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LIPSCHITZ LIMIT SETS REVISITED: HILBERT ENTROPY AND
NON-DIFFERENTIABILITY

BEATRICE POZZETTI AND ANDRES SAMBARINO

ABSTRACT. We interpret the Hilbert entropy of a convex projective structure
on a closed surface of higher genus as the Hausdorff dimension of the non-
differentiability points of the limit set in the full flag space F(R?). Generaliza-
tions of this for hyperconvex representations are also discussed. An ingredient
for the proofs is the concept of hyperplane conicality that we introduce for a 6-
Anosov representation into a reductive real-algebraic Lie group G. In contrast
with directional conicality, hyperplane-conical points always have full mass for
the corresponding Patterson-Sullivan measures.
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1. INTRODUCTION

Consider a closed connected orientable surface S of genus at least two, and let
p : mS — PSL(3,R) be a faithful representation preserving an open convex set
Q = Q, < P(R%), properly contained in an affine chart. The group p(mS) is
necessarily discrete and acts co-compactly on 2 and one says that p divides Q.

A classical result by Choi-Goldman [14] states that the space of all such represen-
tations forms a connected component of the character variety Zf(m S, PSL(3, IR)) of
homomorphisms up to conjugation. This component is known today as the Hitchin
component of PSL(3,R) and is diffeomorphic to a ball of dimension —8x(S5).
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A lot of information on (the geometry of) such convex set Q2 is known (see Benoist
[5]). Tt is strictly convex with C'T® boundary dQ (that is not C? unless it is an
ellipse). Moreover, the Hilbert metric of § is Gromov-hyperbolic and the geodesic
flow of Q/p(m1S) is a smooth Anosov flow whose topological entropy, the Hilbert
entropy, computed’ by

A = a8 = im o #{[g) €[5 (\(g) + (g™ )2 < 1},

is bounded above: A" < 1, see Crampon [15] who also showed that the inequality
is furthermore strict if €2 is not an ellipse.

A consequence of Theorem A below is a new geometric interpretation of the
Hilbert entropy which we now explain. For each z € dQ let Z(z) € Gra(R3) be
the unique plane whose projectivisation is tangent to 0 at x. By Benoist [5], the
image curve Z(0Q) < Gra(R?) ~ P((R?)*) is also the boundary of a strictly convex
divisible set Q* and is thus again a C**"-circle.

The map = : dQ — dQ* is an equivariant homeomorphism between C!-circles,
so it is monotone and thus differentiable almost everywhere with respect to the
Lebesgue measure associated to this C'-structure. Equivalently one may consider
the full flag curve

{(z,E(x)) : x € 00} < F(R®).
Differentiability of this full flag curve corresponds to points z € Q0 where the
derivative of = exists or is infinite. We then establish the following:

Corollary A. Let p: mS — PSL(3,R) divide a convex set Q) that is not an ellipse.
Then the set of non-differentiability’ points of = has Hausdorff dimension ﬁy.

The Hausdorff dimension in the above Corollary, and throughout this paper, is
computed with respect to a Riemannian metric on the flag space. When € is an
ellipse the result does not apply as the associated curve is actually algebraic, so the
non-differentiability points is the empty set, but A" = 1. On the other hand Nie
[31] and Zhang [15] have found paths (p; : m S — PSL(3, R)>t>0 such that £ — 0
as t — o0. These facts together with Corollary A suggest that the closer €2 is to
being an ellipse (the Fuchsian locus), the less differentiable the flag curve is whilst
the furthest away from Fuchsian locus, the more regular the flag curve becomes.

The proof of Corollary A is outlined in § 1.4 and serves as a guide path for the
strategy on the general case (Theorem’s A and C below).

1.1. Hyperconvex representations. Denote by

a:{g=(a1,...7ad)ele:Zai=O}

the Cartan subspace of the Lie group PGL(d, R), by

Ti(Q) = a; — Qi1
the i-th simple root and by a* < a the Weyl chamber whose associated set of simple
roots is A = {r; : i € [1,d — 1]}. Let a : PGL(d,R) — a't be the Cartan projection
with respect to the choice of a inner product. Concretely the numbers e%(9) are
the singular values of the matrix g, i.e. the square roots of the eigenvalues of the

Lor g € PSL(d,R) we let A1(g) be the logarithm of the spectral radius of a lift of g to SL(d,R).
We convene that ’infinite derivative’ is a differentiability point.



matrix gg*, where g* is the adjoint operator of g with respect to the chosen inner
product.

Let T be a finitely generated word-hyperbolic group, consider a finite symmetric
generating set and let || be the associated word-length. For k € [1,d — 1]; a
representation p : [ — PGL(d,R) is {7 }-Anosov if there exist positive constants
and ¢ such that for all v € I one has®

e (alpy)) = phl —c.
Of course a {7 }-Anosov representation is also {74_}-Anosov. Under such assump-
tion it is also known the existence of an equivariant Hélder-continuous map

&r 2 or — Grp(R?),

called the limit map in Gry,(R?), which is an homeomorphism onto its image. If k <
le[1,d—1] and p is also {7;}-Anosov then the limit maps are compatible, meaning
that that for all z one has £(x) < & (x), see §4 for references and details. A {r}-
Anosov representation is more commonly called a projective Anosov representation.

Definition 1.1. A {7, 74_2}-Anosov representation p : [ — PGL(d,R) is (1,1,2)-
hyperconvez if for every pairwise distinct triple x,y, z € oI one has

E(@) +&,(y) +657%(2) = RY (1.1)
Hyperconvex representations form an open subset of the character variety
%(l‘, PGL(d, IR)) = hom (F, PGL(d, R))/ PGL(d,R)

and appear very naturally in higher rank Teichmiiller theory; they are moreover
the prototype example of Anosov representations with regular limit sets, indeed
one has the following result from P.-S.-Wienhard [38] and Zhang-Zimmer [19].

Theorem 1.2. Assume Ol is homeomorphic to a circle and let p : T — PGL(d, R)
be projective Anosov.

1,[49]: If p is (1,1,2)-hyperconvez, then £1(0T) < P(RY) is a C' submanifold tan-
gent at £1(x) to £2(x).
[49]: If p is irreducible and £(0T) is a C' circle then p is (1,1, 2)-hyperconver.

Example 1.3. Recall that if G is a semi-simple real algebraic group of the non-
compact type, then irreducible proximal representations ® : G — PGL(V) are
determined by their highest restricted weight X$~ A special subset of dominant
weights are the so called fundamental weights {w, : a € A}, indexed by the set of
simple roots A of G (see §2.3 for definitions and details). Any pair of represen-
tations p : mS — G and ® : G — PGL(V) in each of the following classes (and
small deformations of these), gives rise to a (1, 1, 2)-hyperconvex representation of
a surface group via post-composition ® o p. In particular the limit set of p in the
specified flag manifold of G is a C'™ curve:

- if G is split and p : S — G is Hitchin, then we can take any ¢ with
in = nw, for any a € Aand n € N> . This is non-trivial and requires results

from Fock-Goncharov [17] and/or Labourie [30] together with Lusztig’s
canonical basis [31, Proposition 3.2] (see S. [13, §5.8] for details). As a
result the limit set of p in any maximal flag manifold F,, of G is a clte
curve.

3In order to lighten the notation we let here, and in the following, py denote p(y)



- if p: mS — PO(p,q) is O-positive then by P.-S.-Wienhard [37, Theorem
10.3] we can take ® to have highest weight w, for any root a in the interior®
of © (see also Beyrer-P. [, Remark 4.6] for general ©-positive representa-
tions). In particular the limit set in any flag manifold of the form Isg (R?P-?)
for k < p—2is a C'™-curve. Zhang-Zimmer’s result (Theorem 1.2 above)
implies then that when p is moreover Zariski-dense, we can consider any ®
with X$ = nw, for any a € int ©® and n € N.g.

- for all k > 1, k-positive representations p : m.S — PSL(d,R) are (1,1, 2)-
hyperconvex (see Beyrer-P. [7]). They include small deformations of rep-
resentations of the form s, 5. 0 pp, : .S — PSL(d,R) where pp, : m S —
PSL(2,R) is discrete and faithful, sy — 2k > so > ... > s, and ¢5, .5, :
PSL(2,R) — PSL(d,R) has an irreducible factor decomposition R? = Rt @
... ® R (see [38, Proposition 6.16]). In particular the limit set in any

Grassmanian of the form Gr,(R?) for s < k is a C'T*-curve.

The main result of this paper deals with a pair of (1,1, 2)-hyperconvex represen-
tations

p:mS — PGL(d,R) and p : ;.S — PGL(d,R),

for positive integers d and d. In Section §1.2 we deal also with Kleinian groups. To
avoid confusion we denote the simple roots of PGL(d, R) by {ﬂ ciel,d— 1]]}7 and
to simplify notation we let

§=¢) and £ = &
The graph map
g = (£€) : 0mS — P(RY) x P(R?),
has image contained in the C**H9! torus £(dmS) x €(0mS) and, as the name
suggests, the curve €(dm15) is the graph of the Holder-continuous homeomorphism
E=Co& ! g(0mS) — E(0mS)
between C!THO circles. By monotonicity of Z, € (0mS) is a Lipschitz curve and is

thus differentiable almost everywhere. We let NDiff, ; = ¥(0m1.S) be the subset of
points where the curve € (dw15) is not differentiable.

Remark 1.4. We record that a differentiability point €(z) of the curve &(0m.5)
with oblique tangent, corresponds to a differentiability point £(z) of the map Z,
whose derivative is finite and non-zero.

Consider also the exponential rate

max{Ty,T : 1 — —
AP = pmax{TiT1} }L“{.g n log #{v € I : max {1 (a(p7)),71(a(pv))} < t}.
The main result of this paper is the following:

Theorem A. Let p : mS — PGL(d,R) andp : m S — PGL(d,R) be (1,1,2)-
hyperconvez representations. Assume there exists v € m.S such that ()\(p’y)) #*
7T1(A(P)), then

dimef (NDIﬂ:pﬁ) =4 < 1.

4only connected to roots in © in the Dynkin diagram of A



As before, the Hausdorff dimension is computed with respect to a Riemannian
metric. We emphasize also that no irreducibility assumption is made on the rep-
resentations p and p. Furthermore, if the assumption is not satisfied, namely if for
ever v € mS, 1 (/\(p'y)) =T ()\(ﬁv)), we show that there exists an isomorphism
between the Zariski closures of p(m1.S) and of p(71S) intertwining the two repre-
sentations. It follows then that € (0w, S) is the diagonal of the C**H torus, and
is in particular differentiable everywhere. To prove this we give the following pre-
liminary classification of Zariski-closures over R of irreducible (1,1, 2)-hyperconvex
representations, established in §6.3.

Theorem B. Consider an irreducible (1, 1,2)-hyperconvex representation p : 1.5 —
PGL(d,R). Then the Zariski closure G of p(m1S) is simple and the highest weight of
the induced representation ® : G — PGL(d, R) is a multiple of a fundamental weight
associated to a root that has one-dimensional root-space.

In light of Examples 1.3 it is unclear which further restrictions can occur on G.

Remark 1.5. We observe that, relying on Theorem B and Theorem 1.2, a different
approach to Theorem A would be to use a Bowen-Series coding for the action
of 1.5 on 0m S and apply Jordan-Kessebohmer-Pollicott-Stratmann [25, Theorem
1.1]. This is indeed the method followed by Pollicott-Sharp [35] when dealing with
two elements of the Teichmiiller space of S. This method however is not applicable
for groups other than 1S and we have thus decided to use a unified approach based
on the theory of Anosov representations, leading at once results over R and C.

