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Multivariate Statistical Modeling for Multi-Temporal
SAR Change Detection Using Wavelet Transforms

and Integrating Subband Dependencies
Nizar Bouhlel, Member IEEE, Vahid Akbari, Member IEEE, Stéphane Méric, Member IEEE, and David

Rousseau, Member IEEE,

Abstract—In this paper, we propose a new method for au-
tomatic change detection in multi-temporal fully polarimetric
synthetic aperture radar (PolSAR) images based on multivariate
statistical wavelet subband modeling. The proposed method
allows us to take into account the correlation structure between
subbands by modeling the wavelet coefcients through multi-
variate probability distributions. Three types of correlation are
investigated: inter-scale, inter-orientation, and inter-polarization
dependences. The multivariate generalized Gaussian distribution
(MGGD) is used to model the interdependencies between wavelet
coefcients at different orientations, scales, and polarizations.
Kullback-Leibler similarity measures are computed and used to
generate the change map. Simulated and real multilook PolSAR
data are employed to assess the performance of the method
and are compared to the multivariate Gaussian distribution
(MGD) based method. We show that the information embedded
in the correlation between subbands improves the accuracy
of the change map, leading to better performance. Moreover,
the MGGD represents better the correlations between wavelet
coefcients and outperforms the MGD.

Index Terms—Change detection, Kullback-Leibler (KL) diver-
gence, multivariate generalized Gaussian distribution (MGGD),
multi-temporal polarimetric synthetic aperture radar (PolSAR)
images, wavelet transform, subband correlations.

I. INTRODUCTION

Multi-temporal synthetic aperture radar image change de-
tection becomes very important in the context of earth obser-
vation, especially for earth monitoring, damage assessment,
and land cover dynamics. With the increase in the number of
remotely sensed images, SAR data have become more widely
available with a good source of information for the study of
the evolution of large area overtimes. Change detection is a
process that analyzes multitemporal remote sensing images
acquired in the same geographical area for identifying changes
that occurred between the considered acquisition dates [1].
The result is a generation of a change detection map in which
changed areas are explicitly identied.

Several methods have been proposed to deal with the task
of multi-temporal SAR change detection. Methods for change
detection using single-channel SAR images have been studied
and categorized into groups: The rst one is based on the
pixel intensity and the neighboring pixels. It includes image
differencing, mean ratio/log-ratio measures [2], [3], Gauss log-
ratio [4], etc. The second one is based on the evolution of
the local statistics of the image associated with two dates.
In this second group, the evolution is measured using the
statistical information theory that provides tools to compute

stochastic distances between images, such as Kullback-Leibler
(KL), Bhattacharyya, and Hellinger distances [5], [6]. For
instance, Inglada and Mercier [5] proposed the KL distance
(KLD) between the Edgeworth series expansions for two
distinct slide windows for intensity SAR images. In addition
to the KLD, Nascimento et al. [7] derived and compared
its performance with other seven stochastical distances using
G0 distributions. Furthermore, the KLD was applied to the
detection of changes in image time series, as reported by Atto
et al. [8]. Several other information similarity measures includ-
ing mutual information [9], [10], variational information, and
mixed information [9], [11] have been investigated and have
shown promising results due to their efciency and simplicity.
Moreover, several methods have been also suggested using

multichannel SAR data where the similarity is measured by a
test statistic taking into account the covariance matrix data for
unsupervised change detection. A well-known test statistic in
PolSAR images is the generalized likelihood ratio test (LRT)
proposed by Conradsen et al. [12] to measure the equality
of two complex covariance matrices. Furthermore, the LRT
approach was extended to the multi-temporal case [13], [14],
and multi-frequency data [15]. In Frery et al. [16], hypothesis
tests were derived based on several distance measures between
relaxed complex Wishart distributions. Among these stochastic
distances, the KL, Bhattacharyya, and Hellinger distances have
been extensively explored. Nascimento et al. [17] compared
between a classical change detection method based on a
likelihood ratio and statistical methods based on information-
theoretic measures as the KLD and entropies. In Bouhlel
et al. [18], a heterogeneous change detection algorithm was
proposed based on stochastic distance measures between two
matrix-variate G0

d distributions. To compute these stochastic
distances, closed-form expressions for the KL, Rényi of or-
der β, Bhattacharyya, and Hellinger distances are provided.
Furthermore, a comparison between the performance of the
proposed method and the homogeneous change detection
method based on the scaled complex Wishart distribution is
reported. Another test for change detection was put forward by
Akbari et al. [19], [20] based on the complex-kind Hotelling-
Lawley trace (HLT) test assuming the scaled complex Wishart
distribution for the covariance matrix data. Recently, Bouhlel
et al. [21] proposed a new change detection method based on
the Determinant Ratio Test (DRT) statistic that outperforms
the LRT and HLT detectors. However, all these statistical
information measures have been so far derived in the spatial

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2022.3215783

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV OF STIRLING. Downloaded on October 22,2022 at 18:36:03 UTC from IEEE Xplore.  Restrictions apply. 



2

domain.
In recent years, articial intelligence has become a research

focus in the development of new change detection methods. As
one of the most important branches of articial intelligence,
deep learning [22] has achieved good results in SAR image
change detection due to its powerful ability to extract and learn
more robust and representative features. Deep learning-based
change detection can be performed in supervised and unsuper-
vised ways [23]. The supervised deep learning methods require
a massive high-quality training samples, which are usually
obtained by certain techniques (manual annotation based on
the ground truth, pre-classication, etc). The existence of the
prior knowledge makes the supervised methods more effective
by providing high accuracy detection results. However, obtain-
ing a large labeled training samples is time-consuming and
labor-intensive [24]. To overcome the lack of labeled samples,
challenging unsupervised methods are constantly emerging
using complicated methodologies due to the lower amount
of prior information and the complex content of such SAR
images [24]. Although these techniques can overcome the lack
of samples, there is still room for improvement and further
studies are required to improve their performance. The various
network models in deep learning used for change detection
include deep belief network (DBN) [25], deep autoencoder
[26], convolutional neural network (CNN) [27], [28], recurrent
neural network (RNN) [29] and the generative adversarial
network [30].

The methods based on statistical models are of a different
nature than machine learning or deep learning. In the wavelet
domain, statistical models are more stable compared with
models in the spatial domain for SAR data [31]. Moreover,
in the wavelet domain, it is easy to capture changes near
edges or texture. Wavelet transform is a powerful modeling
tool that can lead to performant texture modeling and change
detection. Indeed, Shiyong et al. showed in [31] that texture
could be better characterized in the wavelet domain than in the
spatial domain, and promising results have been proposed in
change detection. The wavelet transform is used to decompose
the image into multiscale oriented subbands that are sensitive
to horizontal, vertical, and diagonal edges. In the community
of multi-temporal SAR change detection, some work on sta-
tistical wavelet subband modeling has been developed based
on univariate models. For instance, wavelet coefcients have
been modeled as independent Gaussian variables or as jointly
Gaussian vectors [32]. Recently, non-Gaussian distributions
of the wavelet subband coefcients have been frequently
used. For instance, the generalized Gamma distribution (GΓD)
[31], [33] and the generalized Gaussian distribution (GGD)
[31], [34], [35] are suitable to model the wavelet coefcient
magnitudes of each subband, since they are more peaked and
heavy-tailed than the Gaussian distribution (GD) [36]. Closed-
form expressions of KL divergence for both GGDs and GΓDs
are given in the literature to assess the similarity [31], [37],
[33].

Generally, the subbands are assumed to be independent
and no dependence across wavelet orientations and scales are
modeled. However, wavelet coefcients still have a depen-
dency on each other, and they can be employed to provide

better accuracy in the similarity measure. To the best of our
knowledge, few works have been developed in the literature
aiming to capture inter-subband dependencies through mul-
tivariate distributions. In [38], the authors studied the corre-
lation properties of wavelet transform coefcients at different
subbands and resolution levels, applying these properties to an
image coding scheme based on neural networks. In [39], a joint
alpha-stable sub-Gaussian distribution was used to model the
dependences across wavelet orientations and scales for texture
retrieval. Good results were obtained, but a computationally
complex Gaussianization step was required. The common
point of these approaches has been the use of the multivariate
Gaussian distribution (MGD) since the similarity measure by
KL is simpler to compute.
In this study, a change detection method based on wavelet

coefcient magnitude modeling is proposed, allowing to take
into account the correlation structure between subbands by
modeling the wavelet coefcients through multivariate proba-
bility distributions. Three types of correlation are investigated
in this paper: inter-scale (IS), inter-orientation (IO) and inter-
polarization (IP) dependences. The rst is to model the cor-
relation between the scales of the same orientation, and the
second is to model the dependences between the orientations
of the same scale. Usually, a single-polarization SAR channel
data is used for the wavelet transform. Since polarimetric
SAR (PolSAR) gives more scattering information than single-
polarization SAR channel data, it is important to extend the
study to the joint modeling of the polarization channel corre-
lation. Indeed, the third type of correlation investigated in this
work is the IP dependence. The idea is to use the information
embedded in the correlation between the polarization channels,
since we expect that the change detection task will benet from
these additional data. This is accomplished by modeling the
wavelet subband coefcient of each polarization channel by a
multivariate probability distribution.
The multivariate GGD (MGGD) is a natural extension

of the univariate GGD model. The MGGD is very suitable
to model wavelet coefcient magnitudes and the correlation
between subbands, and it is better suited to this task than
the MGD. However, no closed-form expression exists for the
KLD between two MGGDs except for the case of a bivariate
GGD [36] and a bivariate GΓD [40]. Most recently, Bouhlel
et al. [41] established the closed-form expression for the KLD
between two MGGDs in the general case. This allows us to
highlight the correlations that exist between wavelet subband
coefcients. The computation of the KLD is based on the
Lauricella series [42] and is practical in real time.
In this paper, we propose multivariate modeling of PolSAR

images in the wavelet domain in the context of unsupervised
change detection. We apply the wavelet transform to decom-
pose the PolSAR image before and after a change into multiple
scales. Then, we proceed by grouping the wavelet subband
coefcients and considering them as samples of a multivariate
generalized Gaussian random process. After that, we estimate
the parameters of the MGGD, and we apply the closed-form
expression of the KLD between two MGGDs established by
Bouhlel et al. [41]. Finally, we use it to generate a change
detection map. Furthermore, the MGGD can guarantee the
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integration of the correlation between all wavelet subbands
through the estimation of the scatter matrix. Through the latter,
we can extract possible interdependencies between wavelet
coefcients at different orientations, scales, and polarizations.
As a consequence, the information residing in the correlation
between subbands improves the accuracy of the change map,
and enhance the change detection task. The paper is orga-
nized as follows. Section II presents the general Polarimetric
multilook SAR data model. In section III, we introduce two
statistical models used for the study in connection with our
wavelet domain approach: the univariate GGD and the MGGD.
Change detection using KLD is presented in section IV, where
it is computed for the IS, IO, and IP dependences. Simulated
and real PolSAR data used for evaluation and experimental
settings are described in section V. Finally, the discussion and
some concluding remarks close up this paper.

