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Abstract

The long-time behaviour of spin-spin correlators in the slow relaxation of systems
undergoing phase-ordering kinetics is studied in geometries of finite size. A phenomeno-
logical finite-size scaling ansatz is formulated and tested through the exact solution of
the kinetic spherical model, quenched to below the critical temperature, in 2 < d < 4
dimensions.
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1 Critical relaxations in finite-size systems

Collective phenomena arise in many-body systems with dynamically created long-range inter-
actions and thereby often show new qualitative properties which cannot be obtained in sys-
tems with a small number of degrees of freedom. An important class are critical phenomena,
characterised by scale-invariance. We are interested here in time-dependent phenomena with
time-dependent or ‘dynamical” scaling. As a physical example, we consider many-body spin
systems, initially prepared in a disordered state with at most short-ranged correlations and
then suddenly quenched to a temperature T' < T, below the critical temperature 7, > 0, with
at least two physically distinct phases. Such a quenched spin system is then said to undergo
phase-ordering kinetics [16]. For a spatially infinite geometry, observables such as correlation
functions are then expected to be invariant under the time-space dilatation

t—t' =kt , P71 =kr (1.1)

where k is a constant re-scaling factor and the dynamical exponent z serves to distinguish the
scaling between time and space. The relaxation of the system after the quench can be measured
through connected correlators of the time- and space-dependent spin variables S,.(t), namely

C{tim) = (8:(0)50(0)) — (S,(0) (Sa(8) = Fo (17 ) (1.20)
C1t:5) 1= (8105, (5)) = (50(0) (50(5) = fe ) (120)

where the quoted scaling forms are meant to hold in the limit of large times and large distances,
such that |r|?/t and t/s are kept fixed. In (1.2b), t is the observation time and s is the waiting
time. Asymptotically, the scaling function fe(y) in (1.2b) should be algebraic

fey) ~y™* | asy — o (1.3)

where A = A\ is the autocorrelation exponent. A many-body non-stationary system whose slow
relaxation dynamics also breaks time-translation-invariance and is such that the single-time
correlator C'(t,r) and the two-time auto-correlator C'(t, s) obey the dynamical scaling (1.2), is
said to be ageing [66, 30, 48, 68].

For phase-ordering, with a non-conserved order parameter, some general exact results exist
for models with short-ranged interactions. First, the dynamical exponent z = 2 for a non-
conserved order parameter [17].! Second, the Yeung-Rao-Desai inequality states that A > d/2
[70]. Third, for the 2D Ising model one has the Fisher-Huse inequality A < 2 [38]. Some typical
values for z and A are listed in table 1. They illustrate the sharpness of these exact bounds
and permit a comparison between short-ranged and long-ranged interactions. The agreement
with the available experiments [57, 5] is very satisfying. For more detailed tables, see [48].

How is the scaling behaviour, encoded in the scaling forms (1.2), modified in a system
confined to a domain of finite size, e.g. because it is placed into a box 7

For a phenomenological answer, consider figure 1. For a fully finite hyper-cubic lattice
with N? sites and periodic boundary conditions, the single-time correlator C(¢;7) is shown in

'In this work, we restrict to this model-A dynamics.



material /model 2 A Refs.
Merck (CCI-501) 1.94(5) 1.246(79) | [57]
nematic TNLC 2.01(1) 1.28(11) [5]
Ising 1D LR |1+0 05 [26, 27]
Ising 2D LR |1+0 1 [22, 23]
Ising 2D SR | 2 1.24(2) | [54]

2 1.25 22, 23]
Ising 3D SR | 2 1.60(2) [47]

2 1.6 (58]
Potts-3 2D SR | 2 1.19(3) | [54]

2 1.22(2) | [25]
Potts8 2D SR | 2 1.25(1) | [54]
XY 3D SR | 2 1.7(1) 2]

2 1.6 [58]
spherical SR | 2 d/2 [44]
spherical LR | O d/2 [19, 11]

Table 1: Dynamical exponent z and autocorrelation exponent A, as measured experimentally or
found in some spin models. Long-range (LR) behaviour occurs in the Ising model for o < 1 and in the
spherical model for o < 2. The spherical model is considered for dimensions d > z.

figure la, where 7 is oriented along one of coordinate axes. If the spatial distances r = |r| are
not too large, the shape of the correlator does not depend sensitively on N. Only if r < %,
does the correlator also receive contributions ‘from around the world’, such that for r =~ % it

no longer tends towards zero, but rather saturates at a N-dependent constant 01(111)1<N ) > 0.
Figure 1b shows the two-time autocorrelator C'(ys, s). For large s, but y small enough, there is
a clear data collapse. However, for larger values of y, C' begins to decrease more rapidly than

the infinite-size curve (1.2b).? As y > 1, C finally saturates at the limit value C’g)(N) > 0.

Although the single-time correlator does not display strong finite-size effects, this is different
for the length scale L = L(t) of the growing clusters, estimated from the second moment

Lz(t) — Z’r |T|2C(t; ’I‘) (14)

>, Cltr)
The precise extent of the sums will be specified below. Figure 2 shows that for sufficiently
short times, the length behaves as for the infinite system, but as ¢ grows further, finally there
occurs a cross-over towards a finite constant L.,(N). We shall see how to explain the findings
of figures 1 and 2 in terms of phenomenological finite-size scaling. The resulting predictions
will be tested in the exactly solved kinetic spherical model, for dimensions 2 < d < 4.