1.2. Kleinian groups. The same strategy of proof of Theorem A gives the fol-
lowing result for Kleinian groups. Let I' be a word-hyperbolic group and p : I —
PSL(2,C) be a convex co-compact action with limit set L, = dH3. We denote by
A(g) the translation length on H? of an element g € PSL(2,C), and we set

A= Jim #{l7] €[ Moy <1}

By Sullivan [45], the Hausdorff dimension of L, coincides with %,.

If p: I — PSL(2,C) is again convex co-compact we let Z: L, — Lz be the map
conjugating the respective actions. We consider in this case the complex derivative
and say that = is C-differentiable at a given x € L, if, conformally identifying
OH3 — {point} to C, the limit

[1]
(1]

=(x):= lim (v)

(z) —
orsy—x T —

<

exists or is infinite. We let now NDiff, 5 be the set of points x € L, where = is not
C-differentiable and let

AP = tlinog% log #{[7] € [I'] : max {\(p7), \(p7)} < t}.

Theorem C. Let p,p: I — PSL(2,C) be two convex co-compact representations
that lie in the same connected component of
{g : ' — PSL(2,C) : o is convex co—compact}.

Assume moreover that %, = /g, then dimpe(NDiff, 5) = £



1.3. Hyperplane vs directional conicality. As the reader may check in the
proof of Corollary A in §1.4, a key ingredient in this particular case is a recent
result by Burger-Landesberg-Lee-Oh [12], concerning directional conical points for
Borel-Anosov representations, which we now explain. This result is used by Kim-
Minsky-Oh [29] to find bounds on the Hausdorff dimension of directional conical
limit points on the ambient group PSO(1,n) x PSO(1,n).

Let G be a real-algebraic semi-simple Lie group of the non-compact type, a < g a
Cartan subspace, ® < a* the associated root system and A < ® a choice of simple
roots with associated Weyl chamber a*. In [12] the authors introduce the notion of
directional conicality, i.e. conicality along a specific direction of the Weyl chamber
for A-Anosov representations, a notion later studied by S. [44] for directions on
the Levi-subspace ag for a 6-Anosov representation p : I — G, for an arbitrary
non-empty subset 6 of A, see §4.2 for the definitions.

If we let Ly, < ag be the 6-limit cone of p (see §4.3) and u € P(Ly,,) be
a direction on the relative interior of Lg ,, then a point x € oI is said to be u-
conical if there exists a conical sequence (7,)%_, < I converging to x such that the
associated Cartan projections a(pvy,) lie in a tubular neighborhood of u < ag. To
be consistent with the notation introduced later in the paper, recall that when p(I)
is Zariski-dense there are natural bijections (see § 4.3 for details)

int []])(,597[,) Ad Q97p = {(p S (ag)* : ﬁ“ﬁ = 1}
- {Patterson—Sullivan measures supported on & 9((7F)}.

For ¢ € Qg , welet u, € int P(Lg ,) be the associated direction and p¥ the associated
Patterson-Sullivan measure. Burger-Landesberg-Lee-Oh [12] show then that, when
6 = A and p(I) is Zariski-dense, one has

1 rank G < 3
0 rank G > 4

Since the groups we are interested in have arbitrary rank we are taken to replace
directional conicality by hyperplane conicality, these points have the advantage of
always having full mass, as Theorem D below shows. To be precise, let p: [ — G
be a #-Anosov representation, consider a hyperplane W < ay and assume, for the
notion to be interesting, that W intersects the relative interior of L4 ,. Then z € oI
is W-conical if there exists a conical sequence (7y,,)F < I converging to x, a constant
K and w,, € W such that for all n one has

¥ ({x € or : x is u,-conical}) = {

la(prn) —wn| < K,

where a : G — a™ is the Cartan projection. The set of such points will be denoted by
Ow,pl = owl . In §4.4 we show the following, see Theorem 4.12 for more information.

Theorem D. Let p: [ — G be a Zariski-dense 0-Anosov representation and W be
a hyperplane of ag intersecting non-trivially the relative interior of Lg ,. Then for
every ¢ € Qp , with u, € P(W n Ly ,) one has u¥(owl) = 1.

1.4. Strategy of the proof of Theorem A for strictly convex projective
structures on surfaces. Corollary A is indeed a consequence of Theorem A,
where p = p* is the dual representation of p. With this in mind, we sketch a direct
proof of Corollary A serving as a guide-path for the general result.

Proof of Corollary A. Let p : m1.S — PSL(3,R) be the holonomy of a strictly convex
projective structure with invariant convex set 2. In order to simplify notation we
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identify v and p(v). We consider the distances dp on P(R?) and dpx on P((R3)*) =
Gry(R?), induced by an inner product on R%. We consider also the L* distance on
the product (P(R?),dp) x (P((R3)*), dpx), which is equivalent to the Riemannian
distance, and thus induces the same Hausdorff dimension as a Riemannian metric.

We will use the cone types of .S, introduced by Cannon [13] (for an arbitrary
word-hyperbolic group). Fix a finite symmetric generating set on 715 and let || be
the associated word length. For v € 7.5 we let its cone type be

C(v) = {nemsS: |ynl = nl + I},
equivalently 7 belongs to C(vy) if there exists a geodesic on the Cayley graph of 7.5,
between v~ and 7 passing through the identity. The endpoints of rays in C(7y)
form an open subset of 0m1S denoted by Cu (). See Figure 1.

N C(y) YCos(
e

7T15

7T15

FIGURE 1. The cone type of v € I (left). The set v - Cx(y) (right).
Pictures from P.-S.-Wienhard [38]

We let £ : 0m.S — 0 be the natural identification via the action of p(m1.S) on
Q, and analogously £ : ™S — 0Q*. We denote by & := (£,€) : m S — 0Q x 0Q*
the flag curve. Consider € 0m S and let a; — x be a geodesic ray on mS. The
following fact is a consequence of Proposition 5.7.

Fact. For big enough i, the subset §(aieao (ai)) c 09 is coarsely the intersection of
a ball of radius e~ ™ (%) about &(x), with Q. By duality one has &(iCoo(y)) < N
is coarsely the intersection of a ball of radius e~™(*) about &(x), with O*.

The coarse constants and the minimal length ¢ required in the above statement
depend only on the representation and not on the point z.

_ e—T1(pa;)

8@ e ratomn

§(x)

FIGURE 2. The image of the cone type a;Cx () by the graph curve &
in the C'*H%torus 00 x o0N*.

For any point z € dm1S we distinguish two complementary situations that don’t
depend on the choice of the geodesic ray («;)ien converging to :
i) For all R > 0 there exists N € N with | (a(«;)) — 72(a(a;))| = R for all
i>= N;



ii) There exists R > 0 and an infinite set of indices | = N such that for all k €[

one has |y (a(ay)) —2(a(ar))| < R. We say in this case that x is b-conical.

In the first case one is easily convinced by looking at Figure 2 that the rectan-

gle becomes flatter along one of its sides (see §7 for details in the general case).

Furthermore, since 71 (a(a;)) — 71 (a(@i+1)) is uniformly bounded, its sign is even-

tually constant, and thus the flatter side only depend on the point. As a result x

is necessarily a differentiability point of the graph curve &, with either horizontal
or vertical derivative.

We are thus bound to understand the set of b-conical points. Indeed we show
(see Proposition 7.1):

Fact. The non-differentiabilty points of the curve &(0m1S) and the b-conical points
coincide.

The main idea for this is to show that if a b-conical point x were a differen-
tiability point, then the derivative cannot be horizontal nor vertical, and thus (by
Proposition 6.2) = would be bi-Lipschitz. In turn, this would force the periods of
the two roots to agree, contradicting the Zariski-density assumption.

We have to understand then the Hausdorfl dimension of the set of b-conical
points. The upper bound (Proposition 5.11)

dimpgr ({p — conical}) < pmex{Tm2) (1.2)

follows readily: since for a b-conical point the lengths e~71(®¥) and e~72(**) are
comparable independently on k € [, one can replace the rectangle in Figure 2 by
the (smaller) square of length

e max {7 (a(ak)),m2(a(ar))}

and still get a covering” (this time by balls on the L metric) of the set {b —conical}.
Standard arguments on Hausdorff dimension give Equation (1.2).

Finding a lower bound for the Hausdorff dimension is more subtle, and usually
requires a probability measure to get hands on how the mass of a ball of radius r
scales with r.

In this case, since &(071.9) is a subset the full flag space F(R3) and

[0lloo := max{[r ()], [2(v)[}

is a norm on aps| (3r), we can apply results by Quint [39] to obtain a linear form
Yo € a* with

ﬁmax{n,m} _ H‘Poo”la
where | |! is the operator norm on a* defined by | |, which turns out to be the
L' norm |lar; + bra|! = |a| + |b]. The form ¢, additionally admits an associated
Patterson-Sullivan probability measure, namely a measure pu® such that for all
~v € m1S one has (see Lemma 4.2)

1 (€ (1C0(7))) < Cem 90, (1.3)

A key extra information available in the case of PSL(3,R) is that we can deter-
mine @ explicitly. For this we need a small parenthesis on the critical hypersurface
Q, of p, depicted in Figure 3, and characterized by

Q,={peca*:fi, =1},

5choosing the longer side e~ min{Ti(a(ay)),72(a(ek))} gives the bound dimpes (071 S) < 1.



where, the entropy of a functional ¢ € a* is

1
fip = lim Elog #{vemS: p(a(y)) <t} e (0,0].

The interest of the critical hypersurface lies in the fact that Q, < a* is a closed

analytic curve that bounds a strictly convex set (S. [10] and Potrie-S. [30]), and
thus by Quint [39], the linear form ¢, is uniquely determined by
[peol" = inf {Jloll" : o € Qp}. (1.4)

Poo = ZnH

Q

FIGURE 3. The critical hypersurface of a strictly convex projective
structure on S. Since H is a convex combination of {r1,72} one has
[H|' = 1 and thus |@w|* = %n.

Again by [30] one has {71, 72} < Q,. Together with i-invariance of the picture
(see again Figure 3) we deduce that, if we let H = (71 + 72)/2, then

Yoo = %n-H= 7y min{Tl,TQ}. (15)

In particular, using Equation (1.4), we obtain that z™&x{r72} — 4,

After this small parenthesis on the critical hypersurface, we come back to the
lower bound on the Hausdorff dimension. Since & is a graph, €(0m15) has the same
intersection with the rectangle in Figure 2 than with the larger square of size

e~ min{m1 (a(ai))ﬁz(a(ui))};

this square is now a ball (for the L* metric) of radius e~ ™in{71(a(@i)).m2(a(@i))} Thys
for all i, & (a;Coo(cv;)) is coarsely a ball of the latter radius and one has

u® (B(?(m),e_ min{ﬁ(a(ai))ﬁz(a(ai))}) < p® (g(aieoo(ai)) < Qe Pelalai))
< C(e* min{"’l(a(az‘))7"'2(a(0¢z‘))})ﬁ”’
where the last inequalities follow from Equations (1.3) and (1.5). This gives a
coarser constant C’ such that, for all r,
p* (B(g(z),r)) < C'r"™.

Again, classical Hausdorff dimension arguments (c.f. Corollary 5.9 below) give that,
for any measurable subset E < &(dm1S) with full p® mass, one has dimpy(E) >
7y
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A recent result by Burger-Landesberg-Lee-Oh [12, Theorem 1.6], implies, since
PSL(3,R) has rank 2 < 3 and p is A-Anosov, that y®({b-conical}) = 1 and thus we
have the desired lower bound

dimggs ({P-conical}) = /in,

which combined with the upper bound (1.2) and the equality £™a{ 172} = 4,
gives the proof of Corollary A. |

We end this introduction with the following consequence of Theorem A for
Hitchin representations.

Corollary B. Let G be an adjoint real split group and p : m.S — G a Zariski-dense
Hitchin representation. For {a,b} < A consider the limit curve €22} : om S —
Flap}, then it is a Lipschitz curve and the Hausdorff dimension of the points where
it is non-differentiable coincides with A™@{5} [f the Dynkin diagram of g carries
a non-trivial involution i and b = ia then A™>{ab} — 5 (a+b)/2,

Acknowledgements. We thank Katie Mann, Anna Wienhard and Maxime Wolff
for insightful conversations and Andrés Navas for pointing us to useful literature.