II. POLARIMETRIC SAR DATA MODEL

A fully-polarimetric SAR measures the amplitude and the
phase of backscattered signals in four combinations of the
linear receive and transmit polarizations: horizontal-horizontal
(hh), horizontal-vertical (hv), vertical-horizontal (vh) and
vertical-vertical (vv). These complex backscattering coef-
cients form the polarimetric scattering vector dened as

s = [shh, shv, svh, svv]
T (1)

with sxy representing the complex scattering coefcients,
where x is the transmit and y is the receive polarization
[43], []T means transposition, and d = dim(s) is the vector
dimension. For the monostatic PolSAR system where the
target reciprocity condition is satised [43], the polarimetric
scattering vector becomes

s = [shh,
√
2shv, svv]

T ∈ Cd (2)

Vector s represents a single-look polarimetric scattering vector.
The multilooking of PolSAR data reduces the speckle effect
characteristic of coherent imaging systems. The polarimetric
multilooking operation is given by

C =
1

K

K∑

`=1

s`sH` , K ≥ d (3)

=




〈shh2〉 〈
√
2shhs

∗
hv〉 〈shhs∗vv〉

〈
√
2shvs

∗
hh〉 〈2shv2〉 〈

√
2shvs

∗
vv〉

〈svvs∗hh〉 〈
√
2svvs

∗
hv〉 〈svv2〉


 (4)

where K is the number of looks, ()H denotes the Hermitian
operator, ()∗ denotes the complex conjugation, 〈〉 denotes
spatial sample averaging, and C ∈ Ω+ ⊂ Cd×d is the
multilook polarimetric covariance matrix considered as a ran-
dom matrix dened on the cone Ω+ of the positive denite
complex Hermitian matrices. Under the Gaussian assumption,
the polarimetric covariance matrix follows a scaled complex
Wishart distribution. However, under the polarimetric product
model where the polarimetric covariance matrix is considered
as the product of a positive scalar texture random variable and
a random speckle matrix that follows a scaled complex Wishart
distribution, the product model leads to different compound

distributions given by Kd [44], G0
d [45], [46], Kummer-Ud [47]

and Gd [46] depending respectively on texture distributions:
gamma (γ), inverse gamma (γ−1), Fisher (F) and generalized
inverse Gaussian distributions (N−1),
Multilook PolSAR data are represented by Hermitian ma-

trices C whose elements of main diagonals are positive
[〈shh2〉, 〈2shv2〉, 〈svv2〉] and refer to the multilook inten-
sities. The diagonal elements of the multilook polarimetric
covariance matrix are used in this study for change detection
in the wavelet domain.

III. STATISTICAL MODELING IN WAVELET DOMAIN

In this section, two statistical models for wavelet subband
coefcients modeling are introduced: the univariate GGD and
the MGGD. The sliding window manner is applied for change
detection and the discrete stationary wavelet transform (SWT)
with a Daubechies lter bank is used in each window produc-
ing multiscale oriented subbands. The general framework of
the proposed method is shown in Fig. 1. Since the PolSAR data
are represented by Hermitian matrices, the diagonal positive
elements of these matrices are used as support for the wavelet
transform.

A. Univariate Generalized Gaussian distribution

The univariate GGD has been proposed in the literature to
accurately model the detail subband coefcient distributions of
the wavelet transform. The coefcient are highly non-Gaussian
and exhibit heavy-tails [48]. The probability density function
(pdf) of the GGD is given as follows

fX(xα,β) = β

2αΓ( 1β )
exp

∣∣∣x
α

∣∣∣
β


(5)

where x ∈ R, the scale parameter α > 0, the shape parameter
β > 0, and Γ() denotes the Gamma function. The GD and
Laplace distribution are special cases of the GGD. Indeed,
when β = 2, the GGD is equivalent to the GD and when
β = 1, it is equivalent to the Laplace distribution.
The estimation of parameters (α,β) are realized by us-

ing the maximum-likelihood (ML) method. Considering N
independent and identically distributed (iid) realizations xi,
i = 1, , N of a random variable X distributed according
to GGD with pdf given by fX(xα,β). Differentiating the
log-likelihood function of the samples with respect to α and
β and setting the result to zero yields two equations needed to
estimate the latter parameters. The shape parameter β̂ is the
solution of the following non-linear equation

1 +
ψ(1β̂)

β̂
−

N
i=1

xiβ̂ log xi
N
i=1

xiβ̂
+

log( β̂
N

N
i=1

xiβ̂)

β̂
= 0 (6)

where ψ() is the digamma function. The Newton-Raphson
method is proposed to solve it iteratively. The algorithm
can be initialized with any suitable values of β. Here, the
initial parameter value can be produced by the method of the
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Fig. 1. Proposed method for PolSAR change detection in wavelet domain. For each polarization, the wavelet transform decomposes a sliding window into
multiple subbands. The subband coefcients are combined to form different vectors for the study of IS, IO and IP dependences. Parameters (β, Σ) governing
the distributions of subband coefcients are estimated. KLD between pdfs of multivariate distributions is used to generate a change map.

moment. The scale parameter α̂ can be computed using the
following equation

α̂ =

(
β̂

N

N∑

i=1

xiβ̂
)1β̂

 (7)

It was shown in [49] that the log-likelihood equations had a
unique solution [34].

B. Multivariate Generalized Gaussian distribution

In order to capture inter-subband dependencies, the wavelet
coefcients are modeled through multivariate probability dis-
tributions. The MGGD is a natural extension of the univariate
GGD. Introduced by Kotz in [50], it is also known as the
multivariate power exponential distribution [51].

Let X be a random vector of Rn which follows the MGGD,
characterized by the following pdf given as follows [51]

fX(xµ,Σ,β) =
Γ(n2 )

π
n
2 Γ( n

2β )2
n
2β

β

Σ 12
e−

1
2 [(x−µ)TΣ−1(x−µ)]β 

(8)

This is for any x ∈ Rn, where n is the dimensionality of the
probability space, β is the shape parameter, µ is the mean
vector, and Σ is the so-called scatter matrix, which is a (n×
n) positive denite symmetric matrix. When β = 1, the pdf
corresponds to the MGD. On the other hand, when β = 12,
the pdf corresponds to the multivariate Laplace distribution. In
this study, the mean vector µ is assumed to be zero. In [51],
Gómez et al. have shown that X is stochastically represented
by

X = τΣ
1
2u (9)

where u is a random vector uniformly distributed on the
unit sphere in the n-dimensional Euclidean space, and τ is
a scalar positive random variable such that τ2β follows a
Gamma distribution with a scale parameter 2 and a shape
parameter n(2β). It is clear that (XTΣ−1X)β follows the
same distribution as τ2β . In the case where n = 1, the
MGGD is equivalent to the univariate GGD whose pdf is

given by (5) with the following relations: βGGD = 2β and
αGGD = Σ1221βGGD .
The parameter estimation is a very important step for several

image processing applications when the MGGD is applied.
Parameters Σ and β can be estimated by a least square method
[52] or by minimizing the χ2 distance. The method of the
moments and the ML method are also investigated [53], [54].
Pascal et al. demonstrated in [55] that the ML estimate of the
MGGD parameters exists, is unique and can be calculated by
a xed point algorithm which is relatively easy to implement.
Considering xi; i = 1, , N be N iid realizations of a

random vector X distributed according the MGGD. Pascal et
al. proposed the following relation Σ = mM where m is
a scale parameter and matrix M is normalized according to
tr(M ) = n where tr() denotes the trace of the matrix. The
authors observed that with this normalization constraint the
algorithm convergence was signicantly faster.
The ML estimator of M , m and β is obtained by differen-

tiating the log-likelihood of (x1, ,xN ) w.r.t to M , m and
β. The ML estimate M̂ satises of the following xed point
equation [55]

M̂ = n

N∑

i=1

xix
T
i

ui + u1−β̂
i

N
j 6=i u

β̂
j

(10)

where ui = xT
i M

−1xi. The shape parameter β̂ is the
solution of the following non-linear ML equation

nN

2
N

i=1 u
β̂
i

N∑

i=1

uβ̂
i ln(ui)−

nN

2β̂

[
ln(2) + ψ(

n

2β̂
)

]

−N − nN

2β̂
ln

(
β̂

nN

N∑

i=1

uβ̂
i

)
= 0 (11)

This equation is solved recursively by using a Newton-
Raphson procedure to estimate β for a given matrix M . Once
β̂ is estimated, m̂ is immediately given by

m̂ =

(
β̂

nN

N∑

i=1

uβ̂
i

)1β̂

 (12)
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It is clearly seen that from (10) and (11), M and β are
estimated independently of the scale parameter m. It is worth
noticing that when n = 1, the estimation procedure becomes
equivalent to the ML method for the GGD presented in
subsection III-A.

