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ON BOCHNER’S ALMOST-PERIODICITY CRITERION

PHILIPPE CIEUTAT

Abstract. We give an extension of Bochner’s criterion for the almost periodic func-
tions. By using our main result, we extend two results of A. Haraux. The first is a
generalization of Bochner’s criterion which is useful for periodic dynamical systems. The
second is a characterization of periodic functions in term of Bochner’s criterion.
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1. Introduction

The almost periodic functions in the sense of Bohr have been characterized by Bochner
by means of a compactness criterion in the space of the bounded and continuous functions
[2, 3]. The Bochner’s criterion plays an essential role in the theory and in applications.
We give a new almost-periodicity criterion for functions with values in a given complete
metric space which is useful to study the almost periodicity of solutions of dynamical
systems governed by a family of operators with a positive parameter. This criterion is an
extension of Bochner’s criterion. Then Haraux gave a generalization of Bochner’s criterion
[9, Theorem 1], called a simple almost-periodicity criterion which is useful for periodic
dynamical systems. From our result, we deduce an extension of this criterion. We also
obtain an extension of an other result of Haraux which characterizes the periodic functions
in terms of the Bochner’s criterion [8]. In the same spirit, we treat the asymptotically
almost periodic case.

We give a description of this article, the precise definitions will be given in Section 2.
Throughout this section (X, d) is a complete metric space. An almost periodic function
u : R → X in the sense of Bohr is characterized by the Bochner’s criterion which is the
following: u is bounded and continuous, and from any real sequence of real numbers (τn)n,
there exists a subsequence (τφ(n))n such that the sequence of functions (u(t + τφ(n)))n is
uniformly convergent on R. In Section 3, we give two extensions of Bochner’s criterion.
First u : R→ X is an almost periodic if and if only if in the Bochner’s criterion, we impose
that the terms of the sequence of real numbers (τn)n are all positive. Second u : R → X
is an almost periodic if and if only if in the Bochner’s criterion, the convergence of the
subsequence of functions (u(t+ τφ(n)))n is uniform only on [0,+∞). These improvements
are useful to study the almost periodicity of solutions of an evolution equation governed by
a family of operators with a positive parameter, in particular for a C0-semigroup of linear
operators or more generally, for an autonomous dynamical system (nonlinear semigroup).
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2 P. Cieutat

From our extension of Bochner’s criterion, we give new proofs which are direct and simpler
on known results on the almost periodicity of solutions of autonomous dynamic systems.

Haraux gave a generalization of Bochner’s criterion the called a simple almost-periodicity
criterion [9, Theorem 1]. This criterion makes it possible to choose in the Bochner’s cri-
terion, the sequence of real numbers (τn)n in a set of the type ωZ which is very useful
for periodic dynamical systems. From our extension of Bochner’s criterion, in Section
4, we deduce an improvement of this result. An asymptotically almost periodic function
u : R+ → X is a perturbation of almost periodic. A such function is characterized by a
property of the type of the Bochner’s criterion. In the same spirit, we extend this char-
acterization of asymptotically almost periodic functions. Then we apply these results to
study the almost periodicity of solutions of periodic dynamical systems.

Bochner’s criterion can also be expressed in terms of the relative compactness of the
set {u(· + τ); τ ∈ R} in a suitable set of continuous functions. A periodic function is a
special case of almost periodic function. A direct consequence of [8, Proposition 2] given
by Haraux characterizes a periodic function in terms of the Bochner’s criterion. This
characterization is the following: u : R→ X is continuous is periodic if and if only if the
set {u(· + τ); τ ∈ R} is compact. In Section 5, By using our improvement of Bochner’s
criterion, we give an extension of the Haraux’s characterization of periodic functions. We
will also give a result on asymptotically periodic functions of the type of Haraux result
described above. Then we apply these results to study the periodicity of solutions of
autonomous dynamical systems.

2. Notation

Let us now give some notations, definitions and properties which will be used.

Throughout this section (X, d) is a complete metric space. R, Z and N stand re-
spectively for the real numbers, the integers and the natural integers. We denote by
R+ := {t ∈ R; t ≥ 0}. Let E be a topological space. We denote by C(E,X) the
space of all continuous functions from E into X. When J = R or J = R+, we de-
note by BC(J,X) the space of all bounded and continuous functions from J into X
equipped with the sup-distance, denoted by d∞(u, v) := sup

t∈R
d(u(t), v(t)) when J = R and

d∞,+(u, v) := sup
t≥0

d(u(t), v(t))) when J = R+ for u, v ∈ BC(J,X). The metric spaces

(BC(R, X), d∞) and (BC(R+, X), d∞,+)) are complete.

We now give some definitions and properties on almost periodic, asymptotically almost
periodic functions with values in a given complete metric space.

