : Q v Ñ int PpL v q from Corollary 3.5 verifies u v
ϕ " Πpu ϕ q. So measuring W-conicality with respect to µ ϕ translates to directional conicality along the direction u v ϕ , which we now recall. We fix an arbitrary norm } } on V and define, for P PpV q and r ą 0, the r-tube about by T r p q :" tv P V | Dw P , }v ´w} ă ru. Definition 4.20. A point y P BΓ is u v ϕ -conical if there exists r ą 0 and a conical sequence tγ n u 8 0 Ă Γ with γ n Ñ y such that for all n one has Π `aθ pρpγ n qq ˘P T r pu v ϕ q. The next statement follows from the definitions. Lemma 4.21. A point y P BΓ is W-conical if and only if it is u v ϕ -conical. If we are allowed to worsen the constants, we can replace, in Definition 4.20, the conical sequence pγ n q with an infinite subset of a geodesic ray: Lemma 4.22. A point y P BΓ is u v ϕ -conical if and only if there exists r ą 0, a geodesic ray pα i q 8 0 converging to y and an infinite set of indices I Ă N such that for all k P I one has Π `aθ pα k q ˘P T r pu v ϕ q.

Proof. Assume y is u v ϕ -conical, then since tγ n u 8 0 is conical, for any geodesic ray pα n q 8 0 converging to y there exists K ą 0 and a subsequence tα n k u such that for all k one has d Γ pα n k , γ k q ă K (Remark 4.2). Proposition 2.1 implies then that for all k one has }apα n k q ´apγ k q} is bounded independently of k. This implies the result.

We now relate u v ϕ -conicality with the recurrence set Kpω ϕ q. By definition of Kpω ϕ q, a point px, y, vq P B 2 Γ ˆV projects to Kpω ϕ q if and only if there exist divergent sequences pγ n q Ă Γ and t n Ñ `8 in R such that

ω ϕ tn γ ´1 n px, y, vq " `γ´1 n x, γ ´1 n y, v ´vpγ ´1 n , yq ´tn u ϕ ˘(4.2)
is contained in a subset of the form tpz, wq P B 2 Γ : dpz, wq ě κu ˆBpv, Kq for some distance d on BΓ. One has the following Proposition 4.23. A point y P BΓ is u v ϕ -conical if and only if for every x P BΓ´tyu and v P V the point px, y, vq projects to Kpω ϕ q.

Proof. The implication (ñ) follows exactly as in the proof of S. [START_REF] Sambarino | A report on an ergodic dichotomy[END_REF]Proposition 5.13.4]. The other implication also follows similarly but with a minor difference we now explain.

Assume that px, y, vq projects to Kpω ϕ q and consider sequences tγ n u and t n as in Equation (4.2). Since `γ´1 n x, γ ´1 n y ˘remains in a compact subset of B 2 Γ, the sequence tγ n u is conical, we will show now that γ n Ñ y. Indeed, since t n Ñ `8 necessarily vpγ ´1 n , yq Ñ ´8. Consider now any root a P θ, with associated fundamental weight a P `Lθ,ρ ˘˚, and Tits representation Φ a : G Ñ V . Since ρ is θ-Anosov, the Hölder cocycle β a has positive periods and finite entropy. 

}Φ a pγ ´1 n qv} }v} ě › › Φ a pγ ´1 n q › › sin > `ζa ξpyq, U d´1 pΦ a γ n q ě e la a G θ `Uθ pγnq,y
ȃnd thus, by Equation (4.3) and Lemma 4.11 one has γ n Ñ y, as desired. The point ξpyq lies then in the pushed Cartan basin γ n B θ,α pγ n q for an α independent of n (Lemma 4.12), and thus Equation (2.9) gives a constant K such that for all n one has

K ě › › a θ pγ n q ´β`γ n , γ ´1 n y ˘› › " › › a θ pγ n q `βpγ ´1 n , yq › ›
implying, by Equation (4.2), that y is u v ϕ -conical, as desired.

The proof of Theorem 4.16 follows now along the same lines as in S. [START_REF] Sambarino | A report on an ergodic dichotomy[END_REF]Theorem 5.13.3]. We include the arguments here for completeness.

For y P B W,ρ Γ, x P BΓ ´tyu we fix neighbourhoods A ´and A `of x and y respectively and T ą 0 small enough so that the quotient projection p : B 2 Γ ˆV Ñ ΓzB 2 Γ ˆV is injective on B " A ´ˆA `ˆBp0, T q. We can thus use Equation (3.5) to compute the measure of B " pp Bq.

For Kpω ϕ q " p ´1`K pω ϕ q ˘, Proposition 4.23 asserts

A ´ˆpA `X B W,ρ Γq ˆBp0, T q " Kpω ϕ q X B.
If codim W " 1 by Corollary 4.19 Ω ϕ p Bq " Ω ϕ `Kpω ϕ q X B˘, which implies that µ ϕ pA `zB W,ρ Γq " 0 and thus µ ϕ pB W,ρ Γq " 1. On the other hand, if codim W ě 3, then we have Ω ϕ `Kpω ϕ q ˘" 0 so µ ϕ pA `X B W,ρ Γq " 0 and the theorem is proved.

Locally conformal representations: Hausdorff dimension of b-conical points

In this section we let K " R, C or H, the non-commutative field of Hamilton's quaternions. A Cartan subspace a of SLpd, Kq is the subspace of R d consisting of vectors whose coordinates sum 0. For g P SLpd, Kq we denote by apgq " `a1 pgq, ¨¨¨, a d pgq ˘P a the coordinates of the Cartan projection. We recall Definition 1.1. Definition 5.1. Let p P 2, d ´1 . A tτ 1 , τ d´p u-Anosov representation ρ : Γ Ñ SLpd, Kq is p1, 1, pq-hyperconvex if, for every pairwise distinct triple px, y, zq P BΓ p3q , one has `ξ1 pxq `ξ1 pyq ˘X ξ d´p pzq " t0u.

If in addition one has a 2 pρpγqq " a p pρpγqq @γ, we say that ρ is locally conformal.

As before, we identify from now on γ and ρpγq.

The terminology is justified by Proposition 5.6 below stating that for such representations pushed coarse cone types are coarsely balls, a small refinement of an analogous result from P.-S.-Wienhard [START_REF] Pozzetti | Conformality for a robust class of non-conformal attractors[END_REF].

In this section we will study conicality from § 4.4 on a specific situation that we now explain. Later, in § 6, we will relate this section to the notion of b-concavity and in § 8 to differentiability properties of the map ξ ˝ξ´1 .

Consider K P tR, C, Hu and two locally conformal representations ρ : Γ Ñ SLpd, Kq and ρ : Γ Ñ SLpd, Kq, with projective equivariant maps

ξ :BΓ Ñ PpK d q ξ :BΓ Ñ PpK d q.
The product representation pρ, ρq : Γ Ñ SLpd, Kq ˆSLpd, Kq is θ-Anosov for θ " tτ 1 , τ p , τ 1 , τ p u with tτ 1 , τ 1 u-limit map the "graph map"

G " `ξ, ξ ˘: BΓ Ñ PpK d q ˆPpK d q.
We consider a Cartan subspace of the product group SLpd, Kq ˆSLpd, Kq and let a θ be the associated Levi space. Its dual pa θ q ˚is spanned by the fundamental weights of roots in θ. We let

τ :" p τ1 ´ τp p ´1 , τ :" p τ 1 ´ τ p p ´1 .
Both τ, τ P pa θ q ˚and under the assumption a 2 pγq " a p pγq for all γ of Definition 5.1, it holds on L ρ that τ 1 " τ and τ " τ 1 (if p " 2 the equality holds on a).

Definition 5.2. Fix b P p0, 1s. A point x P BΓ is b-conical if it is conical as in Definition 4.15 for the product representation pρ, ρq with respect to the hyperplane tv P a θ : bτ pvq " τ pvqu " kerpbτ ´τ q.

Equivalently, there exist R, a geodesic ray pα n q 8 0 Ă Γ with α n Ñ x, and a subsequence tn k u such that for all k one has ˇˇbτ `apα n k q ˘´τ `apα n k q ˘ˇď R.

Consider also the critical exponent

h 8,b " lim tÑ8 1 t log # γ P Γ : max bτ papγqq, τ papγqq ( ď t ( ,
and recall from Equation (3.2) the dynamical intersection defined by

I τ pτ q " lim tÑ8 1 #R t pτ q ÿ γPRtpτ q τ pλpγqq τ pλpγqq , (5.1) 
where R t pτ q " rγs P rΓs : τ `λpγq ˘ď t ( . In this section we compute the Hausdorff dimension of the image under the graph map G of the set of b-conical points with respect to a Riemannian metric: Theorem 5.3. Let ρ, ρ be locally conformal representations over K and K respectively. Assume the group generated by tpτ pλpγqq, τ pλpγqqq : γ P Γu is dense in R 2 . Then, for every b P p0, 1s with

I τ pτ q ą b ą 1{I τ pτ q, one has bh 8,b ď dim Hff G `tb´conical pointsu ˘ď minth 8,b , bh 8,b `p1 ´bqu ă minth τ , h τ {bu ď dim Hff pGpBΓqq " maxth τ , h τ u.
The proof of the above result is completed in § 5.5. Recall that if h τ1 " h τ 1 and the representations are not gap-isospectral, then Proposition 3.3 gives I τ 1 pτ 1 q ą 1. Theorem 5.3 studies then b-conical points for any b with I τ 1 pτ 1 q ą 1{b ě 1. As the following result shows, the equality between entropies is rather natural for K " R. Theorem 5.4 (P.-S.-Wienhard [START_REF] Pozzetti | Conformality for a robust class of non-conformal attractors[END_REF]). Let ρ : Γ Ñ SLpd, Kq be locally conformal, then h τ " dim Hff `ξpBΓq ˘.

