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LIPSCHITZ LIMIT SETS REVISITED: HILBERT ENTROPY AND

NON-DIFFERENTIABILITY

BEATRICE POZZETTI AND ANDRÉS SAMBARINO

Abstract. We interpret the Hilbert entropy of a convex projective structure

on a closed surface of higher genus as the Hausdorff dimension of the non-
differentiability points of the limit set in the full flag space FpR3q. Generaliza-

tions of this for hyperconvex representations are also discussed. An ingredient

for the proofs is the concept of hyperplane conicality that we introduce for a θ-
Anosov representation into a reductive real-algebraic Lie group G. In contrast

with directional conicality, hyperplane-conical points always have full mass for

the corresponding Patterson-Sullivan measures.
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1. Introduction

Consider a closed connected orientable surface S of genus at least two, and let
ρ : π1S Ñ PSLp3,Rq be a faithful representation preserving an open convex set
Ω “ Ωρ Ă PpR3q, properly contained in an affine chart. The group ρpπ1Sq is
necessarily discrete and acts co-compactly on Ω and one says that ρ divides Ω.

A classical result by Choi-Goldman [14] states that the space of all such represen-
tations forms a connected component of the character variety X

`

π1S,PSLp3,Rq
˘

of
homomorphisms up to conjugation. This component is known today as the Hitchin
component of PSLp3,Rq and is diffeomorphic to a ball of dimension ´8χpSq.
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A lot of information on (the geometry of) such convex set Ω is known (see Benoist
[5]). It is strictly convex with C1`α boundary BΩ (that is not C2 unless it is an
ellipse). Moreover, the Hilbert metric of Ω is Gromov-hyperbolic and the geodesic
flow of Ω{ρpπ1Sq is a smooth Anosov flow whose topological entropy, the Hilbert
entropy, computed1 by

hH “ hH
ρ “ lim

tÑ8

1

t
log #

 

rgs P rπ1Ss : pλ1pgq ` λ1pg
´1qq{2 ď t

(

,

is bounded above: hH ď 1, see Crampon [15] who also showed that the inequality
is furthermore strict if Ω is not an ellipse.

A consequence of Theorem A below is a new geometric interpretation of the
Hilbert entropy which we now explain. For each x P BΩ let Ξpxq P Gr2pR

3q be
the unique plane whose projectivisation is tangent to BΩ at x. By Benoist [5], the
image curve ΞpBΩq Ă Gr2pR

3q » PppR3q˚q is also the boundary of a strictly convex
divisible set Ω˚ and is thus again a C1`ν-circle.

The map Ξ : BΩ Ñ BΩ˚ is an equivariant homeomorphism between C1-circles,
so it is monotone and thus differentiable almost everywhere with respect to the
Lebesgue measure associated to this C1-structure. Equivalently one may consider
the full flag curve

tpx,Ξpxqq : x P BΩu Ă FpR3q.

Differentiability of this full flag curve corresponds to points x P BΩ where the
derivative of Ξ exists or is infinite. We then establish the following:

Corollary A. Let ρ : π1S Ñ PSLp3,Rq divide a convex set Ω that is not an ellipse.
Then the set of non-differentiability2 points of Ξ has Hausdorff dimension hH

ρ .

The Hausdorff dimension in the above Corollary, and throughout this paper, is
computed with respect to a Riemannian metric on the flag space. When Ω is an
ellipse the result does not apply as the associated curve is actually algebraic, so the
non-differentiability points is the empty set, but hH “ 1. On the other hand Nie
[34] and Zhang [48] have found paths

`

ρt : π1S Ñ PSLp3,Rq
˘

tě0
such that hH

ρt Ñ 0

as t Ñ 8. These facts together with Corollary A suggest that the closer Ω is to
being an ellipse (the Fuchsian locus), the less differentiable the flag curve is whilst
the furthest away from Fuchsian locus, the more regular the flag curve becomes.

The proof of Corollary A is outlined in § 1.4 and serves as a guide path for the
strategy on the general case (Theorem’s A and C below).

1.1. Hyperconvex representations. Denote by

a “
 

a “ pa1, . . . , adq P R
d :

ÿ

i

ai “ 0
(

the Cartan subspace of the Lie group PGLpd,Rq, by

τipaq “ ai ´ ai`1

the i-th simple root and by a` Ă a the Weyl chamber whose associated set of simple
roots is ∆ “ tτi : i P J1, d ´ 1Ku. Let a : PGLpd,Rq Ñ a` be the Cartan projection
with respect to the choice of a inner product. Concretely the numbers eaipgq are
the singular values of the matrix g, i.e. the square roots of the eigenvalues of the

1for g P PSLpd,Rq we let λ1pgq be the logarithm of the spectral radius of a lift of g to SLpd,Rq.
2We convene that ’infinite derivative’ is a differentiability point.
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matrix gg˚, where g˚ is the adjoint operator of g with respect to the chosen inner
product.

Let Γ be a finitely generated word-hyperbolic group, consider a finite symmetric
generating set and let | | be the associated word-length. For k P J1, d ´ 1K; a
representation ρ : Γ Ñ PGLpd,Rq is tτku-Anosov if there exist positive constants µ
and c such that for all γ P Γ one has3

τk
`

apργq
˘

ě µ|γ| ´ c.

Of course a tτku-Anosov representation is also tτd´ku-Anosov. Under such assump-
tion it is also known the existence of an equivariant Hölder-continuous map

ξkρ : BΓ Ñ GrkpR
dq,

called the limit map in GrkpR
dq, which is an homeomorphism onto its image. If k ď

l P J1, d´ 1K and ρ is also tτlu-Anosov then the limit maps are compatible, meaning
that that for all x one has ξkρ pxq Ă ξlρpxq, see §4 for references and details. A tτ1u-
Anosov representation is more commonly called a projective Anosov representation.

Definition 1.1. A tτ1, τd´2u-Anosov representation ρ : Γ Ñ PGLpd,Rq is p1, 1, 2q-
hyperconvex if for every pairwise distinct triple x, y, z P BΓ one has

ξ1
ρpxq ` ξ

1
ρpyq ` ξ

d´2
ρ pzq “ Rd. (1.1)

Hyperconvex representations form an open subset of the character variety

X
`

Γ,PGLpd,Rq
˘

“ hom
`

Γ,PGLpd,Rq
˘

{PGLpd,Rq

and appear very naturally in higher rank Teichmüller theory; they are moreover
the prototype example of Anosov representations with regular limit sets, indeed
one has the following result from P.-S.-Wienhard [38] and Zhang-Zimmer [49].

Theorem 1.2. Assume BΓ is homeomorphic to a circle and let ρ : Γ Ñ PGLpd,Rq
be projective Anosov.

[38],[49]: If ρ is p1, 1, 2q-hyperconvex, then ξ1pBΓq Ă PpRdq is a C1 submanifold tan-
gent at ξ1pxq to ξ2pxq.

[49]: If ρ is irreducible and ξpBΓq is a C1 circle then ρ is p1, 1, 2q-hyperconvex.

Example 1.3. Recall that if G is a semi-simple real algebraic group of the non-
compact type, then irreducible proximal representations Φ : G Ñ PGLpV q are
determined by their highest restricted weight χ`Φ . A special subset of dominant
weights are the so called fundamental weights t$a : a P ∆u, indexed by the set of
simple roots ∆ of G (see § 2.3 for definitions and details). Any pair of represen-
tations ρ : π1S Ñ G and Φ : G Ñ PGLpV q in each of the following classes (and
small deformations of these), gives rise to a p1, 1, 2q-hyperconvex representation of
a surface group via post-composition Φ ˝ ρ. In particular the limit set of ρ in the
specified flag manifold of G is a C1`α curve:

- if G is split and ρ : π1S Ñ G is Hitchin, then we can take any Φ with
χ`Φ “ n$a for any a P ∆and n P Ną0. This is non-trivial and requires results
from Fock-Goncharov [17] and/or Labourie [30] together with Lusztig’s
canonical basis [31, Proposition 3.2] (see S. [43, § 5.8] for details). As a
result the limit set of ρ in any maximal flag manifold Ftau of G is a C1`α

curve.

3In order to lighten the notation we let here, and in the following, ργ denote ρpγq
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- if ρ : π1S Ñ POpp, qq is Θ-positive then by P.-S.-Wienhard [37, Theorem
10.3] we can take Φ to have highest weight $a for any root a in the interior4

of Θ (see also Beyrer-P. [8, Remark 4.6] for general Θ-positive representa-
tions). In particular the limit set in any flag manifold of the form IskpR

p,qq

for k ď p´ 2 is a C1`α-curve. Zhang-Zimmer’s result (Theorem 1.2 above)
implies then that when ρ is moreover Zariski-dense, we can consider any Φ
with χ`Φ “ n$a for any a P int Θ and n P Ną0.

- for all k ě 1, k-positive representations ρ : π1S Ñ PSLpd,Rq are p1, 1, 2q-
hyperconvex (see Beyrer-P. [7]). They include small deformations of rep-
resentations of the form ιs1,...,sr ˝ ρh : π1S Ñ PSLpd,Rq where ρh : π1S Ñ
PSLp2,Rq is discrete and faithful, s1 ´ 2k ą s2 ą . . . ą sr and ιs1,...,sr :
PSLp2,Rq Ñ PSLpd,Rq has an irreducible factor decomposition Rd “ Rs1 ‘
. . . ‘ Rsr (see [38, Proposition 6.16]). In particular the limit set in any
Grassmanian of the form GrspR

dq for s ď k is a C1`α-curve.

The main result of this paper deals with a pair of p1, 1, 2q-hyperconvex represen-
tations

ρ : π1S Ñ PGLpd,Rq and ρ : π1S Ñ PGLpd,Rq,

for positive integers d and d. In Section § 1.2 we deal also with Kleinian groups. To
avoid confusion we denote the simple roots of PGLpd,Rq by

 

τ i : i P J1, d´1K
(

, and
to simplify notation we let

ξ “ ξ1
ρ and ξ “ ξ1

ρ.

The graph map

G “
`

ξ, ξ
˘

: Bπ1S Ñ PpRdq ˆ PpRdq,

has image contained in the C1`Höl torus ξpBπ1Sq ˆ ξpBπ1Sq and, as the name
suggests, the curve GpBπ1Sq is the graph of the Hölder-continuous homeomorphism

Ξ “ ξ ˝ ξ´1 : ξpBπ1Sq Ñ ξpBπ1Sq

between C1`Höl-circles. By monotonicity of Ξ, GpBπ1Sq is a Lipschitz curve and is
thus differentiable almost everywhere. We let NDiffρ,ρ Ă GpBπ1Sq be the subset of
points where the curve GpBπ1Sq is not differentiable.

Remark 1.4. We record that a differentiability point Gpxq of the curve GpBπ1Sq
with oblique tangent, corresponds to a differentiability point ξpxq of the map Ξ,
whose derivative is finite and non-zero.

Consider also the exponential rate

h8 “ hmaxtτ1,τ1u “ lim
tÑ8

1

t
log #

 

γ P Γ : max
 

τ1
`

apργq
˘

, τ1

`

apργq
˘(

ď t
(

.

The main result of this paper is the following:

Theorem A. Let ρ : π1S Ñ PGLpd,Rq and ρ : π1S Ñ PGLpd,Rq be p1, 1, 2q-
hyperconvex representations. Assume there exists γ P π1S such that τ1

`

λpργq
˘

‰

τ1

`

λpργq
˘

, then

dimHff

`

NDiffρ,ρ
˘

“ h8 ă 1.

4only connected to roots in Θ in the Dynkin diagram of ∆
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As before, the Hausdorff dimension is computed with respect to a Riemannian
metric. We emphasize also that no irreducibility assumption is made on the rep-
resentations ρ and ρ. Furthermore, if the assumption is not satisfied, namely if for
ever γ P π1S, τ1

`

λpργq
˘

“ τ1

`

λpργq
˘

, we show that there exists an isomorphism
between the Zariski closures of ρpπ1Sq and of ρpπ1Sq intertwining the two repre-

sentations. It follows then that GpBπ1Sq is the diagonal of the C1`Höl torus, and
is in particular differentiable everywhere. To prove this we give the following pre-
liminary classification of Zariski-closures over R of irreducible p1, 1, 2q-hyperconvex
representations, established in § 6.3.

Theorem B. Consider an irreducible p1, 1, 2q-hyperconvex representation ρ : π1S Ñ
PGLpd,Rq. Then the Zariski closure G of ρpπ1Sq is simple and the highest weight of
the induced representation Φ : G Ñ PGLpd,Rq is a multiple of a fundamental weight
associated to a root that has one-dimensional root-space.

In light of Examples 1.3 it is unclear which further restrictions can occur on G.

Remark 1.5. We observe that, relying on Theorem B and Theorem 1.2, a different
approach to Theorem A would be to use a Bowen-Series coding for the action
of π1S on Bπ1S and apply Jordan-Kesseböhmer-Pollicott-Stratmann [25, Theorem
1.1]. This is indeed the method followed by Pollicott-Sharp [35] when dealing with
two elements of the Teichmüller space of S. This method however is not applicable
for groups other than π1S and we have thus decided to use a unified approach based
on the theory of Anosov representations, leading at once results over R and C.

1.2. Kleinian groups. The same strategy of proof of Theorem A gives the fol-
lowing result for Kleinian groups. Let Γ be a word-hyperbolic group and ρ : Γ Ñ
PSLp2,Cq be a convex co-compact action with limit set Lρ Ă BH

3. We denote by
λpgq the translation length on H3 of an element g P PSLp2,Cq, and we set

hρ “ lim
tÑ8

1

t
#
 

rγs P rΓs : λpργq ď t
(

.