2. LINEAR ALGEBRAIC GROUPS

Throughout the text G will denote a real-algebraic semi-simple Lie group of
non-compact type and g its Lie algebra.

2.1. Linear algebraic groups. Fix a Cartan involution o : g — g with associated
Cartan decomposition g = ¢ @ p. Let a < p be a maximal abelian subspace and let
® < a* be the set of restricted roots of a in g. For a € ®, we denote by

ga={ueg:[a,u] =ala)uVace a}

its associated root space. The (restricted) root space decomposition is g = go @
@,co Ja, Where go is the centralizer of a. Fix a Weyl chamber a™ of a and let &+
and A be, respectively, the associated sets of positive and simple roots. Let W be
the Weyl group of ® and i: a — a be the opposition involution: if u : @ — a is the
unique element in W with u(a®) = —a%t then i = —u.

We denote by (-,-) both the Killing form of g, its restriction to a, and its asso-
ciated dual form on a*, the dual of a. For x, ¢ € a* let

(X, ¥)
W)

OGP =

The restricted weight lattice is defined by
M={pea*:{p,ayeZVae d}.
It is spanned by the fundamental weights {w, : a € A}, defined by
(wa, by = dadap (2.1)

for every a,b € A, where d, = 1 if 2a ¢ ®* and d, = 2 otherwise.
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A subset # ¢ A determines a pair of opposite parabolic subgroups Py and Py
whose Lie algebras are defined by

Po = @ ga @ (‘D 9—a,

aedt U {0} ae(A—0)
130 = C—B g-.@ @ da-
aed+ U {0} ae{A—0)

The group Py is conjugated to the parabolic group Pjg. We denote the flag space
associated to 6 by Fy = G/Py. The G orbit of the pair ([Pg],[Pg]) is the unique

open orbit for the action of G in the product Fy x Fiy and is denoted by ?éz).

2.2. Cartan and Jordan projection. Denote by K = expt and A = expa. The
Cartan decomposition asserts the existence of a continuous map a : G — a*t, called
the Cartan projection, such that every g € G can be written as g = ke®(9)[ for some
k,leK.

We will need the following standard fact.

Proposition 2.1 (Benoist [2, Proposition 5.1)). For any compact L < G there
exists a compact set H < a such that, for every g € G one has

a(LgL) c a(g) + H.

By the Jordan’s decomposition, every element g € G can be uniquely written as
a commuting product ¢ = g.gssg, Where g. is conjugate to an element in K, gss
is conjugate to an element in exp(a®) and g, is unipotent. The Jordan projection
A =Xg: G — a’ is the unique map such that g, is conjugated to exp (A(g)).

Definition 2.2. Let I' € G be a discrete subgroup, then its limit cone Lr is the
smallest closed cone of the closed Weyl chamber a* that contains {\(g) : g € T'}.

We will need the following result.

Theorem 2.3 (Benoist [3, 4]). Let I’ < G be a Zariski-dense subgroup, then its
limit cone L has non-empty interior. Moreover, the group spanned by the Jordan
projections {\(g) : g € '} is dense in a.

2.3. Representations of G. The standard references for the following are Fulton-
Harris [18], Humphreys [23] and Tits [16].

Let ® : G — PGL(V) be a finite dimensional rational® irreducible representation
and denote by ¢4 : g — sl(V) the Lie algebra homomorphism associated to ®. The
weight space associated to x € a* is the vector space

Vi ={veV:oas(a)v = x(a)v Va € A}.

We say that x € a* is a restricted weight of ® if V), # 0. Tits [10, Theorem 7.2
states that the set of weights has a unique maximal element with respect to the
partial order x > ¢ if x — % is a N-linear combination of positive roots. This is
called the highest weight of ® and denoted by x¢. By definition, for every g € G
one has

M (®(9)) = xa(A(9))- (2.2)

6i.e. a rational map between algebraic varieties.
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Moreover (see for example Humphreys [23, §13.4 Lemma B)), the set of restricted
weights M(¢) = {X ea*:V, # {O}} of the representation ¢g¢, is exactly the set of
weights bounded above by x,

N(de) = {x € a® : x < xo},
namely every weight x € N(¢¢) has the form

Xo — Z nsa for n, € N.
aeA
The level of a weight x is the integer ) m,, the highest weight is thus the only
weight of level zero.
One other fact we will need concerns the a-string of x. If x € MN(¢g) and a € &+
then the elements of M(¢g) of the form x + ja, j € Z form an unbroken string

X +ja7 .7 € [[—7",(]]]
and r —¢q = {x, a). One can then recover algorithmically the set M(¢4) level by level
starting from y¢, as follows:

- assume the set of weights of level < k is known and consider a weight y of
level k.

- For each a € A compute (¥, a), this gives the length r — ¢ of the a-string
through x. The weights of the form x + ja, for positive j, have level < k
and are thus known, thus we can decide whether y — a is a weight or not,
determining the set of weights of level k + 1.

We record the following Lemma that follows at once from the algorithmic de-
scription above.

Let g = @, gi be the decomposition in simple factors of a semi-simple real Lie
algebra of the non-compact type. Recall that if a; = g; is a Cartan subspace, then
a =@, qa; is a Cartan subspace of g. Any ¢ € (a;)* extends to a functional, still
denoted ¢, on a vanishing on the remaining factors. The restricted root system of g
is then Ay = |JAy,. The associated simple factor to a € Ay is g; such that a € A,.

Lemma 2.4. Let g be a semi-simple real Lie algebra of non-compact type and ¢ be
an irreducible representation of g whose highest restricted weight is a multiple of a
fundamental weight, x4 = kw, for some a € A. Then ¢ factors as a representation
of the simple factor associated to a.

Proof. Proceeding by induction on the levels of ¢, one readily sees that for every
T € Aj for j # i and all x € M(¢) one has (x,7) = 0. Thus the associated root
space (g;)—- acts trivially on every weight space of ¢ and so the whole factor g;
acts trivially. O

The following set of simple roots plays a special role in representation theory.

Definition 2.5. The set of simple roots a € A such that xye — a is still a weight of
® is denoted by 0. Equivalently (see Humphreys [23]), one has

0o = {ae A:{xe,ay# 0}. (2.3)
The following Lemma will be needed in Theorem B.

Lemma 2.6. Let g be semi-simple of the non-compact type and ¢ : g — gl(V') an
irreducible representation. Consider a € 04, then no element of g—, acts trivially
on VT,
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Proof. By definition of x4 every n € g, acts trivially on V*. Consider then y €
g—a— {0}, there exists then x € g, such that {z,y, h,} spans a Lie algebra isomorphic
to 2(R), where h, is defined by p(ha) = {p,a) for all p € a*. If ¢(y)VT = 0 then,
since ¢(z)V* = 0 one concludes ¢(h,)V*" = 0. This in turn implies that

<X¢7a> = X¢(ha) =0

contradicting that a € 6. O

We denote by | ||¢ an Euclidean norm on V invariant under ®K and such that ®A
is self-adjoint, see for example Benoist-Quint’s book [6, Lemma 6.33]. By definition
of xo and || |¢ one has, for every g € G, that

log |®g]le = xa(alg))- (2.4)

Here, with a slight abuse of notation, we denote by || |¢ also the induced operator
norm, which doesn’t depend on the scale of || |s.

Denote by W, , the ®A-invariant complement of V, . The stabilizer in G of W,
is quﬂ and thus one has a map of flag spaces

(Cor C3) : 52 (6) > Gy (V). (2.5)

This is a proper embedding which is an homeomorphism onto its image. Here

Gr((fh)n v, (V) is the open PGL(V)-orbit in the product of the Grassmannian of
P

(dim V,, )-dimensional subspaces and the Grassmannian of (dimV — dimV,,)-

dimensional subspaces. One has the following proposition (see also Humphreys
[24, Chapter XT]).

Proposition 2.7 (Tits [46]). For each a € A there exists a finite dimensional
rational irreducible representation ®, : G — PSL(V}), such that xe, is an integer
multiple [, of the fundamental weight and dimV,, = 1.

We will fix from now on such a set of representations and call them, for each
a € A, the Tits representation associated to a.

2.4. The center of the Levi group PynPy. We now consider the vector subspace

g = ﬂ ker a.

acA—0

It is equipped with a projection my : @ — ag uniquely determined by being invariant
under the subgroup Wy of the Weyl group spanned by reflections associated to roots
mA—-0: Wy ={weW:w) =v Yveag}.

Its dual (ag)* is canonically identified with the subspace of a* of my-invariant
linear forms. Such space is spanned by the fundamental weights of roots in

(ﬂe)*={Wea*1<PO779=<P}=<wa|u9:aee>.

We will denote by A\g = mpo A : G — ag n a™ the composition of the Jordan
projection and the projection 7.
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2.5. The Buseman-Iwasawa cocycle. The [wasawa decomposition of G states
that every g € G can be written uniquely as a product lzu with [ € K, z € A and
u € Ua, where Up is the unipotent radical of Pa.

The Buseman-Iwasawa cocycle of G is the map b : G x F — a such that, for all
g€ G and k[Pa] € T,

b(g, k[Pa]) = log(z)

where log : A — a denotes the inverse of the exponential map, and gk = lzu is
the Iwasawa decomposition of gk. Quint [39, Lemmes 6.1 and 6.2] proved that the
function by = py o b factors as a cocycle by : G x Fy — ay.

The Buseman-Iwasawa cocycle can also be read from the representations of G.
Indeed, Quint [39, Lemme 6.4] shows that for every g € G and z € Fy one has

[®a(g)v]e

: (2.6)
(s

lawa(b(g, x)) = log
where v € (g, (x) € P(V,) is non-zero, and [, is as in Proposition 2.7.

2.6. Gromov product and Cartan attractors. For a decomposition K¢ = (@®V
into a line ¢ and a hyperplane V together with an inner (Hermitian) product o on
K¢, one defines the Gromov product by

S(V,0) = 5°(V,0) = log |':j(|) '| ~ logsin£,(6, V),

for any non-vanishing v € £ and ¢ € (K?)* with kerp = V.

On then considers the Gromov product Gy : 3"((92) — ag defined, for every (z,y) €
F) and a € 6, by
lLawa (So(z,y)) = §% (¢ 2, Co,y) = logsin Ko, (Ca,y, (5. 2),

where (§ and (g, are the equivariant maps from Equation (2.5). From S. [11,

Lemma 4.12] one has, for all g € G and (z,y) € S"é2),

So(g9, gy) — So(x,y) = —(ibie(g,2) + by(g,y)). (2.7)

If g = kexp(a(g))l is a Cartan decomposition of g € G we define its 6-Cartan
attractor (resp. repeller) by

Up(g) = k[Pg] € Fy and Uig(g") = I7'[Pg] € Fyp.
The Cartan basin of g is defined, for a > 0, by
By.o(g) = {z € Fo: @G (Uia(g™"),z) > —a, Vae b}.

Remark 2.8. Observe that a statement of the form w,Gg(x,y) > —x for all a € 0 is
a quantitative version (depending on the choice of K) of the transversality between
x and y; in particular it implies that x and y are transverse.

Neither the Cartan attractor nor its basin are uniquely defined unless for all
a € 0 one has a(a(g)) > 0, regardless one has the following:

Remark 2.9. Given a > 0 there exists a constant K, such that if y € Fy belongs to
Bg,o(g) then one has

las(9) = bo(g,y)]| < K- (2.8)
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Indeed, using Tits’s representations of G and Equations (2.4) and (2.6) this boils
down to the elementary fact that if A € GL4(R) verifies 71 (a(A)) > 0 then for every
v € R? one has

logm > log || + logsin £ (R - v, Us—1(47"))

(see for example [9, Lemma A.3]).