A subset D of R (respectively of R+) is said to be relatively dense if there exists ` > 0
such that D ∩ [α, α + `] 6= ∅ for all α ∈ R (respectively α ≥ 0). A continuous function
u : R → X is said to be almost periodic (in the sense of Bohr) if for each ε > 0,

the set of ε-almost periods: P(u, ε) =

{
τ ∈ R ; sup

t∈R
d(u(t+ τ), u(t)) ≤ ε

}
is relatively

dense in R. An almost periodic function u has its range u(R) relatively compact, that
is its closure denoted by cl (u(R)) is a compact set of (X, d). We denote the space of
all such functions by AP (R, X). It is a closed metric subspace of (BC(R, X), d∞). An
almost periodic function u is uniformly recurrent, that is there exists a sequence of real
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numbers (τn)n such that lim
n→+∞

sup
t∈R

d(u(t + τn), u(t)) = 0 and lim
n→+∞

τn = +∞. To see

that consider the Bohr’s definition of u ∈ AP (R, X), then the set of 1
n
-almost periods

satisfies P(u,
1

n
)∩[n,+∞) 6= ∅, for each integer n > 0. A useful characterization of almost

periodic functions was given by Bochner. The Bochner’s criterion which may be found in
[12, Bochner’s theorem, p. 4] in the context of metric spaces. Before to cite this criterion,
we need to introduce the translation mapping of a function of BC(R, X). For τ ∈ R and
u ∈ BC(R, X), we define the translation mapping Tτu ∈ BC(R, X) by Tτu(t) = u(t + τ)
for t ∈ R.

Theorem 2.1 (Bochner’s criterion). For u ∈ BC(R, X), the following statements are
equivalent.

i) u ∈ AP (R, X).

ii) The set {Tτu; τ ∈ R} is relatively compact in (BC(R, X), d∞).

Haraux gave a generalization of Bochner’ criterion the called a simple almost-periodicity
criterion [9, Theorem 1] which is useful for periodic dynamical systems.

Theorem 2.2 (Haraux’s criterion). Let D be a relatively dense subset of R. The following
statements are equivalent for u ∈ BC(R, X).

i) u ∈ AP (R, X).

ii) The set {Tτu; τ ∈ D} is relatively compact in (BC(R, X), d∞).

Periodic functions, which are a special case of almost periodic functions, are also char-
acterized in terms of Bochner’s criterion. This criterion is a direct consequence of a result
of Haraux.

Theorem 2.3. [8, Consequence of Proposition 2] The following statements are equivalent
for u ∈ BC(R, X).

i) u is periodic.

ii) The set {Tτu; τ ∈ R} is a compact set of (BC(R, X), d∞).

For some preliminary results on almost periodic functions with values in a given com-
plete metric space, we refer to the book of Levitan-Zhikov [12] and in the special case of
Banach spaces to the book of Amerio-Prouse [1].

The notion of asymptotic almost periodicity was first introduced by Fréchet [6] in 1941
in the case where X = C. A continuous function u : R+ → X is said to be asymp-
totically almost periodic if there exists v ∈ AP (R, X) such that lim

t→∞
d(u(t), v(t)) = 0.

An asymptotic almost periodic function u has its range u(R+) relatively compact. We
denote the space of all such functions by AAP (R+, X). It is a closed metric subspace
of (BC(R+, X), d∞,+). An asymptotic almost periodicity function u : R+ → X is char-
acterized by u ∈ APP (R+, X) if and only if u ∈ C(R+, X) and for each ε > 0, there

exists M ≥ 0 such that the

{
τ ≥ 0 ; sup

t≥M
d(u(t+ τ), u(t)) ≤ ε

}
is relatively dense in R+

[15, Theorems 1.3]. In the context of metric spaces, Ruess and Summers give a charac-
terization of asymptotically almost periodic functions in the spirit of Bochner’s criterion.
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To prove this characterization, Ruess and Summers use results from the paper [16] by
the same authors. For τ ≥ 0 and u ∈ BC(R+, X), we define the translation mapping
T+
τ u ∈ BC(R+, X) by T+

τ u(t) = u(t+ τ) for t ≥ 0.

Theorem 2.4. [15, a part of Theorems 1.2 & 1.3] Let (X, d) be a complete metric space.
For u ∈ BC(R+, X), the following statements are equivalent.

i) u ∈ AAP (R+, X).

ii) The set {T+
τ u; τ ≥ 0} is relatively compact in (BC(R+, X), d∞,+).

For some preliminary results on asymptotically almost periodic functions, we refer to
the book of Yoshizawa [17] in the case where X is a finite dimensional space, to the book
of Zaidman [18] where X is a Babach space and to Ruess and Summers [14, 15, 16] in the
general case: X is a complete metric space.

3. An improvement of Bochner’s criterion

An almost periodic function is characterized by the Bochner’s criterion, recalled in Sec-
tion 2. Our main result is an extension of Bochner’s criterion. Then we deduce new proofs
which are direct and simpler on known results on the solutions of autonomous dynamic
systems. Before to state our extension of Bochner’s criterion, we need to introduce the
restriction operator R : BC(R, X) → BC(R+, X) defined by R(u)(t) := u(t) for t ≥ 0
and u ∈ BC(R, X).

Theorem 3.1. Let (X, d) be a complete metric space. For u ∈ BC(R, X) the following
statements are equivalent.

i) u ∈ AP (R, X).

ii) The set {Tτu; τ ≥ 0} is relatively compact in (BC(R, X), d∞).

iii) The set {R(Tτu); τ ∈ R} is relatively compact in (BC(R+, X), d∞,+).

In our results, the compactness and the relative compactness of a set often intervene.
To prove them, we will often use the following result whose proof is obvious. Recall that
a set A of a metric space (E, d) is relatively compact if its closure denoted by cl (A) is a
compact set of (E, d).

Lemma 3.2. Let E be a set, (G1, d1) and (G2, d2) be two metric spaces. Let u : E → G1

and v : E → G2 be two functions. Assume there exists M > 0 such that

∀x1, x2 ∈ E, d1(u(x1), u(x2)) ≤Md2(v(x1), v(x2)).

