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Abstract. The seismic crisis that began in May, 2018 off the coast of Mayotte announced the onset
of a volcanic eruption that started two months later 50 km southeast of the island. This seismicity
has since been taken as an indicator of the volcanic and tectonic activity in the area. In response
to this activity, a network of stations was deployed on Mayotte over the past three years. We used
the machine learning-based method PhaseNet to re-analyze the seismicity recorded on land since
March 2019. We detect 50,512 events compared to around 6508 manually picked events between
March 2019 and March 2021. We locate them with NonLinLoc and a locally developed 1-D velocity
model. While eruptions are often monitored through the analysis of Volcano-Tectonic (VT) seismicity
(2–40 Hz), we focus on the lower frequency, Long Period (LP) earthquakes (0.5–5 Hz), which are
thought to be more directly related to fluid movement at depth. In Mayotte, the VT events are spread
between two clusters, whereas the LP events are all located in a single cluster in the bigger proximal
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VT cluster, at depths ranging from 25 to 40 km. Moreover, while the VT earthquakes of the proximal
cluster occur continuously with no apparent pattern, LP events occur in swarms that last for tens of
minutes. We show that during the swarms, LP events generally migrate downward at a speed of 5 m/s.
While these events do not appear directly linked to upward fluid migration, their waveform signature
could result from propagation through a fluid-rich medium. They occur at a different location than VT
earthquakes, also suggesting a different origin which could be linked to the Very Long Period events
(VLP) observed above the LP earthquakes in Mayotte.

Résumé. La crise sismique qui a commencé à l’Est de l’île de Mayotte en mai 2018 a précédé de
deux mois le début d’une éruption volcanique à 50 km au Sud-Est de l’île. Cette sismicité est utilisée
depuis comme indicateur de l’activité volcanique et tectonique de la zone. Un réseau de stations
a été déployé à Mayotte durant les trois dernières années en réponse à cette activité. Nous avons
utilisé la méthode de machine learning PhaseNet afin de ré-analyser la sismicité enregistrée à terre
depuis mars 2019. Nous avons identifié 50 512 événements entre mars 2019 et mars 2021, alors que
le nombre d’événements identifiés manuellement durant la même période était limité à 6508. Nous
avons localisé les événements grâce à l’algorithme NonLinLoc associé à un nouveau modèle de vitesse
1D local. Alors que les éruptions volcaniques sont souvent suivies grâce à l’analyse de la sismicité
volcano-tectonique (VT, 2–40 Hz), nous nous sommes concentrés sur les séismes longue période (LP,
0.5–5 Hz), qui sont souvent associés à des mouvements de fluides en profondeur. Les séismes VT sont
répartis dans deux zones géographiquement distinctes alors que les LP sont restreints à la zone la plus
active et proche de l’île de Mayotte, avec des profondeurs entre 25 et 40 km. De plus, alors que les
VT semblent se produire de manière continue sans organisation apparente, les LP se produisent en
essaims qui durent quelques dizaines de minutes. A travers cette étude nous avons montré que lors
d’un essaim, les séismes LP migrent vers le bas à une vitesse de 5 m/s. Ces événements ne semblent pas
directement liés à un mouvement de fluides vers la surface, mais leur forme d’onde pourrait indiquer
une propagation à travers un milieu riche en fluides. Ils se produisent en un lieu différent des séismes
VT, suggérant aussi une source différente qui pourrait être liée aux événements de très longue période
(VLP) qui sont observés à l’aplomb des séismes LP.

Keywords. Volcano, Mayotte, Seismicity, Machine learning, Long Period, Volcano-Tectonic, Phase
picking.

Mots-clés. Volcan, Mayotte, Sismicité, Machine learning, Longue période, Volcano-tectonique, Pointé
de phase.
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1. Introduction

Seismicity usually accompanies volcanic activity. For
this reason, it is often used to monitor volcanoes to
assess or predict their activity [Chouet and Matoza,
2013] and to anticipate the onset of an eruption [e.g.,
in Piton de la Fournaise, Peltier et al., 2009]. On re-
mote or inaccessible volcanoes [e.g. Axial seamount
Wilcock et al., 2016], seismic signals provide one of
the few continuous sources of information directly
related to volcano behavior. In Mayotte, the vol-
canic eruption was first indicated through a strong
episode of seismicity [Cesca et al., 2020, Lemoine
et al., 2020].