3. HOLDER COCYCLES ON ol

Let T be a finitely generated, non-elementary, word-hyperbolic group. Denote
by g = (g : Ul — UIN) 1ep the Gromov-Mineyev geodesic flow of ' (see Gromov [19]
and Mineyev [33]). Throughout this section we will have the same assumptions as
in S. [44, §3], namely that g is metric-Anosov and that the lamination induced on
the quotient by Weu = {(z,-,-) € lfJVF} is the central-unstable lamination of g.

Since we will mostly recall needed results from S. [44, § 3] we do not overcharge
the paper with the definitions of metric-Anosov and central-unstable lamination: by
Bridgeman-Canary-Labourie-S. [10], word-hyperbolic groups admitting an Anosov
representation verify the required assumptions.

Definition 3.1. Let V be a finite dimensional real vector space. A Hélder cocycle
is a function ¢ : [ x dI — V such that:

- for all v, h € T one has c(’yh,x) = C(h,:E) + c('y, h(x)),

- there exists « € (0, 1] such that for every v € I the map ¢(v, -) is a-Holder

continuous.

Recall that every hyperbolic element’” v € T has two fixed points on o, the
attracting v, and the repelling v_. If € oI — {y_} then "z — 74 as n — o0. The
period of a Hélder cocycle for a hyperbolic v € T is £e(7) := ¢(v,7T). A cocycle
c*: T x dI' - R is dual to ¢ if for every hyperbolic v € [ one has

Lo (’7) =L (7_1) :

3.1. Real-valued coycles. Assume now V' = R and consider a cocycle k with
non-negative (and not all vanishing) periods. For ¢ > 0 we let

Ri(k) = {[7] € [[] hyperbolic : £, (v) <t}
and define the entropy of k by

1
% = limsup - log #R;(x) € (0, o0].
t—oo T
For such a cocycle consider the action of I on oI' x R via k:

v (z,y,t) = (ve, vyt — K (7, 9)) - (3.1)

The following is a straightforward consequence of S. [44, Theorem 3.2.2].

Proposition 3.2. Let k be a Holder cocycle with non-negative periods and finite
entropy. The above action of T on dI' xR is properly-discontinuous and co-compact.
If moreover ¢ is another Hélder cocycle with non-negative periods and finite en-
tropy then there exists a I-equivariant bi-Hélder-continuous homeomorphism E :
oI x R — oI x R which is an orbit equivalence between the R-translation actions.

"i.e. an infinite order element
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We recall the notion of dynamical intersection, a concept from Bridgeman-
Canary-Labourie-S. [10] for Holder functions over a metric-Anosov flow, that can
be pulled back to this setting via the existence of the Ledrappier potential of k from
S. [44, § 3.1].

For a second real valued cocycle ¢, the dynamical intersection

— lim 1 e(v)
) =R & W)

(3.2)
YER:

We record in the following Proposition various needed facts about I:
Proposition 3.3 ([10, §3.4]). The dynamical intersection defined above is well de-

fined, linear in the second variable and for all positive s satisfies I(sk,c) = I(k,c)/s.
If also ¢ has non-negative periods and finite entropy then I(k,c) = %/ %e.

We will also need the following definitions.

Definition 3.4.
- A Patterson-Sullivan measure for k of exponent § € R, is a probability
measure p on 0l such that for every v € I' one has

dr}/*,u —5%(771 )

— () = ). 3.3
) = (33)

- Let x* be a cocycle dual to x, then a Gromov product for the ordered pair
(k*, k) is a function [-,-] : 0 — R such that for all v € [ and (x,y) € 0°T
one has

[y, vyl = [z, y] = = (K" (7, 2) + K(7,9))-

3.2. The critical hypersurface and intersection. Let now ¢ : [ x o — V be
a Holder cocycle. Its limit cone is denoted by

Le=JRy Le(v)
~yel
and its dual cone by (Lc)* = {¢ € V* : 9|z, = 0}. Observe that for every

@ € int (Lc)*, @ o c is a real-valued cocycle, so the concepts from Section 3.1
apply. We denote by

0. = {peint (£)": Apo =1} (3.4)

)
Do = {peint (L) i Apoce 01} c fpevr: Y 7?0 < oo}
[velr]
respectively the critical hypersurface and the convergence domain of c.
For ¢ € int (LC)* we consider the linear map L, = If, : V* — R defined by

I;(w) =I(poc,poc),
as in Equation (3.2). The natural identification between hyperplanes in V* and

P(V) is used in the next proposition.

Corollary 3.5 (S. [14, Cor. 3.4.3]). Assume L. has non-empty interior and that
there exists 1 € (Lc)* such that 7%, < . Then D, is a strictly convexr set with
boundary Q.. The latter is an analytic co-dimension-one sub-manifold of V. The
map u®: Q. — P(V) defined by

o ug = T,Q. =kerl,
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is an analytic diffeomorphism between Q. and int (P(L.)).
We end this section with the following technical Lemma needed in Lemma 5.10.

Lemma 3.6. AssumeV is 2-dimensional. Fiz linearly independent 7,1 € int (LC)*,
and consider the operator norm | |' on V* associated to the L® the norm defined,
for v e V, by ||v|o = max{|T(v)|,|¥(v)|}. Assume without less of generality that
Yo = for. If

L)1 (3.5)

and we let @ be the unique form on Q. minimizing | |1, then ¢ /|0 | is a convex
combination st + (1 — s)i with s € (0,1).

Observe that if 4, = %, then Proposition 3.3 implies Equation (3.5) is satisfied.
The fact that Q. is strictly convex implies uniqueness of a form in Q. minimizing
||'. The Lemma states that this unique linear form lies in the cone {t¢ : t >
0} x {s7:s >0}

Proof. Using the identification T,Q. = ker I, and strict convexity of Q., both facts
from Corollary 3.5, the Lemma readily follows as in Figure 4 which we now explain.
The blue thombus in the middle is the sphere {|¢|! = 1}, the red line, tangent to
Q. at h,7, is the level set I5 ,(-) = 1, whence its intersection with the ¢-axis is
¥/14. - (¥). Equation (3.5) implies the ordering

1

0< ——— <hy < Ay,
Iﬁ,r(iﬁ) v

giving that the sphere {|||! = %} intersects Q. in {#,7} and some other point
in the segment [/, 7, Z-1], an application of Lagrange’s classical result provides a
unique tangent to Q. in the cone {t1) : t = 0} x {s7: s = 0} as desired. O

BorT + Ty 9

v _ A
L@ - LY

FIGURE 4. The situation of Lemma 3.6.

3.3. Ergodicity of directional flows. It follows from Proposition 3.2 that if there
exists 1 € (Lc)* with % < oo then the M-action ¢°T x V

V(@ y,v) = (v, vy,v — c(v,y))

is properly discontinuous.
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Definition 3.7. A real valued cocycle c¢ is non-arithmetic if the periods of ¢ span
a dense subgroup in V.

We fix ¢ € Q. and denote by u,, € u, the unique vector in £.nuy, with ¢(u,) = 1.
We define then the directional flow w? = (wf : T\ (02T x V) — M\ (0°T x V) wer DY

t- (.T, ZU,U) = (.’L‘,y, v = tuv?)
Assumption 3.8. We assume there exists:

- a dual cocycle (o c)*,

- a Gromov product [, |, for such a pair,

- Patterson-Sullivan measures, u¥ and ¥, respectively for each of the co-
cycles; (the exponent of both measures is then necessarily £, = 1 S. [44,
Proposition 3.3.2]).

Consider then the ¢-Bowen-Margulis measure 2¥ on F\(@QF X V) defined as the
measure induced on the quotient by the measure

e e @ uf @ Leby, (3.6)

for a V-invariant Lebesgue measure on V. We denote by X(w?) the recurrent set of
the directional flow w¥:

K(w?) := {pe N\(¢°F x V)| 3B open bounded, t,, — o with w{ (p) € B}.

Corollary 3.9 (S. [14, Cor. 3.6.1]). Assume that ¢ is non-arithmetic, that there
exists 1 € (Lc)* with %y < 00, and that the existence assumptions in 3.8 hold. If
dim V' < 2 then the directional flow w¥ is Q¥ -ergodic, in particular X(w?) has total
mass. If dimV = 4 then K(w?) has measure zero.

4. SUBSPACE CONICALITY FOR ANOSOV REPRESENTATIONS: THEOREM D

4.1. Gromov hyperbolic groups and cone types. Let I be a finitely generated
group, and fix a finite generating set S. A group I is Gromov hyperbolic if its
Cayley graph Cay(T, S) is a Gromov hyperbolic geodesic metric space. In this case
we denote by I its Gromov boundary, namely the equivalence classes of (quasi)-
geodesic rays. It is well known that, up to Holder homeomorphism oI doesn’t
depend on the choice of the generating set S. We will furthermore denote by 02l
the set of distinct pairs in or:

O°T = {(z,y) € o x |z # y}.

Definition 4.1. A divergent sequence {y,}nen < I' converges to a point x € or

comnically if for every y € oI — {z} the sequence (v;, 'y, v, 'x) remains on a compact
set of 02T.

Recall from the introduction that, given v € ' we denote by C(y) the cone type
of v € I', namely

€(7) := {h e T| d(e,vh) = d(e,y) + d(e, h)}.

Cannon showed [13] the set of cone types of a Gromov hyperbolic group is finite,
see for example Bridson-Haefliger’s book [11, P. 455]. We denote by Cy(v) < oI
the set of points x that can be represented by a geodesic ray contained in Cq(7),
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We will require a coarse version of these. Recall that a sequence (;)F is a
(v, ¢)-quasigeodesic if for every pair 7,1 it holds

1 . .
;|] —l|—c<dr(oj,a) <v]j—1] +ec

We associate to every element v a coarse cone type at infinity, consisting of end-
points at infinity of quasi geodesic rays based at y~! passing through the identity:

Ch(y) = {[(aj)go] € o (a;) is a (v, ¢)-quasigeodesic, ag = 7!, e € {aj}}‘

FIGURE 5. The coarse cone type at infinity, picture borrowed from P.-
S.-Wienhard [37].

We record the following lemma for later use, the first inclusion follows from the
definitions, the second one by hyperbolicity of T.

Lemma 4.2. Given v,c there exists N > 0 such that if (a;)J is a geodesic ray
through e then for all i € N one has

aHNGw(aHN) C Oéi+NeZO’C(OéZ‘+N) C ai(fgo(ai).
4.2. Anosov representations. Fix a subset § — A. Let I be a finitely generated

group and denote by || the word-length associated to the finite generating set S of
r.

Definition 4.3. Following® Kapovich-Leeb-Porti [20], a representation p : I — G
is 0-Anosov if there exists positive constants C' and p such that for all v € I' and
a € 6 one has

a(a(py)) = phyl = C.
If G = PGL(d,R) and 6 = {r1} we say that p is projective Anosov.

Anosov representations were introduced by Labourie [30] and further developed by
Guichard-Wienhard [21]. They have played a central role in understanding the
Hitchin component of split groups (see below) and are considered nowadays as the
higher-rank generalization of convex co-compact groups. We refer the reader to the
surveys by Kassel [27] and Wienhard [47] for further information.

Remark 4.4. A Zariski-dense representation p : I — G is 6-Anosov if and only if p
is a quasi-isometric embedding and its limit cone £, does not meet any wall ker a
for a € 0 : this follows from the definition since by Benoist [3], for Zariski dense
representations, the limit cone £, equals the asymptotic cone.

8see also Bochi-Potrie-S. [9] and Guéritaud-Guichard-Kassel-Wienhard [20]
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A useful property of -Anosov representations is that their limit set A < Fy,
namely the minimal [-invariant subset in Fy, is parametrized by the Gromov
boundary of the group I', see Kapovich-Leeb-Porti [26], Guéritaud-Guichard-Kassel-
Wienhard [20]. We will need the following precise statement.