Moreover, when K " R and BΓ is homeomorphic to a p ´1-dimensional sphere, h τ " p ´1.

When Γ is a surface group we can also weaken the assumption on the density of periods:

Corollary 5.5. Assume BΓ is homeomorphic to a circle and let ρ and ρ be nongap-isospectral real p1, 1, 2q-hyperconvex representations of Γ. Then dim Hff G `t1´conical pointsu ˘" h 8 ă 1.

Proof. Proposition 6.3 below states that under our assumptions the group generated by tpτ pλpγqq, τ pλpγqqq : γ P Γu is dense in R 2 . Theorem 5.4 guarantees that I τ pτ q ě 1. The equality then follows from Theorem 5.3.

Kim-Minsky-Oh [START_REF] Kim | Hausdorff dimension of directional limit sets for self-joinings of hyperbolic manifolds[END_REF] have established realted Hausdorff dimension computations when ρ and ρ are convex-co-compact representations in SOpn, 1q without any assumption on I.

5.1.

Cone types are coarsely balls. In [START_REF] Pozzetti | Conformality for a robust class of non-conformal attractors[END_REF] P.-S.-Wienhard gave a concrete description of the images under the boundary map of the cone types at infinity. We discuss here a slight extension of that result adapted to our needs. We denote by d P the distance on PpK d q induced by the choice of an inner (Hermitian) product on K d and by Bp , rq Ă PpK d q the associated ball of radius r about . Proposition 5.6. Let ρ : Γ Ñ SLpd, Kq be locally conformal. Then there exist positive constants c, k 1 , k 2 and L P N such that for every x P BΓ, every geodesic ray pα n q 8 0 with endpoint x and every n ą L one has

B ´ξpxq, k 1 e ´τ1papαnqq ¯X ξpBΓq Ă ξ ´αn C c 8 pα n q ¯Ă B ´ξpxq, k 2 e ´τ1papαnqq ¯.
Proof. The desired inclusions are proven in [START_REF] Pozzetti | Conformality for a robust class of non-conformal attractors[END_REF] for thickened cone types at infinity. We briefly explain here how to deduce from it the result we need.

Following [START_REF] Pozzetti | Conformality for a robust class of non-conformal attractors[END_REF] we denote by X 8 pγq, for γ P Γ, the thickened cone type at infinity, namely the tubular neighborhood in PpK d q of ξ `C8 pγq ˘of radius δ ρ {2, where δ ρ is the fundamental constant from Definition 4.8. In [START_REF] Pozzetti | Conformality for a robust class of non-conformal attractors[END_REF]Corollary 5.10] it is established that there exists c 1 ą 0 and L 0 ą 0 only depending on the domination constants of ρ such that for all i ě L 0 one has

B ´ξpxq, c 1 e ´τ1papαiqq ¯X ξpBΓq Ă α i X 8 pα i q.
By definition the thickened cone type X 8 pγq is contained in the Cartan basin B tτ1u,α pγq for α " ´2 log δ ρ . So P.-S.-Wienhard [START_REF] Pozzetti | Anosov representations with Lipschitz limit set[END_REF]Proposition 3.3] provides the existence of c and L 0 such that for γ P Γ with |γ| ą L 0 , one has

X 8 pγq X ξpBΓq Ă ξ `Cc 8 pγq ˘.
Combining both equations one has, for all i ě L 0 that B ´ξpxq, c 1 e ´τ1papαiqq ¯X ξpBΓq Ă ξ ´αi C c 8 pα i q ¯Ă B ´ξpxq, Ke ´τ1papαiqq ¯, (5.2)

the second inclusion following from Proposition 4.9. This concludes the proof.

Hausdorff dimension and related concepts.

Recall that, given a metric space pX, dq and a real number s ą 0, the s-capacity of X is

H s pX, dq " lim εÑ0 inf # ÿ U PU diam U s ˇˇˇU open covering of Λ, sup U PU diam U ă ε +
and that dim Hff pXq " infts| H s pXq " 0u " supts| H s pXq " 8u.

(5.

3) The following can be verified directly from the definition:

Lemma 5.7. If X " Ť nPN X n then dim Hff pXq " sup dim Hff pX n q.
We will use the following consequence of Theorem 1.5.14 from Edgar's book [START_REF] Edgar | Integal, Probability, and Fractal Measures[END_REF]:

Corollary 5.8. Let E Ă R d be a measurable subset equipped with a probability measure ν. If the upper density

D α pxq " lim sup rÑ0 ν `Bpx, rq X E ȓα
is ν-essentially bounded above, then dim Hff pEq ě α.

The lower bound dim

Hff pGtb´conical pointsuq ě bh 8,b . We import some tools from the proof of Theorem 4.16. Consider the vector space V ˚:" spantτ, τ u together with its radical AnnpV ˚q " ker τ Xker τ and the quotient vector space V " a θ { AnnpV ˚q. Any element of V ˚vanishes on AnnpV ˚q and thus V ˚is naturally identified with the dual space of V. Using the preferred basis tτ, τ u of V ˚we identify V and R 2 via the isomorphism v Þ Ñ `τ pvq, τ pvq ˘and we let Π : a θ Ñ R 2 be the quotient projection (composed with the above isomorphism). The image of the hyperplane ker bτ ´τ under the composition of Π and the identification of V with R 2 is the line passing through p1, bq, Π `kerpbτ ´τ q ˘" v P V : bτ pvq " τ pvq ( .

We consider the quadrant

V `" tτ ě 0u X tτ ě 0u.
Let v " v pρ,ρq : Γ ˆBΓ Ñ V be the composition of the refraction cocycle β pρ,ρq of the pair with Π. Its periods are vpγ, γ `q " ´τ `λpγq ˘, τ `λpγq ˘¯, so by assumption v is non-arithmetic. As in § 4.4 one has Q v " V ˚X Q θ,ρ ; by non-arithmeticity, the cone L v has non-empty interior and thus Corollary 3.5 gives that Q v is a strictly convex curve. We consider the max norm }v} 8,b " maxtb|τ pvq|, |τ pvq|u on V , and its dual (operator) norm on

V ˚denoted by } } 1,b . Let ϕ 8 b P Q v be the unique form such that }ϕ 8 b } 1,b " inft}ϕ} 1,b : ϕ P Q v u.
In the following lemma the role of the assumptions on dynamical intersection in Theorem 5.3 becomes clear: Lemma 5.9. The functional ϕ 8 b {}ϕ 8 b } 1,b is a convex combination sbτ `p1 ´sqτ with s P p0, 1q if and only if I τ pτ q ą b ą 1{I τ pτ q.

(5.4)

In this case one has T ϕ 8 b Q v " spantbτ ´τ u. Proof. Recall from Corollary 3.5 that T hτ τ Q v " ker I hτ τ and Q v is strictly convex. Furthermore, by definition the functional ϕ 8 b is the point of Q v , that minimizes the norm } } 1,b . The level set t}ϕ} 1,b " 1u is a rhombus with vertices pbτ, τ q (in blue in Figure 6), the tangent to Q v at h τ τ, in red in Figure 6, is the level set I hτ τ p¨q " 1, whence its intersection with the τ -axis is τ {I hτ τ pτ q, and the the tangent to to Q v at h τ τ is the level set I hτ τ p¨q " 1, and it intersects the τ -axis is τ {I hτ τ pτ q.

Equation (5.4) is thus equivalent to the fact that the slope of the side of the rhombus, equal to ´1{b, is between the slope of the tangent at h τ τ , which is equal to ´hτ {I hτ τ pτ q " ´1{I τ pτ q, and the slope of the tangent at h τ τ , which is equal to ´Ihτ τ pτ q{h τ " ´Iτ pτ q.

Strict convexity of Q v ensures that this is equivalent to having a unique point in Q v X ttτ : t ą 0u ˆtsτ : s ą 0u tangent to the side of the rhombus, which is the desired functional ϕ 8 b . Proof. Lemma 5.9 implies that (i)

Q v V hτ τ h τ τ bτ hτ b τ τ ψ hτ Iτ pτ q τ ϕ 8 b h τ τ `Thτ τ Q v
T ϕ 8 b Q v " spantbτ ´τ u and thus u v ϕ 8
b " Ann `R ¨pbτ ´τ q ˘" Πpkerpbτ ´τ qq.

Since dim V ˚" 2 and v pρ,ρq is assumed non-arithmetic, Theorem 4.16 states that the subset of b-conical points has full µ Proof. We say that a point x is pR, bq-conical if there exists a geodesic ray pα i q iPN converging to x and such that for an infinite subset I Ă N of indices and for every k P I ˇˇbτ `apα k q ˘´τ `apα k q ˘ˇˇď R.