The spherical model of a ferromagnet [12, 53] has served as an exactly solvable, yet non-
trivial, model for the detailed analysis of general concepts of critical phenomena, see [39] for a

2Since for lattices large enough that the system is just leaving the effective finite-size regime, the local
exponent estimates Aeg(y) may slightly over-estimate A. In certain cases this might lead to claims of violation
of exact upper bounds such as the Fisher-Huse inequality.
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Figure 1: (a) Finite-size effects for the single-time correlator C(¢,r) in the fully finite spherical model
at T' < T, with t = 50 and N = [10, 12, 14, 16, oo] from top to bottom. The inset shows the periodicity
over the interval 0 < r/N < 1.

(b) Finite-size effects for the two-time autocorrelator C(ys,s) in the 3D fully finite spherical model
at T < T, for N = [15,20,30,40] from top to bottom (at the right) and s fixed. The thin dashed
line gives the infinite-size autocorrelator. The inset shows the data collapse of the re-scaled correlator
CN3/2 for y = t/s large, with N = [15,20, 25, 30, 35, 40] from left to right (arbitrary units).

historical perspective. Its non-equilibrium behaviour after a quench has also been thoroughly
analysed, see [62, 28, 29, 44, 19, 42, 59, 46, 6, 11, 32, 7, 48]. The related Arcetri model provides
a qualitative description of the dynamics in the non-equilibrium growth of interfaces [49, 31].
Finite-size effects at equilibrium have also been analysed at great depth in the spherical model
and have been of value to test the theory of finite-size scaling derived from the renormalisation
group, see [8, 18, 9, 55, 64, 65, 60, 4, 15, 21] and refs. therein. For dimensions d > d. = 4, that is
above the upper critical dimension, the standard finite-size scaling ansatz must be considerably
modified [13, 60, 50, 40, 41, 45].

An explicit study of finite-size scaling in an ageing system is on the dimensional cross-over
between the 3D and 2D Edwards-Anderson spin glass [36] motivated by extremely accurate
experiments on CuMn films [71, 72]. In addition, finite-size effects analogous to figures 1 and 2
are clearly visible in the time-evolution of characteristic clusters sizes in long-ranged Ising
models quenched to T < T, [22] or in the auto-correlator [23]. Since the bulk 3D spherical
model and the bulk (p = 2) spherical spherical spin glass are in the same dynamic universality
class [29], one might hope that finite-size effects could be similar as well. Not so ! Rather,
detailed studies of the (p = 2) spherical spin glass [43, 10] show that this equivalence only
holds in the spin glass for times t < teoss ~ N2/3. For time scales t > tonss, ageing still holds
with a new set of universal exponents [43], to be followed by a second cross-over to a regime of
exponential decay at extremely large times [10].

This work is organised as follows. In section 2, we recall the main features of dynamical
scaling in ageing phase-ordering kinetics. In section 3, we extend this phenomenological treat-
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Figure 2: Finite-size effects for the longitudinal characteristic length Lﬁ(t), measured along a coor-

dinate axis, in the fully finite spherical model with lattice sizes N = [25,50, 100, 200] from bottom to
top. The thin dashed line indicates the infinite-size behaviour L(t) ~ t'/2,

d* factors d—d* factors
7\ 7\

ment to finite systems, using the hyper-cubic geometry N X --- x N x 60 X - - - X 00, where the
first d* < d directions are finite and periodic and the other d — d* directions are infinite. The
finite-size forms so obtained will be checked in section 4 using the exact solution of the kinetic
spherical model in 2 < d < 4 dimensions, quenched to T" > T, from a totally disordered state
and in section 5 we conclude. Technical details of the exact solution are given in the appendix.

2 Dynamical scaling description

A central ingredient of ageing is dynamical scaling. For the general two-time and spatial bulk
correlator, our starting point is (below the upper critical dimension d < d.; for short-ranged

interactions usually d"" = 4)

C (k*t,Kk*s; k) = K°C (t,5;7) (2.1)

where t, s are the observation and the waiting time, z is the dynamical exponent, ¢ a scaling
exponent and 7 is the spatial distance. Writing (2.1) means that we assume negligible all
finite-time and finite-distance corrections to scaling. Choosing = s~ /%, this gives
t T
cp) = o?/2 21—

C(t,s;r) =s%*C (s, 1; Sl/z> (2.2)
In phase-ordering, the single-time correlator at » = 0 is finite; namely either C(¢;0) = 1
in Ising-like systems or else C(¢;0) = ]\462q for order parameters with a continuous global
symmetry. Setting s = ¢ in (2.2), this leads to ¢ = 0 and® further to C(t;7) = C'(1, 1;|r[t /%) =
Fe(r[t/%). On the other hand, setting now r = 0, the two-time auto-correlator is C(t, s) =
C(t,s;0) = C(t/s,1;0) =: fo(t/s). These results fully reproduce (1.2).