Proposition 4.5 (Bochi-Potrie-S. [9, Proposition 4.9 ]). If p: I — G is 8-Anosov,
then for any geodesic ray (om)y with endpoint x, the limits

0 1 i0 — i .
& () = lim Up(pan) &) (x) := lim Ug(pan)
ezist and do not depend on the ray; they define continuous p-equivariant transverse

maps €7 : 0T — Fy, €9 1 0T — Fiy. If v € T is hyperbolic, then Yp 15 0-prozimal
with attracting point £9(v+) = (v,)7.

The Gromov product gives the following criterion to understand limit points of
conical sequences (recall Definition 4.1) in case of Anosov representations, it will
be useful in the proof of Proposition 4.18.

Lemma 4.6. Let p: T — G be 6-Anosov. If {y,} < T is a conical sequence, x € 0T,
and there exists a € 0 such that w,39g (Uig(p’yn),fo(x)) — —o0, then 7y, — .

Proof. We denote by y the endpoint of the conical sequence +,. Proposition 4.5
implies that Uip(pyn) — &§(y). Since, however, @,5¢(Uigo(p1n),&%(x)) — —o0,
we deduce that £(y) is not transverse to ¢%(x) (recall Remark 2.8). Since £ is
transverse, we deduce that z = y. (]

Another application of the Gromov product is to quantify the transversality of
the Cartan attractors along images of geodesic segments through Anosov represen-
tations:

Proposition 4.7 (Bochi-Potrie-S. [9, Lemma 2.5]). If p: T — G is 0-Anosov then
there exist L € N and 6, > 0 such that for every geodesic segment through the
identity {a;}* . with k,m = L one has, for all a € 0,that

@250 (Uie(pa—m), Us(pak)) = —0,.

The following standard linear algebra computation allows to obtain precise esti-
mates for the action of projective Anosov representations on the projective space.

Lemma 4.8. Fiz an Hermitian product on C™, then given o > 0 there exists C > 0
such that if h € GL(d,C) is such that T (a(h)) > 0, then for all £1,{y € P(C?) with
£(;,Ug_1(h™1)) > —a one has

dp (hly1, hts) < Ce™™ @M 4y, £y).
Proof. This is very standard, we add some comments for completeness. Indeed the

result follows by applying, for example, [38, Lemma 2.8] to g = h~!, P = Uy (h)
and Q = hUy—1(h). O

One has thus the following consequences of Lemma 4.8 and Proposition 4.5, see
for example P.-S.-Wienhard [38, §4.1] for details.

Proposition 4.9. Let p: I — PGL(d, K) be projective Anosov and consider positive
v and c. Then there exists a constant K, depending on v, ¢ and p such that for
every large enough v € [ one has

€ (v€%° (7)) = B(Ui(py), Ke(elem)),
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Moreover, there exist C and > 0 given a > 0 and £y, {5 € P(IK?) with
S(01,Us—1(py ") = —a and §(€2, Ug—1(py ™) = —a

one has dp(p(y)x, p(7)y) < Ce "ld(z,y).

Proof. Follows directly from Proposition 4.7 and Lemma 4.8. O

4.3. Patterson-Sullivan Theory of Anosov representations. If pis a #-Anosov
representation, then we can pullback the Buseman-Iwasawa cocycle of G using the
equivariant maps. To be more precise, the refraction cocycle associated to a 6-
Anosov representation p: I — Gis §: T x I — ay given by

B(v, ) = Bo.p(v:x) = by (p(7), 5 (x)).

Bridgeman-Canary-Labourie-S. [10, Theorem 1.10] show that the Mineyev geodesic
flow of a group I' admitting an Anosov representations is metric-Anosov, and thus
§ 3 applies to 5. Moreover, the following fact places § in the assumptions required
in §3.1 and §3.2, see S. [44] for details.

Fact. The periods of the refraction cocycle equal the 6-Jordan projection: S(y,v") =
Ao(py). For any a € 0 the real valued cocycle w,f has finite entropy.

We import the following concepts of cocycles to the setting of Anosov represen-
tations:

- The limit cone of 3 will be denoted by Ly , and referred to as the 0-limit
cone of p; it is the smallest closed cone that contains the projected Jordan
projections {Ag(py) : v € T}.

- The interior of the dual cone int (Lgm)* C aj consists of linear forms whose

entropy
frp = Jim — L log #{[] p(Na(py)) <t}
is finite.
- The 6-critical hypersurface, resp. 6-convergence domain, of § will be de-
noted by

Q. = {p e int (Lo,)" 1 = 1]
= in = * e—¢lalp)) )
Do.p {(p eint (Lg,) " : %y € (0, 1)} {gp € (ag) ;d < oo}

The second equality in this case follows from S. [44, § 5.7.2].
- If £p,, has non-empty interior, then we have a duality diffeomorphism be-
tween Qg , and intP(Lg ,) given by

@ u, =T,9,.
More information on these objets can be found on S. [44, § 5.9].

We observe that for ¢ € int (£g,)" the existence assumptions of §3.3 are also
guaranteed for 5, := ¢ o 8. Indeed the cocycle

B(y,z) = 1ibig (7,,£7 (2))
is dual to 3, from Equation (2.7) the function [-, -], : 0°I — R

[0l = 2 (90(6(@).£'W))) (4.1)
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is a Gromov product for the pair (Bw B,), and we have the following result guar-
anteeing existence of Patterson-Sullivan measures p¥ and ¥ (the last assertion
follows from the inclusion in Proposition 4.9 and the cited Lemma).

Corollary 4.10 (S. [14, Cor. 5.5.3+Lemma 5.7.1]). For every ¢ € int (Lgm)* there
exists a ¥ -Patterson-Sullivan measure u® of exponent %, moreover there exists a
constant C' such that for every v €T one has

1 (1€,0(7)) < Ce o (o0m), (4.2)

4.4. Subspace-conicality. In this section we are interested on a notion of coni-
cality along higher dimensional subspaces of the ambient Levi space. Let p: ' — G
be a #-Anosov representation.

Definition 4.11. Consider a subspace W < ay and assume, for the notion to be
interesting, that W intersects the relative interior of Lg ,, then z € oI is W-conical
if there exists a conical sequence {v,}J < I' converging to x, a constant K and
{wn}¥ < W such that for all n one has

Ha(P(’Yn)) - wnH < K.
The set of such points will be denoted by dw ,I = owl.

Consider ¢ € (ag)* with u, < W. The intersection W, = W n ker ¢ has co-
dimension 1 in W and has trivial intersection with the limit cone Lg ,. Consider the
quotient space V' = ag/W,, equipped with the quotient projection II : ay — V. We
say that p is (W, )-non-arithmetic if the group spanned by {IL(Ag(py)) : v € T} is
dense in V. In this section we prove the following.

Theorem 4.12. Let p: T — G be 0-Anosov representation, W be a subspace of agy
intersecting non-trivially the relative interior of Lg ,, and ¢ € (ag)* with u, < W.
Assume p is (W, )-non-arithmetic, then:

o if W has codimension 1 then p?(owln) = 1;

o if codimW > 3 then pu¥(owl) = 0.

Observe that if p is Zariski-dense then Benoist [41] (Theorem 2.3) guarantees
(W, ¢)-non-arithmeticity for every ¢ € (ag)* with u, € P(W), thus Theorem 4.12
readily implies Theorem D.

The remainder of the section is devoted to the proof of Theorem 4.12. Let

V= Am(Wy) = {¢ € (ag)* : ¢|W,, = 0},
with a slight abuse of notation we will identify the dual of V' with V* < (ag)* <
a* (recall from Section 2.4 that we are identifying (ag)* with the subspace of a*
consisting of my-invariant linear forms).

The composition of the refraction cocycle of p with II is a V-valued Hélder
cocycle v : I x o' -V

v(y,2) = L(B(7, x)).
Its periods are #(7,74) = II(Ag(py)), and thus its limit cone is £, = II(Lg,,). By
(W, ¢)-non-arithmeticity, £, < V has non-empty interior.

The heart of the proof of Theorem 4.12 consits on relating (W, ¢)-conical points
with elements of K (w‘f’), where w? is the directional flow on MN\@?I x V associated
to the cocycle ¢ as in §3.3. The first step is thus to observe that we can apply
Corollary 3.9 to ¢, a task we enter at this point.
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Since ¢ € Qg ,, it has in particular finite entropy. Moreover, by definition of V*
one has ¢ € V*. Consequently, the cocycle ¢ verifies assumptions in Corollary 3.5.
One can moreover transfer existence properties from 8 to ¢, indeed one has the
following.

Proposition 4.13. The cocycle & = 110 3 is a dual cocycle for v. For each v € Q,
there exist Paterson-Sullivan measures for v and o and the projection ¥ (I([-,-]))
is a Gromov product for the pair i) o v, 1) o v.

Proof. Since 1 € Q, = Qg , n V* we can apply Corollary 4.10 to ¢ to obtain the
desired Patterson-Sullivan measure, the remaining statements follow trivially as the
equalities are linear. O

Since we are assuming (W, ¢)-non-arithmecity, the cocycle ¢ is non-arithmetic
and thus Corollary 3.9 gives the following dynamical information, observe that
dim V' = codimW + 1.

Corollary 4.14. If codimW < 1 then the directional flow w? is Q¥-ergodic, in
particular K(w¥) has total mass. If codimW = 3 then K(w®) has measure zero.

Observe that modulo the understood identifications Q, = Qg , N V*, hence
Tgon = (TWQQW) N V*

and thus the map from Corollary 3.5 u” : Q, — intP(L,) verifies uf, = I(uy).
So measuring W-conicality with respect to u¥ translates to directional conicality
along the direction u,, which we now recall. We fix an arbitrary norm | | on V' and
denote, for ¢ € P(V) and r > 0, the r-tube about ¢ by T,.(¢) and define it as the
r-tubular neighborhood in V of /.

Definition 4.15. A point y € dI" is u,-conical if there exists r > 0 and a conical

sequence {7, }¢’ < I with 7, — y such that for all n one has II(ag(p(7,))) € T, (uf)-
The next statement follows from the definitions.
Lemma 4.16. A point y € ol is W-conical if and only if it is uf,-conical.

If we are allowed to worsen the constants, we can replace, in Definition 4.15, the
conical sequence (v,) with an infinite subset of a geodesic ray:

Lemma 4.17. A point y € 0 is uf,-conical if and only if there exists r > 0, a
geodesic ray (o) converging to y and an infinite set of indices | = N such that
for all k €1 one has

H(a(pak)) e T, (u%).

Proof. Assume y is u,-conical, then since {~,}§" is conical, given x € oI — {y} there
exists a subsequence (still denoted by {7,}) such that (v, 12,7, 'y) converges on
0%T. Equivalently, for any geodesic ray (o) converging to y there exists K > 0
and a subsequence {ay, } such that for all k£ one has dr(ay,,vx) < K. Proposition

2.1 implies then that for all k£ one has

la(pam,.) — alp)|
is bounded independently of k. This implies the result. [



24

We now relate u,-conicality with the recurrence set X(w?). By definition of
K(w?), a point (z,y,v) € 0°I x V projects to K(w¥) if and only if there exists

divergent sequences (v,) < I and ¢, — +0o0 in R such that

Wi (@,y,0) = (vt ty v — e(h w) — ) (4.3)

is contained in a subset of the form {(z,w) € 0T : d(z,w) = k} x B(v, K) for some
distance d on 0. One has the following

Proposition 4.18. A point y € JI is ug,-conical if and only if for every x € oI — {y}

and v €V the point (x,y,v) projects to K(w?).