Then the following statements hold.

i) If the metric space (G1, d1) is complete and v(E) is relatively compact in (G2, d2),
then u(E) is relatively compact in (G1, d1).

ii) If v(E) is a compact set of (G2, d2), then u(E) is a compact set of (G1, d1).

Proof of Theorem 3.1. i) =⇒ iii). It is obvious by using the Bochner’s criterion and the
continuity of the restriction operator R.

iii) =⇒ ii). The set u(R) = {R(Tτu)(0); τ ∈ R} is relatively compact in X as the
range of {R(Tτu); τ ∈ R} by the continuous evaluation map at 0 from BC(R+, X) into
X. By assumption, H := cl ({R(Ttu) ; t ∈ R}) is a compact set of (BC(R+, X), d∞,+).
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For all τ ≥ 0, we define φτ : H → X by φτ (h) = h(τ). The functions φτ are 1-Lipschitz
continuous and for each t ∈ R, the set {φτ (R(Ttu)) = u(τ + t) ; τ ≥ 0} is included in the
relatively compact set u(R). By density of {R(Ttu) ; t ∈ R} in H and the continuity of
φτ , it follows that {φτ (h) ; τ ≥ 0} is relatively compact in X for each h ∈ H. According
to Arzelà-Ascoli’s theorem [11, Theorem 3.1, p. 57], the set {φτ ; τ ≥ 0} is relatively
compact in C(H, X) equipped with the sup-norm denoted by dC . From the density
of {R(Ttu) ; t ∈ R} in H and the continuity of φτ , we deduce that for τ1 and τ2 ≥ 0,
sup
h∈H

d(φτ1(h), φτ2(h)) = sup
t∈R

d (φτ1(R(Ttu)), φτ2(R(Ttu))) = sup
t∈R

d (u(τ1 + t), u(τ2 + t)) =

sup
t∈R

d (Tτ1u(t), Tτ2u(t)), then dC(φτ1 , φτ2) = d∞ (Tτ1u, Tτ2u). From Lemma 3.2, it follows

that {Tτu; τ ≥ 0} is relatively compact in the complete metric space (BC(R, X), d∞)
since {φτ ; τ ≥ 0} is also one in (C(H, X), dC).

ii) =⇒ i). For τ1, τ2 ≥ 0, d∞(Tτ1u, Tτ2u) := sup
t∈R

d(u(τ1 + t), u(τ2 + t)). Replacing t

by t − τ1 − τ2 in the upper bound, we get d∞(Tτ1u, Tτ2u) = d∞(T−τ1u, T−τ2u). Then the
set {Tτu; τ ≤ 0} = {T−τu; τ ≥ 0} is relatively compact in BC(R, X) since {Tτu; τ ≥ 0}
is also one. Therefore the set {Tτu; τ ∈ R} is relatively compact in BC(R, X) as the
union of two relatively compact sets in BC(R, X). According to Bochner’s criterion,
u ∈ AP (R, X). �

The connection between the almost periodicity of a solution of a dynamical system and
its stability is well known (see the monograph by Nemytskii & Stepanov [13, Ch. 5]. This
weakened form of Bochner’s criterion: Theorem 3.1 makes it possible to obtain direct and
simpler proofs on these questions. Let us start by recalling some definitions on dynamical
systems.

A dynamical system or nonlinear semigroup on a complete metric space (X, d) is a one
parameter family (S(t))t≥0 of maps from X into itself such that i) S(t) ∈ C(X,X) for all
t ≥ 0, ii) S(0)x = x for all x ∈ X, iii) S(t + s) = S(t) ◦ S(s) for all s, t ≥ 0 and iv) the
mapping S(·)x ∈ C([0,+∞), X) for all x ∈ X.

For each x ∈ X, the positive trajectory of x is the map S(·)x : R+ → X. A function
u : R → X is called a complete trajectory if we have u(t + τ) = S(τ)u(t), for all t ∈ R
and τ ≥ 0.

We will need a notion of Lagrange-type stability to ensure that a solution with a
relatively compact range is almost periodic. Recall that (S(t))t≥0 is equicontinuous on a
compact set K of X, if forall ε > 0, there exists δ > 0, such that

∀x1, x2 ∈ K, d(x1, x2) ≤ δ =⇒ sup
t≥0

d(x1, x2) ≤ ε.

Using Theorem 3.1, we give a new proof which is direct and simpler of the following
result which can be found in [10, Theorem 4.3.2, p. 51] or partly in [12, Markov’s theorem,
p. 10].

Corollary 3.3. Let (S(t))t≥0 be a dynamical system on a complete metric space (X, d)
and u be a complete trajectory such that u(R) is relatively compact. Then u is almost
periodic if and only if (S(t))t≥0 is equicontinuous on cl (u(R)) the closure of u(R).