3If more generally, one would expect C(t,s) = s~°fc(t/s), this would lead to the identification b = —¢/z,
but for ¢ # 0, this is incompatible with C(t;0) being finite and constant for ¢ — oo.
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3 Dynamical finite-size scaling

According to the original definition, finite-size scaling [37] is the scaling behaviour in a nearly
critical system confined to a geometry of finite linear extent N. For finite geometries, the
natural generalisation of (2.1) consists, as at equilibrium [8, 67, 9, 60], to consider 1/N as
a further relevant scaling field.* While this hypothesis was originally specified for the order
parameter at the critical point [67], we adapt this to the situation at hand and write down the
finite-size scaling (¥Ss) ansatz for the full two-time correlator

1 1
C (/@Zt, mzs;/{r;/@_lﬁ) = k?°C (t,s;r; N) (3.1)
d* fi(itors d—d* factors

meant to hold in the hyper-cubic geometry N X --- x N X 60 x - -+ X 0o where N describes the
finite length in the system. For simplicity, we consider a single length of this kind.® Of course,
for N — oo, one is back to the bulk scaling form (2.1), and hence (1.2).

Choose the re-scaling factor x = s~%/#. For phase-ordering kinetics, recall from section 2

that ¢ = 0. Then (3.1) can be equivalently expressed as

1 t r sz

As above in section 2, we then expect for the correlators (provided spatial rotation-invariance
can be assumed)

C(t;r; N7 = Fe ('Z'Z; ]\f) , O(t,ssNTY) = fe <§, ]\;Z) (3:3)

such that the corresponding scaling functions are now functions of two variables. Finite-size
scaling in ageing can be analysed in the asymptotic FSs limit where ¢t — 0o, s — 00, |r| — oo
and N — oo such that the three scaling variables

t r
= = 7 = 3.4
y=< o e=n ; (3.4)
are kept fixed. The precise form of the finite-size scaling functions (3.3) will depend on the

universality class under study, and on the boundary conditions [9, 60, 15].

As a first consequence, consider the characteristic length L(¢) of the clusters. From (1.4)
and (3.3), we derive the finite-size scaling form

201 A1y dor [r*Ct;r; N7 ~ 2/Zfd'r (|r|t71/z)2FC(|T|Z/t?Nz/t) _42/z N*
PN =5 ey = Jar Bl Ny fL( t)

(3.5)

4Very interesting adaptations of this idea have been brought foward in the study of the kinetics of polymer
collapse, where N is now the finite number of monomers, but the spatial geometry of the system was not
specified [56].

®Spatially anisotropic finite-size effects could be taken into account by introducing distinct finite sizes N; in
different spatial directions.



Z>1
For Z > 1, the behaviour of an effectively infinite system requires that fr(2) < fo = cste.

and for Z < 1, the time-independent saturation in figure 2 is captured by f1(Z) Z$t 72/% such
that Lo (NN) ~ N, as would have been expected from dimensional analysis.

Next, we consider the plateau in the two-time autocorrelator C(ys,s) for y > 1, see fig-
ure 1b. Recall that for the infinite system, we expect from (1.2b,1.3) that C(t,s;0;0) =
fe(t/s) ~ (t/s) M2 For N < oo, we reformulate (3.2) as follows

1 t Sl/z t —Az t 1/z Sl/z
- . 0N- _ 1.0 _ | = g v
Clt,ss N =C (t,s7O,N) —C (3’1’0’ N ) - (S) T (8) 2 (3.6)

Herein, the first argument in the scaling function %o = Z¢ (y, u) will be considered large and
be kept fixed, y > 1. In that case, the scaling function will describe the cross-over between
(i) the infinite-system behaviour (when u = s/?/N — 0) fo(y) = Zc(y,0) ~ y~*/# which
is independent of s and (ii) the fully finite-system behaviour (when u = s/?/N — oo) when

c = c? no longer depends on y = t/s. The first limit case is taken into account by admitting
Fc(y,u) ~ F(yu) and F(0) = cste. Then the second limit case leads to

1 t/s>1 [t —Mz t 1/2 81/2 t —A/z t 1/z Sl/z v
(emo) = () F((E) )0 (G ) e

where in the last step, we assumed a power-law form of F(yu) ~ (yu)w for yu > 1. The y-

independent plateau 2 observed for fully finite systems (see figure 1b for s fixed) is reproduced
if we choose w = A. Hence, for finite systems with y =¢/s > 1

LY t/s>1 o s\
C t,s;O;N = CY ~ N (3.8)

Herein, s is still kept fixed whereas N must be taken large enough such that the system under
study is indeed in its finite-size scaling regime (in other word, Ns~# must be large enough).

Hence for fully finite systems, quenched to T < T, the autocorrelator C'(ys, s) = fo(y) v>1
C?, such that the plateau value C&2 = C’g)(s, N) should obey the scalings

C® ~ N with s fixed , C® ~ s with N fixed (3.9)

These are the sought scalings for the plateau of the autocorrelator and the main result of this
section.

The inset in figure 1b shows the data collapse of N*C(ys, s) to a y-independent constant for
y large enough and s fixed, in the 3D spherical model, where A = % In the next section, (3.9)
will be verified analytically from the exact solution of the quenched kinetic spherical model in
dimensions 2 < d < 4.

A simple heuristic argument to establish (3.8) goes as follows. For widely different times
t > s > Tmic, the asymptotic form of the autocorrelator is expressed through the cluster sizes

LasC(t,s) ~ (L(t)/L(s))ﬂ\. If furthermore ¢ is so large that L(t) ~ N while s is small enough
such that still L(s) ~ s'/#, the scaling (3.8) of the plateau 2 follows.
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4 The kinetic spherical model

Following standard developments [62, 28, 44, 49], the kinetic spherical model is defined in terms
of real spin variables S,, = S,(t) € R at each lattice site n € A C Z¢, subject to the spherical
constraint y ., Se(t) = |A], where |A| = H;l:l N; is the number of sites of the lattice A C Z<.