Proof. The implication (=) follows exactly as in the proof of S. [44, Proposition
5.12.4]. The other implication also follows similarly but with a minor difference we
now explain. Assume that (z,y,v) projects to X(w?) and consider sequences {7, }
and ¢, as in Equation (4.3).

Since (7; Lo, v 1y) remains in a compact subset of 0%I, the sequence {v,} is
conical, we will show now that v, — y. Indeed, since t,, — 400 one readily sees
that necessarily (v, 1,y) — —oo.

Consider now any root a € 6, with associated fundamental weight w, € (Lg’p)*,
and Tits representation ®, : G — V. Since p is #-Anosov, the Holder cocycle 3%
has positive periods and finite entropy. Since (v, !,4) — —oo Proposition 3.2
implies that

ﬁwa(vrjlﬂy) — —@0.
By definition of the cocycle 8 and Equation (2.6) we have

P -1
(%

for a non-zero v € ((£(y)), (recall that the map ¢, : F,(G) — P(V) was defined
in Equation (2.5)). Setting dim V' = d, a standard linear algebra computation (for
example in Bochi-Potrie-S. [9, Lemma A.3]) gives

[@ap (v )]

ol > ||®ap(v,, )| sin £ (GE(Y), Ua—1(Papyn))
> elawage (U9 (P’Yn),y)

and thus, by Equation (4.4) and Lemma 4.6 one has v, — y, as desired.

The point £(y) lies then in the pushed Cartan basin p(v,)Bg.o(p(7n)) for an o
independent of n, and thus Equation (2.8) gives a constant K such that for all n
one has

K = [ag(p,7)(vn)) = B(vn v @) | = [ao ((p.2) () + By, )]
implying that y is u,-conical, as desired. ]
The proof of Theorem 4.12 follows now along the same lines as in S. [44, Theorem
5.13.3]. We include the arguments here for completeness.

Consider a positive €. Fix y € dw I,z € o' — {y} and two neighborhoods A~
and AT of x and y respectively so that for all (z,w) € A=, A" one has

!H([z,wb — [:v,y]w)‘ <e.



25

Pick also an arbitrary T' > 0 so that the quotient projection p : OrxV - N\*rxv
is injective on B = A~ x AT x B(0,T). We can thus compute the measure of

B = p(B) by the formula (3.6).
If we let K(w?) = p~! (K (w¥)), then Proposition 4.18 asserts that

A™ x (AT A éw,MN) x B(0,T) = X(w?) N B.
If codim W < 1 Corollary 4.14 states that Q¢ (B) = Q¥ (fk(w“’) N B), which implies,
1 (AF) = (A A ow, D) < .

Since € is arbitrary one concludes ¥ (0w ,I) = 1. On the other hand, if codim W > 3
then we have Q% (X(w?)) = 0 so u?(A" A dw,,) = 0 and the theorem is proved.

5. LOCALLY CONFORMAL REPRESENTATIONS: HAUSDORFF DIMENSION OF
b-CONICAL POINTS

In this section we let K = R, C or H, the non-commutative field of Hamilton’s
quaternions. The Cartan subspace a of PGL(d,K) is the subspace of R? consisting
of vectors of sum 0. For g € PGL(d,K) we denote by

a(g) = (ai(g),- -, aa(g))

the coordiates of the Cartan projection.

Definition 5.1. Consider p € [2,d — 1]. Recall from the introduction (Defini-
tion 1.1) that a {r,74_p}-Anosov representation p : [ — PGL(d,K) is (1,1, p)-
hyperconvez if, for every pairwise distinct triple (z,v, z) € aF®), one has

(€' (@) + &4 (y)) n€P7P(2) = {0}
We say moreover that p is locally conformal if for every v € I one has as(p(7v)) =
ap(p(7))-

The terminology is justified by Proposition 5.7 below stating that for such rep-
resentations pushed cone types are coarsely balls, this is a small refinement of an
analogous result from P.-S.-Wienhard [38].

Remark 5.2. Observe that when p = 2 the second part of the definition is trivially
true, so (1,1,2)-hyperconvex representations over K are locally conformal. We
refer the reader to P.-S.-Wienhard [38, §8] for more examples of locally conformal
representations.

For two locally conformal representations over K, p and p, with equivariant maps
¢ and € we want to introduce the notion of h-conicality. Roughly speaking, a point
x € ol is b-conical, if the geometry of the limit sets £(oI') and £(Ar) about &(z) and
£(z) respectively looks similar (in a metric sense). In § 7 we relate b-conicality with
non-differentiability points of the map £ o €71 for p = 2, and K = R.

In order to be more precise, we remark that the product representation (p,p) :
[ — PGL(d,K) x PGL(d,K) is 6-Anosov for 6 = {71, 7, 71,7} with limit map the
”graph map”

g = (€ r - P(K%) x P(K?).

We consider a Cartan subspace of the product group PGL(d,K) x PGL(d, K), we let
ag be the associated Levi space and (ag)* its dual. Since (ag)* is spanned by the
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fundamental weights of roots in 6, one sees that (p — 1)1 = pw,, — w,, € (ag)*
and analogously for 7.

To simplify notation we let 7 := 7 and 7 := 7.

Definition 5.3. A point z € JI is b-conical if it is conical as in Definition 4.11 for
the product representation (p,p) with respect to the hyperplane

b={veap:7(v) =7(v)} =ker(r — 7).
Equivalently, there exist R, a geodesic ray (a,)y’ < I with a,, — 2, and a subse-
quence {ny} such that for all & one has

17 (alpan,)) — 7(a(pan,))| < R.
Consider also the exponential rate
1 i
7 = lim —log#{y e T : max {7(a(py)), 7(@(p7))} < t}.
and recall the dynamical intersection defined by

1 (A (7))
ZT) T(A(py))’

L0 =1 2R,

where R;(7) = {[7] € [[]: 7(A(p7)) < t}.

In this section we compute the Hausdorff dimension of the image under the
graph map & of the set of b-conical points with respect to a Riemannian metric on
P(K?) x P(K?):

Theorem 5.4. Let p,p be two locally conformal representations over K as above.
Assume the group spanned by {(T(A(p7)), T(A(pY))) : v € T} is dense in R, Without
loss of generality we assume that iz = /r. If 1.(T) = 1 then

vER:(

o0]

dimpee ?({b—conical points}) = A%,

Recall that by Proposition 3.3 one has I.(T) > #%./#%=, so the hypothesis is
automatically satisfied if, for example, %, = /%=. This is the case if one is working
with K = R and ol is homeomorphic to a (p — 1)-dimensional sphere, indeed one
has the following.

Theorem 5.5 (P.-S.-Wienhard [38]). Let p : I — PGL(d,K) be locally conformal,
then

7, = dimpgge (£(0T)),
in particular, when K = R, I = 7.5 and p = 2 one has /%, = 1.

In the surface group situation the other assumption (density of periods) can also
be weakened:

Corollary 5.6. Let p,p be two real (1,1, 2)-hyperconvex representations of a closed
surface group mS. Assume there exists v € m.S such that T(A(p7)) # T(A(pY)),
then
dimper ?({b—com’cal poz’nts}) =A%,
Proof. Follows from the combination of Theorems 5.4, 5.5 and Proposition 6.9. [
We end the introduction of this section by mentioning that Kim-Minsky-Oh [25]
have proved better Hausdorff dimension computations when p and p are convex-

co-compact representations in PSO(n, 1) not requiring the assumption on I that we
do.
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5.1. Cone types are coarsely balls. In [38] we give a concrete description of the
images under the boundary map of the cone types at infinity. We denote by dp the
distance on P(IK?) induced by the choice of a inner (Hermitian) product on K% and
by B(¢,7)  P(IK?%) the associated ball of radius r about £.

Proposition 5.7. Let p : [ — PGL(d,K) be locally conformal. Then there exist
positive constants ki, ke and L € N such that for every x € 0T, every geodesic ray
(o) with endpoint x and every n € N greater then L one has

B(f(:c), kle’“(“(m"))) A E@r) © §(ai(§’oo(o¢n)> c B(g(z), kgefma(pan)))_

Proof. The desired inclusions are proven in [38] for thickened cone types at infinity.
We briefly explain here how to deduce from it the result we need.

Following [38] we denote by X (7), for v € I', the thickened cone type at infinity,
namely the tubular neighborhood in P(K?) of £(€Cu (7)) of radius d,/2, where §,, is
the constant from Lemma 4.7. In [38, Corollary 5.10] it is established that there
exists ¢; > 0 and Ly > 0 only depending on the domination constants of p such
that for all ¢ > Ly one has

B(g(x),cleﬂ(a(mi))) A E(T) € pla) Xoo ().

The thickened cone type X () is contained in the Cartan basin By, (p7y) for
a well chosen a depending on 6,. So P.S.-Wienhard [37, Proposition 3.3] provides
the existence of v and ¢ such that for all large enough v € ' one has

Xoo(7) 0 (A7) = £(C%°(v))-

Combining both equations one has, for all ¢+ > Lj that

B(f(ac),cle_” (a(po"i))) nE(ar) c g(aie;f(ai)) c B(f(w),fe_n(“(”ai))} (5.1)

where the second inclusion comes readily from Proposition 4.9, and K only depends

on d, and the constant K from that Proposition. This is to say, the pushed coarse
cone types f(aiegéc(ozi)) are coarsely balls of radius e~ (¢(P>))  Using Lemma 4.2
one replaces, up to modifying the constants ¢; and K, the coarse cone types with

actual cone types a;Cq(a;). ]

5.2. Hausdorff dimension and related concepts. Recall that, given a metric
space (X,d) and a real number s > 0, the s-capacity of X is

H*(X,d) = inf Z diam U*® ‘U is an open covering of A with sup diamU < ¢
¢ (geu UelU

and that
dimper(X) = inf{s| H*(X) = 0} = sup{s| H*(X) = o0}. (5.2)

The following can be verified directly from the definition:

Lemma 5.8. If X = J,,cn Xn then
dimpyee (X) = sup dimpgs (X,,).

We will use the following consequence of Theorem 1.5.14 from Edgar’s book [16]:
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Corollary 5.9. Let E c R? be a measurable subset equipped with a probability
measure v. If the upper density

— v(B(x,r
D" (x) = limsup 7( (z,7))
r—0 re
is v-essentially bounded above, then dimye(E) = .
5.3. The lower bound dimpyss(Z{b-conical points}) > £%. We import some
tools from the proof of Theorem 4.12.
We consider the vector space
V* := span{r,7}

together with its annihilator Ann(V*) = ker 77 and the quotient vector space V =

ag/ Ann(V*). Any element of V* vanishes on Ann(V*) and thus V* is naturally

identified with the dual space of V. Since we have the preferred basis {7,7} we

naturally identify V and R? via the isomorphism v +— (7(v),7(v)) and we let
II:ap — R

be the quotient projection (composed with the above isomorphism). The hyper-
plane b is sent to the diagonal

I(ker(r —7)) ={veV:r(v) =7(v)}
of the quadrant
Vi={r=0}n{7T >0}

on R2. Let v = v(pp) - I x 0T — V be the composition of the refraction cocycle
B(p,p) of the pair with II. Its periods are

v(7,74) = (T(A(m))f(k(m)))

so by assumption # is non-arithmetic. As in §4.4 one has Q, = V* n Qg ,; by
non-atihmeticity the cone £, has non-empty interior and thus Corollary 3.5 gives
that Q, is a strictly convex curve. We consider the max norm on V |jv|, =
max{|7(v)|, [#(v)|}, and its dual (operator) norm on V* denoted by | |'. Let ¢ €
Q, be the unique form such that

loool' = mf{fle]" : o € Qu}.

In Corollary 3.5 we introduced the map ¢ — uf, defined on Q, with values on P(V').