Proof. Let us denote the compact set K := cl (u(R)). It follows by density of u(R) in
K and the continuity of S(t), that {S(t)x; t ≥ 0} ⊂ K for each x ∈ K. According
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to Arzelà-Ascoli’s theorem, (S(t))t≥0 is equicontinuous on K if and only if (S(t))t≥0 is
relatively compact in C(K,X). From Theorem 3.1, we have u ∈ AP (R, X) if and only if
{Tτu; τ ≥ 0} is relatively compact in BC(R, X). Then it remains to prove that (S(t))t≥0
is relatively compact in C(K,X) equipped with the sup-norm if and only if {Tτu; τ ≥ 0}
is relatively compact in (BC(R, X), d∞). This results from the following equalities, for τ1
and τ2 ≥ 0, sup

t∈R
d (Tτ1u(t), Tτ2u(t)) = sup

t∈R
d (S(τ1)u(t), S(τ2)u(t)) = sup

x∈K
d (S(τ1)x, S(τ2)x)

and Lemma 3.2. �

Remark 3.4. a) The condition of equicontinuity required by Corollary 3.3 is satisfied by
a bounded dynamical system : d (S(t)x1, S(t)x2) ≤ Md (x1, x2) for some M ≥ 1 and
in particular for a C0 semigroup of contractions. In this case, the almost periodicity of
a complete trajectory u having a relatively compact range results from Corollary 3.3.
We can also obtain this result with the implication iii) =⇒ i) of Theorem 3.1 and the
inequality sup

t≥0
d(R(Tτ1u)(t), R(Tτ2u)(t)) = sup

t≥0
d (S(t)u(τ1), S(t)u(τ2) ≤ Md(u(τ1), u(τ2))

for τ1, τ2 ∈ R.

b) For a bounded C0-semigroup (S(t))t≥0, the main result of Zaidman [19] asserts
that a positive trajectory u with relatively compact range satisfies a condition called the
generalized normality property in Bochner’s sense, without concluding that u is almost
periodic. This condition is nothing but hypothesis iii) of Theorem 3.1, so u is almost
periodic.

Using Theorem 2.4, we give a new proof which is direct and simpler of the following
result which can be found in [15, Theorem 2.2, p. 149].

Corollary 3.5. Let (S(t))t≥0 be a dynamical system on a complete metric space (X, d) and

u be a positive trajectory such that u(R+) is relatively compact. Then u is asymptotically
almost periodic if and only if (S(t))t≥0 is equicontinuous on cl (u(R+)).

Proof. The proof is analogous to that of Corollary 3.3, using Corollary 2.4 instead of
Theorem 3.1 and by replacing R by R+ and AP (R, X) by AAP (R+, X). �

4. An improvement of Haraux’s criterion

Haraux gave a generalization of Bochner’scriterion [9, Theorem 1], the called a simple
almost-periodicity criterion which is useful for periodic dynamical systems. From our
main result, Theorem 3.1, we deduce an extension of the Haraux’s criterion, recalled in
Section 2. In the same spirit, we extend the well-known characterization of asymptotically
almost periodic functions. To end this section, we give an exemple of application on a
periodic dynamical system.

We give an extension of the Haraux’s criterion (see Theorem 2.2). Recall that we denote
by R the restriction operator R : BC(R, X)→ BC(R+, X) defined by R(u)(t) := u(t) for
t ≥ 0 and u ∈ BC(R, X).

Corollary 4.1. Let (X, d) be a complete metric space. For u ∈ BC(R, X) the following
statements are equivalent.

i) u ∈ AP (R, X).

ii) The set {Tτu; τ ∈ D} is relatively compact in (BC(R, X), d∞) where D be a relatively
dense subset of R+.
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iii) The set {R(Tτu); τ ∈ D} is relatively compact in (BC(R+, X), d∞,+) where D be a
relatively dense subset of R.
Remark 4.2. Our main result, Theorem 3.1 is obviously a particular case of Corollary 4.1.
But to present our results, it was easier to start with Theorem 3.1. To prove Corollary
4.1, we use Haraux’s criterion and Theorem 3.1.

Proof of Corollary 4.1. i) =⇒ iii). It is a consequence of Theorem 3.1.

iii) =⇒ ii). To establish this implication, using Theorem 3.1, it suffices to show that
assertion iii) implies that {R(Tτu); τ ∈ R} is relatively compact in BC(R+, X). The proof
of this last implication is a slight adaptation of those of those of the Haraux’s criterion
given in [9, Theorem 1]. A similar proof will be detailed in the following result as there
will be technical issues. To demonstrate that {R(Tτu); τ ∈ R} is relatively compact, it
suffices in the proof of ii) =⇒ i) of Corollary 4.3 to take ` = 0 and replace {T+

τ u; τ ∈ D}
by {R(Tτu); τ ∈ D}.

ii) =⇒ i). For τ1, τ2 ≥ 0, d∞(Tτ1u, Tτ2u) = sup
t∈R

d(u(τ1 + t), u(τ2 + t)). Replacing t by

t − τ1 − τ2 in the upper bound, we get d∞(Tτ1u, Tτ2u) = d∞(T−τ1u, T−τ2u). Then the set
{Tτu; τ ∈ −D} = {T−τu; τ ∈ D} is relatively compact in BC(R, X) since {Tτu; τ ∈ D}
is also one. Therefore the set {Tτu; τ ∈ D ∪ (−D)} is relatively compact in BC(R, X).
Moreover D∪ (−D) is a relatively dense subset of R. According to Haraux’s criterion, we
have u ∈ AP (R, X). �

We extend Theorem 2.4, the well-known characterization of asymptotically almost pe-
riodic functions. For τ ∈ R+ and u ∈ BC(R+, X), we define the translation mapping
T+
τ u ∈ BC(R+, X) by T+

τ u(t) = u(t+ τ) for t ≥ 0.

Corollary 4.3. Let (X, d) be a complete metric space and let D be a relatively dense
subset of R+. For u ∈ BC(R+, X) the following statements are equivalent.

i) u ∈ AAP (R+, X).

ii) The set {T+
τ u; τ ∈ D} is relatively compact in (BC(R+, X), d∞,+).