Its dynamics is given by the Langevin equation
atSn(t) = DAnSn(t) - 3(t)sn(t) + nn(t) (41)

with the spatial laplacian A,, and the thermal white noise 1, = n,(t). It has the first two
moments

() =0, (Mu(O)nmt')) =2DT6(t — t')0nm (4.2)

where 7" is the bath temperature and D a kinetic coefficient. The Lagrange multiplier 3(¢) is
fixed from the spherical constraint. The Fourier representation

Ni—1 Ng—1

Sn( \A] Z Z exp (27112 ]Iif—n]> §(t, k) (4.3)

k1=0 ky=0

achieves the formal solution of the model which reads

~ 5 exp(—2Dw(k)t) N g(1) oty ( 9D o N
5t k) = 5(0, k) = /0 dritr ) [ S esp(-2Du(k)t =) (L

with the abbreviations (nearest-neighbour interactions assumed)

d t
2m

= Z 1 —cos—k;| , g(t) =exp 2/ dr 3(7) (4.4Db)

m N 0

Jj=1

In what follows, we restrict to a totally disordered initial state, such that (S,(0)) = 0 and
(51 (0)Sm(0)) = 6pm. In momentum space, the second moments of initial and thermal noises
become

(5(0.k)S(0,K)) = (Moo » (it R)IE,K)) = 2DTIAIS(E — )ohieo (4dc)

Then the spherical constraint can be cast into a Volterra integral equation for g = g(t)
t
1
g(t) = f(t) +2DT / drg(n)f(t—7) , f(t):= WZexp(—éLDw(k)t) (4.4d)
0 k

Here and below, we abbreviate ), := 2\11:—01 e ch\id:—()l. Egs. (4.4) specify the exact solution
of the kinetic spherical model. We are interested in

(I) the two-time correlation function C (t,s; k) in momentum space, defined by

<§(t,k)§(s, k:’)> = |A|Ow 0 C(t, 5: K) (4.52)

. —2Dw(k)(t+s) min(t,s)
C(t,s;k)=———— +2DT / ar — 9T —aputeers-2n (4.5D)
9(t)g(s) 0 9(t)g(s)

and especially the two-time autocorrelator

C(t,s) MlZCtsk C(s,t) (4.6)

7
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(IT) the single-time correlator in momentum space C(t; k) := C(t,t; k), obtained from (4.5)
by setting s = ¢. The time-space correlator reads

Ct;m) = ’Tl‘ Zexp (27?12 ]l{\;—inj> C(t: k) (4.7)

The well-known bulk critical temperature [12] (Ip(u) is a modified Bessel function [1])

() :/0 du (e7*"Io(2u)) (4.8)

is finite and positive for d > 2. Explicitly [20, 14]

TjB) = \Sz;?)l (F (i) r (%))2 ~ 0.25273... (4.9)

d* factors d—d* factors

A\ AL

In what follows, we consider a hyper-cubic geometry N x --- x N x50 X -+ - X 00, where
the first d* < d directions are finite and periodic and the other d —d* directions are infinite. We

also restrict to 2 < d < 4 and rescale the temporal units such that 87D = 1. After a quench
from the disordered initial state (4.4c) to a temperature 7' < T,(d), we find in the FSS limit
(3.4) (see the appendix for the calculations)

(A) the single-time temporal-spatial correlator, namely

N"J e—ﬂ'Z)

C(t;n) = MZ exp ( Z %) H 193191:( ) (4.10a)

7=1 7j=1

o 03\ 7 Vs (/N exp(—/2))
= M2 exp (— ]%;17)1_[ 55 (0, (=1 2) (4.10b)

j=1

where MZ =1 —T/T,(d) is the squared equilibrium magnetisation and Z was defined in (3.4)
with z = 2. Finally, 93(z,q) = > 202 " cos(2pz) is a Jacobi Theta function [1].5 See figure 1a
for illustration. From (4.10a) we identify the finite-size scaling function Fo = F (@, Z) in (3.3).
The shape of this function is temperature-independent. Indeed, an universal shape of F¢ is
expected, since the temperature T should be irrelevant in phase-ordering kinetics [16].

Eq. (4.10a) gives a factorisation of C(t,n) = Cpux(t; 1) -Crea(t; 7; N) into a size-independent
‘bulk’ part and a ‘reduced’ part which contains the finite-size effects. Because of the identity
U3(z + m,q) = V3(z,q), it is seen from (4.10b) that the correlator repeats periodically when
n; — n; + N is in the finite directions, as illustrated in the inset of figure la. For Z large
enough” the central peak of the correlator around n = 0 decays as in the bulk with a length
scale L(t) ~ t1/2 such that the system decomposes into separate and independent clusters of
linear size L(t), as expected. The bulk gaussian decay ~ e/t rather than an exponential

6 Analogous expressions of the finite-size scaling functions in terms of Jacobi Theta functions are known for
the particle density in several 1D reaction-diffusion processes for both periodic and open boundary conditions
[51, 52] and for the single-time correlator in the periodic 1D Glauber-Ising model at temperature T' = 0 [3].

"Actually for Z > 25, which in physical units corresponds to L(t) < 5N.