IV. CHANGE DETECTION BASED ON KULLBACK-LEIBLER
IN WAVELET DOMAIN

The modication of the statistics of each pixel’s neigh-
borhood allows the detection of the change between two
acquisition dates. To quantify change detection between two
acquisition dates, the distance KL is chosen here as a similarity
measure since it is a good similarity indicator for change
detection [31]. If the statistics of the two sliding windows
are close, the distance KL is small, otherwise the distance is
large. A critical problem in change detection using the KL is
the availability of an existing closed-form expression of the
KL divergence, otherwise certain approximation techniques
based on the numerical evaluation of the integral of the KL
divergence should be applied. The most popular method is
the Monte-Carlo (MC) estimation technique [56]. It consists
of approximating the KL provided that a large number of
independent and identically distributed samples are provided.
Nevertheless, the MC method is a too slow process to be
useful in change detection, especially in the manner of a
sliding window. In addition, any approximation can decrease
the accuracy of change detection. Fortunately, an analytical
expression of the KL divergence between two univariate zero-
mean GGDs is available, which was presented by Do and
Vetterli in [34]. The KL divergence expression is easy and
fast to compute. For the multivariate case, the KL divergence
involves computing a multidimensional integral over the data
space, which is a difcult task. For this reason, closed-form
expressions for the KL are difcult to nd. Verdoolaege et
al. derived an analytical expression of the KL divergence,
but limited to the case of the bivariate GGD [36]. Lately,
Bouhlel et al. [41] introduced a closed-form expression of
the KL divergence and its symmetric version KLD between
two zero-mean MGGDs in a general case. What follows is a
presentation of the symmetric KL divergence expression for
the GGD and the zero-mean MGGD.
Let X1 and X2 be two random variables with probability

density functions fX1 and fX2 . The KL divergence from X2

to X1 is given by

KL(X1X2) =

∫
log


fX1(x)

fX2(x)


fX1(x)dx (13)

The KLD between X1 and X2 is dened as the symmetric
KL similarity measure and is given as follows

dKL(X
1, X2) = KL(X1X2) + KL(X2X1) (14)

For the case of univariate distribution, if the X1 and X2

are distributed according to a GGD with parameters (α1,β1)
and (α2,β2), respectively, a closed-form expression of the

symmetric version of the KL divergence has the following
form

dKL(X
1, X2) =


α1

α2

β2 Γ( 1+β2

β1
)

Γ( 1
β1
)

+


α2

α1

β1 Γ( 1+β1

β2
)

Γ( 1
β2
)

−

1

β1
− 1

β2
 (15)

For the case of multivariate distributions, if X1 and X2 are
two random n-vectors that follow MGGDs with joint pdfs
fX1(xΣ1,β1) and fX2(xΣ2,β2), respectively, given by (8),
then the closed form expression of the KLD between two zero-
mean MGGDs fX1(xΣ1,β1) and fX2(xΣ2,β2) is given by

KL(X1X2) = ln

(
β1Σ1−

1
2Γ( n

2β2
)

β2Σ2− 1
2Γ( n

2β1
)

)
+

n

2


1

β2
− 1

β1


ln 2−

n

2β1
+ 2

β2
β1

−1Γ(
β2
β1

+ n
2β1

)

Γ( n
2β1

)
λβ2
n F

(n−1)
D


− β2,

1

2
, ...,

1

2  
n−1

;
n

2
;

1− λn−1

λn
, ..., 1− λ1

λn


(16)

where λ1,..., λn are the eigenvalues of the real matrix Σ1Σ
−1
2 ,

and F
(n−1)
D () represents the Lauricella D-hypergeometric

function dened for n−1 variables [42]. The Lauricella series
F

(n)
D in a general form is given as follows (see Appendix A)

F
(n)
D (a, b1, , bn; cn;x1, , xn) (17)

=
∞∑

m1=0


∞∑

mn=0

(a)m1++mn(b1)m1 (bn)mn

(c)m1++mn

xm1
1

m1!

xmn
n

mn!

where x1, , xn < 1. The Pochhammer symbol (q)i indi-
cates the i-th rising factorial of q, i.e.

(q)i = q(q + 1)(q + i− 1) =
Γ(q + i)

Γ(q)
if i = 1, 2,  (18)

The symmetric KL similarity measure dKL(X1,X2) be-
tween X1 and X2 becomes

dKL(X1,X2) = − n

2β1
− n

2β2
+ 2

β2
β1

−1Γ(
β2
β1

+ n
2β1

)

Γ( n
2β1

)
×

λβ2
n F

(n−1)
D


−β2,

1

2
, ...,

1

2
;
n

2
; 1− λn−1

λn
, ..., 1− λ1

λn


+

2
β1
β2

−1Γ(
β1
β2

+ n
2β2

)

Γ( n
2β2

)
λ−β1
1 F

(n−1)
D


−β1,

1

2
, ...,

1

2
;
n

2
;

1− λ1

λn
, 1− λ1

λn−1
, ..., 1− λ1

λ2


. (19)

It is worth mentioning that when β = 1, the KL divergence
expression corresponds to that of the MGD and is given by
[41]

KL(X1X2) =
1

2

[
ln Σ−1

1 Σ2 − n+ tr(Σ1Σ
−1
2 )

]
(20)

where

tr(Σ1Σ
−1
2 ) = nλnF

(n−1)
D


− 1,

1

2
, ...,

1

2
;
n

2
; 1− λn−1

λn
, ..., 1− λ1

λn



(21)
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A. KLD for the inter-scale dependence

After wavelet decomposition, we have 3L sub-images for
each polarization hh, hv, vv where L is the number of
scales. These sub-images are represented at this stage byX i

p =

Hi
p,V

i
p ,D

i
p where i ∈ 1, 2 is the index number for

image 1 and image 2, and p ∈ hh, hv, vv designs the type
of polarization. The following Hi

p = [Hi
1,p, H

i
2,p, , H

i
L,p]

T ,
V i
p = [V i

1,p, V
i
2,p, , V

i
L,p]

T andDi
p = [Di

1,p, D
i
2,p, , D

i
L,p]

T

are L-dimensional random vectors representing the sub-image
horizontal, vertical and diagonal wavelet detail coefcients,
respectively, and are distributed according to the MGGD. Let
Σi

Hp
, Σi

Vp
and Σi

Dp
be the L × L scatter matrix of the

previous random vectors. To quantify the dependency between
scales, these scatter matrices from sub-images and the shape
parameters are estimated using the procedure presented in
subsection III-B. The symmetric KLD of two sliding windows
is dened as the sum of similarity measures of each L-vector
of the same orientation over all polarizations:∑

p∈{hh,hv,vv}
dKL(X 1

p ,X 2
p ) =

∑

p

dKL(H
1
p ,H

2
p) + dKL(V

1
p , V 2

p )

+ dKL(D
1
p, D

2
p) (22)

where dKL(H
1
p ,H

2
p), dKL(D

1
p, D

2
p), and dKL(V

1
p , V 2

p ) are
computed using (19). In case of the subbands are assumed
independent, the total similarity of two blocks or two sliding
windows are dened as the sum of similarity measures of each
subband [31]
∑

p

dKL(X 1
p ,X 2

p ) =
∑

p

L∑

j=1

dKL(H
1
j,p, H

2
j,p) + dKL(D

1
j,p, D

2
j,p)+

dKL(V
1
j,p, V

2
j,p) (23)

where dKL(H
1
j,p, H

2
j,p), dKL(D

1
j,p, D

2
j,p) and dKL(V

1
j,p, V

2
j,p)

are calculated using (15).

B. KLD for the inter-orientation dependence

To measure the IO dependence, we constitute a new set of
sub-images Yi

p = Y i
1,p,Y

i
2,p, ,Y

i
L,p where i ∈ 1, 2,

p ∈ hh, hv, vv and Y i
j,p = [Hi

j,p, V
i
j,p, D

i
j,p]

T are 3-
dimensional random vectors composed of variables represent-
ing the horizontal, vertical and diagonal wavelet detail coef-
cients, respectively, at the scale j ∈ 1, 2, , L and Y i

j,p are
distributed according to MGGD. The symmetric KLD of two
sliding windows is dened as the sum of similarity measures
of each 3-vector of the same scale over all polarizations.

∑

p

dKL(Y1
p ,Y2

p) =
∑

p

L∑

j=1

dKL(Y
1
j,p, Y

2
j,p) (24)

If the orientations of the same scale are assumed independent,
the total similarity of two sliding windows are dened also by
equation (23).

C. KLD for the inter-polarization dependence

To measure the dependency between polarizations with the
same scale and orientation, we compose new sets of sub-
images Hi = Hi

1,H
i
2, ,H

i
L, Vi = Vi

1,V
i
2, ,V

i
L

and Di = Di
1,D

i
2, ,D

i
L where i ∈ 1, 2, Hi

j =

[Hi
j,hh, H

i
j,hv, H

i
j,vv]

T at the scale j ∈ 1, 2, , L, Vi
j =

[V i
j,hh, V

i
j,hv, V

i
j,vv]

T and Di
j = [Di

j,hh, D
i
j,hv, D

i
j,vv]

T are
3-dimensional random vectors representing the sub-image
horizontal, vertical and diagonal wavelet detail coefcients,
respectively, and are distributed according to MGGD. The
symmetric KLD of two sliding windows is dened as the sum
of similarity measures of each 3-vector of the same scale with
different polarizations

dKL(H1,H2) + dKL(V1,V2) + dKL(D1,D2)

=

L∑

j=1

dKL(H1
j ,H2

j ) + dKL(V1
j ,V2

j ) + dKL(D1
j ,D2

j ) (25)

where dKL(H1
j ,H

2
j ), dKL(D1

j ,D
2
j ) and dKL(V1

j ,V
2
j ) are

computed using (19). In case of the subbands are assumed
independent, the total similarity of two blocks or two sliding
windows is dened as
dKL(H1,H2) + dKL(V1,V2) + dKL(D1,D2) (26)

=

L∑

j=1

∑

p

dKL(H
1
j,p, H

2
j,p) + dKL(D

1
j,p, D

2
j,p) + dKL(V

1
j,p, V

2
j,p)

where dKL(H
1
j,p, H

2
j,p), dKL(D

1
j,p, D

2
j,p) and dKL(V

1
j,p, V

2
j,p)

are calculated using (15).