(5. Let K, resp. K, be the constants given by Proposition 4.9 for the representation ρ (resp. ρ).

We first observe that for C " 2e R maxtK, Ku and every T ą 0, the set U C T covers GpC R b q. Indeed, if x P C R b consider the geodesic ray pα i q iPN converging to x, and the set I of indices for which Equation (5.7) holds. Then for every k P I one has, since b ď 1, that τ `apρα k qq ě bτ `apα k qq ą max bτ `apα k q ˘, τ `apα k q ˘( ´R, (

τ `apα k qq ą max bτ `apα k q ˘, τ `apα k q ˘( ´R.

(5.9)

Let now T be fixed and choose k P I, k ą T . Since x P α k C c 8 pα k q, Proposition 4.9 together with Equation (5.9) give d `ξpxq, U 1 pα k q ˘ď Ce ´max bτ `apα k q ˘,τ `apα k q ˘( d `ξpxq, U 1 pα k q ˘ď Ce ´max bτ `apα k q ˘,τ `apα k q ˘(, as desired.

Furthermore, by definition of h 8,b , for every s ą h 8,b ,

ÿ U PU C T diam U s ď 2 s C s ÿ |γ|ěT
e ´s maxtbτ papγqq,τ papγqqu ă `8, whence, Equation (5.3) yields dim Hff pC R b q ď h 8,b . In order to obtain the second upper bound we observe that, if α P Γ satisfies Equation (5.7), the set GpαC c 8 pαqq can be covered with e p1´bqτ papαqq balls of radius 2Ce ´τ papαqq . We denote by U T the collection of open balls, that only take into account elements α P Γ with |α| ą T that verify (5.7), which in particular covers the set C R b . Using Equation (5.8) we obtain Since the latter quantity is finite whenever ps´p1´bqq b ą h 8,b , we deduce dim Hff pC R b q ă bh 8,b `p1 ´bq.

ÿ U PU T diam U s ď 2 s C s
We conclude this subsection computing the Hausdorff dimension of the image of the whole boundary through the graph map. See [START_REF] Coen | Large Sets with Small Injective Projections[END_REF] for examples of homeomorphisms between Cantor sets for which the Hausdorff dimension of the graph exceeds the maximal Hausdorff dimension of the factors. 

B min,K γ :" B ´`U 1 pγq, U 1 pγq ˘, Ke ´min tτ papγqq,τ papγqqu ¯,
and C " 2 maxtK, Ku where K (resp. K) is the constant given by Proposition 4.9 for the representations ρ (resp. ρ). To conclude it is enough to observe that It is easy to generalize Proposition 5.12 to an arbitrary number of factors. as an application we get. The goal of this section is to prove the following more general version of Theorem A. As before, fix tK, Ku Ă tR, C, Hu together with locally conformal representations ρ : Γ Ñ SLpd, Kq and ρ : Γ Ñ SLpd, Kq of an arbitrary word-hyperbolic group Γ. For b P p0, 1s recall that Ξ : ξpBΓq Ñ ξpBΓq is b-concave at x P BΓ if there exists y k Ñ x such that the incremental quotients d P `ξpxq, ξpy k q dP `ξpxq, ξpy k q ˘b (6.1) are bounded away from 0 and 8 (independently of k). We also let H b pρ,ρq be the set of x P BΓ that are b-concavity points of Ξ. Finally, recall that ρ and ρ are not gap-isospectral if there exists γ P Γ such that τ papγqq ‰ τ papγqq. Theorem 6.1. Let ρ, ρ be locally conformal representations acting irreducibly, on K d and K d respectively, as real vector spaces, and that are not gap-isospectral. Consider any b P p0, 1s with I τ pτ q ą b ą pI τ pτ qq ´1, then -if tK, Ku Ă tR, Cu one has bh 8,b ď dim Hff pH b ρ,ρ q ď minth 8,b , bh . Conversely, assume that x is not b-conical. The Cartan projections of two consecutive elements α i and α i`1 make uniformly bounded gaps (Proposition 2.1), and thus there exists C such that for all n P N one has ˇˇτ `apα n`1 q ˘´τ `apα n q ˘ˇă C.

h mintτ,τ u " maxth τ , h τ u,
As a consequence, we can assume, up to switching the roles of ρ and ρ, that for any R there exists n R such that for every n ą n R one has bτ `apα n q ˘´τ `apα n q ˘ą R.

In turn this implies, thanks to Equation (6.4), that for every y P α n R C c 8 pα n R q,

d P `ξpyq, ξpxq dP `ξpyq, ξpxq ˘b ď e ´R C 2 C 1 b .
Since R is arbitrary, and the sets α n R C c 8 pα n R q form a system of neighborhoods of the point x, we deduce that the limit in Equation (6.1) exists and equals 0. This concludes the proof. 6.2. Non-arithmeticity of periods. In this section we establish a non-arithmeticity condition, necessary to apply later Theorem 5.3. This is established in a rather general setting. Recall that a subgroup Λ ă SLpd, Kq is K-proximal if it contains a K-proximal element, i.e. there exists g P Λ such that τ 1 pλpgqq ą 0. Proposition 6.3. Let Λ be a finitely generated group. Let ρ : Λ Ñ SLpd, Kq and ρ : Λ Ñ SLpd, Kq be two K-proximal representations that act irreducibly on K d and K d respectively, as real vector spaces. Assume there exists γ P Λ such that τ 1 pλpργqq ‰ τ 1 pλpργqq. If tK, Ku Ă tR, Cu, then the group generated by the pairs

!´τ

1 `λpργq ˘, τ 1 `λpργq ˘¯: γ P Λ

) is dense in R 2 . If K " H we further assume that the Zariski closure over R of ρpΛq has no compact factors, and the same for ρpΛq if moreover K " H, then the same conclusion holds.

To prove the proposition we need Lemmas 6.4 and 6.5 below.

Lemma 6.4. Let K be either R or C. Let Λ ă SLpd, Kq be a subgroup acting irreducibly on K d as a real vector space and assume Λ contains a K-proximal element.

Then the real Zariski closure of Λ is semi-simple, has finite center and without compact factors.

Proof. If K " R the Lemma is the content of S. [START_REF] Sambarino | On entropy, regularity and rigidity for convex representations of hyperbolic manifolds[END_REF]Lemma 8.6] and the proof over C is a slight modification of the latter. Indeed, let G be the Zariski closure of ρpΛq over the reals, by the irreducibility assumption it is a reductive (real-algebraic) group. By Schur's Lemma the elements commuting with Λ consist only on homotheties, but since we're in special linear group one has that the center of G is finite. The group G is then semi-simple and we let K be the identity component of the product of all the compact simple factors of G. We also let H be the identity component of the product of all the non-compact simple factors of G. The groups H and K commute and one has HK has finite index in G.

Consider a proximal g P G, up to a fixed power we may write g " kh with k P K and h P H. Since K is compact, its eigenvalues have modulus one so we conclude that h is proximal and that g `" h `. The attracting line of h is thus invariant under K. Since K is connected, an element of K acts on h `as multiplication by some element of S 1 .

By irreducibility we may find a basis of C d consisting on fixed attracting lines of proximal elements of H. This basis simultaneously diagonalizes K, so we get an injective map from K to a compact group isomorphic to a d-dimensional torus. Consequently K is abelian, and since it commutes with H we conclude that K is contained in the identity component of the center of G, which we proved earlier to be trivial. )

is dense in R 2 .
Proof. Define the piecewise linear maps τ, τ : a `Ñ R by: τ pvq " min σpvq : σ P ϑ ( τ pvq " min σpvq : σ P ϑ ( .

The vanishing set of the difference τ ´τ is contained the union of kerpa ´bq for arbitrary a P ϑ and b P ϑ. Since ϑ and ϑ are disjoint, this is a union of hyperplanes of a, from which we deduce that the set of zeroes of τ ´τ has empty interior.

Since C Ă int L rpΛq has non-empty interior, the difference τ ´τ does not identically vanish on C. Since τ and τ are piecewise linear, we can choose a possibly smaller closed cone with non-empty interior

C 1 Ă C,
and a P ϑ, b P ϑ such that for all v P C 1 one has τ ˆτ pvq :" pτ pvq, τ pvqq " papvq, bpvqq.

Since a and b are distinct simple roots the map pa, bq : a Ñ R 2 is surjective.

By Benoist [3, Proposition 5.1] there exists a sub-semigroup Λ 1 ă Λ such that rpΛ 1 q is a Zariski-dense Schottky semi-group with L rpΛ 1 q " C 1 . In particular, for all γ P Λ If we let φ : G Ñ SLpd, Kq and φ : G Ñ SLpd, Kq be the associated real representations, so that ρ " φ ˝ι and ρ " φ ˝ι, we have from §2.3 two subsets of simple roots θ :" θ φ and θ :" θ φ such that for all a P a G and b P a G one has τ paq :" τ 1 pφpaqq " min apaq : a P θ ( τ pbq :" τ 1 pφpbqq " min apbq : a P θ ( .