8



~ eInl/ ‘/g, is a peculiar property of the spherical model which distinguishes it from the Ising
universality class.

(B) the two-time autocorrelator, for all T' < T.(d), reads

/2

, (2T d/2 s (0 exp(—m %lz/y))z
C(ys,s) = M; ( > Il (4.11a)

1+y 0, exp(— ) (O exp( ﬂZy)

) d* /2
“U\1+y 50, exp( 7T/Z )193(0 exp(—7/Zy)) '

as illustrated in figure 1b. We identify from (4.11a) the finite-size scaling function fo =

fe(y, Z) in (3.3), whose shape is once more temperature-independent. As above for the single-

time correlator, (4.11a) displays a natural factorisation into the bulk two-time autocorrelator

d/2
Chu(ys, s) = Mz, 2 f) and a ‘reduced’ factor which alone contains all finite-size effects.

Eq. (4.11a) shows that for Z > 1, finite-size corrections with respect to the bulk behaviour are
exponentially small. On the other hand, eq. (4.11b) shows that for Z < 1, the system behaves
effectively as if it had only d — d* dimensions, up to exponentially small corrections.®

Having verified the generic finite-size scaling forms (3.3), we now test the validity of the
finite-size scaling predictions (3.9) for the plateau values Cg). To be specific, we consider a
fully finite system, with d* = d. Fix the system size N and the waiting time s and consider
the changes in y = t/s by varying the observation time ¢. Physically, finite-size effects will be
felt first by the larger length L(t) ~ t*/2. Since t > s, we expect that L(t) > L(s). The limit
y > 1 is realised by taking ¢ > 1. With the identity J5(0,e ™) = y~'/295(0,e"™/¥), we have

d*

(4.12)

C(t,s) = M, ( <S/t)l/2)d/2 (2%5) 1/2193(076@(—%?—5))
492 )\ J(32) 20,0, exp(—m ) (0. exp(—22))

t
For N?/s finite but large enough (such that the plateaux in figure 1b are reached) , the last of
the Theta functions in (4.12) is very close to unity. Because of the condition ¢/N? > 1, the
other two Theta-functions in (4.12) are also close to unity. Up to constants, we obtain

*

d *
i (SN [ [t s\? N\ s\ (HL+ s/ @
Ct9) % (3) (<N) ) ) ~G) (Fam) ()

(4.13)

Finally, now admitting a fully finite system such that d = d*, we have (for 2 < d < 4)
/4
O(t, s) ~ (;) A/ N2 = i/ N—d/? (4.14)

which in view of the well-known results A = d/2 [44] and z = 2 [16] does indeed reproduce of
(3.8), or (3.9) if either s or N is kept fixed.

lfd/2)

8Finite-temperature and finite-time effects merely give a corrective factor 1+ O(T's , negligible for large

waiting times s — oo, if d > 2.



(C) Characteristic time-dependent length scales L(t) of the ordered clusters can be measured
as second moments of the single-time correlator

L2(t) = % (4.15)

Precise expressions follow from (4.10a) once the range of summation of the distances |n| is
fixed. For example, if one measures the distances along one of the coordinate axes of one of the
infinite directions, one obtains the ‘“ransverse’length scale L2 (t) = 4Dt, as for a fully infinite
system [33]. On the other hand, if the distances are measured along the coordinates axes of one
of the finite directions, we find a ‘longitudinal’ length scale, which reads for sufficiently thick
films, and in agreement with (3.5)

Z ;itZ<1
it Z>1

= o3

=< 4.16
P (4.16)

Li(t) = %th(Z) U2 =22 (1 T e_ﬂ,,z/z> N {

The scaling function f;, is temperature-independent. This describes the cross-over shown in
figure 2, such that for Z = N?/t small enough, we obtain saturation at Li(t) — L2, ~ N?, but

on the other hand one has Lﬁ(t) ~ t of an effectively infinite system for Z large enough.

5 Ad conclusio

We studied finite-size scaling in the ageing relaxation of phase-ordering kinetics after a quench
from a disordered initial state into the two-phase coexistence regime with temperature 7' < T..
Phenomenologically, the observations to be gleaned from figure 1 for the single-time and two-
correlations and figure 2 for the characteristic length scale are captured by the finite-size scaling
forms (3.3). The form of the associated scaling functions is temperature-independent, which
confirms the expectation that the temperature should be irrelevant in phase-ordering kinetics
[16]. From these, the finite-size scaling (3.5) for the length scale L;(t) and especially (3.9)
for the plateaux C2 in the two-time autocorrelator of a fully finite system were derived. We

checked that these predictions are fully bourne out in the phase-ordering of the exactly solved
kinetic spherical model, for 2 < d < 4 dimensions.

Clearly, several open questions remain, including:

1. Do the Fss predictions (3.3,3.5,3.9) also hold for other universality classes ? For kinetic
Ising models with either short-ranged or long-ranged interactions, detailed tests on all
these have been carried out recently and will be reported elsewhere [24].

2. Although the discussion was entirely formulated here in terms of classical dynamics, a
finite-size scaling ansatz such as (3.3) should a priori also work for relaxations in quantum
systems, either closed or open.