D. Total KLD

The total similarity of two blocks or two sliding windows
is dened as the sum of the similarity measures of equations
(22), (24) and (25) and is given by

dKL = dKL(H1,H2) + dKL(V1,V2) + dKL(D1,D2)

+
∑

p


dKL(X 1

p ,X 2
p ) + dKL(Y1

p ,Y2
p)


. (27)

V. EXPERIMENTAL RESULTS AND DISCUSSION

The performance of the proposed method based on mul-
tivariate statistical wavelet subband modeling, such as the
MGGD, is evaluated by comparing it with the wavelet domain
method based on the MGD, the univariate GGD, and the GD.
Our approach performed in wavelet domain is also compared
to three methods performed in spatial domain. The rst one
detects changes by comparing the local statistics of the two
images (before and after change). The local statistics are
based on scaled Wishart distribution, where the parameters
are estimated from the pixels of the sliding windows. The
similarity measure of the local statistics is accomplished using
the KLD. This method is called by KLD-scaled Wishart.
The closed form expression of the KLD between two scaled
Wishart distributions has been presented in [18]. The two
remaining methods based on spatial domain are HLT and LRT.
The receiver operating characteristic (ROC) curve is performed
here independently of any thresholding algorithm. The ROC
curve is the evolution of the true positive rate (TPR) according
to the false positive rate (FPR) [31]. Moreover, to generate a
binary change detection map, the optimal threshold is chosen
as the nearest point to (0.0, 1.0) in the ROC curve, as depicted
in Fig. 4 by a black arrow. When thresholding is applied,
a binary change detection map is produced. To determine
the threshold in a completely unsupervised manner, several
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thresholding methods have been proposed in the literature, and
none of them is perfect. To name a few of them: the constant
false alarm rate (CFAR) algorithm [57], Otsu’s method [58],
the Kittler and Illingworth algorithm [59], and Liu’s method
[60]. The best performance is also obtained by applying
optimal thresholding which consists of selecting the nearest
point to (0,1) in the ROC curve [6], [31]. Based on the optimal
threshold, the TPR and the FPR are obtained. Furthermore,
the area under the ROC curve (AUC) is calculated as a
performance measure, and it is a good indicator of changes.
The larger the AUC, the better the performance is. In the
following, our approach is tested with both simulated and real
multilook PolSAR data.

A. Evaluation on simulated PolSAR images

The simulated quad-pol data contain two eight-look PolSAR
images of 200×200 pixels and have three polarimetric chan-
nels. These data are each composed of ve different regions.
These regions follow the G0

d(Σ, K,λ) distribution where Σ is
the covariance matrix, K is the number of looks and λ is the
texture parameter. This distribution has been extensively used
by the community for its exibility and has been reported its
excellent performance showing the suitability for describing
different kinds of regions: homogeneous, heterogeneous and
extremely heterogeneous clutters [61], [62], [63], [64]. Other
known distributions like Kd [44] and Gd distributions [46]
can also be used, but they are not included in this study. The
texture parameters λ are chosen to cover homogeneous and
heterogeneous texture. For an urban area (area 1) which is
a high-texture region and extremely heterogeneous, the shape
parameter of the matrix-variate G0

d distribution is less than 2.
For a forest area which is a heterogeneous area with moderate
texture, the value of λ is given by 2 < λ < 8 (areas 3,
4, and 5). For a sea region which is a homogeneous area
with low texture, the shape parameter tends towards innity,
leading to a realization of a scaled Wishart distribution. Here,
it corresponds to region 2 with λ = ∞. The details of the
distribution parameters (λ,Σ) for each region are given in
Table II. We want to draw the reader’s attention to the fact that
regions 1 and 2 have the same speckle covariance matrix, but
different texture parameter values. This conguration allows
us to see if our approach is able to distinguish between
the two regions. Fig. 2 shows the simulated images before
and after changes, as well as the binary truth change map.
For performance evaluation in the wavelet domain, different
scales and window sizes are used. Each sliding window with
size 12, 16, 20, 24, 28 is decomposed into L = 1, 2, 3
scales using discrete stationary wavelet transform (SWT) with
Daubechies wavelet lter bank of order 1, 2, 3, 4, 5. Three
types of correlations are presented: IS, IO and IP dependences.
In this regard, distances


p dKL(X 1

p ,X 2
p ),


p dKL(Y1

p ,Y2
p)

and dKL(H1,H2) + dKL(V1,V2) + dKL(D1,D2) are com-
puted with the MGGD and the MGD and compared with the
distances corresponding to the case where the subbands are
assumed independent with the univariate GGD and GD.

1) Goodness-of-t: For the applicability of our approach,
we need to verify how good is the goodness-of-t (GOF) of the

MGGD to model the subbands and make sure that the wavelet
coefcients are well represented by MGGD. In general, the
GOF of a statistical model describes how well it ts a set
of samples. Concretely, we use the test strategy of Gomez et
al. presented in [51] to verify how the samples adjusted to a
MGGD. In what follows, we describe the proposal steps:
First, we test the multivariate normality of the n-

dimensional vector composed by wavelet coefcient subbands
instead of testing the normality of each component of the
vector as suggested by Gomez. The p-value of the test is
computed and the hypothesis of normality is rejected if the
p-value is small at the default 5% signicance level. In the
literature, a vast number of methods for testing multivariate
normality are proposed. Among these methods, a consistent
and invariant test proposed by Henze and Zirkler [65] is found
to have good power properties, particularly for small sample
sizes [66]. They showed that the proposed test statistic which
is invariant under linear transformations of the data has a
lognormal asymptotic distribution. In this study, we choose
to use Henze and Zirkler multivariate normality test.
Secondly, we test the hypothesis of the MGGD on the basis

of the stochastic representation. For this purpose, the test is
subdivided into three hypotheses [51]:

(i) The variable R2β = (XT Σ̂
−1

X)β has a Gamma distribu-
tion Γ(n2β, 2),

(ii) The variable u(n) = Σ̂
−12

XΣ̂−12
X is uniformly

distributed on the unit sphere in Rn,
(iii) R and u(n) are independent.
For the rst two hypotheses, the Kolmogorov-Smirnov (KS)
test is applied and the p-values are computed. A smaller value
of KS indicates that the hypothetical model ts better the
empirical distribution. A small p-value of the test indicates
strong incompatibilities of the data with the employed distri-
bution hypothesis. For the last hypothesis (iii), the p-values
of the Kendall and the Spearman tests are computed. Table I
shows the results of these tests carried out on a sample of size
100 × 20 corresponding to a region selected in an arbitrary
manner among the simulated data for the different methods.
The results correspond to the calculation of the mean p-value
and its standard deviation over the entire sample carried out
for the normality test, and the three previous hypotheses (i),
(ii) and (iii). As we can see, the p-values of the multivariate
normality are small at the default 5% signicance level.
Accordingly, the hypothesis of normality should be rejected.
For hypothesis (i), the mean p-value show the acceptance
of the hypothesis on (XT Σ̂

−1
X)β that follows a Gamma

distribution. The mean p-value are greater than 5% showing
the acceptance of the hypothesis (ii): Σ̂

−12
XΣ̂−12

X is
uniformly distributed on the unit sphere in Rn. Finally, the
hypothesis (iii) on the independence of R and u(n) is accepted
with a p-value greater than 5%. At the light of these results,
there are no reasons to reject the hypothesis that the vectors
have MGGDs.
2) Change detection map: Fig. 3 illustrates different log-

arithm of KLD and the corresponding binary change map,
where white color is a change and black color is a no-change.
The conguration used for this example corresponds to a slid-
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Method Vectors Normality test Hypothesis (i) Hypothesis (ii) Hypothesis (iii)
p-value p-value p-value p-value (Spearman) p-value (Kendall)

MGGD-IS H1
hh = [H1

1,hh, H
1
2,hh, H

1
3,hh]

T 12.62 10−4±95.90 10−4 0.484±0.277 0.514±0.270 0.580±0.258 0.573±0.259
V 1
hh = [V 1

1,hh, V
1
2,hh, V

1
3,hh]

T 40.09 10−4±3.05 10−2 0.509±0.279 0.453±0.281 0.616±0.256 0.610±0.258
D1

hh = [D1
1,hh, D

1
2,hh, D

1
3,hh]

T 80.18 10−4±3.72 10−2 0.586±0.272 0.521±0.274 0.684±0.201 0.683±0.201
H1

hv = [H1
1,hv , H

1
2,hv , H

1
3,hv ]

T 22.09 10−4±1.92 10−2 0.458±0.281 0.523±0.272 0.503±0.276 0.498±0.277
V 1
hv = [V 1

1,hv , V
1
2,hv , V

1
3,hv ]

T 19.3 10−4±1.26 10−2 0.496±0.287 0.501±0.278 0.621±0.235 0.620±0.235
D1

hv = [D1
1,hv , D

1
2,hv , D

1
3,hv ]

T 31.96 10−4±1.96 10−2 0.587±0.272 0.477±0.278 0.607±0.251 0.607±0.252
H1

vv = [H1
1,vv , H

1
2,vv , H

1
3,vv ]

T 5.55 10−4±0.47 10−2 0.389±0.290 0.408±0.264 0.463±0.269 0.456±0.271
V 1
vv = [V 1

1,vv , V
1
2,vv , V

1
3,vv ]

T 7.48 10−4±0.94 10−2 0.513±0.274 0.491±0.282 0.500±0.270 0.498±0.271
D1

vv = [D1
1,vv , D

1
2,vv , D

1
3,vv ]

T 58.40 10−4±3.23 10−2 0.543±0.280 0.563±0.278 0.628±0.239 0.624±0.241
MGGD-IO Y 1

1,hh = [H1
1,hh, V

1
1,hh, D

1
1,hh]

T 3.66 10−17±1.15 10−15 0.341±0.249 0.514±0.261 0.563±0.272 0.567±0.269
Y 1
2,hh = [H1

2,hh, V
1
2,hh, D

1
2,hh]

T 41.93 10−4±3.43 10−2 0.414±0.269 0.535±0.276 0.455±0.306 0.453±0.305
Y 1
3,hh = [H1

3,hh, V
1
3,hh, D

1
3,hh]

T 63.06 10−4±3.77 10−2 0.518±0.274 0.479±0.281 0.378±0.322 0.377±0.322
Y 1
1,hv = [H1

1,hv , V
1
1,hv , D

1
1,hv ]

T 2.77 10−19±1.02 10−17 0.412±0.275 0.431±0.279 0.388±0.290 0.388 ±0.290
Y 1
2,hv = [H1