In particular, for every γ P Λ one has τ 1 pλpγqq " τ pλ G pιγqq, and similarly for ρ.

Since φ and φ are faithful, θ and θ contain at least one root of each factor of, respectively, G and G. If ϑ Ă θ then we let

τ ϑ pvq " min σPϑ σpvq, v P a G .
If H is a non-trivial product of simple factors of G then we let ι H : Λ Ñ H be the composition of ι with the projection of G onto H. By Zarisk-density of ιpΛq, each representation ι H has Zariski-dense image (though unlikely to be discrete). We also let θ H " θ X ∆ H .

Each θ H is non-empty. We analogously define ι H , θ H and τ H . We now let L be the largest product of simple factors, simultaneously of G and G, so that ι L is conjugated (up to finite index) to ι L . Let H and H be the remaining factors of G and G respectively, i.e.

G " L ˆH and G " L ˆH, and moreover, by definition of L, the representation r : Λ Ñ L ˆH ˆH r : g Þ Ñ `ιL pgq, ι H pgq, ι H pgq ˘(6.7)

has Zariski-dense image, see for example Bridgeman-Canary-Labourie-S. [START_REF] Bridgeman | The pressure metric for Anosov representations[END_REF]Corollary 11.6]. We remark that we are not assuming that any of L, H or H is non-trivial (they can't, of course, be all trivial). If pu, v, wq P a L ˆaH ˆaH we naturally think of pu, vq as an element of a G and of pu, wq as an element of a G . We now write

Θ " θ L X θ L , Θ L " θ L zΘ, Θ L " θ L zΘ.
One has, for all pu, v, wq P a L ˆaH ˆaH that τ pu, wq " min τ Θ L puq, τ Θ puq, τ θ H pwq (

τ pu, vq " min τ Θ L puq, τ Θ puq, τ θ H pvq ( . (6.8) 
By assumption, there exists g P Λ such that ρpgq and ρpgq are proximal and τ pλ G pιgqq ‰ τ pλ G pιgqq. Assume, without loss of generality, that τ pλ G pιgqq ă τ pλ G pιgqq.

(6.9)

By means of Equations (6.8) we see that in this situation one has

τ Θ L Yθ H pλ G pιgqq " τ pλ G pιgqq ă τ pλ G pιgqq,
in particular the union Θ L Y θ H must be non-empty. Moreover, this strict inequality yields the existence of a small closed cone with non-empty interior

C 0 Ă L ρ Ă a G about R `λG pρgq such that τ Θ L Yθ H paq " τ 1 paq @a P C 0 . (6.10) 
Consider now the representation r : Λ Ñ L ˆH ˆH from (6.7) and a closed cone with non-empty interior C Ă L rpΛq Ă a L ˆaH ˆaH whose natural projection onto a G " a L ˆaH is C 0 . Lemma 6.5 applied to the group G " LˆHˆH, the representation r, the disjoint non-empty subsets ϑ " Θ L Y θ H and ϑ " θ L Y θ H and the cone C, provides the desired conclusion.

We conclude with the following Corollary that we don't need but is of independent interest. Corollary 6.6. Let ρ : Γ Ñ SLpd, Kq and ρ : Γ Ñ SLpd, Kq be R-irreducible and tτ 1 , τ 2 u-Anosov and tτ 1 , τ 2 u-Anosov respectively. If K " H assume moreover the Zariski closure of ρpΓq does not contain compact factors, and analogously for ρ. If ρ and ρ are not gap-isospectral then

I τ 1 pτ 1 q ą h τ 1 {h τ1 .
Proof. Since both representations are projective-Anosov they are K-proximal. Proposition 6.3 implies then that, since they are not gap-isospectral, the group spanned by the pairs `τ1 pλpγqq, τ 1 pλpγqq ˘: γ P Γ ( is dense. Since both representations are also Anosov with respect to 2-dimensional stabilizers, the functionals τ 1 and τ 1 lie in the Anosov-Levy space of ρ and ρ respectively, we can apply Proposition 3.3 to obtain the desired strict inequality. 6.3. Proof of Theorem 6.1. Theorem 6.1 follows from Proposition 6.3 giving the desired non-arithmecity of periods, Lemma 6.2 identifying the set H b ρ,ρ with the set of b-conical points of pρ, ρq and Theorem 5.3 computing the Hausdorff dimension of the latter when the periods are non-arithmetic. The last equality is a direct consequence of Proposition 5.12.

Theorem C: Zariski closures of real-hyperconvex surface-group representations

In this section we prove Theorem C giving a preliminary classification of Zariski closures of irreducible real p1, 1, 2q-hyperconvex representations of surface groups. For most of the section we work with a pair of p1, 1, 2q-hyperconvex representations and eventually reduce the proof of Theorem C to a situation like this; we will crucially use Theorem 1.3. 7.1. When Ξ has oblique derivative. We prove here a result of independent interest, albeit possibly known to experts. This subsection only requires § 4.1 and § 4.2 and will be needed not only for Theorem C but also for Theorems B and 8.6. Proof. We consider L from Definition 7.1, so that for every η P Γ with |η| ě L and x, y P B 8 pηq one has dpηx, ηyq ď Ce ´|η|λ dpx, yq.

Since the action is C e ´νλLi ˘dpx, yq ν pby (7.4) and (7.1)q.

This shows Equation (7.3) which implies that for κ 0 " K 1 {p1 ´e´νλL q, every γ P Γ whose word-length is an integer multiple of L, and x, y P B 8 pγq one has ˇˇlog |γ 1 pxq| ´log |γ 1 pyq| ˇˇď κ 0 dpx, yq ν .

To conclude the lemma we consider an arbitrary γ with |γ| " mL `t and t ă L. We write γ " βη with |β| " mL. By Definition 7.1 (ia) it holds ηB 8 pγq Ă B 8 pβq. ď pκ 0 C ν e ´mLλ `Kqdpx, yq ν pby (7.1)q so taking κ " K `κ0 C ν e ´Lλ we conclude the proof.

Proof of Proposition 7.2. Let p P BΓ be such that Ξ has a derivative at p that is neither horizontal nor vertical. Fix a geodesic ray pα n q 8 0 through the identity with α n Ñ p. By definition for all n one has p P α n C 8 pα n q. Without loss of generality we may also assume that p " 0 " Ξp0q and we may write the derivative as the incremental limit Ξ 1 p0q " lim yÑ0 Ξpyq y P K ´t0u.

For each n we let s n " r 1 e ´τ pαnq , so that by Definition 7.1 (iii), Bp0, s n q Ă α n B 8 pα n q.

We consider the scaling map g n : Bp0, 1q Ñ α n B 8 pα n q defined by g n pzq " s n z. Let a n be an arbitrary point at distance s n from 0 and let sn " Ξpa n q. Observe that since Ξ is differentiable at zero, for n big enough the image ΞpBp0, s n qq is coarsely a ball around zero of size comparable to that of α n C 8 pα n q, and in particular we can assume, since the cover tB 8 pγqu is Lipschitz compatible (Definition 7.1 (iii)), that ΞpBp0, s n qq is contained in α n B 8 pα n q. Furthermore we deduce that there exist positive constants d, D such that for every n d ă r 2 e ´τ pαnq |s n | ă D.

Here we denote by r i , λ, C, τ the constants and function associated to the Lipschitz compatible cover tB 8 pγqu for the action ρ. We consider the scaling map gn : Bp0, Dq Ñ Bp0, |s n |Dq by z Þ Ñ zs n .

Since s n Ñ 0 and Ξ 1 p0q R t0, 8u exists, the composition g´1 n Ξg n pzq "

Ξpzs n q sn ¨sn z s n z " Ξpzs n q s n z ¨sn sn ¨z " Ξpzs n q s n z ¨sn Ξps n q ¨z converges uniformly on compact subsets to the identity map. On the other hand, one has g´1 n Ξg n " g´1 n α n Ξα ´1 n g n . We now study the maps f n :" α ´1 n ˝gn and fn :" g´1 n ˝αn . Since the coverings B and B are finite, we can assume, up to extracting a subsequence that there exists sets B 8 P B, B 8 P B so that, for every n, B 8 pα n q " B 8 (resp. B 8 pα n q " B 8 ).

Observe that for every x P Bp0, 1q one has log |f Let G be real-algebraic and semi-simple. Let ta, bu Ă ∆ be two distinct simple roots. The partial flag space F ta,bu carries two transverse foliations that are the level sets of the natural projections F ta,bu Ñ F tau and F ta,bu Ñ F tbu . We will refer to these as the canonical foliations of F ta,bu .

Corollary 7.7. Let G be real-algebraic and semi-simple and let ta, bu Ă ∆ distinct. Let ρ : π 1 S Ñ G be Zariski-dense and ta, bu-Anosov. If both curves ξ a pBπ 1 Sq and ξ b pBπ 1 Sq are C 1 then every differentiability point of ξ ta,bu pBπ 1 Sq is tangent to one of the canonical foliations of F ta,bu .