Mayotte is one island of the Comoros archipelago,
situated between Africa and Madagascar (Figure 1a).
While the origin of the archipelago was associated
with a hotspot, recent studies define the area as
a shear zone separating the Somalia and Lwandle
plates [Famin et al., 2020, Dofal et al., 2021]. Before

2018, the seismicity of the archipelago was moder-
ate [Bertil and Regnoult, 1998, Bertil et al., 2021]. The
only volcano known to be active was Karthala, lo-
cated on Grande Comore, the westernmost island of
the archipelago [Bachèlery et al., 2016]. The strong
burst of seismicity east of Mayotte that started on
May 10th, 2018, with the largest event (magnitude
Mw 5.9) on May 15th [Cesca et al., 2020, Lemoine
et al., 2020], surprised the inhabitants of the is-
land, the authorities, and the scientific community.
A month later, strong deformation signals were ob-
served on a permanent Global Navigation Satellite
System (GNSS) station, indicating a likely deforma-
tion source to the east of the island [Briole et al.,
2018]. Finally, in May, 2019, a new active volcano was
discovered 50 km east of Mayotte during a scien-
tific campaign [Mayobs1, Deplus et al., 2019, Feuil-
let et al., 2021]. The erupted volume and duration
[about 6 km3 and over two years, REVOSIMA-IPGP,
2021] of this underwater eruption is unprecedented

C. R. Géoscience — Online first, 17th June 2022
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in the recent history and is second only to the 1783
Laki eruption that lasted eight months and produced
14.7 ± 1.0 km3 of basaltic lava flows [Thordarson and
Self, 1993]. The underwater volcanic edifice reached
a height of 800 m in one year [REVOSIMA-IPGP,
2021].

The Mayotte submarine eruption was first sus-
pected through the intensity of the seismicity cri-
sis that began on May 10th, 2018. The seismicity is
on-going and indicates continuing activity of the sys-
tem. Studying this seismicity is crucial for under-
standing this dynamic process and its future evolu-
tion. Because no strong seismicity episode or vol-
canic activity was expected, no seismic monitor-
ing network or monitoring procedures were in place
in 2018 and only one permanent seismic station
was maintained on the island by the BRGM [RESIF,
1995, Bureau de recherches géologiques et minières].
French scientific institutions organized to monitor
the activity with an improved land network and
through campaigns at sea, which lead to the cre-
ation of the REVOSIMA (Réseau de surveillance vol-
canologique et sismologique de Mayotte) in 2019.
Thanks to this effort, several seismic stations were in-
stalled on land and on the ocean bottom to better
characterize the seismicity [Saurel et al., 2022]. Before
this work and its operational implementation [Retail-
leau et al., 2022], the seismicity was identified and
located mostly manually, which limited catalogs to
the strongest activity [usually events greater than M
3; Saurel et al., 2022].

Automatic picking procedures are widely used
to analyse large, continuous datasets that can not
be easily analysed though hand picking. Automated
methods have been extremely useful for real-time de-
tection, when it is not possible for an analyst to con-
tinuously pick events, and for reanalysis of long time
series. Different automatic detection methods have
been used for earthquake detection, ranging from
short term/long term amplitude ratios [e.g. STA/LTA,
Allen, 1978] to template matching [Shelly et al., 2007,
Ross et al., 2019]. While the former is efficient, it
may not be effective for detecting small events, es-
pecially under noisy conditions. Template matching,
on the other hand, can detect very small events (with
magnitudes less than 1). However, it is computer-
intensive and requires prior information in the form
of template waveforms, which limits its ability to de-
tect seismicity changes. We use the machine learn-

ing method PhaseNet [Zhu and Beroza, 2019], which
allows fast picking of phases while being able to pick
small events without prior information. It also iden-
tifies both P and S waves, which is crucial for more
accurate automatic location.

A wide range of seismic signals are generated
by active volcanoes, and they reflect the diver-
sity of source mechanisms [Chouet and Matoza,
2013]. Volcano-Tectonic earthquakes (VT), the most
common events, are discrete events with a broad
frequency band (2–40 Hz) that are linked to shear
failure due to the destabilization of the volcanic ed-
ifice. Another common type of seismicity is Long
Period earthquakes (LP) which have a narrower and
lower frequency band than VT events (0.5–5 Hz).
LP earthquakes are usually attributed to resonance
in fluid-filled conduit excited by magmatic mo-
tion [Chouet, 1996]. Several authors [Shapiro et al.,
2017, White and McCausland, 2019] have shown
that deep LP events may be precursors of eruptions,
making their analysis crucial. In this paper our in-
terest was to detect comprehensively the seismic-
ity and to discriminate between these two main
types of events. We analyse their characteristics in
the Mayotte system with a focus on LP behavior.
We also note the observation of Very Long Period
events [VLP or VLF, Cesca et al., 2020, Lemoine
et al., 2020, Feuillet et al., 2021, Laurent et al., 2020].
These events have monochromatic signatures and
do not have common earthquake characteristics. For
this reason, PhaseNet does not detect VLP events,
and we do not present their analysis; however, we
discuss their observation and their links to other
events.