2,hv , V
1
2,hv , D

1
2,hv ]

T 32.37 10−4±2.18 10−2 0.443±0.294 0.549±0.276 0.383± 0.311 0.387±0.311
Y 1
3,hv = [H1

3,hv , V
1
3,hv , D

1
3,hv ]

T 1.98 10−2±7.20 10−2 0.527±0.272 0.443±0.279 0.359±0.324 0.358±0.325
Y 1
1,vv = [H1

1,vv , V
1
1,vv , D

1
1,vv ]

T 2.63 10−9±7.70 10−8 0.348±0.242 0.454±0.257 0.633±0.245 0.627±0.246
Y 1
2,vv = [H1

2,vv , V
1
2,vv , D

1
2,vv ]

T 13.54 10−4±76.30 10−4 0.400±0.283 0.504±0.275 0.503±0.294 0.503±0.292
Y 1
3,vv = [H1

3,vv , V
1
3,vv , D

1
3,vv ]

T 1.58 10−2±6.23 10−2 0.502±0.276 0.431±0.273 0.456±0.355 0.456±0.355
MGGD-IP H1

1 = [H1
1,hh, H

1
1,hv , H

1
1,vv ]

T 4.07 10−6±4.32 10−5 0.417±0.284 0.546±0.275 0.562±0.282 0.563±0.282
H1

2 = [H1
2,hh, H

1
2,hv , H

1
2,vv ]

T 4.82 10−2±12.15 10−2 0.560±0.274 0.516±0.277 0.526±0.293 0.523±0.293
H1

3 = [H1
3,hh, H

1
3,hv , H

1
3,vv ]

T 0.29 10−2±2.33 10−2 0.549±0.269 0.432±0.285 0.379±0.321 0.379±0.321
V1
1 = [V 1

1,hh, V
1
1,hv , V

1
1,vv ]

T 72.46 10−4±4.67 10−2 0.495±0.270 0.562±0.275 0.669±0.245 0.666±0.247
V1
2 = [V 1

2,hh, V
1
2,hv , V

1
2,vv ]

T 6.47 10−2±13.05 10−2 0.517±0.271 0.561±0.266 0.579±0.304 0.580±0.303
V1
3 = [V 1

3,hh, V
1
3,hv , V

1
3,vv ]

T 38.84 10−4±2.54 10−2 0.526±0.281 0.481±0.276 0.476±0.344 0.475±0.345
D1
1 = [D1

1,hh, D
1
1,hv , D

1
1,vv ]

T 12.47 10−4±1.02 10−2 0.530±0.271 0.548±0.275 0.732±0.226 0.731±0.227
D1
2 = [D1

2,hh, D
1
2,hv , D

1
2,vv ]

T 7.23 10−2±9.94 10−2 0.545±0.274 0.572±0.270 0.689±0.256 0.689±0.255
D1
3 = [D1

3,hh, D
1
3,hv , D

1
3,vv ]

T 6.89 10−2±8.59 10−2 0.517±0.274 0.570±0.269 0.625±0.295 0.625±0.295
TABLE I

GOODNESS-OF-FIT OF MGGD TO MODEL WAVELET COEFFICIENTS SUBBANDS : MULTIVARIATE NORMALITY TEST OF COMPOSED VECTOR, GAMMA

DISTRIBUTION FIT TEST OF R2β = (XT Σ̂
−1X)β , UNIFORM DISTRIBUTION ON UNIT SPHERE FIT TEST OF u(n) = Σ̂

−12X/Σ̂−12X AND
INDEPENDENCE TEST BETWEEN R AND u(n) .

 1

 2

 3

 4  5

 1

 2

 3

 4  5 3

 5  2  1

(a) (b) (c)

Fig. 2. Pauli decomposition of simulated 4-look quad-pol PolSAR data (a) before change, (b) after change, and (c) binary truth change map.

TABLE II
TEXTURE PARAMETERS AND COVARIANCE MATRIX FOR EACH REGION

Area λ Σ = Σ11,Σ22,Σ33, Σ12,Σ13,Σ23
1 4 0.08, 0.1, 0.05, 0.03i, 0.02i, 0.01
2 ∞ 0.08, 0.1, 0.05, 0.03i, 0.02i, 0.01
3 2 0.14, 0.1, 0.05, -0.03i, -0.02i, 0.01
4 8 0.2, 0.1, 0.05, 0.03i, 0.05i, 0.01
5 6 0.3, 0.08, 0.042, 0.05+0.03i, 0.02i, 0.01-0.03i

ing window size: 16×16, a wavelet transform scale L = 1, and
a Daubechies wavelet lter: ’db1’. The distances are computed
for both univariate (GD, GGD) and multivariate distributions
(MGD and MGGD) where IO, IP and IS dependencies are
used. For the purpose of comparison, our approach performed

in wavelet domain is compared to KLD-scaled Wishart, HLT
and LRT methods performed in spatial domain. While Fig.
3.(j) and (j’) show the logarithm of KLD-scaled Wishart and
the binary change map, respectively, Fig. 3.(k-l) and (k’-l’)
show the HLT and LRT results, and their corresponding binary
change maps.

The binary change map is generated by using the optimal
threshold. The TPRs, the false alarm rates (FARs) and the
overall error rate are presented respectively in Table III based
on the selected optimal thresholds. From this Table, we can
see that the detection rate and the accuracy of MGGD is quite
high compared to MGD and GGD. In addition, the MGGD-IP
method outperforms the MGGD-IS and MGGD-IO methods.
On the other hand, the GD is worse than all other methods
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Fig. 3. Detection results for simulated PolSAR data. (a) and (b) ln KLD for IP dependence with MGGD and MGD, and their corresponding binary change
maps (a’)-(b’) where white color is change and black color is no-change. (c)-(d) ln KLD for IS dependence with MGGD and MGD, and their binary maps
(c’)-(d’). (e)-(f) ln KLD IO dependence with MGGD and MGD, and (e’)-(f’) their binary maps. (g)-(h) ln KLD for univariate GGD and GD, and their
binary change maps (g’)-(h’). (i) and (i’) ln KLD-MGGD (IP+IS+IO) dependence with MGGD and binary map. (j) and (j’) ln KLD with scaled Wishart
and corresponding binary map. (k)-(l) results of the HLT and LRT methods. Parameters used: sliding window size = 16, wavelet transform scale L = 1,
Daubechies wavelet lter: db1. Optimal threshold selected corresponds to the closest point to (0.0, 1.0) in the ROC curve.
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based on wavelet domain. For the sake of comparison, FAR,
TPR and overall error of KLD-scaled Wishart, HLT and LRT
are also reported. From the last row in Table III, we can see
that the values of these parameters when optimal threshold
is applied are less efcient than the KLD-MGGD-IP. Going
back to Fig. 3, the following conclusions are drawn. First,
the GD and the MGD give us the worst detection results for
the methods based on the wavelet domain as it is shown in
Fig. 3(h) and Fig. 3(b)-(d)-(f) and their corresponding binary
change map in Fig. 3(h’) and Fig. 3(b’)-(d’)-(f’). Second, the
KLD using the MGGD provides better performance than that
based on the GGD as more areas are detected. Accordingly,
taking into account the correlation structure between subbands
improves in this example the performance and the accuracy of
the change map. Third, the comparison between KLD based
on the MGGD-IP gives better results than the MGGD-IS
and MGGD-IO dependences. Fourth, the KLD-scaled Wishart
method is unable to detect the region 2 at the center of
the image (see Fig. 3.(j) and (j’)) whereas wavelet domain
method successfully detected it. This is due to the fact that
region 1 and 2 have the same speckle covariance matrix, and
as a consequence, the spatial domain method based on the
scaled Wishart distribution consider them to be similar and not
different. This example conrms that the method based on the
wavelet domain gives better results than the method based on
the spatial domain. Finally, The HLT and LRT methods give
the worst detection results. Indeed, these methods assume the
complex Wishart distribution for the covariance matrix data
actually simulated by the G0

d model.
Another quantitative evaluation of the change detection

performance is provided also for four different signicance
levels or specied FPRs 05%, 1%, 5%, 10% with the same
conguration: window size of 16×16 and L = 1. Table
IV illustrates different specied FARs and the detection rate
(TPR) for all the methods. As shown in this table, the MGGD-
IP reaches higher detection rates and lower overall error rates
among the other approaches. It can also be observed that the
performance of MGGD-IP is followed by MGGD-IP+IS+IO,
MGGD-IO and nally by GGD. As the signicance level of
the FAR increases to 10%, the performance of MGGD always
remains better than the GGD. The GD is worse than all other
methods. The rst spatial domain method given by KLD-
scaled Wishart gives better results for specied FAR 0.5%
and 1% than wavelet domain method. Indeed, the detection
rate is higher than the rate of the other methods and the
overall error rate is always the lowest. However, this tendency
is reversed for specied FAR values equal to 5% and 10%.
In fact, MGGD-IP wavelet domain method outperforms the
scaled Wishart spatial domain method. The two other spatial
domain methods, HLT and LRT, give the lowest detection rate
and the highest overall error.

3) AUC: The AUC is provided for all methods in Table
VI. At each scale, each lter and with each window size, the
best and the worst values are highlighted in red and blue,
respectively. From this table, we can draw the following gen-
eral conclusions. First, it can be clearly seen that multivariate
distributions given by MGGD provides better performance
than univariate distributions as the GD and the GGD. It is also

TABLE III
CHANGE DETECTION PERFORMANCE FOR SIMULATED DATA WHEN

OPTIMAL THRESHOLD IS APPLIED. THE BEST VALUES ARE MARKED BY
RED COLOR. SLIDING WINDOW SIZE = 16, WAVELET TRANSFORM L = 1,

DAUBECHIES WAVELET FILTER: DB1.