Proof. By Benoist's Theorem 2.3 the limit cone of ρ has non-empty interior, in particular there exists γ P π 1 S such that apλpγqq ‰ bpλpγqq. The natural embedding F ta,bu Ñ PpV a q ˆPpV b q sends ξ ta,bu to the graph of the map Ξ from Corollary 7.5 and thus the corollary implies the result. 7.3. Proof of Theorem C. The goal of the section is to prove Theorem C, stating that the Zariski closure G of the image of an irreducible p1, 1, 2q-hyperconvex representation ρ : π 1 S Ñ PGLpd, Rq is simple and the highest weight of the induced representation Φ : G Ñ PGLpd, Rq is a multiple of a fundamental weight associated to a root whose root-space is one-dimensional.

It is known that an irreducible subgroup G ă PGLpd, Rq containing a proximal element is semi-simple without compact factors (see S. [START_REF] Sambarino | On entropy, regularity and rigidity for convex representations of hyperbolic manifolds[END_REF]Lemma 8.6] for an explicit argument following a suggestion by Quint).

We consider the induced representation ρ 0 : Γ Ñ G and denote by Φ : G Ñ PGLpd, Rq the linear representation so that ρ " Φρ 0 . Let χ " χ Φ P a ˚be the highest weight of Φ. As in Definition 2.5 we consider θ " θ Φ " ta P ∆ : χ ´a is a weight of Φu " ta P ∆ : xχ, ay ‰ 0u.

It is enough to show that θ is reduced to a single root ta 0 u; indeed, if this is the case, upon writing χ in the basis of fundamental weights t a : a P ∆u (recall their defining Equation (2.1)) one has χ " ÿ aP∆ xχ, ay a " xχ, a 0 y a0 ,

Moreover this gives:

-G is simple by Lemma 2.4; -the weights on the first level consist solely on χ´a and its associated weight space is φpg ´aqV χΦ . Since ρpΓq is tτ 2 u-Anosov one has that φpg ´aqV χΦ is one-dimensional, but by Lemma 2.6 no element of g ´a acts trivially on V χΦ so g ´a is 1-dimensional, as desired.

We proceed now to show that in the present situation θ consists of only one element. By definition of θ one has, for every g P G, that τ 1 `λ`Φ pgq ˘" min aPθ apλ G pgqq ( .

Consequently, the limit cone L ρ0 Ă a G does not intersect the walls of elements in θ and, since ρ 0 : Γ Ñ G is a quasi-isometry, Remark 4.4 implies that the representation ρ 0 is θ-Anosov.

Recall from Equation (2.5) that we have a Φ-equivariant analytic embedding ζ θ : G{P θ Ñ PpR d q. One has moreover that ξ 1 ρ " ζ θ ˝ξθ ρ0 . In particular the boundary map ξ θ has C 1 -image. Composing with the projections F θ Ñ F θ 1 one sees that, for any θ 1 Ă θ the curve ξ θ 1 ρ0 pBΓq is a C 1 circle. Assume now there exists two distinct roots a, b in θ. By the previous paragraph the curve ξ ta,bu pBΓq is C 1 . Corollary 7.7 gives then that ξ ta,bu pBΓq is necessarily contained in one of the leaves of the canonical foliations of F ta,bu , thus giving that one of the maps ξ a or ξ b is constant, achieving a contradiction. 8. Non-differentiability and 1-conicality: The proof of Theorem B 8.1. Non-differentiability and 1-conicality. By means of § 7.1 we can improve Lemma 6.2 when we deal with a pair of real hyperconvex representations of surface groups, this is the missing ingredient for Theorem B: Corollary 8.1. Assume BΓ is homeomorphic to a circle. Let ρ, ρ two p1, 1, 2qhyperconvex representations over R of Γ that are not gap-isospectral. Then, the set of non-differentiability points of Ξ coincides with the set of 1-conical points.

Proof. We choose a C 1 identification of the C 1 torus ξpBΓq ˆξpBΓq Ă PpR d q ˆPpR d q with the quotient of the square r´1, 1s ˆr´1, 1s preserving the product structure, and such that the point px, Ξpxqq corresponds to p0, 0q. In these coordinates the graph of Ξ is a monotone curve r´1, 1s Ñ r´1, 1s passing through the origin. Since the chosen identification is C 1 , it is in particular K-bi-Lipschitz for some K, so we can write (coarsely in a small neighbourhood of x) dpξpyq, ξpxqq " |y| and dpξpyq, ξpxqq " |Ξpyq|.

From Lemma 6.2 we know that x is 1-conical if and only if either lim yÑx |Ξpyq| |y| exists and is far from 0 and 8, either it does not exist. The proposition is settled if we show that the first situation cannot happen, so let's assume it does. However, since Ξ is monotone we can remove the | | and we get that x is a differentiability point of Ξ with oblique derivative. Corollary 7.5 implies then that for all γ P Γ one has τ 1 pλpγqq " τ 1 pλpγqq, contradicting our assumption.

8.2. Proof of Theorem B and an analogous for Kleinian groups. We begin with the proof of Theorem B by recalling the following result from Beyrer-P. [START_REF] Beyrer | Degenerations of k-positive surface group representations[END_REF] on the vector space E " V and the norm N " } } 8 . We then have, in the notation of [44, §3], that τ N ν " h maxta,bu and, by Remark 4.13, σ N ν " inf ϕPQv }ϕ} 1 . Thus, in order to deduce Equation (8.1) from [START_REF] Quint | Divergence exponentielle des sous-groupes discrets en rang supérieur[END_REF]Proposition 3.3.3] it is enough to verify that the counting measure ν is of concave growth as in [44, §3.2]. In turn this is a consequence of Lemma 8.4 below, an adaptation of [START_REF] Quint | Divergence exponentielle des sous-groupes discrets en rang supérieur[END_REF]Proposition 2.3.1] (see also Lemma 3.8] where similar arguments are explained for the a θ counting measure). Lemma 8.4. Let } } be a norm on V . Let Λ ă G be Zariski-dense and ta, bu-Anosov. Then there exists a product map m : Λ ˆΛ Ñ Λ with the following properties:

(i) there exists a real number κ ě 0 such that, for all γ 1 , γ 2 P Λ, }Πa θ pmpγ 1 , γ 2 qq ´Πa θ pγ 1 q ´Πa θ pγ 2 q} ď κ;

(ii) for every real R ě 0 there exists a finite subset H of Λ such that, for γ 1 , γ 2 γ 1 1 , γ 1 2 in Λ with }Πa θ pγ i q ´Πa θ pγ 1 i q} ă R for i " 1, 2, then mpγ 1 , γ 2 q " mpγ 1 1 , γ 1 2 q ñ γ 1 i P γ i H, for i " 1, 2.

Proof. It is enough to consider the generic product map π : Λ ˆΛ Ñ Λ constructed in [44, Proposition 2.3.1], which satisfies the analogous properties with respect to the Cartan projection a : G Ñ a and a norm } } on a. The first property is satisfied since we can assume that the projection Π˝π θ : a Ñ V is norm non-increasing. The second follows from the Anosov property: by the construction in [44, Proposition 2.3.1] one can choose H to be the set of elements γ such that }Πa θ pγq} ă R 1 for some R 1 depending on R. Such set is finite because, by definition of Π, there exists R 2 depending on R 1 and the norm } } such that if }Πa θ pγq} ă R 1 then apapγqq ă R 2 , which in turn implies by Definition 4.3 that |γ| ă R 2 {µ `C, and thus γ belongs to a finite subset.

8.4. The PSLp2, Cq-case. If ρ, ρ : Γ Ñ PSLp2, Cq are convex co-compact representations that are connected by convex-co-compact representations, it was proven by Marden [START_REF] Marden | The geometry of finitely generated kleinian groups[END_REF] that the natural map Ξ : Λ ρ Ñ Λ ρ conjugating the respective actions extends to a Hölder homeomorphism Ξ : CP 1 Ñ CP 1 that is pρ, ρq-equivariant. We consider in this case the complex derivative of such an extension Ξ and say that Ξ is C-differentiable at a given x P Λ ρ if, conformally identifying BH 3 ´tpointu to C, the limit Ξ 1 pxq :" lim yÑx Ξpxq ´Ξpyq x ´y exists or is infinite. We let now NDiff ρ,ρ be the set of points x P Λ ρ where the extended conjugating map Ξ is not C-differentiable and let

The proof of the following works verbatim as in Corollary 8.1.

Proposition 8.5. Let ρ, ρ : Γ Ñ PSLp2, Cq be non-gap-isospectral and in the same connected component of

: Γ Ñ PSLp2, Cq : is convex co ´compact ( .
Then, the set of non-C-differentiability points of Ξ coincides with the set of 1-conical points.

Density of the group generated by the pairs tpλpγq, λpγqq : γ P Γu follows readily from Benoist [START_REF] Benoist | Propriétés asymptotiques des groupes linéaires II[END_REF] (see Theorem 2.3), from this point on the exact same proof of Theorem B gives the following. Theorem 8.6. Let ρ, ρ : Γ Ñ PSLp2, Cq be non-gap-isospectral convex co-compact representations that are connected by convex co-compact representations. Assume without loss of generality that h τ ě h τ . If I τ pτ q ą 1, then dim Hff pNDiff ρ,ρ q " h 8 .

  Cs b cs b d P pξpxq, ξpzqq d P pξpxq, ξpzqq

Figure 1 .