By Sullivan [45], the Hausdorff dimension of Lρ coincides with hρ.
If ρ : Γ Ñ PSLp2,Cq is again convex co-compact we let Ξ : Lρ Ñ Lρ be the map

conjugating the respective actions. We consider in this case the complex derivative
and say that Ξ is C-differentiable at a given x P Lρ if, conformally identifying
BH3 ´ tpointu to C, the limit

Ξ1pxq :“ lim
BΓQyÑx

Ξpxq ´ Ξpyq

x´ y

exists or is infinite. We let now NDiffρ,ρ be the set of points x P Lρ where Ξ is not
C-differentiable and let

h8 “ lim
tÑ8

1

t
log #

 

rγs P rΓs : max
 

λpργq, λpργq
(

ď t
(

.

Theorem C. Let ρ, ρ : Γ Ñ PSLp2,Cq be two convex co-compact representations
that lie in the same connected component of

 

% : Γ Ñ PSLp2,Cq : % is convex co-compact
(

.

Assume moreover that hρ “ hρ, then dimHffpNDiffρ,ρq “ h8.
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1.3. Hyperplane vs directional conicality. As the reader may check in the
proof of Corollary A in § 1.4, a key ingredient in this particular case is a recent
result by Burger-Landesberg-Lee-Oh [12], concerning directional conical points for
Borel-Anosov representations, which we now explain. This result is used by Kim-
Minsky-Oh [29] to find bounds on the Hausdorff dimension of directional conical
limit points on the ambient group PSOp1, nq ˆ PSOp1, nq.

Let G be a real-algebraic semi-simple Lie group of the non-compact type, a Ă g a
Cartan subspace, Φ Ă a˚ the associated root system and ∆ Ă Φ a choice of simple
roots with associated Weyl chamber a`. In [12] the authors introduce the notion of
directional conicality, i.e. conicality along a specific direction of the Weyl chamber
for ∆-Anosov representations, a notion later studied by S. [44] for directions on
the Levi-subspace aθ for a θ-Anosov representation ρ : Γ Ñ G, for an arbitrary
non-empty subset θ of ∆, see § 4.2 for the definitions.

If we let Lθ,ρ Ă aθ be the θ-limit cone of ρ (see § 4.3) and u P PpLθ,ρq be
a direction on the relative interior of Lθ,ρ, then a point x P BΓ is said to be u-
conical if there exists a conical sequence pγnq

8
n“0 Ă Γ converging to x such that the

associated Cartan projections apργnq lie in a tubular neighborhood of u Ă aθ. To
be consistent with the notation introduced later in the paper, recall that when ρpΓq
is Zariski-dense there are natural bijections (see § 4.3 for details)

intPpLθ,ρq Ø Qθ,ρ “ tϕ P paθq
˚ : hϕ “ 1u

Ø
 

Patterson-Sullivan measures supported on ξθpBΓq
(

.

For ϕ P Qθ,ρ we let uϕ P intPpLθ,ρq be the associated direction and µϕ the associated
Patterson-Sullivan measure. Burger-Landesberg-Lee-Oh [12] show then that, when
θ “ ∆ and ρpΓq is Zariski-dense, one has

µϕ
`

tx P BΓ : x is uϕ-conicalu
˘

“

"

1 rank G ď 3
0 rank G ě 4

.

Since the groups we are interested in have arbitrary rank we are taken to replace
directional conicality by hyperplane conicality, these points have the advantage of
always having full mass, as Theorem D below shows. To be precise, let ρ : Γ Ñ G
be a θ-Anosov representation, consider a hyperplane W Ă aθ and assume, for the
notion to be interesting, that W intersects the relative interior of Lθ,ρ. Then x P BΓ
is W-conical if there exists a conical sequence pγnq

8
0 Ă Γ converging to x, a constant

K and wn P W such that for all n one has
›

›a
`

ργnq ´ wn
›

› ď K,

where a : G Ñ a` is the Cartan projection. The set of such points will be denoted by
BW,ρΓ “ BWΓ. In § 4.4 we show the following, see Theorem 4.12 for more information.

Theorem D. Let ρ : Γ Ñ G be a Zariski-dense θ-Anosov representation and W be
a hyperplane of aθ intersecting non-trivially the relative interior of Lθ,ρ. Then for
every ϕ P Qθ,ρ with uϕ P PpW X Lθ,ρq one has µϕpBWΓq “ 1.

1.4. Strategy of the proof of Theorem A for strictly convex projective
structures on surfaces. Corollary A is indeed a consequence of Theorem A,
where ρ “ ρ˚ is the dual representation of ρ. With this in mind, we sketch a direct
proof of Corollary A serving as a guide-path for the general result.

Proof of Corollary A. Let ρ : π1S Ñ PSLp3,Rq be the holonomy of a strictly convex
projective structure with invariant convex set Ω. In order to simplify notation we
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identify γ and ρpγq. We consider the distances dP on PpR3q and dP˚ on PppR3q˚q “

Gr2pR
3q, induced by an inner product on R3. We consider also the L8 distance on

the product pPpR3q, dPq ˆ pPppR
3q˚q, dP˚q, which is equivalent to the Riemannian

distance, and thus induces the same Hausdorff dimension as a Riemannian metric.
We will use the cone types of π1S, introduced by Cannon [13] (for an arbitrary

word-hyperbolic group). Fix a finite symmetric generating set on π1S and let | | be
the associated word length. For γ P π1S we let its cone type be

Cpγq “
 

η P π1S : |γη| “ |η| ` |γ|
(

,

equivalently η belongs to Cpγq if there exists a geodesic on the Cayley graph of π1S,
between γ´1 and η passing through the identity. The endpoints of rays in Cpγq
form an open subset of Bπ1S denoted by C8pγq. See Figure 1.

γγη

γC8pγq

e

π1S

e

γ´1 π1S

Cpγq

Figure 1. The cone type of γ P Γ (left). The set γ ¨ C8pγq (right).
Pictures from P.-S.-Wienhard [38]

We let ξ : Bπ1S Ñ BΩ be the natural identification via the action of ρpπ1Sq on
Ω, and analogously ξ : π1S Ñ BΩ˚. We denote by G :“ pξ, ξq : π1S Ñ BΩ ˆ BΩ˚

the flag curve. Consider x P Bπ1S and let αi Ñ x be a geodesic ray on π1S. The
following fact is a consequence of Proposition 5.7.

Fact. For big enough i, the subset ξ
`

αiC8pαiq
˘

Ă BΩ is coarsely the intersection of

a ball of radius e´τ1pαiq about ξpxq, with BΩ. By duality one has ξ
`

αiC8pαiq
˘

Ă BΩ˚

is coarsely the intersection of a ball of radius e´τ2pαiq about ξpxq, with BΩ˚.

The coarse constants and the minimal length i required in the above statement
depend only on the representation and not on the point x.

e´τ1pραiq

e´τ2pραiq

ξpxq

ξpxq

Figure 2. The image of the cone type αiC8pαiq by the graph curve G

in the C1`Höl-torus BΩˆ BΩ˚.

For any point x P Bπ1S we distinguish two complementary situations that don’t
depend on the choice of the geodesic ray pαiqiPN converging to x:

i) For all R ą 0 there exists N P N with |τ1papαiqq ´ τ2papαiqq| ě R for all
i ě N ;
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ii) There exists R ą 0 and an infinite set of indices I Ă N such that for all k P I
one has |τ1papαkqq´ τ2papαkqq| ď R. We say in this case that x is 5-conical.

In the first case one is easily convinced by looking at Figure 2 that the rectan-
gle becomes flatter along one of its sides (see § 7 for details in the general case).
Furthermore, since τ1papαiqq ´ τ1papαi`1qq is uniformly bounded, its sign is even-
tually constant, and thus the flatter side only depend on the point. As a result x
is necessarily a differentiability point of the graph curve G, with either horizontal
or vertical derivative.

We are thus bound to understand the set of 5-conical points. Indeed we show
(see Proposition 7.1):

Fact. The non-differentiabilty points of the curve GpBπ1Sq and the 5-conical points
coincide.

The main idea for this is to show that if a 5-conical point x were a differen-
tiability point, then the derivative cannot be horizontal nor vertical, and thus (by
Proposition 6.2) Ξ would be bi-Lipschitz. In turn, this would force the periods of
the two roots to agree, contradicting the Zariski-density assumption.

We have to understand then the Hausdorff dimension of the set of 5-conical
points. The upper bound (Proposition 5.11)

dimHff

`

t5 ´ conicalu
˘

ď hmaxtτ1,τ2u (1.2)

follows readily: since for a 5-conical point the lengths e´τ1pαkq and e´τ2pαkq are
comparable independently on k P I, one can replace the rectangle in Figure 2 by
the (smaller) square of length

e´maxtτ1papαkqq,τ2papαkqqu

and still get a covering5 (this time by balls on the L8 metric) of the set t5´conicalu.
Standard arguments on Hausdorff dimension give Equation (1.2).

Finding a lower bound for the Hausdorff dimension is more subtle, and usually
requires a probability measure to get hands on how the mass of a ball of radius r
scales with r.

In this case, since GpBπ1Sq is a subset the full flag space FpR3q and

}v}8 :“ maxt|τ1pvq|, |τ2pvq|u

is a norm on aPSLp3,Rq, we can apply results by Quint [39] to obtain a linear form
ϕ8 P a

˚ with
hmaxtτ1,τ2u “ }ϕ8}

1,

where } }1 is the operator norm on a˚ defined by } }8, which turns out to be the
L1 norm }aτ1 ` bτ2}

1 “ |a| ` |b|. The form ϕ8 additionally admits an associated
Patterson-Sullivan probability measure, namely a measure µ8 such that for all
γ P π1S one has (see Lemma 4.2)

µ8
`

GpγC8pγqq
˘

ď Ce´ϕ8papγqq. (1.3)

A key extra information available in the case of PSLp3,Rq is that we can deter-
mine ϕ8 explicitly. For this we need a small parenthesis on the critical hypersurface
Qρ of ρ, depicted in Figure 3, and characterized by

Qρ “
 

ϕ P a˚ : hϕ “ 1
(

,

5choosing the longer side e´mintτ1papαkqq,τ2papαkqqu gives the bound dimHff GpBπ1Sq ď 1.
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where, the entropy of a functional ϕ P a˚ is

hϕ :“ lim
tÑ8

1

t
log #

 

γ P π1S : ϕpapγqq ď tu P p0,8s.

The interest of the critical hypersurface lies in the fact that Qρ Ă a˚ is a closed
analytic curve that bounds a strictly convex set (S. [40] and Potrie-S. [36]), and
thus by Quint [39], the linear form ϕ8 is uniquely determined by

}ϕ8}
1 “ inf

 

}ϕ}1 : ϕ P Qρ
(

. (1.4)

Qρ

i

a˚

τ2

τ1

H “ τ1`τ2
2

ϕ8 “ hHH

Figure 3. The critical hypersurface of a strictly convex projective
structure on S. Since H is a convex combination of tτ1, τ2u one has
}H}1 “ 1 and thus }ϕ8}

1
“ hH.

Again by [36] one has tτ1, τ2u Ă Qρ. Together with i-invariance of the picture
(see again Figure 3) we deduce that, if we let H “ pτ1 ` τ2q{2, then

ϕ8 “ hH ¨ H ě hH mintτ1, τ2u. (1.5)

In particular, using Equation (1.4), we obtain that hmaxtτ1,τ2u “ hH.
After this small parenthesis on the critical hypersurface, we come back to the

lower bound on the Hausdorff dimension. Since G is a graph, GpBπ1Sq has the same
intersection with the rectangle in Figure 2 than with the larger square of size

e´mintτ1papαiqq,τ2papαiqqu;

this square is now a ball (for the L8 metric) of radius e´mintτ1papαiqq,τ2papαiqqu. Thus
for all i, G

`

αiC8pαiq
˘

is coarsely a ball of the latter radius and one has

µ8
`

BpGpxq, e´mintτ1papαiqq,τ2papαiqqu
˘

ď µ8
`

GpαiC8pαiq
˘

ď Ce´ϕ8papαiqq

ď C
`

e´mintτ1papαiqq,τ2papαiqqu
˘hH ,

where the last inequalities follow from Equations (1.3) and (1.5). This gives a
coarser constant C 1 such that, for all r,

µ8
`

BpGpxq, rq
˘

ď C 1rhH .

Again, classical Hausdorff dimension arguments (c.f. Corollary 5.9 below) give that,
for any measurable subset E Ă GpBπ1Sq with full µ8 mass, one has dimHffpEq ě
hH.
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A recent result by Burger-Landesberg-Lee-Oh [12, Theorem 1.6], implies, since
PSLp3,Rq has rank 2 ď 3 and ρ is ∆-Anosov, that µ8pt5-conicaluq “ 1 and thus we
have the desired lower bound

dimHff

`

t5-conicalu
˘

ě hH,

which combined with the upper bound (1.2) and the equality hmaxtτ1,τ2u “ hH,
gives the proof of Corollary A. �

We end this introduction with the following consequence of Theorem A for
Hitchin representations.

Corollary B. Let G be an adjoint real split group and ρ : π1S Ñ G a Zariski-dense
Hitchin representation. For ta, bu Ă ∆ consider the limit curve ξta,bu : Bπ1S Ñ
Fta,bu, then it is a Lipschitz curve and the Hausdorff dimension of the points where

it is non-differentiable coincides with hmaxta,bu. If the Dynkin diagram of g carries
a non-trivial involution i and b “ ia then hmaxta,bu “ hpa`bq{2.

Acknowledgements. We thank Katie Mann, Anna Wienhard and Maxime Wolff
for insightful conversations and Andrés Navas for pointing us to useful literature.

2. Linear algebraic groups

Throughout the text G will denote a real-algebraic semi-simple Lie group of
non-compact type and g its Lie algebra.