Methods FAR Detection Overall error
(%) rate (%) rate (%)

GD 19.03 85.67 17.99
GGD 12.29 86.89 12.47
MGD-IP 18.78 89.51 16.94
MGGD-IP 7.43 92.62 7.42
MGD-IS 19.03 85.67 17.99
MGGD-IS 12.29 86.89 12.47
MGD-IO 18.26 87.18 17.05
MGGD-IO 10.82 88.25 11.02
MGD-IP+IS+IO 18.21 87.32 16.98
MGGD-IP+IS+IO 9.36 90.89 9.31
Scaled Wishart 6.13 80.66 8.98
HLT 37.41 64.47 36.99
LRT 31.23 66.77 31.68

noted that the KLD-GD and the KLD-MGD give the worst
detection results. Second, detection based on the GD and the
MGD has similar performance and the variation between them
is not very signicant. Besides, the KLD-GD and the KLD-
MGD-IS are the same when L = 1. The same observation is
also valid for the KLD-GGD and the KLD-MGGD-IS. Third,
we can also note that the AUC based on the MGGD is always
the best for any scale, any lter order, and any window size,
followed by the GGD. In addition, the AUC based on the
KLD-MGGD-IP is better than that based on the KLD-MGGD-
IO and the KLD-MGGD-IS, while the latter seems to be less
efcient compared to the rst two. Moreover, the AUC based
on the KLD-MGGD-IP is even higher for L = 2 compared
to the KL-GGD with L = 1 for any window size. The same
observation is made between the KLD-MGGD-IO (L = 2)
and the KLD-GGD (L = 1) when the window size ranges
from 20 to 28. It means that the inter-polarization dependence
contributes to the better detection, followed by the inter-
orientation dependence. On the contrary, the KLD-MGGD-IS
gives always lower AUC for L = 2, 3 than that of KLD-
GGD with L = 1 meaning that the inter-scale dependence
does not signicantly contribute to the better detection. Finally,
for the total distance, MGGD-(IO + IS + IP), the AUC is an
intermediate value between the maximum and the minimum of
a mixture composed by (MGGD-IO, MGGD-IS, MGGD-IP).
We have also the following particular notes. First, for

a xed window size and scale, the AUC for MGDs and
MGGDs decreases as the order of the lters increases. This
is explained due to the fact that the correlation between
the wavelet subbands decreases as the lter order increases.
Consequently, the lter order ’db1’ provides the best results.
Second, for a xed window size and lter order, the detection
for all methods decreases as the wavelet transform scale
increases. On the other hand, the scale L = 1 allows the
best performance in this example. Finally, for a xed scale
and lter order, as the window size grows, the AUC increases
until a particular window size and decreases afterward. The
window sizes corresponding to the maximum AUC are given
in Table V for each method.
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TABLE IV
CHANGE DETECTION PERFORMANCE FOR SIMULATED DATA. THE BEST

VALUES ARE MARKED BY RED COLOR.

Methods Specied Detection Overall error
FAR(%) rate (%) rate (%)

GD

0.5

8.73 20.65
GGD 14.44 19.38
MGD-IP 5.20 21.47
MGGD-IP 21.22 17.88
MGD-IS 8.73 20.65
MGGD-IS 14.44 19.38
MGD-IO 9.52 20.47
MGGD-IO 14.22 19.43
MGD-IP+IS+IO 6.86 21.07
MGGD-IP+IS+IO 14.54 19.36
Scaled Wishart 67.42 7.62
HLT 1.27 22.31
LRT 0.59 22.46
GD

1

13.91 19.89
GGD 18.02 18.98
MGD-IP 7.34 21.35
MGGD-IP 31.64 15.96
MGD-IS 13.91 19.89
MGGD-IS 18.02 18.98
MGD-IO 14.80 19.7
MGGD-IO 17.78 19.03
MGD-IP+IS+IO 11.24 20.48
MGGD-IP+IS+IO 21.34 18.24
Scaled Wishart 71.58 7.09
HLT 2.66 22.39
LRT 1.75 22.59
GD

5

35.81 18.15
GGD 68.65 10.85
MGD-IP 36.70 17.94
MGGD-IP 88.97 6.36
MGD-IS 35.81 18.15
MGGD-IS 68.65 10.85
MGD-IO 48.42 15.34
MGGD-IO 76.28 09.18
MGD-IP+IS+IO 37.30 17.81
MGGD-IP+IS+IO 81.53 8.00
Scaled Wishart 80.11 8.3
HLT 13.19 23.17
LRT 16.84 22.36
GD

10

63.04 16.01
GGD 83.83 11.37
MGD-IP 59.40 16.80
MGGD-IP 94.78 8.95
MGD-IS 63.04 16.01
MGGD-IS 83.83 11.37
MGD-IO 69.31 14.59
MGGD-IO 87.46 10.62
MGD-IP+IS+IO 62.00 16.22
MGGD-IP+IS+IO 91.33 9.75
Scaled Wishart 81.05 11.99
HLT 24.19 24.64
LRT 33.17 22.69

Finally, The AUC values for the HLT and LRT methods are
also provided and are 0.6792 and 0.7270, respectively. It is
clearly seen that the AUC of the HLT and LRT based on spatial
domain are the lowest values, thus showing the worst detection
results. The AUC of the KLD-scaled Wishart is always lower
than the wavelet domain method based on MGGD.

4) ROC: The ROC curves obtained for different methods
are represented in Fig. 4. The sliding window of size 16×16,
a wavelet transform lter db1 and scale L = 1 have been
employed in this example and the obtained results show that
the ROC curves of the MGGD are always above the ROC

Method Window size L dbn AUC
MGGD-IP 16×16 1 db1 0.9685
MGGD-IO 20×20 1 db1 0.9435
MGGD-IS 20×20 1 db1 0.9390
MGD-IP 12×12 2 db1 0.9083
MGD-IO 12×12 1 db1 0.9057
MGD-IS 12×12 1 db1 0.8932
GGD 20×20 1 db1 0.9390
GD 12×12 1 db1 0.8932

Scaled Wishart 16×16 - - 0.8930
TABLE V

MAXIMUM VALUES OF AUC REGISTERED FOR DIFFERENT METHODS
WITH CORRESPONDING WINDOW SIZES, SCALES AND FILTER ORDER.

Fig. 4. ROC plot comparison between different methods and dependencies (IP,
IO and IS) for simulation data. The selected optimal thresholds correspond to
the closest point to (0,1) in the ROC curves. The sliding window, the wavelet
transform lter, and the scale are respectively 16×16, db1, and L = 1.

curves of the GD and the MGD for both low and high
FPR values. Moreover, The ROC curve of the MGGD-IP
outperforms the other ROC curves of the MGGD-IS and
the MGGD-IO. It should be noted that the ROC curves of
GD and MGD-IS are superimposed. The same is for GGD
and MGGD-IS. The KLD-scaled Wishart based method gives
lower detection results than the wavelet domain method based
on MGGD when the FARs are higher than 2%. This is due
to the non detection of the region 2 in the center of the
image. The ROC curves of the HLT and LRT methods are
not shown in Fig. 4 because of the poor performance of these
two methods in this example.

B. Experiments with real data

1) Data set: A co-registered pair of L-band polarimetric
images (d = 3) was acquired by the Jet Propulsion Laborato-
ry/National Aeronautics and Space Administration UAVSAR
(1.26 GHz) over the city of Los Angeles, California, on April
23, 2009, and May 11, 2015. The images are 2×3 multilooked.
Fig. 5(a) and (b) illustrate the Pauli decomposition of two
images obtained by the JPL’s UAVSAR sensor at two different
times. Fig. 5(c) depicts the ground truth used to compute
the ROC curve. We recall that white color corresponds to a
change and black color to a no-change. As we can see, the
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Inter-polarization Inter-scale Inter-orientation Total Distance Spatial domain
Size Scale dbn GD GGD MGD MGGD MGD MGGD MGD MGGD MGD MGGD Scaled Wishart

28

1 db1 0.8461 0.9371 0.8523 0.9551 0.8461 0.9371 0.8678 0.9410 0.8563 0.9498

0.8723

db2 0.8457 0.9334 0.8517 0.9510 0.8457 0.9334 0.8667 0.9345 0.8560 0.9451
db3 0.8454 0.9284 0.8514 0.9468 0.8454 0.9284 0.8659 0.9282 0.8558 0.9400
db4 0.8452 0.9287 0.8512 0.9460 0.8452 0.9287 0.8659 0.9265 0.8557 0.9392
db5 0.8450 0.9256 0.8511 0.9428 0.8450 0.9256 0.8643 0.9231 0.8553 0.9356

2 db1 0.8457 0.9283 0.8523 0.9477 0.8457 0.9344 0.8699 0.9385 0.8570 0.9458
db2 0.8452 0.9237 0.8523 0.9424 0.8449 0.9307 0.8669 0.9293 0.8564 0.9401
db3 0.8449 0.9139 0.8521 0.9327 0.8448 0.9186 0.8638 0.9138 0.8558 0.9275
db4 0.8447 0.9047 0.8518 0.9248 0.8448 0.9109 0.8612 0.9009 0.8553 0.9172
db5 0.8446 0.9022 0.8516 0.9209 0.8445 0.9080 0.8597 0.8965 0.8548 0.9128

24

1 db1 0.8601 0.9380 0.8686 0.9613 0.8601 0.9380 0.8784 0.9427 0.8707 0.9539

0.8819

db2 0.8594 0.9348 0.8680 0.9573 0.8594 0.9348 0.8774 0.9350 0.8703 0.9485
db3 0.8590 0.9300 0.8677 0.9529 0.8590 0.9300 0.8769 0.9299 0.8700 0.9432
db4 0.8588 0.9302 0.8675 0.9521 0.8588 0.9302 0.8774 0.9285 0.8700 0.9425
db5 0.8586 0.9274 0.8674 0.9483 0.8586 0.9274 0.8755 0.9241 0.8695 0.9383

2 db1 0.8603 0.9291 0.8684 0.9526 0.8602 0.9360 0.8806 0.9401 0.8715 0.9489
db2 0.8596 0.9250 0.8684 0.9463 0.8592 0.9322 0.8779 0.9303 0.8707 0.9421
db3 0.8591 0.9164 0.8682 0.9353 0.8587 0.9207 0.8751 0.9161 0.8699 0.9291
db4 0.8587 0.9079 0.8679 0.9263 0.8586 0.9138 0.8728 0.9045 0.8693 0.9193
db5 0.8583 0.9061 0.8676 0.9226 0.8581 0.9109 0.8713 0.9003 0.8688 0.9155