 1 Figure 1. A b-concave point x. The marked points on the axis' represent d P pξpxq, ξpy k qq and d P pξpxq, ξpy k qq respectively.

Figure 2 .

 2 Figure 2. The coarse cone type of γ P Γ (left). The set γ ¨Cc 8 pγq (right). Pictures from P.-S.-Wienhard [43].

eFigure 3 .

 3 Figure 3. The image of the cone type αiC c 8 pαiq by the graph curve G in the C 1`ν -torus BΩ ˆBΩ ˚.

  It remains to understand the Hausdorff dimension of the set of b-conical points. The upper bound (Proposition 5.11) dim Hff `tb ´conicalu ˘ď h maxtτ1,τ2u (1.4) follows readily: since for a b-conical point the lengths e ´τ1pαkq and e ´τ2pαkq are comparable independently on k P I, one can replace the rectangle in Figure 3 by the (smaller) square of length e ´maxtτ1papα k qq,τ2papα k qqu and still get a covering 2 (this time by balls on the L 8 metric) of the set tb´conicalu. Standard arguments on Hausdorff dimension give Equation (1.4).

  p2q θ and a P θ, by l a a `Gθ px, yq ˘" G Φa pζ Φa x, ζ Φa yq " log sin > o `ζΦa y, ζ Φa xq, where ζ Φa and ζ Φa are the equivariant maps from Equation (2.5), and the Hermitian product o is induced by an Euclidean norm } } Φa invariant under Φ a K.

4 . 4 . 1 .

 441 Subspace conicality for Anosov representations: Theorem D Gromov hyperbolic groups and cone types. Let Γ " xSy be a finitely generated non-elementary Gromov hyperbolic group, and recall from §3 that we denote by B 2 Γ the set of distinct pairs in its Gromov boundary BΓ. Definition 4.1. A divergent sequence tγ n u nPN Ă Γ converges to a point x P BΓ conically if for every y P BΓ ´txu the sequence pγ ´1 n y, γ ´1 n xq remains on a compact set of B 2 Γ.

Figure 5 .

 5 Figure 5. The coarse cone type at infinity, picture from P.-S.-Wienhard[START_REF] Pozzetti | Anosov representations with Lipschitz limit set[END_REF].

4. 2 .Definition 4 . 3 .

 243 Anosov representations. Fix a subset θ Ă ∆. Let Γ be a finitely generated group and denote by | | the word-length associated to a finite generating set S. Following 6 Kapovich-Leeb-Porti[START_REF] Kapovich | Anosov subgroups: Dynamical and geometric characterizations[END_REF], a representation ρ : Γ Ñ G is θ-Anosov if there exist positive constants C and µ such that for all γ P Γ and a P θ one has apapργqq ě µ|γ| ´C. The constants µ and C are usually referred to as the domination constants of ρ. If G " PGLpd, Rq and θ " tτ 1 u we say that ρ is projective Anosov. In order to easy the notation we ill identify in what follows γ with ρpγq.

Proposition 4 . 6 (Corollary 4 . 7 . 1 ) 4 . 8 .

 4647148 Bochi-Potrie-S.[START_REF] Bochi | Anosov Representations and dominated splittings[END_REF] Lemma 2.5]). If ρ : Γ Ñ G is θ-Anosov and c ą 0 is given, then there exist L P N and δ ρ,c ą 0, depending only c and the domination constants of ρ, such that for every pc, cq-quasi-geodesic segment through the identity tα i u k ´m with k, m ě L one has, for all a P θ, that a G θ `Uiθ pα ´mq, U θ pρα k q ˘ě log δ ρ,c . Combining Proposition 4.5 and Proposition 4.6 we obtain: Up to decreasing δ ρ,c , for every γ P Γ and every x P C c 8 pγq one has a G θ `Uiθ pγ ´1q, ξ θ ρ pxq ˘ě log δ ρ,c . In particular, if we let α " ´log δ ρ,c then (recall Equation (2.8))ξ θ ρ pC c 8 pγqq Ă B θ,α pγq.(4.Definition Let ρ : Γ Ñ G be θ-Anosov and c ą 0, then the constant δ ρ,c verifying both Proposition 4.6 and Corollary 4.7 will be called the fundamental constant of ρ and c. If we consider geodesics instead of quasi-geodesics (i.e. pc, Cq " p1, 0q) we let δ ρ be the fundamental constant associated to ρ.

Proposition 4 . 9

 49 (cfr. P.-S.-Wienhard [43, §5.1]). Let ρ : Γ Ñ SLpd, Kq be projective Anosov and consider c ą 0. Then there exists a constant K, depending on c and on ρ such that for every large enough γ P Γ one has ξ 1 ρ `γC c 8 pγq ˘Ă B `U1 pγq, Ke ´τ1papγqq ˘. Proof. Using Corollary 4.7 for θ " tτ 1 u, the result follows as in P.-S.-Wienhard [43, §5.1].

4. 3 .

 3 Patterson-Sullivan theory of Anosov representations. If ρ is a θ-Anosov representation, then we can pullback the Buseman-Iwasawa cocycle of G using the equivariant maps: the refraction cocycle associated to a θ-Anosov representation ρ : Γ Ñ G is β : Γ ˆBΓ Ñ a θ given by βpγ, xq " β θ,ρ pγ, xq " b θ `ρpγq, ξ θ ρ pxq ˘.

Figure 6 .) u v ϕ 8 b"

 68 Figure 6. The situation of Lemma 5.9. We thus obtain the following key properties of ϕ 8 b : Lemma 5.10. Under the assumptions of Theorem 5.3 one has (i) u v ϕ 8 b " Πpkerpbτ ´τ qq; (ii) for any v P V `one has ϕ 8 b pvq ě h 8,b b mintτ pvq, τ pvqu. Moreover one has h 8,b ă minth τ , h τ {bu.

ϕ 8 b 5 . 4 .

 854 measure. Applying Corollary 5.8 one concludes that dim Hff `Gtb ´conical pointsu ˘ě bh 8,b . The upper bound. We now prove the second inequality. Proposition 5.11. Let ρ, ρ be locally conformal representations over K and K. For every b ď 1, dim Hff `Gtb ´conical pointsu ˘ď minth 8,b , bh 8,b `p1 ´bqu.

7 )

 7 We denote by C R b the set of pR, points. By Lemma 4.22 one has ď Rą0 C R b " tx P BΓ : x is b ´conicalu, and thus by Lemma 5.7 it suffices to show that for every R one has dim Hff `CR b ˘ď h 8 . For any constant K ą 0 and any γ P Γ we denote by B max,K γ the open ball of PpK d q ˆPpK d q given by: B max,K γ :" B ´`U 1 pγq, U 1 pγq ˘, Ke ´max tbτ papγqq,τ papγqqu ¯, and denote by U K T :" B max,K γ | |γ| ě T ( .

Proposition 5 . 12 .

 512 Let ρ : Γ Ñ SLpd, Kq, ρ : Γ Ñ SLpd, Kq be locally conformal. Then dim Hff pGpBΓqq " maxth τ , h τ u Proof. This follows as in the proof of Proposition 5.11 considering the covers of GpBΓq given by U C T :" B min,C γ | |γ| ě T ( with

a

  fact proven for example in P.-S.-Wienhard [42, Lemma 5.1].

Corollary 5 . 13 .τi . 5 . 5 .

 51355 Let ρ : Γ Ñ SLpd, Kq and θ Ă ∆ be such that for all τ i P θ, Φ τi ˝ρ is p1, 1, 2q-hyperconvex. Then dim Hff pξ θ ρ pBΓqq " max τiPθ h Proof of Theorem 5.3. The first inequality is established in § 5.3, the second inequality is proven in Proposition 5.11, the third inequality follows from Lemma 5.10 and the fourth from Theorem 5.4.The last equality was stablished in Proposition 5.12.6. b-concavity and b-conicality: Final steps for the proof ofTheorem A

Lemma 6 . 5 .

 65 Let G be a semi-simple real-algebraic Lie group with finite center and no compact factors. Fix ϑ, ϑ Ă ∆ G two non-empty subsets with ϑ X ϑ " H. Let Λ be a group and r : Λ Ñ G a representation with Zariski-dense image. Then, for every closed cone with non-empty interior C Ă int L rpΛq , the group spanned by the pairs ! `min σPϑ σ `λprgq ˘, min σPϑ σ `λprgq ˘˘: g P Λ and λprgq P C

Lemma 7 . 3 .

 73 Let ρ : Γ Ñ Diff 1`ν pXq admit a Lipschitz compatible cover. There exists a constant κ ą 0 and N P N such that for all γ P Γ with |γ| ě N and x, y P B 8 pγq one has ˇˇlog |γ 1 pxq| ´log |γ 1 pyq| ˇˇď κdpx, yq ν .