2.1. Linear algebraic groups. Fix a Cartan involution o : gÑ g with associated
Cartan decomposition g “ k‘ p. Let a Ă p be a maximal abelian subspace and let
Φ Ă a˚ be the set of restricted roots of a in g. For a P Φ, we denote by

ga “ tu P g : ra, us “ apaqu @a P au

its associated root space. The (restricted) root space decomposition is g “ g0 ‘
À

aPΦ ga, where g0 is the centralizer of a. Fix a Weyl chamber a` of a and let Φ`

and ∆ be, respectively, the associated sets of positive and simple roots. Let W be
the Weyl group of Φ and i : aÑ a be the opposition involution: if u : aÑ a is the
unique element in W with upa`q “ ´a` then i “ ´u.

We denote by p¨, ¨q both the Killing form of g, its restriction to a, and its asso-
ciated dual form on a˚, the dual of a. For χ, ψ P a˚ let

xχ, ψy “ 2
pχ, ψq

pψ,ψq
.

The restricted weight lattice is defined by

Π “ tϕ P a˚ : xϕ, ay P Z @a P Φu.

It is spanned by the fundamental weights t$a : a P ∆u, defined by

x$a, by “ daδab (2.1)

for every a, b P ∆, where da “ 1 if 2a R Φ` and da “ 2 otherwise.
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A subset θ Ă ∆ determines a pair of opposite parabolic subgroups Pθ and P̌θ
whose Lie algebras are defined by

pθ “
à

aPΦ`Yt0u

ga ‘
à

aPx∆´θy

g´a,

p̌θ “
à

aPΦ`Yt0u

g´a ‘
à

aPx∆´θy

ga.

The group P̌θ is conjugated to the parabolic group Piθ. We denote the flag space
associated to θ by Fθ “ G{Pθ. The G orbit of the pair prPθs, rP̌θsq is the unique

open orbit for the action of G in the product Fθ ˆ Fiθ and is denoted by F
p2q
θ .

2.2. Cartan and Jordan projection. Denote by K “ exp k and A “ exp a. The
Cartan decomposition asserts the existence of a continuous map a : G Ñ a`, called
the Cartan projection, such that every g P G can be written as g “ keapgql for some
k, l P K.

We will need the following standard fact.

Proposition 2.1 (Benoist [2, Proposition 5.1]). For any compact L Ă G there
exists a compact set H Ă a such that, for every g P G one has

apLgLq Ă apgq `H.

By the Jordan’s decomposition, every element g P G can be uniquely written as
a commuting product g “ gegssgu where ge is conjugate to an element in K, gss
is conjugate to an element in exppa`q and gu is unipotent. The Jordan projection
λ “ λG : G Ñ a` is the unique map such that gss is conjugated to exp

`

λpgq
˘

.

Definition 2.2. Let Γ Ă G be a discrete subgroup, then its limit cone LΓ is the
smallest closed cone of the closed Weyl chamber a` that contains tλpgq : g P Γu.

We will need the following result.

Theorem 2.3 (Benoist [3, 4]). Let Γ Ă G be a Zariski-dense subgroup, then its
limit cone LΓ has non-empty interior. Moreover, the group spanned by the Jordan
projections tλpgq : g P Γu is dense in a.

2.3. Representations of G. The standard references for the following are Fulton-
Harris [18], Humphreys [23] and Tits [46].

Let Φ : G Ñ PGLpV q be a finite dimensional rational6 irreducible representation
and denote by φΦ : gÑ slpV q the Lie algebra homomorphism associated to Φ. The
weight space associated to χ P a˚ is the vector space

Vχ “ tv P V : φΦpaqv “ χpaqv @a P Au.

We say that χ P a˚ is a restricted weight of Φ if Vχ ‰ 0. Tits [46, Theorem 7.2]
states that the set of weights has a unique maximal element with respect to the
partial order χ ą ψ if χ ´ ψ is a N-linear combination of positive roots. This is
called the highest weight of Φ and denoted by χΦ. By definition, for every g P G
one has

λ1

`

Φpgq
˘

“ χΦpλpgq
˘

. (2.2)

6i.e. a rational map between algebraic varieties.
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Moreover (see for example Humphreys [23, §13.4 Lemma B]), the set of restricted
weights Πpφq “

 

χ P a˚ : Vχ ‰ t0u
(

of the representation φΦ, is exactly the set of
weights bounded above by χΦ,

ΠpφΦq “ tχ P a
˚ : χ ă χΦu,

namely every weight χ P ΠpφΦq has the form

χΦ ´
ÿ

aP∆

naa for na P N.

The level of a weight χ is the integer
ř

a na, the highest weight is thus the only
weight of level zero.

One other fact we will need concerns the a-string of χ. If χ P ΠpφΦq and a P Φ`

then the elements of ΠpφΦq of the form χ` ja, j P Z form an unbroken string

χ` ja, j P J´r, qK

and r´q “ xχ, ay. One can then recover algorithmically the set ΠpφΦq level by level
starting from χΦ, as follows:

- assume the set of weights of level ď k is known and consider a weight χ of
level k.

- For each a P ∆ compute xχ, ay, this gives the length r ´ q of the a-string
through χ. The weights of the form χ ` ja, for positive j, have level ď k
and are thus known, thus we can decide whether χ´ a is a weight or not,
determining the set of weights of level k ` 1.

We record the following Lemma that follows at once from the algorithmic de-
scription above.

Let g “
À

i gi be the decomposition in simple factors of a semi-simple real Lie
algebra of the non-compact type. Recall that if ai Ă gi is a Cartan subspace, then
a “

À

i ai is a Cartan subspace of g. Any ϕ P paiq
˚ extends to a functional, still

denoted ϕ, on a vanishing on the remaining factors. The restricted root system of g
is then ∆g “

Ť

∆gi . The associated simple factor to a P ∆g is gi such that a P ∆i.

Lemma 2.4. Let g be a semi-simple real Lie algebra of non-compact type and φ be
an irreducible representation of g whose highest restricted weight is a multiple of a
fundamental weight, χφ “ k$a for some a P ∆. Then φ factors as a representation
of the simple factor associated to a.

Proof. Proceeding by induction on the levels of φ, one readily sees that for every
τ P ∆j for j ‰ i and all χ P Πpφq one has xχ, τy “ 0. Thus the associated root
space pgjq´τ acts trivially on every weight space of φ and so the whole factor gj
acts trivially. �

The following set of simple roots plays a special role in representation theory.

Definition 2.5. The set of simple roots a P ∆ such that χΦ ´ a is still a weight of
Φ is denoted by θΦ. Equivalently (see Humphreys [23]), one has

θΦ “
 

a P ∆ : xχΦ, ay ‰ 0
(

. (2.3)

The following Lemma will be needed in Theorem B.

Lemma 2.6. Let g be semi-simple of the non-compact type and φ : g Ñ glpV q an
irreducible representation. Consider a P θφ, then no element of g´a acts trivially
on V `.
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Proof. By definition of χφ every n P ga acts trivially on V `. Consider then y P
g´a´t0u, there exists then x P ga such that tx, y, hau spans a Lie algebra isomorphic
to 2pRq, where ha is defined by ϕphaq “ xϕ, ay for all ϕ P a˚. If φpyqV ` “ 0 then,
since φpxqV ` “ 0 one concludes φphaqV

` “ 0. This in turn implies that

xχφ, ay “ χφphaq “ 0

contradicting that a P θφ. �

We denote by } }Φ an Euclidean norm on V invariant under ΦK and such that ΦA
is self-adjoint, see for example Benoist-Quint’s book [6, Lemma 6.33]. By definition
of χΦ and } }Φ one has, for every g P G, that

log }Φg}Φ “ χΦpapgqq. (2.4)

Here, with a slight abuse of notation, we denote by } }Φ also the induced operator
norm, which doesn’t depend on the scale of } }Φ.

Denote by WχΦ
the ΦA-invariant complement of VχΦ

. The stabilizer in G of WχΦ

is P̌θΦ , and thus one has a map of flag spaces

pζΦ, ζ
˚
Φq : F

p2q
θΦ
pGq Ñ Gr

p2q
dimVχΦ

pV q. (2.5)

This is a proper embedding which is an homeomorphism onto its image. Here

Gr
p2q
dimVχΦ

pV q is the open PGLpV q-orbit in the product of the Grassmannian of

pdimVχΦq-dimensional subspaces and the Grassmannian of pdimV ´ dimVχΦq-
dimensional subspaces. One has the following proposition (see also Humphreys
[24, Chapter XI]).

Proposition 2.7 (Tits [46]). For each a P ∆ there exists a finite dimensional
rational irreducible representation Φa : G Ñ PSLpVaq, such that χΦa is an integer
multiple la$a of the fundamental weight and dimVχΦa

“ 1.

We will fix from now on such a set of representations and call them, for each
a P ∆, the Tits representation associated to a.

2.4. The center of the Levi group PθXP̌θ. We now consider the vector subspace

aθ “
č

aP∆´θ

ker a.

It is equipped with a projection πθ : aÑ aθ uniquely determined by being invariant
under the subgroup Wθ of the Weyl group spanned by reflections associated to roots
in ∆´ θ: Wθ “ tw PW : wpvq “ v @v P aθu.

Its dual paθq
˚ is canonically identified with the subspace of a˚ of πθ-invariant

linear forms. Such space is spanned by the fundamental weights of roots in θ

paθq
˚ “ tϕ P a˚ : ϕ ˝ πθ “ ϕu “ x$a|aθ : a P θy.

We will denote by λθ “ πθ ˝ λ : G Ñ aθ X a` the composition of the Jordan
projection and the projection πθ.
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2.5. The Buseman-Iwasawa cocycle. The Iwasawa decomposition of G states
that every g P G can be written uniquely as a product lzu with l P K, z P A and
u P U∆, where U∆ is the unipotent radical of P∆.

The Buseman-Iwasawa cocycle of G is the map b : Gˆ F Ñ a such that, for all
g P G and krP∆s P F,

bpg, krP∆sq “ logpzq

where log : A Ñ a denotes the inverse of the exponential map, and gk “ lzu is
the Iwasawa decomposition of gk. Quint [39, Lemmes 6.1 and 6.2] proved that the
function bθ “ pθ ˝ b factors as a cocycle bθ : Gˆ Fθ Ñ aθ.

The Buseman-Iwasawa cocycle can also be read from the representations of G.
Indeed, Quint [39, Lemme 6.4] shows that for every g P G and x P Fθ one has

la$apbpg, xqq “ log
}Φapgqv}Φ
}v}Φ

, (2.6)

where v P ζΦapxq P PpVaq is non-zero, and la is as in Proposition 2.7.

2.6. Gromov product and Cartan attractors. For a decomposition Kd “ `‘V
into a line ` and a hyperplane V together with an inner (Hermitian) product o on
Kd, one defines the Gromov product by

GpV, `q “ GopV, `q :“ log
|ϕpvq|

}ϕ}}v}
“ log sin >op`, V q,

for any non-vanishing v P ` and ϕ P pKdq˚ with kerϕ “ V.

On then considers the Gromov product Gθ : F
p2q
θ Ñ aθ defined, for every px, yq P

F
p2q
θ and a P θ, by

la$a

`

Gθpx, yq
˘

“ GΦapζ˚Φa
x, ζΦayq “ log sin >Φa

`

ζΦay, ζ
˚
Φa
xq,

where ζ˚Φa
and ζΦa are the equivariant maps from Equation (2.5). From S. [41,

Lemma 4.12] one has, for all g P G and px, yq P F
p2q
θ ,

Gθpgx, gyq ´ Gθpx, yq “ ´
`

i biθpg, xq ` bθpg, yq
˘

. (2.7)

If g “ k exppapgqql is a Cartan decomposition of g P G we define its θ-Cartan
attractor (resp. repeller) by

Uθpgq “ krPθs P Fθ and Uiθpg
´1q “ l´1rP̌θs P Fiθ.

The Cartan basin of g is defined, for α ą 0, by

Bθ,αpgq “
 

x P Fθ : $aGθ
`

Uiθpg
´1q, x

˘

ą ´α, @a P θ
(

.

Remark 2.8. Observe that a statement of the form $aGθpx, yq ě ´κ for all a P θ is
a quantitative version (depending on the choice of K) of the transversality between
x and y; in particular it implies that x and y are transverse.

Neither the Cartan attractor nor its basin are uniquely defined unless for all
a P θ one has a

`

apgq
˘

ą 0, regardless one has the following:

Remark 2.9. Given α ą 0 there exists a constant Kα such that if y P Fθ belongs to
Bθ,αpgq then one has

›

›aθpgq ´ bθpg, yq
›

› ď Kα. (2.8)
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Indeed, using Tits’s representations of G and Equations (2.4) and (2.6) this boils
down to the elementary fact that if A P GLdpRq verifies τ1papAqq ą 0 then for every
v P Rd one has

log
}Av}

}v}
ě log }A} ` log sin >

`

R ¨ v, Ud´1pA
´1q

˘

(see for example [9, Lemma A.3]).

3. Hölder cocycles on BΓ

Let Γ be a finitely generated, non-elementary, word-hyperbolic group. Denote
by g “

`

gt : UΓ Ñ UΓ
˘

tPR
the Gromov-Mineyev geodesic flow of Γ (see Gromov [19]

and Mineyev [33]). Throughout this section we will have the same assumptions as
in S. [44, § 3], namely that g is metric-Anosov and that the lamination induced on

the quotient by rWcu “ tpx, ¨, ¨q P ĂUΓu is the central-unstable lamination of g.
Since we will mostly recall needed results from S. [44, § 3] we do not overcharge

the paper with the definitions of metric-Anosov and central-unstable lamination: by
Bridgeman-Canary-Labourie-S. [10], word-hyperbolic groups admitting an Anosov
representation verify the required assumptions.

Definition 3.1. Let V be a finite dimensional real vector space. A Hölder cocycle
is a function c : Γˆ BΓ Ñ V such that:

- for all γ, h P Γ one has c
`

γh, x
˘

“ c
`

h, x
˘

` c
`

γ, hpxq
˘

,
- there exists α P p0, 1s such that for every γ P Γ the map cpγ, ¨q is α-Hölder

continuous.