We analyze two years of continuous data recorded
by the stations installed on the island of Mayotte
using the machine learning-based method PhaseNet
[Zhu and Beroza, 2019]. We assess the robustness of
P- and S-phase arrival picking by comparing with
manual picks from two different catalogs. We as-
sociate events when enough phases are detected,
and then proceed to locate them. We separate the
VT and LP earthquakes through their frequency
characteristics and compare their locations and
timing.

C. R. Géoscience — Online first, 17th June 2022



4 Lise Retailleau et al.

Figure 1. (a) Map of Mayotte with the land stations used in this study (orange triangles). The new volcano
is represented with the red triangle. The see-through black dots represent the 50,512 earthquakes located
in our study. (b) Days processed for the detection for each station (orange). (c) Total number of stations
processed over the period.

2. Seismicity identification

We detail in this section the event detection process
through phase arrival, automatic picking, and event
association.

2.1. Automatic detection in continuous time se-
ries with PhaseNet

Only one seismic station was installed on the is-
land of Mayotte before the seismic crisis started

[RA.YTMZ RESIF, 1995]; however, the seismic net-
work was progressively extended on the island to
record a more extensive dataset, improve the de-
tection level, and increase the location precision of
earthquakes [Saurel et al., 2022]. To monitor the early
part of the crisis, the regional stations on Grande
Comore and Madagascar islands had to be used to
locate events, which did not allow precise locations
[Lemoine et al., 2020]. Since March 2019, the per-
manent continuous real-time seismic network has
been extended with 2 accelerometers, 4 broadband
stations (flat response down to 20 or 120 s), and 2
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short-period low-cost stations (flat response down
to 1 Hz). Since then, the network aperture has been
wide enough to allow stable and robust automatic
detection and location of the seismicity with at least
4 stations. Figure 1a shows the stations used on the
island of Mayotte for this study and Figure 1b shows
data availability for each station throughout the pe-
riod of interest. The number of stations for which
data is available with time is summarized on Fig-
ure 1c. Except for a few weeks in June and August
2019, there are always at least 6 stations available. All
stations but one feature 3-component sensors with a
sample rate higher than 50 Hz.

We use the PhaseNet algorithm to identify P-
and S-phase arrivals on the continuous archived
data. PhaseNet is a deep-neural-network-based
method trained on numerous earthquakes in
northern California to pick and identify phases on
3-component seismograms [Zhu and Beroza, 2019].
It generalizes well enough to have been success-
fully used in diverse tectonic contexts, including: the
Ridgecrest earthquake sequence [Liu et al., 2020], in-
duced seismicity in Arkansas [Park et al., 2020], and a
year of seismicity in the Appenines [Tan et al., 2021].

We first filter the data with a 0.4–45 Hz frequency
band filter, remove the instrument response, then re-
sample at 100 Hz and split into 30 s windows with
a 50% overlap. Finally, this data is sent to PhaseNet
for pick estimation. For the vertical-only station
(AM.RAE55), we add two 0-filled vectors of data as
dummy horizontal channels before sending the data
to PhaseNet.

We extract all the picks of the different stations. An
event is declared when at least 10 P and S picks are
within the expected time window for events in the
area (2 s time window after the first arrival for the P
waves and 8 s time window starting 4.5 s after the first
P arrival for the S waves).

2.2. Pick quality estimated from manual cata-
logs

PhaseNet was trained on tectonic events. To test how
well it generalizes for events that occur in a volcanic
environment, we compare its arrival time measure-
ments to reference arrival time measurements per-
formed by skilled analysts. In principle, such a com-
parison between several observations quantifies un-
certainties of arrival-time determination of hand-

picked data [Diehl et al., 2012]. It has also been
used for performance assessment of various auto-
matic picking procedures [Dai and Macbeth, 1995,
Leonard, 2000, Di Stefano et al., 2006].