Lemma 5.10. One has uf, =T11(b) and for any v e V" one has
Poo(v) = A% min{7(v),7T(v)}.
Proof. We apply Lemma 3.6 to 7 and ¢ = 7, Equation (??) guarantees the hypoth-
esis of the Lemma. One then has (recall Figure 4)
i) Ty, Q, = span{r — 7} and thus

u;w = Ann(IR- (r— F)) = II(b)
i) You/|@w|! = s7 + (1 — s)7 for some s € [0, 1] and hence

oo = oo minr, 7}

on V*t.
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To conclude the lemma we need to show that £% < [ ||*. Since v (as((p,9)7)) <
[T(ag((p, B)Y) ool 0co]l ', we deduce, for all s > x|,

ST el Mle < 37 o~ 6/l (a0((0P)M) — o

~YET1S YET1S

where in the last inequality we used that %, = 1 by Equation (3.4). O

Let p¥* be the Patterson-Sullivan measure associated to ¢4, by Corollary 4.10.
One has, for every v €I, that,

197 (1€ (7)) < Ce9% (26 ((02)m) < =" min {r(a(pai)) 7(a(po))} (5.3)

where the last inequality comes from Lemma 5.10.
By Proposition 5.7 there exist constants C; and Cy such that if (o;)F is a
geodesic ray from id to x then for all ¢ the subsets

£(iCo(;)) and €(a;Co(e))
are coarsely balls on the corresponding projective spaces of radi
Cre~T(@pei)) and Cye~7(a(Pai))

respectively. Since €(dl) is a graph, the preceding radius computation implies that
the image of the cone type ?(aiem(ai)) is also coarsely a ball (for the product

metric on P(R?) x P(R?)) that can be chosen of radius
Ce—min {r(a(pa) FaGai) } (5.4)

for some uniform constant C. Recall that this set of balls forms a fine set of neigh-
bourhoods. Combining this with Equation (5.3) one has, possibly modifying the
constant C, that for all  the measure of the ball of radius r about Z(z) is

pe= (B(z,r)) < or 7.

Since dim V* = 2 and #(, 5 is assumed non-arithmetic, Theorem 4.12 states
that the subset of b-conical points has full pu#* measure. Applying Corollary 5.9
one concludes that

dimyges (?{b — conical points}) > A%,
5.4. The upper bound. We now prove the other inequality.
Proposition 5.11. One has dimygs (?{b — conical points}) < A

Proof. A point x is (R,b)-conical if there exists a geodesic ray («;)ien such that for
an infinite subset | = N of indices and for every k € 1

‘T(a(pan)) -7 (a(ﬁan))‘ < R.
We denote by C[ the set of (R,b)-conical points. By Lemma 4.17 one has

U Cll={xedl:xisb— conical},
R>0

and thus by Lemma 5.8 it suffices to show that for every R one has

dimef (Cf) < ﬁoo.
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For any constant K > 0 and any v € m S we denote by B;“aX’K the open ball of
P(RY) x P(RY) given by:

B’IyI]a.X,K — B((U1(p"/), Ul(ﬁ’Y)),Ke_ max {T(a(P’Y))fl(a(ﬁ"/)ﬂ)

And denote by
uq}g = {B’rynax,K| |’}/| > T}

Let C, resp. C, be the constants given by Proposition 4.9 for the representation p
(resp. p). Observe that for K = 2effmax{C,C} and for every T the set UL covers
C[. Indeed, if z € CT there exists a geodesic (a;);en converging to , such that for
infinitely many n € N,

’T(a(pan)) - F(a(ﬁan))‘ < R,
and thus
7(a(pay,)) > max{7 (a(pay,)),7(a(pan))} — R.
In order to conclude we observe that the covers UK form arbitrarily fine covers
of the set Cf and have the property that, by definition of A%, for every s > 4%,

Z diamU® < +o0.
UeukX

This implies that for every s > A% the s-capacity of le% is finite, and thus Equation
(5.2) gives
dlmef(Cf) < ﬁoo

O

6. THEOREM B: ZARISKI CLOSURES OF REAL-HYPERCONVEX SURFACE-GROUP
REPRESENTATIONS

In this section we prove Theorem B that classifies possible Zariski closures of real
(1,1, 2)-hyperconvex representations of surface groups. For most of the section we
work with two (1, 1, 2)-hyperconvex representations and eventually reduce the proof
of Theorem B to a situation like this; we will crucially use that a representation is
(1,1, 2)-hyperconvex if and only if its limit set is C' (Theorem 1.2).

6.1. When = has oblique derivative. We prove here a result that we believe to
be of independent interest. This subsection only requires §4.1 and §4.2 and will be
needed for Theorem B but also for Theorems A and C.

We let I be either a closed surface group or a Kleinian group. In the surface
group case we let

p,p: [ — Diff (St

be Holder conjugated to a Fuchsian action, if I < PSL(2,C) is a Kleinian group we
let p,p: T — PSL(2,C) be two convex co-compact representations that lie in the
same connected component of

{g : T — PSL(2,C) : p is convex co—compact}.
We let X be either the circle or JH3. To simplify notation we will denote, for

~ € I, its action on X via p simply by +, and its action via p by 7 and by oI, oI’ ¢ X
the limit sets of p and p respectively.
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In both situations there exists a Holder-continuous map
2 X - X

conjugating p and p; in the surface case this holds by definition, in the Kleinian
case this is a Theorem by Marden [32], see also Anderson’s survey [1, page 32]. The
point in this case is that the equivariant limit map = : [ — JI' conjugating the
actions p and p on their respective limit sets extends to the whole Riemann sphere
OH3. We study differentiability points of this map with oblique derivative.

We let d be either a visual distance on X (in the complex case) or a distance
inducing the chosen C! structure on the circle S*.

Definition 6.1. A representation p is Lipschitz-compatible (with the ct structure)
if there exist positive C, A and L € N such that if v € [ has word-length |y| > L
and z,y € Cy(y) then

d(yz,vy) < Ce "Rd(z, ).

Observe that in the Kleinian case we actually have more, contraction does not
only hold on Cy(7) but also on the complementary of a(ny) disk about Uj(y~1),
indeed Proposition 4.9 states that for all z,y with

G(z,Ur(v™") = =0, and G(y,Ur (v 1)) = =6,
= d(yz,7y) < Ce (2, y). (6.1)

The goal of the subsection is to prove the following result which is probably
know to experts. Similar arguments can be found in Guizhen [22] in the context of
conjugacies of expanding circle maps.

Proposition 6.2. Let p,p be as above and assume both are Lipschitz compatible.
If there exists p € O such that = has a finite non-vanishing derivative (complex
derivative in the Kleinian case) then Z|0T is bi-Lipschitz.

We work under the assumptions of Proposition 6.2 and begin its proof with the
following lemma. For v € [ we denote it’s derivative at € X by ~/(z) € K defined,
according our two situations, by

X = S!: the derivative /(%) of a lift of v to the universal cover R of S, and a lift
Z € R of x, the number 4/(Z) is independent of these choices;
X = 0H3: we fix an arbitrary point oo ¢ oI, identify X — {c0} with KK via the stereo-
graphic projection and let +/(z) be the standard complex derivative.

In order to simplify notation in the sequel we let B, (y) < X be the smallest
disc that contains Co (). If X = S! then B (7) = Co(7), if X = dH? then one
has

Bo(r) © {x € P(C?) : §(a. Th(v7)) = 5},

Lemma 6.3. There exists constants k,v > 0 and N € N such that for all v € T
with |y| = N and z,y € By () one has

|log |7/ (z)| —log |7/ (y)|| < kd(x,y)".

Proof. We consider L from Definition 6.1 (or Equation (6.1)), so that for every
nel with |n| > L and x,y € By (n) one has

d(nz, ny) < Ce” "M d(z,y). (6.2)
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Since the action is C'** we can find positive K, v such that for every 8 with
|8] < L and u,w € X one has

|1og 8 ()] — log |8 (w)| < Kd(u, w)" (6.3)

We let then K’ = max{K, KC"}. We begin by showing, by induction on k, that
if |7| = kL then for all z,y € Cy (), one has

| log |7/ ()| —log [ (y Z M d(a, )Y (6.4)

Equation (6.3) gives the base case, so assume that the result holds up to k — 1.
We let then v = (1 - - - B, be a reduced word on the fixed generating set of . We

let also y; = B1---B; and p = Br41 -+ Ber so that || = (k— 1)L and v = vrn. By
definition of cone type one has

Bo(7) S Boo(n)- (6.5)
Applying the chain rule gives that for every u € X one has

log [7'(u)| = log (1) (nu)| + log |(n)"(u)|
and thus, when z,y € By (),

| log |7/ ()] — log |7/ (y)|] < Ilogle(nr)lflogl’yLny || + [ log | ()| — log |’ ()|

< Kd(nz,ny)” + K'( Z e_”)‘Li)d(x,y)” (by (6.3) and induction)

=0

k=2
< KCVe M (2, y)” + K'( Z e "M d(z,y)”  (by Egs. (6.

i=0
We have proven thus that for kg = K’/(1 — e ") and every v € I whose
word-length is an integer multiple of L that if x,y € Bo,(y ) one has
|log |7'(2)| — log |+ (y)I| < #od(z,y)"”

To conclude the lemma we consider an arbitrary + with |y| = mL + n and
n < L. We write v = v, with a = Bpp41 - ~ﬁ|7|. Observe that by definition of
cone-type one has

aBeo () © Boo(Yme)-
Applying the chain rule gives then

| log |/ ()] — log |7 ()]

ko + K)d(x,y)",

so taking k = kg + K we conclude the proof. O

Proof of Proposition 6.2. Let p € I be such that = has non-horizontal nor vertical
derivative at p. Fix a geodesic ray (a,)J through the identity with o, — p. By
definition for all n one has p € a,Co(vy,). Without loss of generality we may also
assume that

(1]

p=0=EZ(0)

< |1og |V}, (az)| — log |, ()| + | log |/ ()] — log |’ (y)
< kod(z,y)” + Kd(z,y)" ( by aBy(v) € Boo(Vimr) and (6.3))
<

5

) and (6.2

)-
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and we may write the derivative as the incremental limit

1 ()
='(0) ;12% ) e K —{0}.
For each n we let s, be the radius of the ball a,, By (v, ), by Lipschitz compatibility
s, is coarsely e= .
Let D(0,r) be the ball of radius r about 0 and consider the scaling map

gn : D(0,1) > B (an)

defined by g,(z) = s,z. Let a, be an arbitrary point at distance s,, from 0 and let
3, = E(ay). Define
by z +— z§,. Since s, — 0 and ='(0) ¢ {0, o0} exists, the composition

Z(28n) snz  E(28n) Sn Z(28n)  Sn

PO
= z) = —_— = — e = . A
G Zn(2) Sn SnZ SpZ 8 Snz  Z(sp)

converges uniformly on compact subsets to the identity map.
On the other hand one has

~—1—= _ =1l -1 .
9n =9n = Gn On=0, Gn;

we now study the maps f,, := ;' 0 g, and f,, := §; ' o @y
Observe that for every z € D(0,1) one has

log | fr,()| = log [(a, ) (gn)| + log |sn| = —log |as, (ay, gn)| + log [sn]-
Now by definition of g,, we have that g,z € a,By(a,) and thus a;'(g,z) €
B (). For n large enough we can apply Lemma 6.3 to «;, to obtain x and v so
that for every pair it holds z,y € D(0,1)

|log | fr ()] —log | fn ()| < rd(z,y)”
We conclude that the family of maps (f,,) is uniformly bi-Lipschitz on D(0, 1) and
thus, since (f,p) is bounded, Arzela-Ascoli’s Theorem applies to give a subsequence
(still denoted by f,,) that converges to a bi-Lipschitz map f defined on D(0, 1).
Analog reasoning applies to f, and we obtain that, about 0, = can be written as
a composition of bi-Lipschitz maps and is thus bi-Lipschitz. Using the action of I
we extend the Lipschitz property of = to the whole dI', concluding the proof. [

We now establish the following Corollary that will be used in the sequel.