Remark 4.4. To establish implication ii) =⇒ i), by using Theorem 2.4, it suffices to prove
that assertion ii) implies that {T+

τ u; τ ≥ 0} is relatively compact in (BC(R+, X), d∞,+).
The proof of this last implication is an adaptation of those of the Haraux’s criterion. But
contrary to the proof of implication iii) =⇒ ii) in Corollary 4.1, there are technical issues.
These technical difficulties come from the fact that when D is a relatively dense subset
in R+, the sets D and [t− `, t] can be disjoint for some 0 ≤ t ≤ `. For this reason we give
the complete proof of this implication.

Proof of Corollary 4.3. i) =⇒ ii). It is a consequence of Theorem 2.4.

ii) =⇒ i). We will prove that assumption ii) implies {T+
τ u; τ ≥ 0} is relatively compact

in BC(R+, X), then we conclude by using Theorem 2.4. The subset D being relatively
dense in R+, there exists ` > 0 such that D ∩ [α, α + `] 6= ∅ for all α ≥ 0.

• We prove that u is uniformly continuous on [`,+∞). Let us fix ε > 0. By assump-
tion the set {T+

τ u; τ ∈ D} is in particular relatively compact in C([0, 2`], X), then it is
uniformly equicontinuous on [0, 2`], that is there exists δ > 0 such that

s1, s2 ∈ [0, 2l], |s1 − s2| ≤ δ =⇒ sup
τ∈D

d(u(s1 + τ), u(s2 + τ)) ≤ ε. (4.1)
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Let t1, t2 be two real numbers such that t1, t2 ≥ ` and |t1 − t2| ≤ δ. We can assume
without loss of generality that ` ≤ t1 ≤ t2 ≤ t1 + `. We have D ∩ [t1 − `, t1] 6= ∅ since
t1 − ` ≥ 0, then there exists τ ∈ D such that 0 ≤ t1 − τ ≤ t2 − τ ≤ 2l. Taking account
(4.1), we deduce that d(u(t1), u(t2)) = d(u((t1 − τ) + τ), u((t2 − τ) + τ)) ≤ ε. Hence u is
uniformly continuous on [`,+∞).

• We prove that {T+
τ u; τ ≥ `} is relatively compact in BC(R+, X) . Let (tn)n be a

sequence of real numbers such that tn ≥ `. We have D ∩ [tn − `, tn] 6= ∅ for each n ∈ N,
since tn − ` ≥ 0, then there exist τn ∈ D and σn ∈ [0, l] such that tn = τn + σn. By
compactness of the sequences (σn)n in [0, `] and (T+

τnu)n in BC(R+, X), it follows that
lim

n→+∞
σn = σ and lim

n→+∞
sup
t≥0

d(u(t + τn), v(t)) = 0 (up to a subsequence). From the

following inequality

sup
t≥0

d(u(tn + t), v(σ + t)) ≤ sup
t≥0

d(u(τn + σn + t), u(τn + σ + t) + sup
t≥0

d(u(τn + t), v(t))

and the uniform continuity of u, we deduce that lim
n→+∞

sup
t≥0

d(u(tn+ t), v(σ+ t)) = 0. Then

{T+
τ u; τ ≥ `} is relatively compact in BC(R+, X).

• We prove that u ∈ AAP (R+, X). The function u is uniformly continuous on R+,
since u is continuous on [0, `] and uniformly continuous on [`,+∞). Then the map û :
R+ → BC(R+, X) defined by û(τ) = T+

τ u for τ ≥ 0 is continuous, consequently the
set {T+

τ u; 0 ≤ τ ≤ `} is relatively compact in BC(R+, X). The set {T+
τ u; τ ≥ 0} is

relatively compact in BC(R+, X) as the union of two relatively compact sets. According
to Theorem 2.4, u ∈ AAP (R, X). �

Using corollaries 4.1 and 4.3, we give a proof which is direct and simpler of the following
result which can be found in [7, 9, 10]. Before we recall some definitions on process.

A process on a complete metric space (X, d) according to Dafermos [4] is a two pa-
rameter family U(t, τ) of maps from X into itself defined for (t, τ) ∈ R × R+ and such
that i) U(t, 0)x = x for all (t, x) ∈ R × X, ii) U(t, σ + τ) = U(t + σ, τ) ◦ U(t, σ) for all
(t, σ, τ) ∈ R×R+×R+ and iii) the mapping U(t, ·)x ∈ C([0,+∞), X) for all (t, x) ∈ R×X.

For each x ∈ X, the positive trajectory starting of x is the map U(0, ·)x : R+ → X. A
function u : R → X is called a complete trajectory if we have u(t + τ) = U(t, τ)u(t) for
all (t, τ) ∈ R× R+.

A process U is said ω-periodic (ω > 0) if U(t+ ω, τ) = U(t, τ) for all (t, τ) ∈ R× R+.

A process U is said bounded if we have for some M ≥ 1 for all (τ, x1, x2) ∈ R+×X×X
d (U(0, τ)x1, U(0, τ)x2) ≤Md (x1, x2).

Corollary 4.5. [7, 9], [10, Théorème 6.4.6, p. 84] Let U be a ω-periodic process on a
complete metric space (X, d). If U is bounded, then the following statements hold.

i) If u is a complete trajectory of U such that u(−ωN) is relatively compact, then u is
almost periodic.

ii) If u is a positive trajectory of U such that u(ωN) is relatively compact, then u is
asymptotically almost periodic.