For their analysis of the Mayotte seismo-volcanic
crisis, Cesca et al. [2020] and Lemoine et al. [2020]
built seismic catalogues through manual picking us-
ing the local station YTMZ. Consequently, we have
access to a dataset of events with two independent
reference manual estimations of P and S onsets be-
sides PhaseNet picks on YTMZ data. The first catalog
of manual picks (from BRGM) contains 1347 P on-
sets and 1326 S onsets hand-picked by several expert
analysts for events of magnitudes above M 3.5 de-
tected between May 10th, 2018 and December 5th,
2019 [Lemoine et al., 2020]. The second catalog (from
GFZ institute, GeoForschungsZentrum, Germany)
contains 5999 P and 5999 S hand-picked onsets re-
alized by a single expert analyst for events occurring
between May 10th, 2018 and February 28th, 2019
[Cesca et al., 2020].

We assess PhaseNet’s performance and accuracy
by comparing the arrival times automatically picked
on YTMZ continuous data by PhaseNet from the be-
ginning of the seismic crisis with the manually picked
arrival times for the events of the two manual cata-
logs. PhaseNet identifies the correct arrival for 99.6%
of P onsets and 98.4% of S onsets from the BRGM
catalog, forming a comparative dataset of 1342 com-
mon P-picks and 1305 common S-picks. Similarly,
PhaseNet identifies 97.7% of P onsets and 98.8% of
S onsets from the GFZ catalog, forming a compara-
tive dataset of 5858 common P picks and 5924 com-
mon S picks. Figure 2 show the time differences be-
tween the 3 catalogs and their statistical distribu-
tions, for the P-picks and S-picks, excluding outliers.
We estimate that two picks are consistent if the differ-
ence in arrival-time between them is less than 0.5 s
for P phases and less than 0.8 s for S phases. Out-
liers above the defined threshold mainly result from
event or phase mis-identifications. Among the 1342
P and 1305 S arrivals in common with BRGM, 22
(1.6%) and 102 arrivals (7.8%) are outliers, respec-
tively. Among the 5858 P and 5924 S arrivals in com-
mon with GFZ, 277 (4.7%) and 506 arrivals (8.5%)
are outliers, respectively. The two manual catalogs
have 915 common P arrivals, including 21 (2.3%) out-
liers; and 904 common S arrivals, including 23 out-
liers (2.5%). Hence, manually hand-picked datasets

C. R. Géoscience — Online first, 17th June 2022
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show less incoherent picks for S arrivals.

In the following analysis, we only consider the ar-
rival time differences that have not been flagged as
outliers according to our criteria. Arrival-time dif-
ferences between independently hand-picked data
display a non-Gaussian distribution of pick time
differences. To assess the dispersion of pick time
differences, we compare the median value and the
interquartile range (i.e, containing the closest 25% of
the distribution around the median) as it is more suit-
able for describing non-Gaussian distributions. For
the two manual catalogs, the median of manual P
pick time differences is 0.01 s and the interquartile
range is 0.06 s (Figure 2a, bottom panel). Similarly,
the median and the interquartile range for manual S
picks time differences is 0.05 s and 0.19 s, respectively
(Figure 2b, bottom panel). These values are close to
the few values found in the scientific literature for
manual picks [Leonard, 2000, Di Stefano et al., 2006].
It supports the common observation that the on-
set time for P phases are less difficult to measure in
a seismic signal than for S phases. In comparison,
the median and the interquartile range of the 1320 P
pick time differences between the BRGM catalog and
PhaseNet is 0.03 s and 0.04 s (Figure 2a, top panel).
The median and the interquartile range of 5581 P pick
time differences between the GFZ and PhaseNet cat-
alogs is 0.02 s and 0.05 s (Figure 2a, middle panel).
These values are close to those obtained between the
two manual catalogs even though the statistical pop-
ulation is larger. The precision of PhaseNet thus com-
petes with the precision reached by expert analysts.
More precisely, on average, PhaseNet automatic P
picks arrive a few milliseconds sooner than the corre-
sponding manual pick, which suggests a greater sen-
sitivity of the neural network to detect an early sub-
tle change in the signal at the true P onset. Regard-
ing S pick time differences, the median and the in-
terquartile range of the 1203 S picks time differences
between the BRGM and PhaseNet catalogs is 0.04 s
and 0.16 s (Figure 2b, top panel). The median and
the interquartile range of 5419 S picks time differ-
ences between GFZ and PhaseNet catalogs is 0.01 s
and 0.1 s (Figure 2b, middle panel). These values are
smaller than the pick time differences observed be-
tween the two manual catalogs. PhaseNet S picks are
more consistent with the manual picks from GFZ,
even though this catalog eventuates smaller magni-
tudes and presents a larger population. On average,

GFZ S picks arrive a few milliseconds sooner than
BRGM picks. Similarly, PhaseNet S picks arrive a few
milliseconds sooner than BRGM picks but a few mil-
liseconds after GFZ S picks. These results are a repre-
sentation of the picking precision among the differ-
ent methods when a phase is correctly identified.