Corollary 6.4. Let S be a closed surface of genus = 2 and let p : m1.S — PGL(d, R)
and p : 1S — PGL(d,R) be (1,1,2)-hyperconvez, consider the map between C'
circles
E=Cott:g(0m8) — £(0mS).

If 2 has a differentiability point with finite non-vanishing derivative then for all
v € mS one has T(A(py)) = T(A(pY))-

Proof. Theorem 1.2 implies that a (1, 1,2)-hyperconvex representation of a surface
group induces a CMHSL action on the CMTHO circle £(0m.S). The distance dp
induced on this circle is compatible with its C!-structure and thus Proposition 4.9
implies that the action on the circle is Lipschitz-compatible. We can thus apply
Proposition 6.2 to obtain that = is bi-Lipschitz. The following standard lemma
from linear algebra (see for example Benoist [5] and S. [10, Lemma 3.4]) gives the
period computation completing the proof. [
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Lemma 6.5. Let g € PGL(d,R) be provimal and let Vy, 4 be the sum of the char-
acteristic spaces of g whose associated eigenvalue is of modulus exp A2(g). Then for
every v ¢ P(g_), with non-zero component in Vy, ), one has

lim IOgdp(gn(U),g+) _ 7T1(>\(g))

n—ao0 n

6.2. Limit curves in non-maximal flags. We proceed with another intermediate
step for the proof of Theorem B, this step follows from the combination of Theorem
1.2 and Corollary 6.4.

Let G be real-algebraic and semi-simple. Let {a,b} < A be two distinct simple
roots. The partial flag space Fy, ) carries two transverse foliations that are the
level sets of the natural projections F, py — Fay and Fr, by — Frpy. We will refer
to these as the canonical foliations of F, ;.

Corollary 6.6. Let G be real-algebraic and semi-simple and let {a,b} < A. Let
p : mS — G be Zariski-dense and {a,b}-Anosov. If both curves £ (0mS) and
£°(0mS) are C' then every differentiability point of 12} (0m,S) is tangent to one
of the canonical foliations of Fy, py-

Proof. By Benoist’s Theorem 2.3 the limit cone of p has non-empty interior, in
particular there exists v € m1.5 such that

a(A(py)) # b(A(pY)))-

Consider the Tits representations ®, and ®}, associated to a and b. Since p(m1.5)
is Zariski-dense, both representation ®,p and ®,p are irreducible and projective
Anosov. Recall that by definition of ®,, for every g € G one has

71 (M(@a(9))) = a(Mg))-

Since the maps (, and (, are analytic, both projective curves (,£?(0m1S) and
(p€P(0m S) are C! and thus by Zhang-Zimmer’s Theorem 1.2 the representations
®,p and Py,p are (1, 1, 2)-hyperconvex.

The natural embedding Fy, py — P(Va) x P(V4,) sends £lab} o the graph of the
map = from Corollary 6.4 and thus the Corollary implies the result. (I

6.3. Proof of Theorem B. The goal of the section is to prove Theorem B, stat-
ing that the Zariski closure G of the image of an irreducible (1,1, 2)-hyperconvex
representation p : 73S — PGL(d, R) is simple and the highest weight of the induced
representation ® : G — PGL(d, R) is a multiple of a fundamental weight.

It is proven in S. [12, Lemma 8.6] that an irreducible subgroup G containing a
proximal element is semi-simple without compact factors.

We consider the induced representation py : m1.S — G and denote by & : G —
PGL(d,R) the linear representation so that p = ®pg. Let x = xa € a* be the highest
weight of . As in Definition 2.5 we consider

0=0p=1{acA:x—aisaweight of &} = {ae A: (x,a) # 0}.

It is enough to show that 6 is reduced to a single root {ap}; indeed, if this is the
case, upon writing y in the basis of fundamental weights {co, : a € A} (recall their
defining Equation (2.1)) one has

X = Y (0 a)m@a = (X, 20)@a,
aeA
Moreover this gives:
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- G is simple by Lemma 2.4;

- the weights on the first level consist solely on x —a and its associated weight
space is ¢(g_,)V T, Since p(m1S) is {72}-Anosov one has that ¢(g_,)V* is
one-dimensional, but by Lemma 2.6 no element of g_, acts trivially on V'
SO g_, is 1-dimensional, as desired.

We proceed now to show that in the present situation € consists of only one
element. By definition of 8 one has, for every g € G, that

7 (A(2(9)) = min {a(rs(9))}-

Consequently, the limit cone £,, < aé does not intersect the walls of elements
in 6 and, since py : m.S — G is a quasi-isometry, Remark 4.4 implies that the
representation pg is #-Anosov.

Recall from Equation (2.5) that we have a ®-equivariant analytic embedding
o : G/Py — P(R?). One has moreover that {; = (goggo. In particular the boundary
map &7 has Cl-image. Composing with the projections Fy — Fy one sees that, for
any 6’ c 6 the curve 52; (0mS) is a C! circle.

Assume now there exists two distinct roots a, b in 6. By the previous paragraph
the curve £{2:°} (9 S) is C' . Corollary 6.6 gives then that £{2:0} (07, S) is necessarily
contained in one of the leaves of the canonical foliations of Fy, 1), thus giving that
one of the maps £ or £P is constant, achieving a contradiction. This completes the
proof.

The following immediate corollary will be useful in the next section

Corollary 6.7. Let p : m S — PGL(d,R) be an irreducible (1,1,2)-hyperconvex
representation. Then there exists a € Ag such that for every a € al one has

a(a) = 71 (4(a)),
where ¢ : g — sl(d,R) is the associated representation of G.

6.4. A useful consequence of Theorem B: Non-arithmeticity of periods.
As an application of Theorem B we show that the periods with respect to the first
simple root of a pair of real (1,1,2)-hyperconvex representations either agree or
span a dense subgroup of R%. The following corollary from Beyrer-P. [7] allows us
to bypass the irreducibility assumption in Theorem B.

Corollary 6.8 (Beyrer-P. [7]). Let p : mS — PGL(d,R) be (1,1, 2)-hyperconvez.
Then there exists an irreducible (1,1,2)-hyperconvexr representation py : ™S —
PGL(m,R) such that, for every v € w1 S one has

1 (A(p)) = 11 (A(p17)).

Proof. Tt follows from [7, Corollary 5.5] that if p : mS — PGL(d,R) is (1,1, 2)-
hyperconvex, then the semisemplification p** is also (1, 1, 2)-hyperconvex, and the
first two weights of such representations belong to the same irreducible factor. The
result follows by defining py to be the restriction of p® to such an irreducible
factor. (]

We can now prove the following non-arithmeticity of periods:
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Proposition 6.9. Let p : 1S — PGL(d,R) and p : m S — PGL(d,R) be (1,1,2)-
hyperconvex. If there exists v € m.S with 71 (A(pYy)) # T1(A(p7Y)), then the group
spanned by

(), FLAB))) : 7 € S}
is dense in R2.

Proof. Observe first that thanks to Corollary 6.8 we can assume without loss of

generality that p and p are irreducible. Let then G and G be the Zariski closures

respectively of p(mS) and p(m1S). By Theorem B both groups are simple and
+

Corollary 6.7 guarantees that the restrictions of 7 to Eg and of T to az are simple

roots of G and G respectively, still denoted by 7 and 7. We can furthermore assume
without loss of generality that G and G are adjoint. We distinguish two cases.

If p x p(m1S) is Zariski dense in G x G, then the result now follows from Benoist’s
Theorem 2.3 and the fact that {7,7} < (ag,g)*.

Otherwise, it is well known that there exists an isomorphism ® : G — G so that
p = ®op (see for example Bridgeman-Canary-Labourie-S. [10, Corollary 11.6]). In
this case ®*T is a root of G and we distinguish two cases: either ®*7 = 7, but then
T(A(py)) = T(A(py)) for all v € m.S contradicting our assumption, or ®*7 and 7
are distinct roots of G. Since p : m.S — G is Zariski-dense, then again Benoist’s
Theorem 2.3 implies the result. ([l

7. NON-DIFFERENTIABILITY AND b-CONICALITY: THE PROOFS OF THEOREMS A
AND C

The following Proposition relates non-differentiability with b-conicality, the miss-
ing piece for the proofs of Theorems A and C.

Proposition 7.1. If there exists v € T such that 7(A(py)) # T(A(pY)), then the
set of non-differentiability points of 2 coincides with the set of b-conical points.

The inclusion {non-diff (non-C-diff) points} < {b — conical} is rather general, the
other inclusion requires Proposition 6.2.

Proof. We deal with the real case, which illustrates the main ideas, the Kleinian
case works analogously.

We choose a C! identification of the C' torus £(0m1.5) x (0m S) < P(R?) x P(R?)
with the quotient of the square [—1,1] x [—1, 1] preserving the product structure,
and such that the point (x,Z(x)) corresponds to (0,0). In these coordinates the
graph of Z is a monotone curve [—1, 1] — [—1, 1] passing through the origin. Given
a point y € 0w S, we denote by (y*,y?) = (y',Z(y')) its image in [—1,1] x [-1,1].

Let now (o;)ien denote a geodesic ray converging to z. Since the chosen iden-
tification is C', it is in particular k-bi-Lipschitz for some k, as a result we deduce
from Proposition 5.7 that there exist constants C;, Co, C1,Co and L € N such that,
for every n € N and every y,, € a,Co () \n+1Coo(¥n 1), it holds

)

Cle—rl(a(p(an))) < |yrlz‘< 026*7'1(0«(%7(0%)))
Crem(@@(@n) < |y2| < TheT@@(@n) (7.1)

Assume first that z is b-conical, and assume, by contradiction, that x is a dif-
ferentiability point of Z. Using Definition 5.3 we obtain a geodesic ray (a;)F, an
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infinite set of indices | € N and a number R, such that for all n € | one has
IT1(a(pam))) — T1(a(pom)))| < R. (7.2)

For each such n we choose a point vy, € a,Cox(an)\an+1Co(n+r). By con-
struction y,, converges to z. Now one has,

(1]

= . Eln)
=0 =t =g

(7.3)

Restricting the limit to the infinite set of indices for which Equation (7.2) holds,
we deduce from Equation (7.1) that

Which implies that the derivative is neither horizontal nor vertical. Corollary 6.4
implies then that for all v € I one has 7(A(py)) = T(A(p7y)), since by assumption
there exists v € I with 7(A(py)) # T(A(p7y)), we obtain a contradiction.

Conversely, assume that z is not b-conical. The Cartan projections of two con-
secutive elements oy, «;11 make uniformly bounded gaps (Proposition 2.1), and
thus there exists C such that for all n € N one has

)T(G(Panﬂ)) - T(a(pan))‘ <C.

As a consequence, we can assume, up to switching the roles of p and p, that for any
R there exists ng such that for every n > ng one has

7(a(pow)) — 7 (a(pow,)) > R.
In turn this implies, thanks to Equation (7.1) that, for every y € an,, Co(any,),
v < 4%@

— <e .
ly] Ci

Since R is arbitrary, and the sets a,,Cx(an,) form a system of neighborhoods

of the point z, we deduce that the limit in Equation (7.3) exists and is a vertical

vector. This concludes the proof. O

7.1. Proof of Theorems A and C. Since there exists v € ' with 7 ()\(pv)) #
T1 ()\(ﬁ'y)), Proposition 6.9 implies the density assumption in Theorem 5.4, so one
has
dimpge E({b-conical points}) = pmax{n7}

Proposition 7.1 states that the set of b-conical points coincides with the set of
non-differentiability points of =, thus completing the proof of Theorem A. In the
Kleinian case, density of the group spanned by the pairs {(A(py), A(p7)) : v € T}
follows from Benoist [4] (Theorem 2.3), from this point on the proof works verbatim.
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