Recall that every hyperbolic element7 γ P Γ has two fixed points on BΓ, the
attracting γ` and the repelling γ´. If x P BΓ´tγ´u then γnxÑ γ` as nÑ8. The
period of a Hölder cocycle for a hyperbolic γ P Γ is `cpγq :“ c

`

γ, γ`
˘

. A cocycle
c˚ : Γˆ BΓ Ñ R is dual to c if for every hyperbolic γ P Γ one has

`c˚pγq “ `c
`

γ´1
˘

.

3.1. Real-valued coycles. Assume now V “ R and consider a cocycle κ with
non-negative (and not all vanishing) periods. For t ą 0 we let

Rtpκq “
 

rγs P rΓs hyperbolic : `κpγq ď t
(

and define the entropy of κ by

hκ “ lim sup
tÑ8

1

t
log #Rtpκq P p0,8s.

For such a cocycle consider the action of Γ on BΓˆ R via κ:

γ ¨ px, y, tq “ pγx, γy, t´ κ pγ, yqq . (3.1)

The following is a straightforward consequence of S. [44, Theorem 3.2.2].

Proposition 3.2. Let κ be a Hölder cocycle with non-negative periods and finite
entropy. The above action of Γ on BΓˆR is properly-discontinuous and co-compact.

If moreover c is another Hölder cocycle with non-negative periods and finite en-
tropy then there exists a Γ-equivariant bi-Hölder-continuous homeomorphism E :
BΓˆ RÑ BΓˆ R which is an orbit equivalence between the R-translation actions.

7i.e. an infinite order element
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We recall the notion of dynamical intersection, a concept from Bridgeman-
Canary-Labourie-S. [10] for Hölder functions over a metric-Anosov flow, that can
be pulled back to this setting via the existence of the Ledrappier potential of κ from
S. [44, § 3.1].

For a second real valued cocycle c, the dynamical intersection

Ipκ, cq “ lim
tÑ8

1

Rtpκq

ÿ

γPRtpκq

`cpγq

`κpγq
. (3.2)

We record in the following Proposition various needed facts about I:

Proposition 3.3 ([10, § 3.4]). The dynamical intersection defined above is well de-
fined, linear in the second variable and for all positive s satisfies Ipsκ, cq “ Ipκ, cq{s.
If also c has non-negative periods and finite entropy then Ipκ, cq ě hκ{hc.

We will also need the following definitions.

Definition 3.4.
- A Patterson-Sullivan measure for κ of exponent δ P R` is a probability

measure µ on BΓ such that for every γ P Γ one has

dγ˚µ

dµ
p¨q “ e´δ¨κpγ

´1, ¨ q. (3.3)

- Let κ˚ be a cocycle dual to κ, then a Gromov product for the ordered pair
pκ˚, κq is a function r¨, ¨s : B2Γ Ñ R such that for all γ P Γ and px, yq P B2Γ
one has

rγx, γys ´ rx, ys “ ´
`

κ˚pγ, xq ` κpγ, yq
˘

.

3.2. The critical hypersurface and intersection. Let now c : Γ ˆ BΓ Ñ V be
a Hölder cocycle. Its limit cone is denoted by

Lc “
ď

γPΓ

R` ¨ `cpγq

and its dual cone by
`

Lc
˘˚
“ tψ P V ˚ : ψ|Lc ě 0u. Observe that for every

ϕ P int
`

Lc
˘˚

, ϕ ˝ c is a real-valued cocycle, so the concepts from Section 3.1
apply. We denote by

Qc “
!

ϕ P int
`

Lc
˘˚

: hϕ˝c “ 1
)

(3.4)

Dc “

!

ϕ P int
`

Lc
˘˚

: hϕ˝c P p0, 1q
)

Ă

!

ϕ P V ˚ :
ÿ

rγsPrΓs

e´ϕp`cpγqq ă 8
)

respectively the critical hypersurface and the convergence domain of c.

For ϕ P int
`

Lc
˘˚

we consider the linear map Iϕ “ Icϕ : V ˚ Ñ R defined by

Icϕpψq :“ Ipϕ ˝ c, ψ ˝ cq,

as in Equation (3.2). The natural identification between hyperplanes in V ˚ and
PpV q is used in the next proposition.

Corollary 3.5 (S. [44, Cor. 3.4.3]). Assume Lc has non-empty interior and that

there exists ψ P
`

Lc
˘˚

such that hψ ă 8. Then Dc is a strictly convex set with
boundary Qc. The latter is an analytic co-dimension-one sub-manifold of V. The
map uc : Qc Ñ PpV q defined by

ϕ ÞÑ ucϕ :“ TϕQc “ ker Iϕ
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is an analytic diffeomorphism between Qc and int
`

PpLcq
˘

.

We end this section with the following technical Lemma needed in Lemma 5.10.

Lemma 3.6. Assume V is 2-dimensional. Fix linearly independent τ, ψ P int
`

Lc
˘˚
,

and consider the operator norm } }1 on V ˚ associated to the L8 the norm defined,
for v P V, by }v}8 “ maxt|τpvq|, |ψpvq|u. Assume without less of generality that
hψ ě hτ . If

Iτ pψq ě 1 (3.5)

and we let ϕ8 be the unique form on Qc minimizing } }1, then ϕ8{}ϕ8}
1 is a convex

combination sτ ` p1´ sqψ with s P p0, 1q.

Observe that if hψ “ hτ then Proposition 3.3 implies Equation (3.5) is satisfied.
The fact that Qc is strictly convex implies uniqueness of a form in Qc minimizing
} }1. The Lemma states that this unique linear form lies in the cone ttψ : t ě
0u ˆ tsτ : s ě 0u.

Proof. Using the identification TτQc “ ker Iτ and strict convexity of Qc, both facts
from Corollary 3.5, the Lemma readily follows as in Figure 4 which we now explain.
The blue rhombus in the middle is the sphere t}ϕ}1 “ 1u, the red line, tangent to
Qc at hττ, is the level set Ihττ p¨q “ 1, whence its intersection with the ψ-axis is
ψ{Ihττ pψq. Equation (3.5) implies the ordering

0 ă
1

Ihττ pψq
ď hτ ď hψ,

giving that the sphere t} }1 “ hτu intersects Qc in thττu and some other point ψ
in the segment rhττ,hτψs, an application of Lagrange’s classical result provides a
unique tangent to Qc in the cone ttψ : t ě 0u ˆ tsτ : s ě 0u as desired. �

Qc

V ˚

hψψ

hτττ

hτψ

ψ

ψ

ψ
Ihτ τ pψq

“ hτ
Iτ pψq

ψ
ϕ8

hττ ` ThττQc

Figure 4. The situation of Lemma 3.6.

3.3. Ergodicity of directional flows. It follows from Proposition 3.2 that if there

exists ψ P
`

Lc
˘˚

with hψ ă 8 then the Γ-action B2Γˆ V

γpx, y, vq “
`

γx, γy, v ´ cpγ, yq
˘

is properly discontinuous.
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Definition 3.7. A real valued cocycle c is non-arithmetic if the periods of c span
a dense subgroup in V.

We fix ϕ P Qc and denote by uϕ P uϕ the unique vector in LcXuϕ with ϕpuϕq “ 1.
We define then the directional flow ωϕ “

`

ωϕt : Γz
`

B2Γˆ V
˘

Ñ Γz
`

B2Γˆ V
˘˘

tPR
by

t ¨ px, y, vq “ px, y, v ´ tuϕq.

Assumption 3.8. We assume there exists:

- a dual cocycle pϕ ˝ cq˚,
- a Gromov product r , sϕ for such a pair,
- Patterson-Sullivan measures, µϕ and µϕ, respectively for each of the co-

cycles; (the exponent of both measures is then necessarily hϕ “ 1 S. [44,
Proposition 3.3.2]).

Consider then the ϕ-Bowen-Margulis measure Ωϕ on Γz
`

B2ΓˆV
˘

defined as the
measure induced on the quotient by the measure

e´r¨,¨sϕµϕ b µϕ b LebV , (3.6)

for a V -invariant Lebesgue measure on V. We denote by Kpωϕq the recurrent set of
the directional flow ωϕ:

Kpωϕq :“ tp P Γz
`

B2Γˆ V
˘
ˇ

ˇ DB open bounded, tn Ñ8 with ωϕtnppq P Bu.

Corollary 3.9 (S. [44, Cor. 3.6.1]). Assume that c is non-arithmetic, that there

exists ψ P
`

Lc
˘˚

with hψ ă 8, and that the existence assumptions in 3.8 hold. If
dimV ď 2 then the directional flow ωϕ is Ωϕ-ergodic, in particular Kpωϕq has total
mass. If dimV ě 4 then Kpωϕq has measure zero.

4. Subspace conicality for Anosov representations: Theorem D

4.1. Gromov hyperbolic groups and cone types. Let Γ be a finitely generated
group, and fix a finite generating set S. A group Γ is Gromov hyperbolic if its
Cayley graph CaypΓ, Sq is a Gromov hyperbolic geodesic metric space. In this case
we denote by BΓ its Gromov boundary, namely the equivalence classes of (quasi)-
geodesic rays. It is well known that, up to Hölder homeomorphism BΓ doesn’t
depend on the choice of the generating set S. We will furthermore denote by B2Γ
the set of distinct pairs in BΓ:

B2Γ :“ tpx, yq P BΓˆ BΓ|x ‰ yu.

Definition 4.1. A divergent sequence tγnunPN Ă Γ converges to a point x P BΓ
conically if for every y P BΓ´txu the sequence pγ´1

n y, γ´1
n xq remains on a compact

set of B2Γ.

Recall from the introduction that, given γ P Γ we denote by Cpγq the cone type
of γ P Γ, namely

Cpγq :“ th P Γ| dpe, γhq “ dpe, γq ` dpe, hqu.

Cannon showed [13] the set of cone types of a Gromov hyperbolic group is finite,
see for example Bridson-Haefliger’s book [11, P. 455]. We denote by C8pγq Ă BΓ
the set of points x that can be represented by a geodesic ray contained in C8pγq,
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We will require a coarse version of these. Recall that a sequence pαjq
8
0 is a

pν, cq-quasigeodesic if for every pair j, l it holds

1

ν
|j ´ l| ´ c ď dΓpαj , αlq ď ν|j ´ l| ` c.

We associate to every element γ a coarse cone type at infinity, consisting of end-
points at infinity of quasi geodesic rays based at γ´1 passing through the identity:

Cν,c8 pγq “
!

rpαjq
8
0 s P BΓ| pαiq

8
0 is a pν, cq-quasigeodesic, α0 “ γ´1, e P tαju

)

.

Bcpeq

γ´1 Γ

C
ν,c
8 pγq

Figure 5. The coarse cone type at infinity, picture borrowed from P.-
S.-Wienhard [37].

We record the following lemma for later use, the first inclusion follows from the
definitions, the second one by hyperbolicity of Γ.

Lemma 4.2. Given ν, c there exists N ą 0 such that if pαiq
8
0 is a geodesic ray

through e then for all i P N one has

αi`NC8pαi`N q Ă αi`NCν,c8 pαi`N q Ă αiC8pαiq.

4.2. Anosov representations. Fix a subset θ Ă ∆. Let Γ be a finitely generated
group and denote by | | the word-length associated to the finite generating set S of
Γ.

Definition 4.3. Following8 Kapovich-Leeb-Porti [26], a representation ρ : Γ Ñ G
is θ-Anosov if there exists positive constants C and µ such that for all γ P Γ and
a P θ one has

apapργqq ě µ|γ| ´ C.

If G “ PGLpd,Rq and θ “ tτ1u we say that ρ is projective Anosov.

Anosov representations were introduced by Labourie [30] and further developed by
Guichard-Wienhard [21]. They have played a central role in understanding the
Hitchin component of split groups (see below) and are considered nowadays as the
higher-rank generalization of convex co-compact groups. We refer the reader to the
surveys by Kassel [27] and Wienhard [47] for further information.

Remark 4.4. A Zariski-dense representation ρ : Γ Ñ G is θ-Anosov if and only if ρ
is a quasi-isometric embedding and its limit cone Lρ does not meet any wall ker a
for a P θ : this follows from the definition since by Benoist [3], for Zariski dense
representations, the limit cone Lρ equals the asymptotic cone.

8see also Bochi-Potrie-S. [9] and Guéritaud-Guichard-Kassel-Wienhard [20]
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A useful property of θ-Anosov representations is that their limit set ΛΓ Ă Fθ,
namely the minimal Γ-invariant subset in Fθ, is parametrized by the Gromov
boundary of the group Γ, see Kapovich-Leeb-Porti [26], Guéritaud-Guichard-Kassel-
Wienhard [20]. We will need the following precise statement.

Proposition 4.5 (Bochi-Potrie-S. [9, Proposition 4.9 ]). If ρ : Γ Ñ G is θ-Anosov,
then for any geodesic ray pαnq

8
0 with endpoint x, the limits

ξθρpxq :“ lim
nÑ8

Uθpραnq ξiθ
ρ pxq :“ lim

nÑ8
Uiθpραnq

exist and do not depend on the ray; they define continuous ρ-equivariant transverse
maps ξθ : BΓ Ñ Fθ, ξiθ : BΓ Ñ Fiθ. If γ P Γ is hyperbolic, then γρ is θ-proximal
with attracting point ξθpγ`q “ pγρq

`
θ .

The Gromov product gives the following criterion to understand limit points of
conical sequences (recall Definition 4.1) in case of Anosov representations, it will
be useful in the proof of Proposition 4.18.

Lemma 4.6. Let ρ : Γ Ñ G be θ-Anosov. If tγnu Ă Γ is a conical sequence, x P BΓ,
and there exists a P θ such that $aGθ

`

Uiθpργnq, ξ
θpxq

˘

Ñ ´8, then γn Ñ x.