3 db1 0.8617 0.9047 0.8646 0.9166 0.8618 0.9218 0.8771 0.9180 0.8714 0.9230
db2 0.8579 0.8923 0.8610 0.8941 0.8574 0.9084 0.8690 0.8988 0.8671 0.9036
db3 0.8549 0.8740 0.8580 0.8755 0.8546 0.8955 0.8596 0.8773 0.8633 0.8857
db4 0.8525 0.8596 0.8552 0.8601 0.8526 0.8832 0.8566 0.8730 0.8608 0.8729
db5 0.8505 0.8514 0.8527 0.8463 0.8506 0.8780 0.8526 0.8654 0.8582 0.8604

20

1 db1 0.8805 0.9390 0.8869 0.9662 0.8805 0.9390 0.8922 0.9435 0.8886 0.9570

0.8895

db2 0.8798 0.9361 0.8862 0.9619 0.8798 0.9361 0.8915 0.9358 0.8881 0.9510
db3 0.8795 0.9314 0.8859 0.9571 0.8795 0.9314 0.8912 0.9308 0.8878 0.9453
db4 0.8793 0.9311 0.8857 0.9562 0.8793 0.9311 0.8914 0.9296 0.8877 0.9442
db5 0.8791 0.9290 0.8856 0.9523 0.8791 0.9290 0.8901 0.9251 0.8873 0.9403

2 db1 0.8798 0.9291 0.8873 0.9556 0.8799 0.9364 0.8929 0.9393 0.8888 0.9504
db2 0.8787 0.9249 0.8868 0.9484 0.8784 0.9323 0.8907 0.9302 0.8878 0.9426
db3 0.8781 0.9176 0.8866 0.9369 0.8776 0.9220 0.8887 0.9168 0.8870 0.9304
db4 0.8776 0.9090 0.8865 0.9283 0.8775 0.9154 0.8863 0.9064 0.8863 0.9219
db5 0.8773 0.9072 0.8863 0.9252 0.8772 0.9128 0.8847 0.9035 0.8860 0.9189

16

1 db1 0.8917 0.9355 0.9014 0.9685 0.8917 0.9355 0.9018 0.9422 0.9011 0.9575

0.8930

db2 0.8908 0.9324 0.9006 0.9640 0.8908 0.9324 0.9013 0.9316 0.9002 0.9502
db3 0.8904 0.9274 0.9002 0.9579 0.8904 0.9274 0.9005 0.9251 0.8997 0.9434
db4 0.8902 0.9257 0.9000 0.9570 0.8902 0.9257 0.8998 0.9235 0.8993 0.9417
db5 0.8900 0.9232 0.8999 0.9522 0.8900 0.9232 0.8988 0.9206 0.8990 0.9380

2 db1 0.8926 0.9223 0.9029 0.9556 0.8927 0.9305 0.9031 0.9336 0.9021 0.9484
db2 0.8915 0.9192 0.9020 0.9473 0.8914 0.9270 0.9000 0.9219 0.9008 0.9397
db3 0.8908 0.9119 0.9014 0.9373 0.8906 0.9162 0.8979 0.9127 0.8998 0.9288
db4 0.8903 0.9022 0.9009 0.9283 0.8904 0.9101 0.8944 0.9041 0.8985 0.9203
db5 0.8899 0.9018 0.9006 0.9262 0.8900 0.9091 0.8945 0.9074 0.8985 0.9203

3 db1 0.8921 0.8823 0.8976 0.9034 0.8921 0.9116 0.8957 0.8973 0.8984 0.9060
db2 0.8877 0.8672 0.8931 0.8863 0.8874 0.9032 0.8893 0.8923 0.8937 0.8961
db3 0.8852 0.8414 0.8900 0.8669 0.8851 0.8939 0.8826 0.8763 0.8902 0.8783
db4 0.8839 0.8086 0.8882 0.8464 0.8840 0.8880 0.8738 0.8614 0.8855 0.8564
db5 0.8832 0.7821 0.8872 0.8312 0.8833 0.8892 0.8724 0.8638 0.8840 0.8473

12

1 db1 0.8932 0.9180 0.9063 0.9636 0.8932 0.9180 0.9057 0.9278 0.9048 0.9463

0.8918

db2 0.8925 0.9160 0.9052 0.9564 0.8925 0.9160 0.9031 0.9145 0.9034 0.9378
db3 0.8922 0.9098 0.9047 0.9487 0.8922 0.9098 0.9014 0.9072 0.9026 0.9298
db4 0.8920 0.9067 0.9044 0.9475 0.8920 0.9067 0.9002 0.9058 0.9020 0.9273
db5 0.8918 0.9053 0.9041 0.9426 0.8918 0.9053 0.8993 0.9037 0.9017 0.9246

2 db1 0.8925 0.8891 0.9083 0.9411 0.8926 0.9106 0.9008 0.9059 0.9043 0.9291
db2 0.8903 0.8888 0.9062 0.9343 0.8903 0.9055 0.8951 0.8962 0.9018 0.9218
db3 0.8881 0.8747 0.9040 0.9202 0.8881 0.8945 0.8918 0.8900 0.8997 0.9106
db4 0.8861 0.8502 0.9017 0.8988 0.8861 0.8872 0.8848 0.8810 0.8964 0.8973
db5 0.8844 0.8386 0.8996 0.8885 0.8842 0.8858 0.8852 0.8838 0.8956 0.8929

TABLE VI
AUC FOR DIFFERENT WINDOW SIZES, DIFFERENT SCALES, AND DIFFERENT DEPENDENCIES (IP, IO AND IS) MEASURED FOR GD, GGD, MGD, AND
MGGD, AND COMPARED WITH KLD-SCALED WISHART METHOD IN THE CASE OF SIMULATED DATA. THE BEST VALUES ARE MARKED BY RED COLOR

AND THE WORST BY BLUE COLOR.
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interesting area of this dataset is an urban area, where the
changes occurred due to the effects of urbanization.

2) Experiments: To evaluate and to obtain reliable results,
the input image is decomposed into L = (1, 2) scales
using discrete stationary wavelet transform (SWT) with a
Daubechies lter bank. For each coefcient magnitude of each
scale, different sliding windows with size (16, 20, 24, 28)
are used in this study for performance evaluation. As in the
previous section, the IS, IO, and IP dependencies are used.
Indeed, the distances


p dKL(X 1

p ,X 2
p ),


p dKL(Y1

p ,Y2
p)

and dKL(H1,H2) + dKL(V1,V2) + dKL(D1,D2) are com-
puted with the MGGD and the MGD and compared with the
distances corresponding to the case where the subbands are
assumed independent with the univariate GGD and GD.

Fig. 6 illustrates the different logarithm of KLD and the
corresponding binary change map obtained by the thresholding
the KLD. Indeed, binary change detection map is obtained at
signicance level or specied FPR equal to 5%. The sliding
window size corresponds to 16×16, with a wavelet transform
scale L = 1, and Daubechies wavelet lter: ’db1’. The
distances are computed for both univariate (GD, GGD) and
multivariate distributions (MGD and MGGD). We release the
following comments. The GD and MGD give us the worst
detection results as it is shown in Fig. 6(h) and Fig. 6(b)-
(d)-(f) and their corresponding binary change map in Fig.
6(h’) and Fig. 6(b’)-(d’)-(f’). The KLD using the MGGD
provide better performance than that based on the GGD as
more areas are detected. Accordingly, taking into account
the correlation structure between subbands improves in this
example the performance and the accuracy of the change
map. The comparison between KLD based on MGGD-IP gives
better results than the MGGD-IS and MGGD-IO dependence.

A quantitative evaluation of the change detection perfor-
mance is provided also for four different signicance levels
or specied FPRs (false positive rate) 05%, 1%, 5%, 10%
with a window size of 16×16 and L = 1. Table VII illustrates
different specied FARs and the detection rate (TPR) for all
the methods. As indicated in this table, the MGGDP-IP reaches
higher detection rates and lower overall error rates among
the other wavelet domain approaches. It can also be observed
that the performance of MGGD-IP is followed by MGGD-IO,
MGGD-IP+IS+IO and nally by GGD. As the signicance
level of the FAR increases to 10%, the detection rates for these
methods increase and become quite similar, while the MGGD
remains always better than the GGD. We also conclude that
the wavelet domain method based on MGGD outperforms the
KLD-scaled Wishart method. The TPR of the latter is always
lower than the TPR of the former, especially for low values of
the specied FPRs. When FPR increases and reaches 10%, the
performance of both methods becomes more and less similar.
It is clearly seen that MGGD-IP,-IS and -IO outperform the
HLT and LRT methods when the specied FAR is ≥ 5%.
However, HLT and LRT give the best performance for low
values of the specied FAR (0.5%, 1%).

In Table VIII, we provide the AUC for all methods. Ac-
cording to this table, it can be concluded that the worst perfor-
mance for the wavelet domain method is given by the GD and
MGD. On the other hand, the proposed MGGD outperforms

TABLE VII
CHANGE DETECTION PERFORMANCE FOR REAL DATA. THE BEST VALUES

ARE MARKED BY RED COLOR.