(7. 5 )

 5 Applying the chain rule gives then ˇˇlog |γ 1 pxq| ´log |γ 1 pyq| ˇˇď ˇˇlog |β 1 pηxq| ´log |β 1 pηyq| ˇˇ`ˇˇlog |η 1 pxq| ´log |η 1 pyq| ˇď κ 0 dpηx, ηyq ν `Kdpx, yq ν pby (7.2) and (7.5)q

(7. 6 )

 6 Consider the Tits representations Φ a and Φ b associated to a and b. Since ρpπ 1 Sq is Zariski-dense, both representation Φ a ρ and Φ b ρ are irreducible and since ρ is ta, bu-Anosov both representation Φ a ρ and Φ b ρ are projective Anosov. Recall that by definition of Φ a , for every g P G one has τ 1 `λ`Φ a pgq ˘˘" a `λpgq ˘, so by Equation (7.6) the representations Φ a ρ and Φ b ρ are not gap-isospectral. Since the maps ζ a and ζ b are analytic, both projective curves ζ a ξ a pBπ 1 Sq and ζ b ξ b pBπ 1 Sq are C 1 and thus by Zhang-Zimmer's Theorem 1.3 the representations Φ a ρ and Φ b ρ are p1, 1, 2q-hyperconvex.

  44, Proposition 3.3.3] h maxtτ1,τ2u " }ϕ 8 b } 1 , where } } 1 is the operator norm on a ˚defined by } } 8 , which turns out to be the L 1 norm }aτ 1 `bτ 2 } 1 " |a| `|b|. The form ϕ 8

	b additionally admits an associated Patterson-Sullivan probability measure, namely a measure µ 8 such that for all
	γ P π 1 S one has (see Corollary 4.14)
	µ 8 `GpγC c 8 pγqq ˘ď Ce

  BpGpxq, e ´mintτ1papαiqq,τ2papαiqqu ˘ď µ 8 `Gpα i C c 8 pα i q ˘ď Ce GpBπ 1 Sq with full µ 8 mass, one has dim Hff pEq ě h H .

		´ϕ8 b papαiqq
	ď C `e´mintτ1papαiqq,τ2papαiqqu ˘hH	,
	where the last inequalities follow from Equations (1.5) and (1.7). This gives a
	possibly bigger constant C 1 such that, for all r,	
	µ 8 `BpGpxq, rq ˘ď C 1 r h H	.
	Again, classical Hausdorff dimension arguments (c.f. Corollary 5.8 below) give that,
	for any measurable subset E Ă Since PSLp3, Rq has rank smaller than 3 and ρ is ∆-Anosov we can apply Burger-
	Landesberg-Lee-Oh	

  this boils down to the elementary fact that if A P GL d pRq verifies 4 τ 1 papAqq ą 0 then for every v P R d one has

	log	}Av} }v}	ě log }A} `log sin > `R ¨v, U d´1 pA ´1q	(see
	for example [9, Lemma A.3]).	

  Let ρ and ρ be locally conformal representations over K and K respectively, and b P p0, 1s. Then one has tb´conical points of pρ, ρqu " H b ρ,ρ . Proof. Let pα i q iPN denote a geodesic ray converging to x. Proposition 5.6 gives constants C 1 , C 2 , C 1 , C 2 and L P N such that, for every n P N and everyy n P α n C c 8 pα n qzα n`L C c 8 pα n`L q, it holds C 1 e ´τ papαnqq ă d P `ξpy n q, ξpxq ˘ă C 2 e ´τ papαnqq ,C 1 e ´τ papαnqq ă d P `ξpy n q, ξpxq ˘ă C 2 e ´τ papαnqq . (6.4)Assume first that x is b-conical. By Definition 5.2 we obtain a geodesic ray pα i q 8 0 , an infinite set of indices I Ă N and a number R, such that for all k P I one has |bτ papα k qq ´τ papα k qq| ă R. (6.5) For each such k we choose a point y k P α k C c 8 pα k qzα k`L C c 8 pα k`L q. By construction y k converges to x. Combining both equations, for every k P I it holds

	so the incremental quotient (6.1) is uniformly far from 0 and 8. Whence tb	ćonical
	pointsu Ă H b ρ,ρ		
			8,b `p1 ´bqu
			ă minth τ , h τ {bu
			ď dim Hff pGpBΓqq	(6.2)
			" maxth τ , h τ u;	(6.3)
	-if K " H (resp. K " H), Equation (6.2) holds if we further assume that the
	real Zariski closure of ρpΓq (resp. of ρpΓq) does not have compact factors.
	6.1. Hyperplane conicality and the concavity condition. We commence with
	a lemma relating b-conicality to the desired concavity properties of the equivariant
	map Ξ : ξpBΓq Ñ ξpBΓq.	
	Lemma 6.2. e	´R C 1 C 2 b ď	d P `ξpy k q, ξpxq `ξpy k q, ξpxq ˘b ď e R C 2 dP C 1 b ,

  Proof of Proposition 6.3. Denote by G and G the Zariski closures of ρpΛq and ρpΛq respectively. Both G and G are semi-simple, have finite center, and don't have compact factors: if tK, Ku Ă tR, Cu then this is the content of Lemma 6.4, if either K and/or K equals H then this is an assumption. We let ι : Λ Ñ G and ι : Λ Ñ G be the respective inclusions.

	1 one has			
	τ	ˆτ `λprγq	˘" `a`λ	prγq ˘, b `λprγq ˘˘.
	By Benoist's Theorem 2.3, stating that the group generated by the Jordan projec-
	tions λprγq, for γ P Λ 1 , is dense in a, we conclude that the group spanned by
		!´`a			)
		`λprγq ˘, b `λprγq ˘˘¯:	γ P Λ 1
	is dense in R 2 , giving in turn the desired conclusion.

  1`ν we can find a positive K such that for every β with |β| ď L and u, w P X one has ˇˇlog |β 1 puq| ´log |β 1 pwq| ˇˇď Kdpu, wq ν . (7.2)We let then K 1 " maxtK, KC ν u. We begin by showing, by induction on k, that if |γ| " kL then for all x, y P B 8 pγq, one has ˇˇlog |γ 1 pxq| ´log |γ 1 pyq| ˇˇď K 1 `k´1 ÿ ) gives the base case, so assume that the result holds up to k ´1. We write γ " βη with |β| " L, |η| " pk ´1qL. By Definition 7.1 (ib) we have B 8 pγq Ď B 8 pηq. (7.4) Applying the chain rule gives that for every u P X one has log |γ 1 puq| " log |pβq 1 pηuq| `log |pβq 1 puq| and thus, when x, y P B 8 pγq, ˇˇlog |γ 1 pxq| ´log |γ 1 pyq| ˇˇď ˇˇlog |β 1 pηxq| ´log |β 1 pηyq| ˇˇ`ˇˇlog |η 1 pxq| ´log |η 1 pyq| ˇď

	e ´νλLi ˘dpx, yq ν .	(7.3)
	i"0	
	Equation (7.2Kdpηx, ηyq ν `K1 `k´2 ÿ	
	i"0	

e ´νλLi ˘dpx, yq ν pby (7.2) and inductionq ď KC ν e ´|η|νλ dpx, yq ν `K1 `k´2 ÿ i"0

  1 n pxq| " log |pα ´1 n q 1 pg n xq| `log |s n | " ´log |α 1 n pα ´1 n g n xq| `log |s n |. Now by definition of g n , we have that g n x P α n B 8 pα n q and thus α ´1 n pg n xq P B 8 pα n q. For n large enough we can apply Lemma 7.3 to α n to obtain κ so that for every pair x, y P Bp0, 1q it holds ˇˇlog |f 1 n pxq| ´log |f 1 n pyq| ˇˇď κdpx, yq ν . 7.2. Limit curves in non-maximal flags. We proceed with another intermediate step for the proof of Theorem C describing differentiability points of boundary maps in partial flag manifolds F ta,bu for ta, bu-Anosov representations. This step follows from the combination of Theorem 1.3 and Corollary 7.5.

i.e. a is only connected to roots in Θ in the Dynkin diagram of ∆

Choosing the longer side e ´mintτ 1 papα k qq,τ 2 papα k qqu gives the bound dim Hff GpBπ 1 Sq ď 1.

See also Bochi-Potrie-S.[START_REF] Bochi | Anosov Representations and dominated splittings[END_REF] and Guéritaud-Guichard-Kassel-Wienhard[START_REF] Guéritaud | Anosov representations and proper actions[END_REF].

where last inequality holds as h ϕ 8 b " 1 (by Equation (3.4) and Remark 4.13). The last assertion follows directly from the definitions: 

where the last inequality comes from Lemma 5.10. By Proposition 5.6 there exist constants c, k 1 and k 1 such that if pα i q 8 0 is a geodesic ray from id to x then for all i the subsets ξ `αi C c 8 pα i q ˘and ξ `αi C c 8 pα i q contain balls on the corresponding projective spaces of radi k 1 e ´τ papαiqq and k 1 e ´τ papαiqq respectively where k 1 , k 1 depend on the representations but not on i. Since GpBΓq is a graph, the preceding radius computation implies that the image of the cone type G `αi C c 8 pα i q ˘contains the intersection of BΓ ˆBΓ with a ball, for the product metric on PpK d q ˆPpK d q, of radius

for some uniform constant k. This set of balls forms a fine set of neighbourhoods around any point x P BΓ. Combining this with Equation (5.5) and the fact that µ ϕ 8 b is supported on BΓ, one has, possibly enlarging the constant C, that for all r the measure of the ball of radius r about Gpxq is

7 Indeed, if x, y ě 0, s P p0, 1q and b P p0, 1s one has: sbx `p1 ´sqy ě b minpx, yq: Assume for example that y ě x (the other case follows smilarly), then sbx `p1 ´sqy ´bx ě p1 ´sqp1 ´bqx ě 0.