Proof. We denote by y the endpoint of the conical sequence γn. Proposition 4.5
implies that Uiθpργnq Ñ ξiθpyq. Since, however, $aGθ

`

Uiθpργnq, ξ
θpxq

˘

Ñ ´8,

we deduce that ξiθpyq is not transverse to ξθpxq (recall Remark 2.8). Since ξθ is
transverse, we deduce that x “ y. �

Another application of the Gromov product is to quantify the transversality of
the Cartan attractors along images of geodesic segments through Anosov represen-
tations:

Proposition 4.7 (Bochi-Potrie-S. [9, Lemma 2.5]). If ρ : Γ Ñ G is θ-Anosov then
there exist L P N and δρ ą 0 such that for every geodesic segment through the
identity tαiu

k
´m with k,m ě L one has, for all a P θ,that

$aGθ
`

Uiθpρα´mq, Uθpραkq
˘

ě ´δρ.

The following standard linear algebra computation allows to obtain precise esti-
mates for the action of projective Anosov representations on the projective space.

Lemma 4.8. Fix an Hermitian product on Cn, then given α ą 0 there exists C ą 0
such that if h P GLpd,Cq is such that τ1paphqq ą 0, then for all `1, `2 P PpC

dq with
>p`i, Ud´1ph

´1qq ą ´α one has

dPph`1, h`2q ď Ce´τ1paphqqdPp`1, `2q.

Proof. This is very standard, we add some comments for completeness. Indeed the
result follows by applying, for example, [38, Lemma 2.8] to g “ h´1, P “ U1phq
and Q “ hUd´1phq. �

One has thus the following consequences of Lemma 4.8 and Proposition 4.5, see
for example P.-S.-Wienhard [38, §4.1] for details.

Proposition 4.9. Let ρ : Γ Ñ PGLpd,Kq be projective Anosov and consider positive
ν and c. Then there exists a constant K, depending on ν, c and ρ such that for
every large enough γ P Γ one has

ξ1
`

γCν,c8 pγq
˘

Ă B
`

U1pργq,Ke
´τ1papργqq

˘

.
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Moreover, there exist C and µ ą 0 given α ą 0 and `1, `2 P PpK
dq with

G
`

`1, Ud´1pργ
´1

˘

ě ´α and G
`

`2, Ud´1pργ
´1

˘

ě ´α

one has dPpρpγqx, ρpγqyq ď Ce´µ|γ|dpx, yq.

Proof. Follows directly from Proposition 4.7 and Lemma 4.8. �

4.3. Patterson-Sullivan Theory of Anosov representations. If ρ is a θ-Anosov
representation, then we can pullback the Buseman-Iwasawa cocycle of G using the
equivariant maps. To be more precise, the refraction cocycle associated to a θ-
Anosov representation ρ : Γ Ñ G is β : Γˆ BΓ Ñ aθ given by

βpγ, xq “ βθ,ρpγ, xq “ bθ
`

ρpγq, ξθρpxq
˘

.

Bridgeman-Canary-Labourie-S. [10, Theorem 1.10] show that the Mineyev geodesic
flow of a group Γ admitting an Anosov representations is metric-Anosov, and thus
§ 3 applies to β. Moreover, the following fact places β in the assumptions required
in § 3.1 and § 3.2, see S. [44] for details.

Fact. The periods of the refraction cocycle equal the θ-Jordan projection: βpγ, γ`q “
λθpργq. For any a P θ the real valued cocycle $aβ has finite entropy.

We import the following concepts of cocycles to the setting of Anosov represen-
tations:

- The limit cone of β will be denoted by Lθ,ρ and referred to as the θ-limit
cone of ρ; it is the smallest closed cone that contains the projected Jordan
projections tλθpργq : γ P Γu.

- The interior of the dual cone int
`

Lθ,ρ
˘˚
Ă a˚θ consists of linear forms whose

entropy

hϕ “ lim
tÑ8

1

t
log #

 

rγs P rΓs : ϕpλθpργqq ď t
(

is finite.
- The θ-critical hypersurface, resp. θ-convergence domain, of β will be de-

noted by

Qθ,ρ “
!

ϕ P int
`

Lθ,ρ
˘˚

: hϕ “ 1
)

Dθ,ρ “

!

ϕ P int
`

Lθ,ρ
˘˚

: hϕ P p0, 1q
)

“

!

ϕ P paθq
˚ :

ÿ

γPΓ

e´ϕpapργqq ă 8
)

.

The second equality in this case follows from S. [44, § 5.7.2].
- If Lθ,ρ has non-empty interior, then we have a duality diffeomorphism be-

tween Qθ,ρ and intPpLθ,ρq given by

ϕ ÞÑ uϕ “ TϕQρ.

More information on these objets can be found on S. [44, § 5.9].

We observe that for ϕ P int
`

Lθ,ρ
˘˚

the existence assumptions of § 3.3 are also
guaranteed for βϕ :“ ϕ ˝ β. Indeed the cocycle

βpγ, xq “ i biθ

`

γρ, ξ
iθpxq

˘

is dual to β, from Equation (2.7) the function r¨, ¨sϕ : B2Γ Ñ R

rx, ysϕ “ ϕ
´

Gθ
`

ξiθpxq, ξθpyq
˘

¯

(4.1)
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is a Gromov product for the pair pβϕ, βϕq, and we have the following result guar-
anteeing existence of Patterson-Sullivan measures µϕ and µϕ (the last assertion
follows from the inclusion in Proposition 4.9 and the cited Lemma).

Corollary 4.10 (S. [44, Cor. 5.5.3+Lemma 5.7.1]). For every ϕ P int
`

Lθ,ρ
˘˚

there
exists a βϕ-Patterson-Sullivan measure µϕ of exponent hϕ, moreover there exists a
constant C such that for every γ P Γ one has

µϕ
`

γC8pγq
˘

ď Ce´hϕϕ
`

apργq
˘

. (4.2)

4.4. Subspace-conicality. In this section we are interested on a notion of coni-
cality along higher dimensional subspaces of the ambient Levi space. Let ρ : Γ Ñ G
be a θ-Anosov representation.

Definition 4.11. Consider a subspace W Ă aθ and assume, for the notion to be
interesting, that W intersects the relative interior of Lθ,ρ, then x P BΓ is W-conical
if there exists a conical sequence tγnu

8
0 Ă Γ converging to x, a constant K and

twnu
8
0 Ă W such that for all n one has

›

›a
`

ρpγnqq ´ wn
›

› ď K.

The set of such points will be denoted by BW,ρΓ “ BWΓ.

Consider ϕ P paθq
˚ with uϕ Ă W. The intersection Wϕ “ W X kerϕ has co-

dimension 1 in W and has trivial intersection with the limit cone Lθ,ρ. Consider the
quotient space V “ aθ{Wϕ equipped with the quotient projection Π : aθ Ñ V. We
say that ρ is pW, ϕq-non-arithmetic if the group spanned by

 

Πpλθpργqq : γ P Γ
(

is
dense in V. In this section we prove the following.

Theorem 4.12. Let ρ : Γ Ñ G be θ-Anosov representation, W be a subspace of aθ
intersecting non-trivially the relative interior of Lθ,ρ, and ϕ P paθq

˚ with uϕ Ă W.
Assume ρ is pW, ϕq-non-arithmetic, then:

‚ if W has codimension 1 then µϕpBWΓq “ 1;
‚ if codim W ě 3 then µϕpBWΓq “ 0.

Observe that if ρ is Zariski-dense then Benoist [4] (Theorem 2.3) guarantees
pW, ϕq-non-arithmeticity for every ϕ P paθq

˚ with uϕ P PpWq, thus Theorem 4.12
readily implies Theorem D.

The remainder of the section is devoted to the proof of Theorem 4.12. Let

V ˚ “ AnnpWϕq “ tψ P paθq
˚ : ψ|Wϕ ” 0u,

with a slight abuse of notation we will identify the dual of V with V ˚ Ă paθq
˚ Ă

a˚ (recall from Section 2.4 that we are identifying paθq
˚ with the subspace of a˚

consisting of πθ-invariant linear forms).
The composition of the refraction cocycle of ρ with Π is a V -valued Hölder

cocycle v : Γˆ BΓ Ñ V,
vpγ, xq “ Π

`

βpγ, xq
˘

.

Its periods are vpγ, γ`q “ Π
`

λθpργq
˘

, and thus its limit cone is Lv “ ΠpLθ,ρq. By
pW, ϕq-non-arithmeticity, Lv Ă V has non-empty interior.

The heart of the proof of Theorem 4.12 consits on relating pW, ϕq-conical points

with elements of rK
`

ωϕ
˘

, where ωϕ is the directional flow on ΓzB2Γˆ V associated
to the cocycle v as in § 3.3. The first step is thus to observe that we can apply
Corollary 3.9 to v, a task we enter at this point.
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Since ϕ P Qθ,ρ, it has in particular finite entropy. Moreover, by definition of V ˚

one has ϕ P V ˚. Consequently, the cocycle v verifies assumptions in Corollary 3.5.
One can moreover transfer existence properties from β to v, indeed one has the
following.

Proposition 4.13. The cocycle v “ Π ˝β is a dual cocycle for v. For each ψ P Qv

there exist Paterson-Sullivan measures for v and v and the projection ψ
`

Π
`

r¨, ¨s
˘˘

is a Gromov product for the pair ψ ˝ v, ψ ˝ v.

Proof. Since ψ P Qv “ Qθ,ρ X V ˚ we can apply Corollary 4.10 to ψ to obtain the
desired Patterson-Sullivan measure, the remaining statements follow trivially as the
equalities are linear. �

Since we are assuming pW, ϕq-non-arithmecity, the cocycle v is non-arithmetic
and thus Corollary 3.9 gives the following dynamical information, observe that
dimV “ codim W ` 1.

Corollary 4.14. If codim W ď 1 then the directional flow ωϕ is Ωϕ-ergodic, in
particular Kpωϕq has total mass. If codim W ě 3 then Kpωϕq has measure zero.

Observe that modulo the understood identifications Qv “ Qθ,ρ X V
˚, hence

TϕQv “ pTϕQθ,ρq X V
˚

and thus the map from Corollary 3.5 uv : Qv Ñ intPpLvq verifies uv
ϕ “ Πpuϕq.

So measuring W-conicality with respect to µϕ translates to directional conicality
along the direction uv

ϕ, which we now recall. We fix an arbitrary norm } } on V and
denote, for ` P PpV q and r ą 0, the r-tube about ` by Trp`q and define it as the
r-tubular neighborhood in V of `.

Definition 4.15. A point y P BΓ is uv
ϕ-conical if there exists r ą 0 and a conical

sequence tγnu
8
0 Ă Γ with γn Ñ y such that for all n one has Π

`

aθpρpγnqq
˘

P Trpu
v
ϕq.

The next statement follows from the definitions.

Lemma 4.16. A point y P BΓ is W-conical if and only if it is uv
ϕ-conical.

If we are allowed to worsen the constants, we can replace, in Definition 4.15, the
conical sequence pγnq with an infinite subset of a geodesic ray:

Lemma 4.17. A point y P BΓ is uv
ϕ-conical if and only if there exists r ą 0, a

geodesic ray pαiq
8
0 converging to y and an infinite set of indices I Ă N such that

for all k P I one has

Π
´

apραkq
¯

P Trpu
v
ϕq.

Proof. Assume y is uv
ϕ-conical, then since tγnu

8
0 is conical, given x P BΓ´tyu there

exists a subsequence (still denoted by tγnu) such that pγ´1
n x, γ´1

n yq converges on
B2Γ. Equivalently, for any geodesic ray pαnq

8
0 converging to y there exists K ą 0

and a subsequence tαnku such that for all k one has dΓpαnk , γkq ă K. Proposition
2.1 implies then that for all k one has

}apραnkq ´ apργkq}

is bounded independently of k. This implies the result. �
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We now relate uv
ϕ-conicality with the recurrence set Kpωϕq. By definition of

Kpωϕq, a point px, y, vq P B2Γ ˆ V projects to Kpωϕq if and only if there exists
divergent sequences pγnq Ă Γ and tn Ñ `8 in R such that

ωϕtnγ
´1
n px, y, vq “

`

γ´1
n x, γ´1

n y, v ´ vpγ´1
n , xq ´ tnuϕ

˘

(4.3)

is contained in a subset of the form tpz, wq P B2Γ : dpz, wq ě κu ˆBpv,Kq for some
distance d on BΓ. One has the following

Proposition 4.18. A point y P BΓ is uv
ϕ-conical if and only if for every x P BΓ´tyu

and v P V the point px, y, vq projects to Kpωϕq.

Proof. The implication (ñ) follows exactly as in the proof of S. [44, Proposition
5.12.4]. The other implication also follows similarly but with a minor difference we
now explain. Assume that px, y, vq projects to Kpωϕq and consider sequences tγnu
and tn as in Equation (4.3).

Since
`

γ´1
n x, γ´1

n y
˘

remains in a compact subset of B2Γ, the sequence tγnu is
conical, we will show now that γn Ñ y. Indeed, since tn Ñ `8 one readily sees
that necessarily vpγ´1

n , yq Ñ ´8.

Consider now any root a P θ, with associated fundamental weight $a P
`

Lθ,ρ
˘˚

,
and Tits representation Φa : G Ñ V . Since ρ is θ-Anosov, the Hölder cocycle β$a

has positive periods and finite entropy. Since vpγ´1
n , yq Ñ ´8 Proposition 3.2

implies that

β$apγ
´1
n , y

˘

Ñ ´8.