Proof. i) The process U is ω-periodic, then we have u(nω) = U(−mω, (n+m)ω)u(−mω) =
U(0, (n + m)ω)u(−mω) for all n, m ∈ N. From the boundedness assumption on U , we
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deduce that d (u(nω), u(mω)) ≤Md (u(−mω), u(−nω)), then u(ωN) is relatively compact
since u(−ωN) is also one, therefore u(ωZ) is relatively compact. From assumptions on
the process U , it follows that for all n, m ∈ Z,

sup
τ≥0

d (u(τ + nω), u(τ +mω)) ≤Md (u(nω), u(mω)) . (4.2)

From Lemma 3.2, {R(Tnωu);n ∈ Z} is relatively compact in (BC(R+, X), d∞,+) since
u(ωZ) is also one in (X, d). We conclude with Corollary 4.1 by setting D = ωZ.

ii) For all n, m ∈ N, (4.2) holds on the positive trajectory u, then from Lemma 3.2,
{T+

nωu;n ∈ N} is relatively compact in (BC(R+, X), d∞,+) since u(ωN) is also one in
(X, d). We conclude with Corollary 4.3 by setting D = ωN. �

5. Bochner’s criterion in the periodic case

Periodic functions are a special case of almost periodic functions. Haraux gave a charac-
terization of periodic functions in terms of Bochner’s criterion which is recalled in Section
2. This criterion is a direct consequence of [8, Proposition 2]. Haraux established a
general result [8, Théorème 1] implying as a special case a characterization of periodic
functions and the fact that any compact trajectory of a one-parameter continuous group
is automatically periodic.

In this section, we give an extension of this characterization of periodic functions in the
spirit of the main result of this article. We also treat the asymptotically periodic case.
Then we apply these results to study the periodicity of solutions of dynamical systems.

Recall that we denote by R the restriction operator R : BC(R, X) → BC(R+, X)
defined by R(u)(t) := u(t) for t ≥ 0 and u ∈ BC(R, X).

Corollary 5.1. Let (X, d) be a complete metric space. For u ∈ BC(R, X) the following
statements are equivalent.

i) The function u is ω-periodic (ω > 0).

ii) The set {Tτu; τ ≥ 0} is a compact set of (BC(R, X), d∞).

iii) The set {R(Tτu); τ ∈ R} is a compact set of (BC(R+, X), d∞,+).

Proof. i) =⇒ ii). From assumption, it follows that the function τ → Tτu from R into
BC(R, X) is continuous and ω-periodic. Then the {Tτu; τ ≥ 0} = {Tτu; 0 ≤ τ ≤ ω} is a
compact set of (BC(R, X), d∞) as the range of a compact set by a continuous map.

ii) =⇒ i). For τ1, τ2 ∈ R, d∞(Tτ1u, Tτ2u) := sup
t∈R

d(u(τ1 + t), u(τ2 + t)), we get

d∞(Tτ1u, Tτ2u) = d∞(T−τ1u, T−τ2u). Then the set {Tτu; τ ≤ 0} = {T−τu; τ ≥ 0} is
compact in BC(R, X) since {Tτu; τ ≥ 0} is also one. Therefore the set {Tτu; τ ∈ R} is a
compact set of BC(R, X) as the union of two compact sets in BC(R, X). According to
Theorem 2.3, u is periodic.

i) =⇒ iii). It is obvious by using Theorem 2.3 and the continuity of the restriction
operator R.

iii) =⇒ i). By using Theorem 2.3, we have to prove that K := {Tτu; τ ∈ R} is a
compact set of (BC(R, X), d∞). As consequence of Theorem 3.1 and Bohner’s criterion,
the set K is relatively compact in (BC(R, X), d∞) and the function u is almost periodic.
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It remains to prove that K is closed in (BC(R, X), d∞). Let (τn)n be a sequence of real
numbers such that lim

n→+∞
d∞(Tτnu, v) = 0. Let us prove that v = Tτu for some τ ∈ R. By

continuity of the operator R, we have lim
n→+∞

d∞,+(R(Tτnu), R(v)) = 0. By assumption, the

set {R(Tτu); τ ∈ R} is in particular closed in (BC(R+, X), d∞,+), then R(v) = R(Tτu)
for some τ ∈ R, that is

∀t ≥ 0, v(t) = Tτu(t). (5.1)

We have to prove that (5.1) holds on the whole real line. The function Tτu is almost
periodic as translation of an almost periodic function and v is also one as uniform limit
on R of almost periodic functions. Let us denote by φ : R → R the function defined by
φ(t) := d(Tτu(t), v(t)). The function φ is almost periodic [12, Property 4, p. 3 & 7, p.6].
An almost periodic function is uniformly recurrent, then there exists a sequence of real
numbers such that lim

n→+∞
τn = +∞ and lim

n→+∞
φ(t+ τn) = φ(t) for all t ∈ R. From (5.1), it

follows φ(t) = 0 for all t ≥ 0, so we deduce that φ(t) = lim
n→+∞

φ(t + τn) = 0 for all t ∈ R.

Then v(t) = Tτu(t) for all t ∈ R. This ends the proof. �

According Theorem 2.4, if the set {T+
τ u; τ ≥ 0} is relatively compact in BC(R+, X),

then the function u is asymptotically almost periodic. We now give an answer to the
question what can be said about the function u when {T+

τ u; τ ≥ 0} is a compact set of
BC(R+, X). For u ∈ BC(R+, X), we say that u is ω-periodic (ω > 0) on [t0,+∞) for
some t0 ≥ 0 if u(t+ ω) = u(t) for all t ≥ t0.