Either we let Γ have boundary homeomorphic to a circle, either we let it be a Kleinian group. In the first case we let ρ, ρ : Γ Ñ Diff 1`ν pS 1 q be Hölder conjugated to action of Γ on its boundary; if instead Γ ă PSLp2, Cq is a Kleinian group we let ρ, ρ : Γ Ñ PSLp2, Cq be two convex co-compact representations that lie in the same connected component of the subset of the character variety XpΓ, PSLp2, Cqq consisting of convex cocompact representations.

We let X be either the circle or BH 3 . To simplify notation we will denote the action of γ P Γ on X via ρ by γ, the action via ρ by γ, and the limit sets of ρ and ρ by BΓ, BΓ Ă X respectively.

In both situations there exists a Hölder-continuous map Ξ : X Ñ X conjugating ρ and ρ. Indeed while in the surface case this holds by definition, in the Kleinian case this is a theorem by Marden [START_REF] Marden | The geometry of finitely generated kleinian groups[END_REF], see also Anderson's survey [1, page 32]: the equivariant limit map Ξ : BΓ Ñ BΓ conjugating the actions ρ and ρ on their respective limit sets extends to a Γ-equivariant, Hölder continuous homeomorphism of the whole Riemann sphere BH 3 . We study differentiability points of Ξ with oblique derivative. We let d be either a visual distance on X (in the complex case) or a distance inducing the chosen C 1 structure on the circle S 1 . (iii) there exist constants r 1 , r 2 and a function τ : Γ Ñ R with τ pγq ě λ|γ| such that for every γ P Γ and every x P C 8 pγq, Bpx, r 1 e ´τ pγq q Ă γB 8 pγq Ă Bpx, r 2 e ´τ pγq q.

The goal of the subsection is to prove the following result, similar arguments can be found in Guizhen [START_REF] Guizhen | On the smoothness of conjugacy for circle covering maps[END_REF] in the context of conjugacies of expanding circle maps. Proposition 7.2. Let ρ, ρ be as above and assume both admit a Lipschitz compatible cover. If there exists p P BΓ such that Ξ has a finite non-vanishing derivative (complex derivative in the Kleinian case) at p then Ξ|BΓ is bi-Lipschitz.

We work under the assumptions of Proposition 7.2 and begin its proof with the following lemma. For γ P Γ we denote its derivative at x P X by γ 1 pxq P K defined, according our two situations, by X " S 1 : the derivative γ1 pxq of a lift of γ to the universal cover R of S 1 , and a lift

x P R of x, the number γ1 pxq is independent of these choices; X " BH 3 : we fix an arbitrary point 8 R BΓ, identify X ´t8u with K via the stereographic projection and let γ 1 pxq be the standard complex derivative.

We conclude that the family of maps pf n q is uniformly bi-Lipschitz on Bp0, 1q and thus, since pf n 0q is bounded, Arzela-Ascoli's Theorem applies to give a subsequence (still denoted by f n ) that converges to a bi-Lipschitz map f defined on Bp0, 1q.

A similar reasoning applies to the maps f defined on B 8 , and we obtain that, about 0, Ξ can be written as a composition of bi-Lipschitz maps and is thus bi-Lipschitz. Using the action of Γ we extend the Lipschitz property of Ξ to the whole BΓ, concluding the proof.

The following Lemma guarantees we can later apply the results of this section to the situation of our interest.

Lemma 7.4.

-Assume BΓ is homeomorphic to a circle and let ρ : Γ Ñ SLpd, Rq be p1, 1, 2qhyperconvex. Then the induced action of ρpΓq on the C 1`ν circle ξpBΓq admits a Lipschitz compatible covering. -If Γ is a convex-co-compact Kleinian group then the action of Γ on B 8 H 3 admits a Lipschitz compatible cover.

Proof. Recall from Section 4.1 that we have fixed a word metric on Γ and we denote by C 8 pγq Ă BΓ Ă X the set of endpoints of geodesic rays contained in the cone type Cpγq. Let δ ρ be the fundamental constant of ρ from Definition 4.8, and let B 8 pγq " X 8 pγq be the δ ρ {2-neighbourhood of C 8 pγq inside S 1 . This is the thickened cone type at infinity considered in [43, Section 5] (see also the proof of Proposition 5.6). It is a proper subset of S 1 by Corollary 4.7. The cover B is finite since there are only finitely many cone types [12, p. 455].

Property (i) holds since the same property holds for C 8 pγq, Property (ii) is a consequence of Proposition 4.10. Finally, Property (iii) was proven in [43, Corollary 5.10] choosing τ pγq :" τ 1 paρpγqq (see also the proof of Proposition 5.6). Observe that in the real case by considering X " S 1 we are implicitly considering only the intersection with the limit set, while in the Kleinian group case it is not necessary to intersect with the limit set since the Γ-action on the whole X is conformal.

We now establish the following corollary that will be used in the sequel.

Corollary 7.5. Assume BΓ is homeomorphic to a circle. Let ρ : π 1 S Ñ PGLpd, Rq and ρ : π 1 S Ñ PGLpd, Rq be p1, 1, 2q-hyperconvex, consider the map between C 1`ν circles Ξ " ξ ˝ξ´1 : ξpBπ 1 Sq Ñ ξpBπ 1 Sq. If Ξ has a differentiability point with finite non-vanishing derivative then ρ and ρ are gap-isospectral.

Proof. By Lemma 7.4 we can apply Proposition 7.2 to obtain that Ξ is bi-Lipschitz. The following standard lemma from linear algebra (see for example Benoist [START_REF] Benoist | Convexes divisibles I. In Algebraic groups and arithmetic[END_REF] and S. [START_REF] Sambarino | Hyperconvex representations and exponential growth[END_REF]Lemma 3.4]) gives the period computation completing the proof. Lemma 7.6. Let g P PGLpd, Rq be proximal with attracting point g `P PpR d q and repelling hyperplane g ´P PppR d q ˚q. Let V λ2pgq be the sum of the characteristic spaces of g whose associated eigenvalue is of modulus exp λ 2 pgq, Then for every v R Ppg ´q, with non-zero component in V λ2pgq , one has lim nÑ8 log d P pg n pvq, g `q n " ´τ1 pλpgqq.

Corollary 8.2 (Beyrer-P. [START_REF] Beyrer | Degenerations of k-positive surface group representations[END_REF]). Assume BΓ is homeomorphic to a circle and let ρ : Γ Ñ PGLpd, Rq be p1, 1, 2q-hyperconvex. Then there exists an irreducible p1, 1, 2qhyperconvex representation ρ 0 : Γ Ñ PGLpm, Rq such that, for every γ P Γ one has τ 1 `λpγq ˘" τ 1 `λpρ 0 γq ˘.

We now prove Theorem B. Since there exists γ P Γ with τ 1 `λpγq ˘‰ τ 1 `λpγq ˘, Corollary 8.2 allows us to apply Proposition 6.3 to obtain the density assumption in Theorem 5.3, so one has dim Hff Ξ `t1-conical pointsu ˘" h maxtτ,τ u . Corollary 8.1 states that the set of 1-conical points coincides with the set of nondifferentiability points of Ξ. The inequality h 8 ă 1 follows from the strict convexity of the critical hypersurface Q v , where v is the cocycle studied in Section 5.3. This completes the proof of Theorem B. (i) the image of the limit curve ξ ta,bu : BΓ Ñ F ta,bu is Lipschitz and the Hausdorff dimension of the points where it is non-differentiable is h maxta,bu . (ii) If the opposition involution i on g is non-trivial and b " ia then h maxta,bu " h pa`bq{2 .

Proof.

(i) Since the map Φ a : F a Ñ PpV a q is analytic, and Φ a ˝ξa pBΓq is a C 1 -submanifold (Theorem 1.3), ξ a pBΓq is a C 1 submanifold as well. The curve ξ ta,bu :" F ta,bu X pξ a pBΓq ˆξb pBΓqq is the graph of the homeomorphism Ξ and is thus a Lipschitz curve. The second claim is then a direct consequence of Theorem B.

(ii) Assume the opposition involution i of g is non-trivial and that b " ia. Using notation from Section 5.3 with a " τ and b " ia " τ we let V ˚" spanta, bu, V " a θ {AnnpV ˚q, Π : a θ Ñ V the quotient projection, } } 8 " maxt|a|, |b|u, } } 1 its dual norm on V ˚and ϕ 8 b P Q v the only form minimizing } } 1 . Since ia " b, the space V ˚is preserved by i and the fact that λpg ´1q " iλpgq (for all g P G) implies that Q v is i-invariant. Moreover, the norm } } 1 is i-invariant and by definition of ϕ 8 b one has iϕ 8 b " ϕ 8 b . However, pa `bq{2 is also i-invariant and h pa`bq{2 pa `bq{2 P Q v whence ϕ 8

b " h pa`bq{2 pa `bq{2. In order to prove the result it is thus enough to show that h maxta,bu " }ϕ