3. Our analysis is restricted to below the upper critical dimension d < d.. At equilibrium,
it is well-known that dangerous irrelevant variables lead to essential modifications of the
finite-size scaling ansatz (3.1,3.3) [13, 60, 50, 40, 41, 45]. Such modifications should also
become necessary for the dynamics.
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Considerations of this kind might become crucial either for long-range interactions, where
d. is lowered with respect to the value d="°™) = 4 of short-ranged systems or else for d-
dimensional quantum systems (possibly with long-ranged interactions as well), for which
at least the equilibrium quantum phase transitions at 7' = 0 are known to be in the same
universality class as the corresponding (d + 6)-dimensional classical universality class at
finite temperature, where the anisotropy exponent 6 > 1 [63].

4. From figure 1b it appears that finite-size effects might create a spurious regime where
the autocorrelator C(ys, s) ~ y~*f might look algebraic in a certain window; but rather
the system already is the transition region between the rapid fall-off after having left
the infinite-size behaviour of Cpuk(ys,s) and the turn-around towards the saturation

plateau c?. Since Aeft > A, not recognising this effect carries the risk of systematic
over-estimation of the auto-correlation exponent A, in simulations or in experiments.

5. One may generalise dynamical FSS to critical quenches and to two-time response functions
as well. The theory and numerical tests thereof will be presented elsewhere [24].

6. Can one use (3.9) to devise improved methods for the measurement of A 7

Appendix. Analytical derivations

The exact solution of the kinetic spherical model at T' < T.(d), starting from (4.4), is described.

A.1 Spherical constraint

The Volterra integral equation (4.4d) gives the long-time behaviour of ¢(t) in a large, but fi-
nite system, as follows. The first part retraces the steps used at equilibrium [64, 65], with the
notation adapted for dynamics. The second part gives the new ingredients needed for non-
equilibrium dynamics.

1. Through a Laplace transform we formally solve (4.4d)

o) = 2)0) = [ are o) - 0 (A1)

Standard Tauberian theorems [35] relate the behaviour of g(p) in the p — 0 limit to the
asymptotic long-time behaviour of g(t) for ¢ — oo. One needs the leading terms of f(p) as
p — 0. Recall the generalised Poisson re-summation formula [69]

b 9] b
. 1 1
S s = Y [dremn) + i)+ 350) (A2)
n=a qg=—00 "
and use this to deduce the important identity, for m € Z and x € R
N-1 . [e's)
2mi 2k
3 exp (ka + e T) P (A3)
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where I, () is a modified Bessel function [1].

Now, one writes as in [64], using eq. (A.3) with m = 0 in the second line d times

d
2Df(p) = |A| Z/ dt exp [ (p—f—élDZ (1 —cos%k@)) t]
— 2D / dt e~ TP N HINq (4Dt)

15,94 €% j=1
1 oo
= 5/ du e~ 2% (e™"“Io(u) Z/ due” 2¢“ (_“]quj(u)) (A.4)
0
qGZd

where one sets ¢ := p/2D. In the last line, the bulk contribution which arises from q = 0, is
separated from the finite-size terms which have q # 0 (indicated by Y_').

In what follows, restrict throughout to dimensions 2 < d < 4. First, standard techniques
8, 18, 55, 44] give the leading order of the Watson function Wy(¢) for ¢ < 1, as follows

Wa(p) = %/Ooodu e 2% (e’“]o(u))d

r (1 - g) \ P72 (1 + () (A5)

12

Wa(0) — (47)~42

with an implied analytic continuation in d. Next, the finite-size terms are evaluated in the
hyper-cubic geometry, such that the first d* dimensions are finite (0 < d* < d), with periodic
boundary conditions (for simplicity, set N; = N for all j = 1,...,d*). The remaining d — d*
dimensions are assumed to be infinite, formally N; = co. With the asymptotic identity [64]
I,(z)= (27ra:)*1/26‘”*”2/2’”(1 + O(1/x)) one has

d d*

due” 2¢“ 27ru (Ng;)?/2u
/ G

]:1 :

o0 1
= (4m)"2pY21 / dv v™ %2 exp (—U — ;% Z quf)
j=1

DN | =
O\
o
N
)
[SIE
<
IS
—
ml
-
2
8
—~
I
SN—
SN—
|
N | —

0

2 2) d—2 1 (d—2)/2
UL ( W) (W) Ka-2,2(2¢ql) (A.6)

with the thermo-geometric parameter 1 := %N(bl/z, the short-hand |q|? := Zj; qu-, the other
modified Bessel function K, (z) [1] and where the identity [64]

(9] v/2
/0 dg g7 te Fe=a/r — 9 (%) K,,(2\/@) (A.7)

was used in the last line. In the infinite directions, only the terms with ¢; = 0 contribute in
(A.6), for j =d*+1,...,d. The final result of the first part is, for 2 < d < 4 [64, 65]

zpf(p):Wd(O)—W ‘r( - )'_QZ/K(Z@(Q%’/ZD (%>d2+... (A.8)

qeza*
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2. We define the abbreviation

HA0) = ( ol -2 ) (49

where > . = > ;s is only extended over the finite directions. In the spherical model, the
equilibrium magnetisation Mqu = 1 — T/T,, where the critical temperature 1/7, = Wy(0)
[12, 8, 64, 62, 44]. For quenches to T' < T, one has ng > 0. Then, using (A.1) and (A.8)

1 Wal0) — Haeoyn() (3) + -
2D1 — TWa(0) + THa-2)/2(¥ (Wd))
11 11 2
2DT. M2, 2D ML Hia—2)2(¢ )
11 1 [T(1—d/2) (a-2)/
T 2DT, M2, 2DME,  (4m)i? ( >

2 1 p\@2/i N\qr>”>/2 Nlg| 1
+ (—> (— K92 | —==p /2 (A.10)
2DMZ (4m)¥2 \2D ; 2 V2D

gives the leading terms of g(p) for small values of p. The first two of these terms are the bulk
contributions, while the remaining ones give the leading finite-size effects.