By definition of the cocycle β and Equation (2.6) we have

}Φaρpγ
´1
n qv}

}v}
Ñ 0 (4.4)

for a non-zero v P ζapξpyqq, (recall that the map ζa : FapGq Ñ PpV q was defined
in Equation (2.5)). Setting dimV “ d, a standard linear algebra computation (for
example in Bochi-Potrie-S. [9, Lemma A.3]) gives

}Φaρpγ
´1
n qv}

}v}
ě
›

›Φaρpγ
´1
n q

›

› sin >
`

ζaξpyq, Ud´1pΦaργnq
˘

ě ela$aGθ

`

Uθpργnq,y
˘

and thus, by Equation (4.4) and Lemma 4.6 one has γn Ñ y, as desired.
The point ξpyq lies then in the pushed Cartan basin ρpγnqBθ,αpρpγnqq for an α

independent of n, and thus Equation (2.8) gives a constant K such that for all n
one has

K ě
›

›aθ
`

ρ, ρqpγnq
˘

´ β
`

γn, γ
´1
n x

˘
›

› “
›

›aθ
`

pρ, ρqpγnq
˘

` βpγ´1
n , xq

›

›

implying that y is uϕ-conical, as desired. �

The proof of Theorem 4.12 follows now along the same lines as in S. [44, Theorem
5.13.3]. We include the arguments here for completeness.

Consider a positive ε. Fix y P BW,ρΓ, x P BΓ ´ tyu and two neighborhoods A´

and A` of x and y respectively so that for all pz, wq P A´, A` one has
ˇ

ˇΠ
`

rz, wsϕ ´ rx, ysϕ
˘
ˇ

ˇ ă ε.
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Pick also an arbitrary T ą 0 so that the quotient projection p : B2ΓˆV Ñ ΓzB2ΓˆV

is injective on B̃ “ A´ ˆ A` ˆ Bp0, T q. We can thus compute the measure of

B “ ppB̃q by the formula (3.6).

If we let K̃pωϕq “ p´1
`

Kpωϕq
˘

, then Proposition 4.18 asserts that

A´ ˆ pA` X BW,ρΓq ˆBp0, T q “ K̃pωϕq X B̃.

If codim W ď 1 Corollary 4.14 states that ΩϕpB̃q “ Ωϕ
`

K̃pωϕqX B̃
˘

, which implies,

|µϕpA`q ´ µϕpA` X BW,ρΓq| ă e´ε.

Since ε is arbitrary one concludes µϕpBW,ρΓq “ 1. On the other hand, if codim W ě 3

then we have Ωϕ
`

K̃pωϕq
˘

“ 0 so µϕpA` X BW,ρΓq “ 0 and the theorem is proved.

5. Locally conformal representations: Hausdorff dimension of
5-conical points

In this section we let K “ R,C or H, the non-commutative field of Hamilton’s
quaternions. The Cartan subspace a of PGLpd,Kq is the subspace of Rd consisting
of vectors of sum 0. For g P PGLpd,Kq we denote by

apgq “
`

a1pgq, ¨ ¨ ¨ , adpgq
˘

the coordiates of the Cartan projection.

Definition 5.1. Consider p P J2, d ´ 1K. Recall from the introduction (Defini-
tion 1.1) that a tτ1, τd´pu-Anosov representation ρ : Γ Ñ PGLpd,Kq is p1, 1, pq-

hyperconvex if, for every pairwise distinct triple px, y, zq P BΓp3q, one has
`

ξ1pxq ` ξ1pyq
˘

X ξd´ppzq “ t0u.

We say moreover that ρ is locally conformal if for every γ P Γ one has a2pρpγqq “
appρpγqq.

The terminology is justified by Proposition 5.7 below stating that for such rep-
resentations pushed cone types are coarsely balls, this is a small refinement of an
analogous result from P.-S.-Wienhard [38].

Remark 5.2. Observe that when p “ 2 the second part of the definition is trivially
true, so p1, 1, 2q-hyperconvex representations over K are locally conformal. We
refer the reader to P.-S.-Wienhard [38, § 8] for more examples of locally conformal
representations.

For two locally conformal representations over K, ρ and ρ, with equivariant maps
ξ and ξ we want to introduce the notion of 5-conicality. Roughly speaking, a point
x P BΓ is 5-conical, if the geometry of the limit sets ξpBΓq and ξpBΓq about ξpxq and
ξpxq respectively looks similar (in a metric sense). In § 7 we relate 5-conicality with
non-differentiability points of the map ξ ˝ ξ´1 for p “ 2, and K “ R.

In order to be more precise, we remark that the product representation pρ, ρq :
Γ Ñ PGLpd,Kq ˆ PGLpd,Kq is θ-Anosov for θ “ tτ1, τp, τ1, τpu with limit map the
”graph map”

G “
`

ξ, ξ
˘

: BΓ Ñ PpKdq ˆ PpKdq.

We consider a Cartan subspace of the product group PGLpd,KqˆPGLpd,Kq, we let
aθ be the associated Levi space and paθq

˚ its dual. Since paθq
˚ is spanned by the
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fundamental weights of roots in θ, one sees that pp ´ 1qτ1 “ p$τ1 ´ $τp P paθq
˚

and analogously for τ1.

To simplify notation we let τ :“ τ1 and τ :“ τ1.

Definition 5.3. A point x P BΓ is 5-conical if it is conical as in Definition 4.11 for
the product representation pρ, ρq with respect to the hyperplane

5 “ tv P aθ : τpvq “ τpvqu “ kerpτ ´ τq.

Equivalently, there exist R, a geodesic ray pαnq
8
0 Ă Γ with αn Ñ x, and a subse-

quence tnku such that for all k one has
ˇ

ˇτ
`

apραnkq
˘

´ τ
`

apραnkq
˘
ˇ

ˇ ď R.

Consider also the exponential rate

h8 “ lim
tÑ8

1

t
log #

 

γ P Γ : max
 

τpapργqq, τpapργqq
(

ď t
(

.

and recall the dynamical intersection defined by

Iτ pτq “ lim
tÑ8

1

#Rtpτq

ÿ

γPRtpτq

τpλpργqq

τpλpργqq
,

where Rtpτq “
 

rγs P rΓs : τ
`

λpργq
˘

ď t
(

.
In this section we compute the Hausdorff dimension of the image under the

graph map G of the set of 5-conical points with respect to a Riemannian metric on

PpKdq ˆ PpKdq:

Theorem 5.4. Let ρ, ρ be two locally conformal representations over K as above.
Assume the group spanned by tpτpλpργqq, τpλpργqqq : γ P Γu is dense in R2. Without
loss of generality we assume that hτ ě hτ . If Iτ pτq ě 1 then

dimHff G
`

t5-conical pointsu
˘

“ h8.

Recall that by Proposition 3.3 one has Iτ pτq ě hτ {hτ , so the hypothesis is
automatically satisfied if, for example, hτ “ hτ . This is the case if one is working
with K “ R and BΓ is homeomorphic to a pp ´ 1q-dimensional sphere, indeed one
has the following.

Theorem 5.5 (P.-S.-Wienhard [38]). Let ρ : Γ Ñ PGLpd,Kq be locally conformal,
then

hτ “ dimHff

`

ξpBΓq
˘

,

in particular, when K “ R, Γ “ π1S and p “ 2 one has hτ “ 1.

In the surface group situation the other assumption (density of periods) can also
be weakened:

Corollary 5.6. Let ρ, ρ be two real p1, 1, 2q-hyperconvex representations of a closed
surface group π1S. Assume there exists γ P π1S such that τpλpργqq ‰ τpλpργqq,
then

dimHff G
`

t5-conical pointsu
˘

“ h8.

Proof. Follows from the combination of Theorems 5.4, 5.5 and Proposition 6.9. �

We end the introduction of this section by mentioning that Kim-Minsky-Oh [28]
have proved better Hausdorff dimension computations when ρ and ρ are convex-
co-compact representations in PSOpn, 1q not requiring the assumption on I that we
do.
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5.1. Cone types are coarsely balls. In [38] we give a concrete description of the
images under the boundary map of the cone types at infinity. We denote by dP the
distance on PpKdq induced by the choice of a inner (Hermitian) product on Kd and
by Bp`, rq Ă PpKdq the associated ball of radius r about `.

Proposition 5.7. Let ρ : Γ Ñ PGLpd,Kq be locally conformal. Then there exist
positive constants k1, k2 and L P N such that for every x P BΓ, every geodesic ray
pαnq

8
0 with endpoint x and every n P N greater then L one has

B
´

ξpxq, k1e
´τ1papραnqq

¯

X ξpBΓq Ă ξ
´

αiC8pαnq
¯

Ă B
´

ξpxq, k2e
´τ1papραnqq

¯

.

Proof. The desired inclusions are proven in [38] for thickened cone types at infinity.
We briefly explain here how to deduce from it the result we need.

Following [38] we denote by X8pγq, for γ P Γ, the thickened cone type at infinity,
namely the tubular neighborhood in PpKdq of ξ

`

C8pγq
˘

of radius δρ{2, where δρ is
the constant from Lemma 4.7. In [38, Corollary 5.10] it is established that there
exists c1 ą 0 and L0 ą 0 only depending on the domination constants of ρ such
that for all i ě L0 one has

B
´

ξpxq, c1e
´τ1papραiqq

¯

X ξpBΓq Ă ρpαiqX8pαiq.

The thickened cone type X8pγq is contained in the Cartan basin Btτ1u,αpργq for
a well chosen α depending on δρ. So P.S.-Wienhard [37, Proposition 3.3] provides
the existence of ν and c such that for all large enough γ P Γ one has

X8pγq X ξpBΓq Ă ξ
`

Cν,c8 pγq
˘

.

Combining both equations one has, for all i ě L0 that

B
´

ξpxq, c1e
´τ1papραiqq

¯

X ξpBΓq Ă ξ
´

αiC
ν,c
8 pαiq

¯

Ă B
´

ξpxq,Ke´τ1papραiqq
¯

, (5.1)

where the second inclusion comes readily from Proposition 4.9, and K only depends
on δρ and the constant K from that Proposition. This is to say, the pushed coarse

cone types ξ
`

αiC
ν,c
8 pαiq

˘

are coarsely balls of radius e´τ1papραiqq. Using Lemma 4.2

one replaces, up to modifying the constants c1 and K, the coarse cone types with
actual cone types αiC8pαiq. �

5.2. Hausdorff dimension and related concepts. Recall that, given a metric
space pX, dq and a real number s ą 0, the s-capacity of X is

HspX, dq “ inf
ε

#

ÿ

UPU

diamUs
ˇ

ˇ

ˇ

ˇ

U is an open covering of Λ with sup
UPU

diamU ă ε

+

and that

dimHffpXq “ infts|HspXq “ 0u “ supts|HspXq “ 8u. (5.2)

The following can be verified directly from the definition:

Lemma 5.8. If X “
Ť

nPNXn then

dimHffpXq “ sup dimHffpXnq.

We will use the following consequence of Theorem 1.5.14 from Edgar’s book [16]:
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Corollary 5.9. Let E Ă Rd be a measurable subset equipped with a probability
measure ν. If the upper density

D
α
pxq “ lim sup

rÑ0

ν
`

Bpx, rq
˘

rα

is ν-essentially bounded above, then dimHffpEq ě α.

5.3. The lower bound dimHffpGt5-conical pointsuq ě h8. We import some
tools from the proof of Theorem 4.12.

We consider the vector space

V ˚ :“ spantτ, τu

together with its annihilator AnnpV ˚q “ ker τXτ and the quotient vector space V “
aθ{AnnpV ˚q. Any element of V ˚ vanishes on AnnpV ˚q and thus V ˚ is naturally
identified with the dual space of V. Since we have the preferred basis tτ, τu we
naturally identify V and R2 via the isomorphism v ÞÑ

`

τpvq, τpvq
˘

and we let

Π : aθ Ñ R2

be the quotient projection (composed with the above isomorphism). The hyper-
plane 5 is sent to the diagonal

Π
`

kerpτ ´ τq
˘

“
 

v P V : τpvq “ τpvq
(

of the quadrant

V ` “ tτ ě 0u X tτ ě 0u

on R2. Let v “ vpρ,ρq : Γ ˆ BΓ Ñ V be the composition of the refraction cocycle
βpρ,ρq of the pair with Π. Its periods are

vpγ, γ`q “
´

τ
`

λpργq
˘

, τ
`

λpργq
˘

¯

,

so by assumption v is non-arithmetic. As in § 4.4 one has Qv “ V ˚ X Qθ,ρ; by
non-atihmeticity the cone Lv has non-empty interior and thus Corollary 3.5 gives
that Qv is a strictly convex curve. We consider the max norm on V }v}8 “

maxt|τpvq|, |ψpvq|u, and its dual (operator) norm on V ˚ denoted by } }1. Let ϕ8 P
Qv be the unique form such that

}ϕ8}
1 “ inft}ϕ}1 : ϕ P Qvu.

In Corollary 3.5 we introduced the map ϕ ÞÑ uv
ϕ defined on Qv with values on PpV q.

Lemma 5.10. One has uv
ϕ8 “ Πp5q and for any v P V ` one has

ϕ8pvq ě h8mintτpvq, τpvqu.