The distribution of arrival differences for S onsets
without removing outliers above 0.8 s shows a recur-
rence of a systematic picking difference at +1.2 s for
approximately 44 picks (3%) for the first compara-
tive dataset BRGM-PhaseNet and 188 picks (3%) for
the second GFZ-PhaseNet comparative dataset (Sup-
plementary Figure 9). Such a large pick difference
suggests a misidentification of the S onset with a
precursory seismic arrival. Indeed, the Mayotte seis-
mic sequence occurs within a complex volcanic and
underwater environment, which may generate com-
plex seismic waveforms, including P-to-S or a S-to-P
phase conversion which are actually expected to ar-
rive approximately one second before the S phase
arrival time [Garmany, 1989]. Here, PhaseNet auto-
matic S picks are confused a few times with those
precursory arrivals but the confusion has also been
seen on some S picks in the catalogs picked man-
ually by expert analysts. It is also possible that the
manual training data contained misidentified picks,
thus generating these erroneous picks. Further neu-
ral training could possibly help correct the confusion
between a precursory arrival and an S pick that some-
times happens with PhaseNet.

2.3. Event location

An advantage of PhaseNet over other auto-picking al-
gorithms is its ability to pick and identify both P and
S waves, when picking methods usually only identify
the P-wave arrivals. The addition of S waves allows
much more precise locations and event depth con-
straints, which is crucial for accurate hazard assess-
ment. In Mayotte, stations have a limited azimuthal
coverage, which makes earthquake location, and par-
ticularly depth resolution, particularly challenging.

Each declared event with a set of P and S picks
is located with NonLinLoc [Lomax, 2008] using a
local 1D velocity model for the east of Mayotte
[Lavayssière et al., 2022]. This model was developed
with the code VELEST [Kissling et al., 1995] using
the 813 most robust earthquake locations (i.e., events
with at least 30 phases recorded, azimuthal gap <
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Figure 2. (a) P-pick time differences (left, for each event; right, distribution for all events). From top to
bottom: comparison between PhaseNet and BRGM catalogs, comparison between PhaseNet and GFZ
catalogs, comparison between GFZ and BRGM catalogs. Outliers are not represented. (b) Same as (a) for
S-picks.

180°; horizontal error < 2 km and vertical error <
5 km). Lavayssière et al. [2022] selected this subset
from events recorded in Mayotte between February
2019 and May 2020 and located manually [Saurel
et al., 2022]. The VELEST inversion used picks made
both on the land-stations and on Ocean Bottom Seis-

mometers (OBS) to get the most complete set of data
and the most well-constrained locations. The goal of
this model was to improve the daily monitoring by
having more accurate locations of the events using
only the land stations, which are all located to the
west of the seismicity.

C. R. Géoscience — Online first, 17th June 2022
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VELEST simultaneously estimates hypocenters
and a best-fit velocity model by minimizing the mis-
fit between the arrival times and model predictions
using both P- and S-wave arrival time data. In addi-
tion to the velocity model, Lavayssière et al. [2022]
estimated station corrections to account for lateral
heterogeneity and variations in the velocity structure
at shallow depth beneath the stations. The velocity
model and station corrections obtained hence rep-
resent the best 1D approximation of the 3D subsur-
face structures of the region, which is essential for
accurate earthquake location.

Using the P- and S-arrival times identified by
PhaseNet with the new velocity model and station
corrections, we locate the events using the non-
linear probabilistic earthquake-location program
NonLinLoc [Lomax, 2008], which calculates a
maximum-likelihood hypocenter that represents
a global minimum misfit for the spatial location and
the origin time of each event.

We represent in Figure 1a the 50,512 events we
detected and located accurately. We only keep the
events with a final RMS lower than 0.2 s. As shown
by Saurel et al. [2022], the seismicity is located in two
clusters east of Mayotte: the proximal cluster with a
round shape close to the island and the distal cluster
with an elongated shape towards the new volcanic
edifice.

With this automatic detection and location pro-
cess, we were able to provide a more complete image
of the seismicity, particularly for the distal cluster. In-
deed, the catalog of seismicity built through the mon-
itoring work of RENASS (Réseau national de surveil-
lance sismique) and REVOSIMA and made available
by RENASS (http://renass.unistra.fr) contains 6508
events for the same period, about 8 times less com-
pared to our new catalog. Furthermore, this method
also allowed us to process two different types of seis-
micity: VT and LP earthquakes.