9(p)

<=

12

‘@ 2|

The leading long-time behaviour of ¢(¢) is then obtained via the identities [61]

1 a” 7a2/t

27 (K, Cap ) (1) = 5

(A.lla)

L p™)(t) = mt”_l (A.11b)

and we find, where from now on both d and d* can be considered as continuous parameters

11 11 1 / )
t) = —0(t ~Tgene 4l
90 = 5o M2, e+ Mz (87D ng(stt)d/Q; ¢

11 (8w Dt)~4/2 N2\
_ 1 ) _ A12
ooz, iz, O e\ 0o ey (4-12)
with the Jacobi Theta function 93 [1], which obeys the functional identity
U3 (O, e’”y) =y /2y, (O, e’”/y) (A.13)

Figure 3 illustrates the rapid cross-over (essentially in the mterval < y < 2) between the
two asymptotic regimes. Therefore, we have the following asymptotic hnuts, for 2 <d<4and
T <T,

t) 1 1 5(0)+ % ; if N*/t>1  infinite-size system (A1)
9(t) = 5 Caeve . o .
2DT, M2, (S“Dt)M#N_d : if N2/t <1  finite-size system
eq

This shows that the long-time behaviour of the spherical constraint in a finite geometry is
effectively (d — d*)-dimensional. The singular terms in (A.12,A.14) will become very important
for the calculation of the correlators, as we shall see below.

Eq. (A.12) is the main result of this sub-section.
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6(y)

Figure 3: The function 6(y) := 93 (0, e‘”y) and its cross-over between the regimes where y > 1 and
0(y) ~ 1 (dotted line) and y < 1 and 6(y) ~ y~ /2 (dashed line).

A.2 Two-time autocorrelator

We decompose in (A.12) g(t) = guing(t) + greg(t), Where gung(t) = 557 Ml2 4(t). In momentum

space, with the convention t > s, we have from (4.5), for large times, the decomposition

. €—2Dw(k)(t+s) 2DT 1 s s
C(t,s; k) = 1 dr é 2Dw (k)27 2DT/ A7 gre 2Dw (k)27
(t,s; k) (Do lo) { + DT, ng T6(T)e + i T Greg(T)e
—2Dw(k)(t+s
_ 1 e (k)(t+s) L aDT Greg(T) o~ 2Dw(k)(t+s—27) (A.15)

Mqu greg (t)greg(s) \/ greg greg

for all temperatures 7' < T.. With (4.6), this gives the two-time autocorrelator C(t,s) =
CH(t,s) + CBl(t,s). The first term in (A.15) leads to

QDZ(I—cost:)(H—s)

j=1

) A[TLM2
cll(t,s) = Z exp
\V/ greg greg

_ H Z 2D(t+s Nigs (2D(t + S))
V greg greg ] 1 qJEZ

~ Metf 1 M )
- Greg (t) Greg () (4rD(t + 5)) d/2]1_[1qzezexp { 4D(t+s)} (1+O(<t+s) )>
252 v exp(—m— d*
= M (td/—sd/d> 030, exp(—7 gzprrsy)) o
((t+5)/2) \/193 (0, exp(—725)) 93(0, exp(—m22-))

where in the first line (A.3) with m = 0 was used once more. In the second line, we use the
asymptotic expansion of the modified Bessel function I,,(z). In the third and forth lines, greq(%)

14



was inserted with N; = N for j = 1,...,d* from (A.12) and the sums in the same line were
expressed in terms of the Jacobi Theta function 3. Both d and d* can be taken as continuous
variables.

The second term in (A.15) can be expressed as a convolution

oDT
V/ Greg () Greg ()

CB(ys, s) = 27 (Gaalp) ([P @02 164Dy + 1)5/2)] ) () (5)

(A.17)
For s — o0, a Tauberian theorem relates the leading behaviour to the one of the Laplace
transform at p — 0 [35]. In turn, the behaviour of the two factors should be dominated by the
long-time behaviour of the original functions. Therefore, one expects the leading contribution
to be of the order (go is the amplitude of gyeqs(7))

oDT —d/2

’ +1
ol S,8) o~ / dr aor—4/2 (87TDy fas—9r )
(y ) \/greg(ys)greg<5) 0 g0 2 ( )

1 —d/2
~ 2DT(y52)d/431_d/ dv v=9/? (47rD(y +1)(y+1— 21}))
0

= O(Ts'"™?) (A.18)

up to an s-independent amplitude. For d > 2, CP(ys,s) is negligible in the scaling limit
where s — oco. Hence for all temperatures T' < T,, the leading term of the autocorrelator is

C(t,s) = Cl(t, s).

Finally, introducing the scaling variables Z and y in (A.15), and with the scaling 87D = 1,
we arrive at (4.11a). With (A.13), the equivalent form (4.11b) is obtained.