Proof. We apply Lemma 3.6 to τ and ψ “ τ , Equation (??) guarantees the hypoth-
esis of the Lemma. One then has (recall Figure 4)

i) Tϕ8Qv “ spantτ ´ τu and thus

uv
ϕ8 “ Ann

`

R ¨ pτ ´ τq
˘

“ Πp5q

ii) ϕ8{}ϕ8}
1 “ sτ ` p1´ sqτ for some s P r0, 1s and hence

ϕ8 ě }ϕ8}
1 mintτ, τu

on V `.
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To conclude the lemma we need to show that h8 ď }ϕ8}
1. Since ϕ8

`

aθppρ, ρqγq
˘

ď

}Πpaθppρ, ρqγqq}8}ϕ8}
1, we deduce, for all s ą }ϕ8}

1,

ÿ

γPπ1S

e´s}Πpaθppρ,ρqγqq}8 ď
ÿ

γPπ1S

e´ps{}ϕ8}
1
qϕ8

`

aθppρ,ρqγq
˘

ă 8

where in the last inequality we used that hϕ8 “ 1 by Equation (3.4). �

Let µϕ8 be the Patterson-Sullivan measure associated to ϕ8 by Corollary 4.10.
One has, for every γ P Γ, that,

µϕ8
`

γC8pγq
˘

ď Ce´ϕ8
`

aθppρ,ρqγq
˘

ď Ce´h8 min
 

τpapραiqq,τpapραiqq
(

, (5.3)

where the last inequality comes from Lemma 5.10.
By Proposition 5.7 there exist constants C1 and C2 such that if pαiq

8
0 is a

geodesic ray from id to x then for all i the subsets

ξ
`

αiC8pαiq
˘

and ξ
`

αiC8pαiq
˘

are coarsely balls on the corresponding projective spaces of radi

C1e
´τpapραiqq and C2e

´τpapραiqq

respectively. Since GpBΓq is a graph, the preceding radius computation implies that
the image of the cone type G

`

αiC8pαiq
˘

is also coarsely a ball (for the product

metric on PpRdq ˆ PpRdq) that can be chosen of radius

Ce´min
 

τpapραiqq,τpapραiqq
(

, (5.4)

for some uniform constant C. Recall that this set of balls forms a fine set of neigh-
bourhoods. Combining this with Equation (5.3) one has, possibly modifying the
constant C, that for all r the measure of the ball of radius r about Gpxq is

µϕ8
`

Bpx, rq
˘

ď Cr´h8 .

Since dimV ˚ “ 2 and vpρ,ρq is assumed non-arithmetic, Theorem 4.12 states
that the subset of 5-conical points has full µϕ8 measure. Applying Corollary 5.9
one concludes that

dimHff

`

Gt5 ´ conical pointsu
˘

ě h8.

5.4. The upper bound. We now prove the other inequality.

Proposition 5.11. One has dimHff

`

Gt5 ´ conical pointsu
˘

ď h8.

Proof. A point x is pR, 5q-conical if there exists a geodesic ray pαiqiPN such that for
an infinite subset I Ă N of indices and for every k P I

ˇ

ˇ

ˇ
τ
`

apραnq
˘

´ τ1

`

apραnq
˘

ˇ

ˇ

ˇ
ď R.

We denote by CR
5

the set of pR, 5q-conical points. By Lemma 4.17 one has
ď

Rą0

CR5 “ tx P BΓ : x is 5 ´ conicalu,

and thus by Lemma 5.8 it suffices to show that for every R one has

dimHff

`

CR5
˘

ď h8.
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For any constant K ą 0 and any γ P π1S we denote by Bmax,K
γ the open ball of

PpRdq ˆ PpRdq given by:

Bmax,K
γ :“ B

´

`

U1pργq, U1pργq
˘

,Ke´max tτpapργqq,τ1papργqqu
¯

And denote by

UKT :“
 

Bmax,K
γ | |γ| ě T

(

.

Let C, resp. C, be the constants given by Proposition 4.9 for the representation ρ
(resp. ρ). Observe that for K “ 2eR maxtC,Cu and for every T the set UKT covers
CR
5

. Indeed, if x P CR
5

there exists a geodesic pαiqiPN converging to x, such that for
infinitely many n P N,

ˇ

ˇτ
`

apραnq
˘

´ τ
`

apραnq
˘
ˇ

ˇ ă R,

and thus

τ
`

apραnqq ą maxtτ
`

apραnq
˘

, τ
`

apραnq
˘

u ´R.

In order to conclude we observe that the covers UKT form arbitrarily fine covers
of the set CR

5
and have the property that, by definition of h8, for every s ą h8,

ÿ

UPUKT

diamUs ă `8.

This implies that for every s ą h8 the s-capacity of CR
5

is finite, and thus Equation
(5.2) gives

dimHffpC
R
5 q ď h8.

�

6. Theorem B: Zariski closures of real-hyperconvex surface-group
representations

In this section we prove Theorem B that classifies possible Zariski closures of real
p1, 1, 2q-hyperconvex representations of surface groups. For most of the section we
work with two p1, 1, 2q-hyperconvex representations and eventually reduce the proof
of Theorem B to a situation like this; we will crucially use that a representation is
p1, 1, 2q-hyperconvex if and only if its limit set is C1 (Theorem 1.2).

6.1. When Ξ has oblique derivative. We prove here a result that we believe to
be of independent interest. This subsection only requires § 4.1 and § 4.2 and will be
needed for Theorem B but also for Theorems A and C.

We let Γ be either a closed surface group or a Kleinian group. In the surface
group case we let

ρ, ρ : Γ Ñ Diff1`α
pS1q

be Hölder conjugated to a Fuchsian action, if Γ ă PSLp2,Cq is a Kleinian group we
let ρ, ρ : Γ Ñ PSLp2,Cq be two convex co-compact representations that lie in the
same connected component of

 

% : Γ Ñ PSLp2,Cq : % is convex co-compact
(

.

We let X be either the circle or BH3. To simplify notation we will denote, for
γ P Γ, its action on X via ρ simply by γ, and its action via ρ by γ and by BΓ, BΓ Ă X
the limit sets of ρ and ρ respectively.
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In both situations there exists a Hölder-continuous map

Ξ : X Ñ X

conjugating ρ and ρ; in the surface case this holds by definition, in the Kleinian
case this is a Theorem by Marden [32], see also Anderson’s survey [1, page 32]. The
point in this case is that the equivariant limit map Ξ : BΓ Ñ BΓ conjugating the
actions ρ and ρ on their respective limit sets extends to the whole Riemann sphere
BH3. We study differentiability points of this map with oblique derivative.

We let d be either a visual distance on X (in the complex case) or a distance
inducing the chosen C1 structure on the circle S1.

Definition 6.1. A representation ρ is Lipschitz-compatible (with the C1 structure)
if there exist positive C, λ and L P N such that if γ P Γ has word-length |γ| ě L
and x, y P C8pγq then

dpγx, γyq ď Ce´|γ|λdpx, yq.

Observe that in the Kleinian case we actually have more, contraction does not
only hold on C8pγq but also on the complementary of a(ny) disk about U1pγ

´1q,
indeed Proposition 4.9 states that for all x, y with

Gpx, U1pγ
´1qq ě ´δρ and Gpy, U1pγ

´1qq ě ´δρ

ñ dpγx, γyq ď Ce´|γ|λdpx, yq. (6.1)

The goal of the subsection is to prove the following result which is probably
know to experts. Similar arguments can be found in Guizhen [22] in the context of
conjugacies of expanding circle maps.

Proposition 6.2. Let ρ, ρ be as above and assume both are Lipschitz compatible.
If there exists p P BΓ such that Ξ has a finite non-vanishing derivative (complex
derivative in the Kleinian case) then Ξ|BΓ is bi-Lipschitz.

We work under the assumptions of Proposition 6.2 and begin its proof with the
following lemma. For γ P Γ we denote it’s derivative at x P X by γ1pxq P K defined,
according our two situations, by

X “ S1: the derivative γ̃1px̃q of a lift of γ to the universal cover R of S1, and a lift
x̃ P R of x, the number γ̃1px̃q is independent of these choices;

X “ BH3: we fix an arbitrary point 8 R BΓ, identify X ´ t8u with K via the stereo-
graphic projection and let γ1pxq be the standard complex derivative.

In order to simplify notation in the sequel we let B8pγq Ă X be the smallest
disc that contains C8pγq. If X “ S1 then B8pγq “ C8pγq, if X “ BH3 then one
has

B8pγq Ă
 

x P PpC2q : Gpx, U1pγ
´1qq ě ´δρ

(

.

Lemma 6.3. There exists constants κ, ν ą 0 and N P N such that for all γ P Γ
with |γ| ě N and x, y P B8pγq one has

ˇ

ˇ log |γ1pxq| ´ log |γ1pyq|
ˇ

ˇ ď κdpx, yqν .

Proof. We consider L from Definition 6.1 (or Equation (6.1)), so that for every
η P Γ with |η| ě L and x, y P B8pηq one has

dpηx, ηyq ď Ce´|η|λdpx, yq. (6.2)
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Since the action is C1`α we can find positive K, ν such that for every β with
|β| ď L and u,w P X one has

ˇ

ˇ log |β1puq| ´ log |β1pwq|
ˇ

ˇ ď Kdpu,wqν . (6.3)

We let then K 1 “ maxtK,KCνu. We begin by showing, by induction on k, that
if |γ| “ kL then for all x, y P C8pγq, one has

ˇ

ˇ log |γ1pxq| ´ log |γ1pyq|
ˇ

ˇ ď K 1
`

k´1
ÿ

i“0

e´νλLi
˘

dpx, yqν . (6.4)

Equation (6.3) gives the base case, so assume that the result holds up to k ´ 1.
We let then γ “ β1 ¨ ¨ ¨βkL be a reduced word on the fixed generating set of Γ. We
let also γi “ β1 ¨ ¨ ¨βi and η “ βL`1 ¨ ¨ ¨βkL so that |η| “ pk´ 1qL and γ “ γLη. By
definition of cone type one has

B8pγq Ď B8pηq. (6.5)

Applying the chain rule gives that for every u P X one has

log |γ1puq| “ log |pγLq
1pηuq| ` log |pηq1puq|

and thus, when x, y P B8pγq,

ˇ

ˇ log |γ1pxq| ´ log |γ1pyq|
ˇ

ˇ ď
ˇ

ˇ log |γ1Lpηxq| ´ log |γ1Lpηyq|
ˇ

ˇ`
ˇ

ˇ log |η1pxq| ´ log |η1pyq|
ˇ

ˇ

ď Kdpηx, ηyqν `K 1
`

k´2
ÿ

i“0

e´νλLi
˘

dpx, yqν pby (6.3) and inductionq

ď KCνe´|η|νλdpx, yqν `K 1
`

k´2
ÿ

i“0

e´νλLi
˘

dpx, yqν pby Eqs. (6.5) and (6.2)q.

We have proven thus that for κ0 “ K 1{p1 ´ e´νλLq and every γ P Γ whose
word-length is an integer multiple of L that if x, y P B8pγq one has

ˇ

ˇ log |γ1pxq| ´ log |γ1pyq|
ˇ

ˇ ď κ0dpx, yq
ν .

To conclude the lemma we consider an arbitrary γ with |γ| “ mL ` n and
n ă L. We write γ “ γmLα with α “ βmL`1 ¨ ¨ ¨β|γ|. Observe that by definition of
cone-type one has

αB8pγq Ă B8pγmLq.

Applying the chain rule gives then

ˇ

ˇ log |γ1pxq| ´ log |γ1pyq|
ˇ

ˇ ď
ˇ

ˇ log |γ1mLpαxq| ´ log |γ1mLpαyq|
ˇ

ˇ`
ˇ

ˇ log |α1pxq| ´ log |α1pyq|
ˇ

ˇ

ď κ0dpx, yq
ν `Kdpx, yqν p by αB8pγq Ă B8pγmLq and (6.3)q

ď pκ0 `Kqdpx, yq
ν ,

so taking κ “ κ0 `K we conclude the proof. �

Proof of Proposition 6.2. Let p P BΓ be such that Ξ has non-horizontal nor vertical
derivative at p. Fix a geodesic ray pαnq

8
0 through the identity with αn Ñ p. By

definition for all n one has p P αnC8pαnq. Without loss of generality we may also
assume that

p “ 0 “ Ξp0q
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and we may write the derivative as the incremental limit

Ξ1p0q “ lim
yÑ0

Ξpyq

y
P K´ t0u.

For each n we let sn be the radius of the ball αnB8pαnq, by Lipschitz compatibility
sn is coarsely e´λn.

Let Dp0, rq be the ball of radius r about 0 and consider the scaling map

gn : Dp0, 1q Ñ αnB8pαnq

defined by gnpzq “ snz. Let an be an arbitrary point at distance sn from 0 and let
s̃n “ Ξpanq. Define

g̃n : Dp0, 1q Ñ Dp0, |s̃n|q

by z ÞÑ zs̃n. Since sn Ñ 0 and Ξ1p0q R t0,8u exists, the composition

g̃´1
n Ξgnpzq “

Ξpzsnq

s̃n
¨
snz

snz
“

Ξpzsnq

snz
¨
sn
s̃n
¨ z “

Ξpzsnq

snz
¨

sn
Ξpsnq

¨ z

converges uniformly on compact subsets to the identity map.
On the other hand one has

g̃´1
n Ξgn “ g̃´1

n αnΞα´1
n gn;

we now study the maps fn :“ α´1
n ˝ gn and f̃n :“ g̃´1

n ˝ αn.
Observe that for every x P Dp0, 1q one has

log |f 1npxq| “ log |pα´1
n q

1pgnxq| ` log |sn| “ ´ log |α1npα
´1
n gnxq| ` log |sn|.

Now by definition of gn, we have that gnx P αnB8pαnq and thus α´1
n pgnxq P

B8pαnq. For n large enough we can apply Lemma 6.3 to αn to obtain κ and ν so
that for every pair it holds x, y P Dp0, 1q

ˇ

ˇ log |f 1npxq| ´ log |f 1npyq|
ˇ

ˇ ď κdpx, yqν .

We conclude that the family of maps pfnq is uniformly bi-Lipschitz on Dp0, 1q and
thus, since pfnpq is bounded, Arzela-Ascoli’s Theorem applies to give a subsequence
(still denoted by fn) that converges to a bi-Lipschitz map f defined on Dp0, 1q.

Analog reasoning applies to f̃ , and we obtain that, about 0, Ξ can be written as
a composition of bi-Lipschitz maps and is thus bi-Lipschitz. Using the action of Γ
we extend the Lipschitz property of Ξ to the whole BΓ, concluding the proof. �

We now establish the following Corollary that will be used in the sequel.

Corollary 6.4. Let S be a closed surface of genus ě 2 and let ρ : π1S Ñ PGLpd,Rq
and ρ : π1S Ñ PGLpd,Rq be p1, 1, 2q-hyperconvex, consider the map between C1`α

circles
Ξ “ ξ ˝ ξ´1 : ξpBπ1Sq Ñ ξpBπ1Sq.