3. Comparative analysis between the VT and
LP events

Both VT and LP events are recorded by the seismic
stations installed in Mayotte. In this section we detail
how we separate them from each other and compare
their behavior.

3.1. Event separation

VT events are commonly observed on volcanoes.
These events have a broad frequency range, from
1 Hz to 40 Hz. They are called Volcano-Tectonic
earthquakes because their signature is difficult to
distinguish from regular tectonic earthquakes as
they are associated with shear failure driven by mag-
matic processes.

Most of the seismicity recorded daily by the
stations installed in Mayotte are VT earthquakes.
However, LP events are also recorded.

Different definitions have been proposed for LP
events [Chouet and Matoza, 2013]. They range from
long-period monochromatic signals to signals sim-
ilar to VT events but with lower frequency content.
The events we refer to as LP in Mayotte are similar
to VT events, with distinct P- and S-waves, but they
have a lower and narrower frequency band. Before
our frequency analysis, we filter each signal in a 0.4–
45 Hz frequency band, we remove the instrumen-
tal response and convert to displacement. Figure 3
shows the resulting signals and spectra of a VT and
an LP event recorded by the three component sta-
tions on May 21st, 2019, and March 11th, 2019, re-
spectively. The signals (Figure 3a,c) show clearly the
difference between the two types of events recorded
in Mayotte. The P wave of the VT event has a clear and
impulsive onset, while the emergent arrival is very
difficult to discern for the LP earthquake. The sig-
nal of the S wave can be identified on the horizon-
tal components for both the VT and LP events with a
lower dominant frequency for the LP event. Similarly,
the spectra shows that the VT event has a broader fre-
quency range than the LP event.

We use this frequency content difference to dis-
criminate between VT and LP events. Our approach
is similar to the Frequency Index (FI) proposed
by Buurman and West [2010] and Matoza et al.
[2014], however, we process the P- and S-waves sep-
arately.

For each event, we compute the amplitude ratio
of the mean spectrum in two frequency bands (a
narrow one at 0.5–6 Hz and a broad one at 0.5–30 Hz)
for both the P wave and the S wave on each station.
The LP events have a dominant frequency lower than
6 Hz. If the 0.5–6 Hz spectra is strong compared to
the broader 0.5–30 Hz spectra, the ratio between the
two is large and indicates an LP earthquake. On the
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Figure 3. Signals (a,c) and spectra (b,d) of a VT earthquake (on May 21, 2019) (a,b) and a LP earthquake
(on March 11, 2019) (c,d) recorded by the 3-component stations deployed on Mayotte.

other hand, if the event has a broad frequency band,
the 0.5–6 Hz over 0.5–30 Hz spectra ratio is small,
indicating a VT earthquake. We compute the ratios
for all events, using the vertical component for the P
wave and an average of the horizontal components
for the S wave. Those ratios are then averaged over all
the stations for each event to limit the potential bias
of event-to-station path effect [discussed in Matoza
et al., 2014].

Figure 4 shows the resulting amplitude ratio dis-
tribution for all the events already manually classi-
fied. To correctly separate the VT earthquakes from
the LP earthquakes, we use the identifications made
by the analysts from Observatoire Volcanologique du
Piton de la Fournaise (OVPF), one of the Institut de
Physique du Globe de Paris (IPGP) French overseas
volcano observatories. The earthquakes recorded in
Mayotte are identified daily by the analysts of OVPF
since February 2020. The color of the dot in Figure 4
shows if the event was manually identified as a VT
earthquake (green) or an LP earthquake (yellow). Un-

surprisingly, the VT and LP earthquakes separate in
two distinct zones. Events of high P and S spectral
amplitude ratios are usually LP earthquakes because
the high ratios mean that the dominant frequency
band is shorter and lower (the 0.5–6 Hz amplitude
spectrum is high compared to the broad 0.5–30 Hz
amplitude spectrum). From these identifications we
separate the spectral ratio diagram in two areas for
VT and LP events (green and yellow color respectively
in Figure 4). The events are then automatically iden-
tified as VT or LP earthquakes depending on where
their P and S spectra land on the ratio diagram. Fig-
ure 5 represents the vertical component of station
KNKL for a few VT and LP earthquakes that have been
categorized through our process.