Methods Specied Detection Overall error
FAR(%) rate (%) rate (%)

GD

0.5

11.36 14.07
GGD 13.17 13.80
MGD-IP 10.55 14.20
MGGD-IP 13.51 13.74
MGD-IS 11.36 14.07
MGGD-IS 13.17 13.80
MGD-IO 11.59 14.04
MGGD-IO 13.46 13.75
MGD-IP+IS+IO 11.15 14.10
MGGD-IP+IS+IO 13.36 13.76
Scaled Wishart 8.76 14.60
HLT 20.69 12.63
LRT 22.48 12.36
GD

1

16.81 13.65
GGD 23.48 12.63
MGD-IP 17.38 13.57
MGGD-IP 25.03 12.39
MGD-IS 16.81 13.65
MGGD-IS 23.48 12.63
MGD-IO 16.86 13.65
MGGD-IO 23.36 12.65
MGD-IP+IS+IO 17.19 13.60
MGGD-IP+IS+IO 23.58 12.61
Scaled Wishart 14.82 14.08
HLT 28.25 11.89
LRT 28.75 11.81
GD

5

67.26 9.28
GGD 72.06 8.54
MGD-IP 67.67 9.21
MGGD-IP 74.60 8.16
MGD-IS 67.26 9.28
MGGD-IS 72.06 8.54
MGD-IO 68.07 9.15
MGGD-IO 73.75 8.28
MGD-IP+IS+IO 67.91 9.17
MGGD-IP+IS+IO 74.26 8.20
Scaled Wishart 68.14 9.18
HLT 48.56 12.17
LRT 44.88 12.74
GD

10

84.09 10.92
GGD 87.15 10.48
MGD-IP 85.84 10.65
MGGD-IP 87.76 10.36
MGD-IS 84.09 10.92
MGGD-IS 87.15 10.48
MGD-IO 83.20 11.04
MGGD-IO 87.28 10.42
MGD-IP+IS+IO 85.25 10.75
MGGD-IP+IS+IO 87.93 10.31
Scaled Wishart 86.38 10.56
HLT 57.94 14.99
LRT 53.73 15.61

the univariate GGD giving us the best performance. It is also
be highlighted that for all window sizes, the highest value
of AUC is always given by MGGD-IP, followed by MGGD-
IO, and MGGD-IP+IS+IO. This can be explaining due to the
fact that the correlation structure between subbands allows
improving the performance and the accuracy of the change
map. In addition, the AUC based on the KLD-MGGD-IP,
KLD-MGGD-IO and MGGD-IP+IS+IO are even higher for
L = 2 compared to the KL-GGD with L = 1 for any window
sizes of 16, 20, 24, 28. It reinforces our belief that the cor-
relation structure improves the change detection performance.
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(a) (b) (c)

Fig. 5. UAVSAR images (in Pauli decomposition) on April 23, 2009 and May 11, 2015. (a) before change. (b) after change. (c) ground truth where white
color is change and black color is no-change.

Furthermore, the scale L = 1 gives better performance than
for L = 2 where the optimal performance is attained with
L = 1 and a window size of 16×16 in our case of study.
The AUC for KLD-scaled Wishart is always lower than the
wavelet domain based method. The performance of the former
decreases as the window size increases. For small window size,
both methods seems to have similar performance. The AUC for
both HLT and LRT methods are equal to 0.8113 and 0.7925,
respectively, thus showing the lowest values among the other
methods. In Fig. 7, the ROC curves corresponding to different
methods are shown. In this evaluation, the sliding window of
size 16×16, a wavelet transform lter db1 and scale L = 1
have been employed. The obtained results show that the ROC
curves of MGGD are always better than those of GD and
MGD for both low and high FPR values. Moreover, the ROC
curve of the MGGD-IP outperforms the other ROC curves
of the MGGD-IS and MGGD-IO. It is worth to mention that
the ROC curves of MGGD-IS and MGD-IS are not shown in
Fig. 7 because they are overlaid with the GGD and GD ROC
curves, respectively. We also notice that the ROC curve of the
KDL-scaled Wishart method is always below the ROC curves
of the wavelet domain method based on MGGD when FPR
is less than 30%. But beyond this value, the curve becomes
above the other ROC curves. The ROC curves of the HLT
and LRT methods show poor performance compared to the
other methods. From all these experiments, we have shown
encouraging results for change detection based on multivariate
statistical wavelet subband modeling, allowing to take into
account the correlation structure between subbands.

VI. CONCLUSION

In this paper, an unsupervised method for PolSAR change
detection in the wavelet domain is proposed. The method is
based on the multivariate statistical wavelet subband mod-
eling assumed to be MGGD. Through this distribution, it
is possible to take into account the correlation structure
between subbands. Three correlations are investigated: inter-
scale dependence, inter-orientation dependence, and inter-
polarization dependence. The rst is to model the correlation
between the scales of the same orientation, the second is to
model the dependence between the orientations of the same
scale, and the third is to measure the dependency between
polarization with the same scale and orientation. Closed-

form expression of Kullback-Leibler divergence between two
MGGDs is exploited and used to generate the change map. The
approach is evaluated using simulated and real PolSAR data
with different parameter settings, different scales, and sliding
window sizes. Through this study, the MGGD shows better
results than the GGD as the correlations between subbands are
characterized by multivariate distribution. Moreover, PolSAR
change detection in the wavelet domain is better represented
by MGGD than MGD since the latter is a special case of
MGGD. In addition, the comparison between correlations
shows that MGGD-IP gives better results than the MGGD-
IS and MGGD-IO dependences. Moreover, the performance
of the proposed change detection method is compared to the
performance of three methods performed in spatial domain: the
homogeneous change detection based on the scaled complex
Wishart distribution, the HLT and the LRT methods. The
results show that the wavelet domain can outperform the
spatial method. Although the approach performs well, we
can improve the results by considering not only the diagonal
elements of the multilook polarimetric covariance matrix for
the study of change detection but also by adding the other
complex components of the covariance matrix. This requires
the knowledge of the closed-form expression of KL for
complex MGGD not yet established to generate the change
map.

APPENDIX A
LAURICELLA FUNCTION

The Lauricella series F (n)
D given as follows [42]

F
(n)
D (a, b1, ..., bn; c;x1, ..., xn) (28)

=

∞∑

m1=0

...

∞∑

mn=0

(a)m1++mn(b1)m1 ...(bn)mn

(c)m1++mn

xm1
1

m1!
...
xmn
n

mn!

where x1, ..., xn < 1. The Pochhammer symbol (q)i indicates the
i-th rising factorial of q, i.e.

(q)i = q(q + 1)...(q + i− 1) =
Γ(q + i)

Γ(q)
if i = 1, 2, ... (29)

If i = 0, (q)i = 1. Function F
(n)
D (.) can be expressed in terms of

multiple integrals as follows [67]

F
(n)
D (a, b1, ..., bn; c;x1, ..., xn) =

Γ(c)

Γ(c−n
i=1 bi)

n
i=1 Γ(bi)

×
∫

Ω

...

∫ n∏

i=1

ubi−1
i (1−

n∑

i=1

ui)
c−∑n

i=1 bi−1(1−
n∑

i=1

xiui)
−a

n∏

i=1

dui

(30)
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Fig. 6. Detection results for real PolSAR data. (a) and (b) ln KLD for IP dependence with MGGD and MGD and their binary change maps (a’)-(b’). (c)-(d)
ln KLD for IS dependence with MGGD and MGD and their binary maps (c’)-(d’). (e)-(f) ln KLD IO dependence with MGGD and MGD, and (e’)-(f’) their
corresponding binary maps. (g)-(h) ln KLD for univariate GGD and GD, and their binary change maps (g’)-(h’). (i) and (i’) ln KLD-MGGD (IP+IS+IO)
dependence with MGGD and binary map. (j) and (j’) ln KLD-scaled Wishart and corresponding change map. (k)-(l) results of the HLT and LRT methods.
The parameters used: sliding window size=16 , wavelet transform L=1, Daubechies wavelet lter: db1. Binary map obtained at specied FPR=5%.
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Inter-polarization Inter-scale Inter-orientation Total Distance Spatial domain
Size Scale dbn GD GGD MGD MGGD MGD MGGD MGD MGGD MGD MGGD Scaled Wishart

28 1 db1 0,8803 0,9144 0,8874 0,9243 0,8803 0,9144 0,8674 0,9198 0,8850 0,9220 0.90782 db1 0,8814 0,9128 0,8885 0,9219 0,8816 0,9135 0,8724 0,9200 0,8867 0,9196

24 1 db1 0,8991 0,9195 0,9043 0,9293 0,8991 0,9195 0,8882 0,9249 0,9026 0,9271 0.91802 db1 0,9006 0,9176 0,9053 0,9273 0,9008 0,9188 0,8927 0,9251 0,9043 0,9247

20 1 db1 0,9168 0,9252 0,9216 0,9351 0,9168 0,9252 0,9078 0,9310 0,9202 0,9329 0.92632 db1 0,9180 0,9224 0,9224 0,9320 0,9182 0,9239 0,9110 0,9302 0,9216 0,9299

16 1 db1 0,9314 0,9321 0,9358 0,9412 0,9314 0,9321 0,9234 0,9378 0,9348 0,9395 0.93382 db1 0,9321 0,9293 0,9367 0,9361 0,9321 0,9310 0,9251 0,9353 0,9355 0,9358

TABLE VIII
THE AREA UNDER CURVE (AUC) FOR DIFFERENT WINDOW SIZES, DIFFERENT SCALES, AND DIFFERENT DEPENDENCIES (IP, IO, AND IS) ARE

MEASURED FOR GD, GGD, MGD, AND MGGD, AND COMPARED TO KLD-SCALED WISHART METHOD IN THE CASE OF REAL DATA. THE BEST VALUES
ARE MARKED BY RED COLOR AND THE WORST BY BLUE COLOR.
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Fig. 7. ROC plot comparison between different methods with and without
dependencies (IP, IO and IS). The slide window, the wavelet transform lter
and scale are respectively 16×16, db1 and L = 1.

where Ω = (u1, u2, ..., un)0 ≤ ui ≤ 1, i = 1, ..., n, and 0 ≤
u1+u2+ ...+un ≤ 1, Re(bi) > 0 for i = 1, ..., n and Re(c−b1−
... − bn) > 0. Lauricella’s FD can be written as a one-dimensional
Euler-type integral for any number n of variables. The integral form
of F (n)

D (.) is given as follows when Re(a) > 0 and Re(c− a) > 0

F
(n)
D (a, b1, ..., bn; c;x1, ..., xn) =

Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ua−1×

(1− u)c−a−1(1− ux1)
−b1 ...(1− uxn)

−bndu (31)

Lauricella has given several transformation formulas, from which we
use the two following relationships. More details can be found in
Exton’s book [68] on hypergeometric equations.

F
(n)
D (a, b1, ..., bn; c;x1, ..., xn)

=

n∏

i=1

(1− xi)
−biF

(n)
D (c− a, b1, ..., bn; c;

x1

x1 − 1
, ...,

xn

xn − 1
) (32)

= (1− x1)
−aF

(n)
D (a, c−

n∑

i=1

bi, b2, ..., bn; c;
x1

x1 − 1
,
x1 − x2

x1 − 1
,

, ...,
x1 − xn

x1 − 1
) (33)
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