If Ξ has a differentiability point with finite non-vanishing derivative then for all
γ P π1S one has τpλpργqq “ τpλpργqq.

Proof. Theorem 1.2 implies that a p1, 1, 2q-hyperconvex representation of a surface

group induces a C1`Höl action on the C1`Höl circle ξpBπ1Sq. The distance dP
induced on this circle is compatible with its C1-structure and thus Proposition 4.9
implies that the action on the circle is Lipschitz-compatible. We can thus apply
Proposition 6.2 to obtain that Ξ is bi-Lipschitz. The following standard lemma
from linear algebra (see for example Benoist [5] and S. [40, Lemma 3.4]) gives the
period computation completing the proof. �
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Lemma 6.5. Let g P PGLpd,Rq be proximal and let Vλ2pgq be the sum of the char-
acteristic spaces of g whose associated eigenvalue is of modulus expλ2pgq. Then for
every v R Ppg´q, with non-zero component in Vλ2pgq, one has

lim
nÑ8

log dPpg
npvq, g`q

n
“ ´τ1pλpgqq.

6.2. Limit curves in non-maximal flags. We proceed with another intermediate
step for the proof of Theorem B, this step follows from the combination of Theorem
1.2 and Corollary 6.4.

Let G be real-algebraic and semi-simple. Let ta, bu Ă ∆ be two distinct simple
roots. The partial flag space Fta,bu carries two transverse foliations that are the
level sets of the natural projections Fta,bu Ñ Ftau and Fta,bu Ñ Ftbu. We will refer
to these as the canonical foliations of Fta,bu.

Corollary 6.6. Let G be real-algebraic and semi-simple and let ta, bu Ă ∆. Let
ρ : π1S Ñ G be Zariski-dense and ta, bu-Anosov. If both curves ξapBπ1Sq and
ξbpBπ1Sq are C1 then every differentiability point of ξta,bupBπ1Sq is tangent to one
of the canonical foliations of Fta,bu.

Proof. By Benoist’s Theorem 2.3 the limit cone of ρ has non-empty interior, in
particular there exists γ P π1S such that

apλpργqq ‰ bpλpργqqq.

Consider the Tits representations Φa and Φb associated to a and b. Since ρpπ1Sq
is Zariski-dense, both representation Φaρ and Φbρ are irreducible and projective
Anosov. Recall that by definition of Φa, for every g P G one has

τ1
`

λ
`

Φapgq
˘˘

“ a
`

λpgq
˘

.

Since the maps ζa and ζb are analytic, both projective curves ζaξ
apBπ1Sq and

ζbξ
bpBπ1Sq are C1 and thus by Zhang-Zimmer’s Theorem 1.2 the representations

Φaρ and Φbρ are p1, 1, 2q-hyperconvex.
The natural embedding Fta,bu Ñ PpVaq ˆ PpVbq sends ξta,bu to the graph of the

map Ξ from Corollary 6.4 and thus the Corollary implies the result. �

6.3. Proof of Theorem B. The goal of the section is to prove Theorem B, stat-
ing that the Zariski closure G of the image of an irreducible p1, 1, 2q-hyperconvex
representation ρ : π1S Ñ PGLpd,Rq is simple and the highest weight of the induced
representation Φ : G Ñ PGLpd,Rq is a multiple of a fundamental weight.

It is proven in S. [42, Lemma 8.6] that an irreducible subgroup G containing a
proximal element is semi-simple without compact factors.

We consider the induced representation ρ0 : π1S Ñ G and denote by Φ : G Ñ

PGLpd,Rq the linear representation so that ρ “ Φρ0. Let χ “ χΦ P a
˚ be the highest

weight of Φ. As in Definition 2.5 we consider

θ “ θΦ “ ta P ∆ : χ´ a is a weight of Φu “ ta P ∆ : xχ, ay ‰ 0u.

It is enough to show that θ is reduced to a single root ta0u; indeed, if this is the
case, upon writing χ in the basis of fundamental weights t$a : a P ∆u (recall their
defining Equation (2.1)) one has

χ “
ÿ

aP∆

xχ, ay$a “ xχ, a0y$a0
,

Moreover this gives:
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- G is simple by Lemma 2.4;
- the weights on the first level consist solely on χ´a and its associated weight

space is φpg´aqV
`. Since ρpπ1Sq is tτ2u-Anosov one has that φpg´aqV

` is
one-dimensional, but by Lemma 2.6 no element of g´a acts trivially on V `

so g´a is 1-dimensional, as desired.

We proceed now to show that in the present situation θ consists of only one
element. By definition of θ one has, for every g P G, that

τ1
`

λ
`

Φpgq
˘

“ min
aPθ

 

apλGpgqq
(

.

Consequently, the limit cone Lρ0
Ă a`G does not intersect the walls of elements

in θ and, since ρ0 : π1S Ñ G is a quasi-isometry, Remark 4.4 implies that the
representation ρ0 is θ-Anosov.

Recall from Equation (2.5) that we have a Φ-equivariant analytic embedding
ζθ : G{Pθ Ñ PpRdq. One has moreover that ξ1

ρ “ ζθ ˝ξ
θ
ρ0
. In particular the boundary

map ξθ has C1-image. Composing with the projections Fθ Ñ Fθ1 one sees that, for
any θ1 Ă θ the curve ξθ

1

ρ0
pBπ1Sq is a C1 circle.

Assume now there exists two distinct roots a, b in θ. By the previous paragraph
the curve ξta,bupBπ1Sq is C1 . Corollary 6.6 gives then that ξta,bupBπ1Sq is necessarily
contained in one of the leaves of the canonical foliations of Fta,bu, thus giving that

one of the maps ξa or ξb is constant, achieving a contradiction. This completes the
proof.

The following immediate corollary will be useful in the next section

Corollary 6.7. Let ρ : π1S Ñ PGLpd,Rq be an irreducible p1, 1, 2q-hyperconvex
representation. Then there exists a P ∆G such that for every a P a`G one has

apaq “ τ1
`

φpaq
˘

,

where φ : gÑ slpd,Rq is the associated representation of G.

6.4. A useful consequence of Theorem B: Non-arithmeticity of periods.
As an application of Theorem B we show that the periods with respect to the first
simple root of a pair of real p1, 1, 2q-hyperconvex representations either agree or
span a dense subgroup of R2. The following corollary from Beyrer-P. [7] allows us
to bypass the irreducibility assumption in Theorem B.

Corollary 6.8 (Beyrer-P. [7]). Let ρ : π1S Ñ PGLpd,Rq be p1, 1, 2q-hyperconvex.
Then there exists an irreducible p1, 1, 2q-hyperconvex representation ρ0 : π1S Ñ

PGLpm,Rq such that, for every γ P π1S one has

τ1
`

λpργq
˘

“ τ1
`

λpρ1γq
˘

.

Proof. It follows from [7, Corollary 5.5] that if ρ : π1S Ñ PGLpd,Rq is p1, 1, 2q-
hyperconvex, then the semisemplification ρss is also p1, 1, 2q-hyperconvex, and the
first two weights of such representations belong to the same irreducible factor. The
result follows by defining ρ0 to be the restriction of ρss to such an irreducible
factor. �

We can now prove the following non-arithmeticity of periods:
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Proposition 6.9. Let ρ : π1S Ñ PGLpd,Rq and ρ : π1S Ñ PGLpd,Rq be p1, 1, 2q-
hyperconvex. If there exists γ P π1S with τ1pλpργqq ‰ τ1pλpργqq, then the group
spanned by

 

pτ1pλpργqq, τ1pλpργqqq : γ P π1S
(

is dense in R2.

Proof. Observe first that thanks to Corollary 6.8 we can assume without loss of
generality that ρ and ρ are irreducible. Let then G and G be the Zariski closures
respectively of ρpπ1Sq and ρpπ1Sq. By Theorem B both groups are simple and
Corollary 6.7 guarantees that the restrictions of τ to a`G and of τ to a`

G
are simple

roots of G and G respectively, still denoted by τ and τ . We can furthermore assume
without loss of generality that G and G are adjoint. We distinguish two cases.

If ρˆρpπ1Sq is Zariski dense in GˆG, then the result now follows from Benoist’s
Theorem 2.3 and the fact that tτ, τu Ă paGˆGq

˚.

Otherwise, it is well known that there exists an isomorphism Φ : G Ñ G so that
ρ “ Φ ˝ ρ (see for example Bridgeman-Canary-Labourie-S. [10, Corollary 11.6]). In
this case Φ˚τ is a root of G and we distinguish two cases: either Φ˚τ “ τ , but then
τpλpργqq “ τpλpργqq for all γ P π1S contradicting our assumption, or Φ˚τ and τ
are distinct roots of G. Since ρ : π1S Ñ G is Zariski-dense, then again Benoist’s
Theorem 2.3 implies the result. �

7. Non-differentiability and 5-conicality: The proofs of Theorems A
and C

The following Proposition relates non-differentiability with 5-conicality, the miss-
ing piece for the proofs of Theorems A and C.

Proposition 7.1. If there exists γ P Γ such that τ
`

λpργq
˘

‰ τ
`

λpργq
˘

, then the
set of non-differentiability points of Ξ coincides with the set of 5-conical points.

The inclusion tnon-diff (non-C-diff) pointsu Ă t5´conicalu is rather general, the
other inclusion requires Proposition 6.2.

Proof. We deal with the real case, which illustrates the main ideas, the Kleinian
case works analogously.

We choose a C1 identification of the C1 torus ξpBπ1SqˆξpBπ1Sq Ă PpR
dqˆPpRdq

with the quotient of the square r´1, 1s ˆ r´1, 1s preserving the product structure,
and such that the point px,Ξpxqq corresponds to p0, 0q. In these coordinates the
graph of Ξ is a monotone curve r´1, 1s Ñ r´1, 1s passing through the origin. Given
a point y P Bπ1S, we denote by py1, y2q “ py1,Ξpy1qq its image in r´1, 1s ˆ r´1, 1s.

Let now pαiqiPN denote a geodesic ray converging to x. Since the chosen iden-
tification is C1, it is in particular k-bi-Lipschitz for some k, as a result we deduce
from Proposition 5.7 that there exist constants C1, C2, C1, C2 and L P N such that,
for every n P N and every yn P αnC8pαnqzαn`LC8pαn`Lq, it holds

C1e
´τ1papρpαnqqq ă |y1

n|ă C2e
´τ1papρpαnqqq,

C1e
´τ1papρpαnqqq ă |y2

n| ă C2e
´τpapρpαnqqq. (7.1)

Assume first that x is 5-conical, and assume, by contradiction, that x is a dif-
ferentiability point of Ξ. Using Definition 5.3 we obtain a geodesic ray pαiq

8
0 , an
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infinite set of indices I Ă N and a number R, such that for all n P I one has

|τ1papραnqqq ´ τ1papραnqqq| ă R. (7.2)

For each such n we choose a point yn P αnC8pαnqzαn`LC8pαn`Lq. By con-
struction yn converges to x. Now one has,

Ξ1p0q “ lim
nÑ8

Ξpy1
nq

y1
n

. (7.3)

Restricting the limit to the infinite set of indices for which Equation (7.2) holds,
we deduce from Equation (7.1) that

e´R
C1

C2
ď |Ξ1p0q| ď eR

C2

C1
.

Which implies that the derivative is neither horizontal nor vertical. Corollary 6.4
implies then that for all γ P Γ one has τpλpργqq “ τpλpργqq, since by assumption
there exists γ P Γ with τ

`

λpργq
˘

‰ τ
`

λpργq
˘

, we obtain a contradiction.
Conversely, assume that x is not 5-conical. The Cartan projections of two con-

secutive elements αi, αi`1 make uniformly bounded gaps (Proposition 2.1), and
thus there exists C such that for all n P N one has

ˇ

ˇ

ˇ
τ
`

apραn`1q
˘

´ τ
`

apραnq
˘

ˇ

ˇ

ˇ
ă C.

As a consequence, we can assume, up to switching the roles of ρ and ρ, that for any
R there exists nR such that for every n ą nR one has

τ
`

apραnq
˘

´ τ
`

apραnq
˘

ą R.

In turn this implies, thanks to Equation (7.1) that, for every y P αnRC8pαnRq,

|y2|

|y1|
ď e´R

C2

C1
.

Since R is arbitrary, and the sets αnRC8pαnRq form a system of neighborhoods
of the point x, we deduce that the limit in Equation (7.3) exists and is a vertical
vector. This concludes the proof. �

7.1. Proof of Theorems A and C. Since there exists γ P Γ with τ1
`

λpργq
˘

‰

τ1

`

λpργq
˘

, Proposition 6.9 implies the density assumption in Theorem 5.4, so one
has

dimHff Ξ
`

t5-conical pointsu
˘

“ hmaxtτ,τu.

Proposition 7.1 states that the set of 5-conical points coincides with the set of
non-differentiability points of Ξ, thus completing the proof of Theorem A. In the
Kleinian case, density of the group spanned by the pairs tpλpργq, λpρ̄γqq : γ P Γu
follows from Benoist [4] (Theorem 2.3), from this point on the proof works verbatim.
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J. Reine Angew. Math., 247:196–220, 1971. (Cited on pages 11 and 13.)

[47] A. Wienhard. An invitation to higher Teichmüller theory. In World Scientific, editor, Pro-

ceedings of the ICM 2018, volume 2, pages 1031–1058, 2019. (Cited on page 19.)

[48] T. Zhang. The degeneration of convex RP2 structures on surfaces. Proc. London Math. Soc.,
111(5):967–1012, 2015. (Cited on page 2.)

[49] T. Zhang and A. Zimmer. Regularity of limit sets of Anosov representations. https://arxiv.

org/abs/1903.11021. (Cited on page 3.)

Beatrice Pozzetti
Ruprecht-Karls Universität Heidelberg

Mathematisches Institut, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
pozzetti@uni-heidelberg.de

Andrés Sambarino

Sorbonne Université
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