3.2. VT versus LP location and time evolution
differences

After identification of both VT and LP earthquakes
we compare their spatial and temporal behavior. For
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Figure 4. Ratios between the 0.5–6 Hz spectrum and the 0.5–30 Hz spectrum averaged over the different
3-component stations for each event. The color of the dot shows how the event was manually classified
by the OVPF analysts. The colored domains represent the resulting VT/LP separation criteria chosen. The
black dots represent regional events.

clarity we represent the events’ locations as event
count for both VT (in red hues) and LP (with yel-
low and blue contours) events on Figure 6. As ob-
served in previous publications [e.g. Lemoine et al.,
2020, Saurel et al., 2022] and already mentioned in
Section 2.3, the seismicity is spread over two clus-
ters. The proximal cluster is closest to the island of
Mayotte (about 10 km east) and has a circular shape.
Its depth range extends from 20 to 45 km depth.
The distal cluster is farther east and is aligned along
a N 130° axis toward the new volcanic edifice (repre-
sented with the red triangle on Figure 6).

The VT earthquakes are spread over the two clus-
ters. We do not explore in this paper the short
scale-length spatio-temporal variability of the VT
seismicity, which will be analysed in a later study. Re-
markably, the LP earthquakes are only observed in
the center of the proximal cluster, over a 25–40 km
depth range (with most events between 30 and 37 km
depths as shown in Figure 6). In this central area, we
can see in map view that the density of VT events is

lower than in the rest of the proximal cluster, a region
which we later refer to as the proximal cluster VT gap.
This is not observable in the depth view because all
events and thus all the azimuths are shown, the south
and north sides masking the central part. We can also
note that, in map view, the VT cluster does not ap-
pear as a complete ring as shown by previous stud-
ies [e.g. Lavayssière et al., 2022]. This is because we
plot the event count and most VT events are located
in the western part of the proximal cluster. There are
thus fewer VT events in its eastern part in compari-
son. Figure 1a does show clearly the circular shape.

Our catalog is dominated by VT earthquakes with
48,387 events compared to the 2125 LP events, as the
histogram in Figure 7a shows. For this reason, before
the development of this automatic processing, the LP
earthquakes in Mayotte had not been studied and
had only been systematically identified as LP through
the daily manual screening of continuous data at
OVPF, which started in March 2020. Figure 7a shows
that the number of VT earthquakes decreased slowly
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Figure 5. Examples of (a) VT and (b) LP earthquakes early March 2019 after event separation.

after a maximum in April, 2019 with some variations.
The number of LP events is very small compared to
the number of VT events and no clear time evolu-
tion is apparent. To observe the temporal evolution
of event occurrence, we represent the normalized cu-
mulative rate of both the VT and LP earthquakes (Fig-
ure 7b). We estimate the mean seismicity rate over a
ten-event sliding window by computing the time dif-
ference between the 10th and the 1st event. We then
calculate the cumulate of this result. We normalize
the results to compare the time evolution of the two
types of events. While this representation may be a
little unnatural, it clearly shows that the temporal be-
havior of the VT and LP earthquakes is very differ-
ent. The VT activity is continuous with a significant
slowdown since April 2019, while the LP earthquakes
occur episodically in successive swarms. Several LP
events occur in a short while (usually less than one
hour), followed by a period of sparse activity. Figure 7
also shows that, while the VT activity dominates the
LP activity, the latter’s activity does not seem to di-
minish compared to the former.

4. Discussion

Using the ability of PhaseNet to pick and identify P-
and S-phases we detected over 50,000 earthquakes
and separate them into two categories. Indeed, while
the seismicity in Mayotte is dominated by VT earth-
quakes, there is also a substantial population of LP
events.

We separated events into these two categories to
compare their behavior. The events we define as LP
earthquakes look similar to VT earthquakes, but with
a lower dominant frequency. In Mayotte, the VT and
LP earthquakes also show distinct spatial and tem-
poral features. VT earthquakes are spread over both
zones of seismicity (proximal and distal clusters). The
VT seismicity of the distal cluster is the first seismic-
ity that was observed in 2018 [Lemoine et al., 2020,
Cesca et al., 2020, Feuillet et al., 2021]. It was asso-
ciated by the authors to magma migration through
a dyke feeding the eruption on the seafloor. With
its N130 orientation, it is also aligned with a pre-
existing ridge with numerous volcanic cones, indi-
cating that faults could have been reactivated by
the eruption. This orientation can also be found in
other regional geographic features on the seafloor
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Figure 6. Event count of VT (red colors) and LP (yellow and blue contours) earthquakes. The orange
triangle represents the location of the new volcano.
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Figure 7. (a) 10-days histograms and (b) normalized cumulative rate of the number of VT and LP
earthquakes (green and yellow respectively) from March 2019 to March 2021.