Corollary 5.2. Let (X, d) be a complete metric space. For u ∈ BC(R+, X) the following
statements are equivalent.

i) There exists t0 ≥ 0 such that u is ω-periodic on [t0,+∞).

ii) The set {T+
τ u; τ ≥ 0} is a compact set of (BC(R+, X), d∞,+).

Remark 5.3. Let u be a function which satisfies condition i) of Corollary 5.2.

i) Let us denote by v ∈ C(R, X) the ω-periodic function satisfying u(t) = v(t) for
t ≥ t0. A such function v exists and is unique, v is defined by v(t) = u(t− [ t−t0

ω
]ω) where

[ t−t0
ω

] denotes the integer part of t−t0
ω

.

ii) The function u is a special case of asymptotic almost periodic function where the
almost periodic function v is periodic and d(u(t), v(t)) = 0 for t ≥ t0.

Proof of Corollary 5.2. i) =⇒ ii). Let us denote by v the function defined in Remark 5.3.
By Corollary 5.1 and the periodicity of v, we have {R(Tτv); τ ≥ t0} = {R(Tτv); τ ∈ R} is
a compact set of (BC(R+, X), d∞,+).

First, we have T+
τ u = R(Tτv) for τ ≥ t0, then {T+

τ u; τ ≥ t0} is a compact set.

Second, the function u is uniformly continuous on R+, then the function from R+ to
BC(R+, X) defined by τ → T+

τ u is continuous. Then the set {T+
τ u; 0 ≤ τ ≤ t0} is

compact.

Therefore the set {T+
τ u; τ ≥ 0} is a compact set of BC(R+, X) as the union of two

compact set.

ii) =⇒ i). As consequence of Theorem 2.4, the function u is asymptotically almost
periodic, that is lim

t→∞
d(u(t), v(t)) = 0 for some v ∈ AP (R, X). An almost periodic
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function is uniformly recurrent, then there exists a sequence of real numbers (tn)n such
that lim

n→+∞
tn = +∞ and lim

n→+∞
v(t+ tn) = v(t) for all t ∈ R. We deduce that

∀t ∈ R, lim
n→+∞

u(t+ tn) = v(t). (5.2)

First we prove that v is periodic. For t ∈ R, τ1, τ2 ≥ 0, we have for n enough large
d(u(t + tn + τ1), u(t + tn + τ2)) ≤ sup

s≥0
d(u(s + τ1), u(s + τ2)). From (5.2), it follows that

sup
t∈R

d(v(t+ τ1), v(t+ τ2)) ≤ sup
s≥0

d(u(s+ τ1), u(s+ τ2)) for each τ1 and τ2 ≥ 0. According to

Lemma 3.2, {Tτv ; τ ≥ 0} is a compact set of (BC(R, X), d∞) since {T+
τ u ; τ ≥ 0} is also

one in (BC(R+, X), d∞,+). As consequence of Corollary 5.1, the function v is periodic.

Second we prove that: ∃t0 ≥ 0 such that ∀t ≥ 0, v(t) = u(t + t0). By compactness of
{T+

τ u; τ ≥ 0}, there exists a subsequence (T+
tφ(n)

u)n such that lim
n→+∞

d∞,+(T+
tφ(n)

u, T+
t0
u) = 0

for some t0 ≥ 0. From (5.2) we deduce that R(v) = T+
t0 u, that is v(t) = u(t + t0) for all

t ≥ 0.

Then u(t) = v(t− t0) for each t ≥ t0 where the function v(· − t0) is periodic on R. �

Now we give an example of application on dynamical systems of Corollary of 5.1 and
Corollary of 5.2. For the definition of a dynamical system, see above Corollary 3.3 in
Section 3.

Corollary 5.4. Let (S(t))t≥0 be a dynamical system on a complete metric space (X, d).

i) If u is a positive trajectory, then u is periodic on [t0,+∞) for some t0 ≥ 0 if and
only if u(R+) is a compact set and (S(t))t≥0 is equicontinuous on u(R+).

ii) If u is a complete trajectory, then u is periodic if and only if u(R) is a compact set
and (S(t))t≥0 is equicontinuous on u(R).

iii) There exists a complete trajectory which is periodic if and only if there exists a
positive trajectory u such that u(R+) is a compact set and (S(t))t≥0 is equicontinuous on

u(R+).

Remark 5.5. Thus under the assumption of equicontinuity, a complete trajectory of a
dynamical system with a compact range is necessarily periodic, although there are almost
periodic functions with a compact range, which are not periodic. An example of such
function is given by Haraux in [8].

Proof of Corollary 5.4. i) Remark that if u is a positive trajectory which is periodic on
[t0,+∞) for some t0 ≥ 0, then first u(R+) is compact and second u ∈ AAP (R+, X)
(see Remark 5.3). As consequence of Corollary 3.5, the set (S(t))t≥0 is equicontinuous on

u(R+). Reciprocally assume the positive trajectory u is such that (S(t))t≥0 is equicontinu-

ous on the compact set u(R+). It remains to prove that the positive trajectory u is periodic
on [t0,+∞) for some t0 ≥ 0. For each x ∈ u(R+), the map S(·)x is continuous and satisfies
S(t)x ∈ u(R+) for each t ≥ 0. Then the map S(·)x is bounded and continuous , so the map
Φ : u(R+) → BC(R+, X) with Φ(x) = S(·)x is well-defined. The continuity of Φ results
of the equicontinuity of (S(t))t≥0 on u(R+). Then the set Φ(u(R+)) = {Φ(u(τ)) ; τ ≥ 0}
is a compact of BC(R+, X). Moreover Φ(u(τ))(t) = S(t)u(τ) = u(t+ τ) for t and τ ≥ 0,
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then Φ(u(τ)) = T+
τ u, so {T+