A.3 Single-time correlator

We re-use the decomposition g(t) = gsing(t) + greg(t) from above. In momentum space, we

decompose C(t; k) = C1(t; k) + C?(t; k) and have for all T < T,

R —4Dw(k)t 2DT t 1 1
C(t; k) = ¢ + / dr < o) + greg(7)> g~ 4Pw(k)(t=7)
0

Greg(t)  Greg(t) 2DT. Mg,
—4Dw(k)t t
_ e 2 n 2DT/ dr Greg(T) o~ 4Dw(k)(t—) (A.19)
M greg( ) 0 greg(t)

Herein, the first term is analysed as follows

|A|* 27
clt;n) = Zexp Z kjn; —4D 1—cosﬁkj t

eq greg J
ST )
= — In.gen, (4Dt
2 745 TN
Meq greg(t) sz Jfl
M2
~ (g;Nj+n;)%/(8Dt) (AQO)
193 (0’ efﬂ'N2/(87rDt d* 1_[1 (]JZEZ
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where first the full identity (A.3) is used d times, then the asymptotic form of the modified
Bessel function I,,(x) is used for x > 1 and finally, in the chosen finite-size geometry, the
asymptotic form (A.12) is inserted. The product over the sums in the last line of (A.20) is
evaluated as follows: (i) in the d —d* infinite directions where formally N; = oo, only the terms
with ¢; = 0 contribute and lead to a factor exp|—gf5; Zj: g4173]. (ii) the d* finite directions
with N; = N produce d* factors, each of the form

(QJN+nj)2 —n2/(8Dt N”a N? 2
> exp | -S| = S e | e~ e (A21)
q;€Z

With the identity

e~ /5D0) . (m Nn; e—wzv?/(swt)) _ v8rDit 193( e e‘”(NQ/(S”Dt”*l) (A.22)

St Dt’ N’

we finally obtain (and used again (A.13))
n2 9 (mN j e—TrNQ/(Sth))
1] /4. _ 2 . 3\ 8r D>
¢ (tan) M q XP ( WZ {7 Dt) H 193(0,6 7TN2/(87FDt)>

d 2 d* nj _—m(N?/(87Dt))
a2 " Vs, e )
= Meq exp <—7T Z 87rDt> H U3 (O, efﬂ(Nz/(SﬂDt))—l) (A.23>

j=d*+1 7=1

The second term can be re-written as follows

Cl(t;n —2DTZ / dr iregz e—4D<t—T>1qij+nj(4D(t—T)) (A.24)
reg

and takes the form of a convolution. For large times ¢ — 0o, we estimate this asymptotically
by appealing to Tauberian theorems [35]. Then the leading term should become

2

2DT t T\ —d/2 d n=
CO(tn) ~ 2 / dr t~/? (1——> P N R
(tim) = Gopyaz | 97 i) P ”; StD(t — 1)

y H s (iﬂ'%, e—”N2/(8ﬂD(t—T))) 930, e—ﬂ'NQ/(Sﬂ'DT))
iy 193 (0’ €—7rN2/(87rDt)>
~ O (A.25)

which becomes negligible in the long-time limit ¢ — oo for d > 2.
Therefore, in the long-time limit t — oo, C(t;n) = CM(¢;n). Introducing the scaling vari-
ables (3.5) into (A.23), and re-using (A.13,A.22) and scaling 87D = 1, we arrive at eqgs. (4.10).

A.4 Characteristic length

The characteristic lengths L(t) are defined from (4.15), with the single-time correlator given
by (A.23). If the distances are calculated along the coordinates axes in one of the d* finite
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directions, i.e. m = (n,0,...,0), we find a longitudinal length Ly. If n is measured along one of
the infinite directions, we find a transverse length L, (t).

The most simple example of a transverse length arises if the distances are measured along

one of the coordinate axes in one of the infinite directions (i.e. n = (0,0,...,n) with d* < d—1)
oo nfexp |:—7T 7’;”2 } dn n2 e~
I2(t) = " 8Dt f—";; — 4Dt (A.26)
S exp [—mgis] [ dne™?
n=—00 8m Dt —00
which is identical to the known result for the bulk system [33].
A longitudinal length is found when n = (n,0,...,0) with d* > 1 is measured along one of
the coordinate axes in a finite direction. If N = 2M is even, we have
M _
~ n2 v e /2
Lﬁ(t) _ Zn]w—M—Fl 3( oM ~ ) (A27)
> onenre1 V3 (T3, e /%)
Using the definition of the Jacobi Theta function ¢35, we have
M T
S ) =Y > e[ty ]
n=—M+1 pEZ n=—M+1
= oM + Ze—wp /Z (1 + e—mp + Z e—m(n/Mp + Z em (n/M)p ) — 9M (A28)
p#0
and
M n s
Z n 193(7r2— e_“/Z Z Z n? exp l WIMp — %]
n=—M+1 pEZ n=—M+1
M
_ Z n? + Zeffrp /Z (0 + M2e —mip + Z n2e —mi(n/M)p + Z ne mi(n/M)p )
n=—M+1 p#0 n=1
2 3 2 —7p?/Z 2 4( 1) 34 2
~ M+ M + Y e M (=1 + =55 MP 4 (=1)PM? | + O(M)
p#0 ™y
2 3 8M° - - 2/Z(_1)p 2

where in the third line, an asymptotic expansion for M large was made. Inserting (A.28,A.29)
into (A.27) and fixing 87D = 1 gives (4.16). The same leading result also holds if N = 2M + 1
is odd.
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