τ u ; τ ≥ 0} is a compact set of BC(R+, X). According to
Corollary 5.2, the function u is periodic on [t0,+∞) for some t0 ≥ 0.

ii) The proof of ii) is similar to that of i) by using Corollary 3.3 instead of 3.5, Corollary
5.1 instead of Corollary 5.2 and by replacing the map Φ : u(R+) → BC(R+, X) with
Φ(x) = S(·)x by the map Φ : u(R) → BC(R+, X). This permits to prove that the set
{Φ(u(τ)) = R(Tτu); τ ∈ R} is a compact set of (BC(R+, X), d∞,+).

iii) If v is a complete trajectory which is periodic, then v(R) is compact and according
to ii), (S(t))t≥0 is equicontinuous on v(R). So the restriction u of v on R+ is a posi-

tive trajectory such that u(R+) = v(R+) = v(R) since v is periodic, then (S(t))t≥0 is

equicontinuous on the compact set u(R+). Reciprocally, assume that u is a positive tra-
jectory such that (S(t))t≥0 is equicontinuous on the compact set u(R+). According to
i), u is ω-periodic on [t0,+∞) for some t0 ≥ 0. Let us denote by v the function defined
in Remark 5.3. For t ≥ s, there exists n0 ∈ N such that s + n0ω ≥ t0. The function
v is ω-periodic and u is a positive trajectory satisfying u(τ) = v(τ) for τ ≥ t0, then
v(t) = v(t+n0ω) = u(t+n0ω) = T (t− s)u(s+n0ω) = T (t− s)v(s+n0ω) = T (t− s)v(s)
for t ∈ R and n enough large. Then v is a periodic complete trajectory. �

Remark 5.6. Under i) of Corollary 5.4, one can have t0 > 0, that is the positive trajectory
u is not the restriction of a periodic complete trajectory. For example, consider the
bounded dynamical system (S(t))t≥0 on L1(0, 1) defined by

(S(t)x)(s) =

 x(s− t) if t < s < 1

0 if 0 < s < t

for x ∈ L1(0, 1) and 0 < t < 1. For t ≥ 1, we set S(t) = 0. Then all positive trajectories
have a compact range and the alone complete trajectory is the null function. Thus all
positive trajectories are not the restriction of a periodic complete trajectory except the
null function.

Not all dynamical systems have this pathology, some systems are such that if two
positive trajectories have the same value at the same time, then they are equal. If we
consider such systems, we get more refined results from Corollary 5.4.

A dynamical system (S(t))t≥0 has the backward uniqueness property if any two positive
trajectories having the same value at t = t0 ≥ 0 coincide for any other t ≥ 0. This
property is equivalent to S(t) ∈ C(X,X) is injective for each t ≥ 0. We say that a
positive trajectory u is extendable to a periodic complete trajectory, if there exists a periodic
complete trajectory such that its restriction on R+ is u.

Corollary 5.7. Let (S(t))t≥0 be a dynamical system on a complete metric space (X, d).
Assume that (S(t))t≥0 has the backward uniqueness property.

i) If u is a positive trajectory, then u is periodic on R+ if and only if u(R+) is a
compact set and (S(t))t≥0 is equicontinuous on u(R+). In this case the positive trajectory
u is extendable to a periodic complete trajectory v.

ii) If v is a complete trajectory, then v is periodic if and only if v(R+) is a compact set
and (S(t))t≥0 is equicontinuous on v(R+).
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Proof. i) The direct implication results of i) of Corollary 5.4. For the reciprocal implica-
tion we use i) of Corollary 5.4. Then the positive trajectory u is ω-periodic on [t0,+∞) for
some t0 ≥ 0. Let us denote by v ∈ C(R, X) the ω-periodic function satisfying u(t) = v(t)
for t ≥ t0 (see Remark 5.3). The restriction of v on R+ and u are two positive trajectories
having the same value at t = t0 (t0 ≥ 0). From the backward uniqueness property, we
have u(t) = v(t) for t ≥ 0, then u is periodic on R+. By build, v is periodic and as in the
proof of iii) of Corollary 5.4, we deduce that v is a complete trajectory.

ii) The direct implication results of ii) Corollary 5.4, since v(R+) = v(R). For the
reciprocal implication, we consider v a complete trajectory such that v(R+) is a compact
set and (S(t))t≥0 is equicontinuous on v(R+). Then the restriction u of the complete

trajectory v on R+ is a positive trajectory such that u(R+) is compact and (S(t))t≥0
is equicontinuous on u(R+). According to i), u is ω-periodic on R+. Let us denote by
w ∈ C(R, X) the ω-periodic function satisfying u(t) = w(t) for t ≥ 0. As in proof of iii)
Corollary 5.4, we deduce that w is a complete trajectory. Fix T > 0. The two maps ṽ
and w̃ : R+ → X defined by ṽ = v(·,−T ) and w̃ = w(·,−T ) are two positive trajectories
having the same value at t = T . From the backward uniqueness property, we have ṽ = w̃,
that is v(t) = w(t) for t ≥ −T . Since T is arbitrary, then v(t) = w(t) for each t ∈ R
where w is a periodic complete trajectory. This proves that v is a periodic complete
trajectory. �
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