[REVOSIMA-IPGP, 2021] and the VT seismicity in the
distal cluster can also be linked to the regional tec-
tonic context [Feuillet et al., 2021, Famin et al., 2020].

The proximal cluster is more complex, spread over
a broader area, and appears less directly linked to
the new volcanic edifice. This seismicity has been
linked to the deflation of the main magmatic reser-
voir [Cesca et al., 2020, Lemoine et al., 2020, Saurel
et al., 2022, Lavayssière et al., 2022]. This was de-
duced because its activity started after the deflation
did [modelled from GNSS data, Lemoine et al., 2020].
Moreover, the structure of the seismicity in depth
is consistent with ring faults, further supporting the
theory of a reservoir below the seismicity. A main
reservoir around 40 km depth was suggested by geo-
barometry analyses of emitted lavas [Berthod et al.,
2021] and follows deformation models [Mittal et al.,
2022, REVOSIMA-IPGP, 2021]. The drainage of the
main reservoir could have generated shear failure or
reactivated faults. Indeed, numerous volcanic cones
and edifices can be observed on the seafloor above
the cluster [REVOSIMA-IPGP, 2021], suggesting a
large and complex pre-existing system.

Up to now, seismicity observations of the proximal
cluster of Mayotte have been focused on the VT seis-
micity. The LP seismicity is restricted to the proximal
cluster and seems concentrated towards the center
east of the cluster, with depths ranging from 25 km to
40 km, and thus directly above the depth suggested
by geobarometry and deformation models. This cor-
responds to a VT seismicity gap in the center of the
proximal cluster, also highlighted by previous studies
[Saurel et al., 2022, Lavayssière et al., 2022]. A recent
tomography analysis by Foix et al. [2021] suggested
the presence in this area of a magma chamber be-
tween 30 and 50 km depth and a shallower zone of
mush and partial melt between 20 and 30 km depth.
This is supported by the conceptual model developed
by Mittal et al. [2022] which suggests the presence of
a porous mush next to the reservoir to explain the
deformation estimated through GNSS data. Similarly,
Lavayssière et al. [2022] has suggested that the gaps in
VT activity could be associated with a magma storage
zone.

These observations suggest that the VT seismic-
ity might surround zones of storage [Lavayssière
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Figure 8. (a) All LP earthquakes depths with regards to time, (b) LP earthquakes depths of the main
swarms with regards to time, (c) Depth migration velocity estimate during the main LP swarms identified
in (b), and (d) Representation in depth of the main LP swarms. Each index also represents one hour. The
dashed black lines represent the depth evolution linear regression for each swarm in km·h−1.

et al., 2022] while the LP seismicity seems to be lo-
cated inside these same zones. Clarke et al. [2021]
showed that VT sources can appear as LP events
when the seismic propagation path passes through
highly attenuating areas, such as gas-saturated rocks.
They confirmed their laboratory observations using
Whakaari volcano shallow-event recordings. While
a scaling needs to be done in the Mayotte context,
this hypothesis could explain the LP seismicity lo-
cation in a VT gap as mentioned above. Both LP
and VT seismicity could share similar mechanisms,
but the LP seismic waves might travel through a few
kilometer-wide gas-saturated area that narrow and
lower their waveform spectral content. The similar-
ity of frequency content of LP earthquakes inside a
swarm, even with their varying depths, also agrees

with this idea. These events could be closer to VT
earthquakes in mechanism but with a different prop-
agation that lowers their frequency. Studies are on-
going to characterize time evolution and links be-
tween VT, LP and VLP types of seismicity.

We represent the depth of the LP earthquakes
through time in Figure 8 to focus on their evolution.
Figure 8a represents all LP earthquakes and shows
that the depths of these events are spread between
depths ranging from 25 to 40 km. There is no clear
long-term trend of depth change with time. We fo-
cus on the main swarms to observe the short-term
evolution of the events during a swarm. We flag an
LP as part of a swarm when at least 5 LP events oc-
cur within one hour around it. The resulting swarms
are represented on Figure 8b. For each swarm, we es-
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timate the depth migration speed of the LP earth-
quakes using a linear regression. We represent in
Figure 8c the estimated depth migration speed for
each swarm. The histogram shows that this speed is
mostly negative, implying that, during a swarm, the
LP earthquakes occur at increasing depth with time.
During a swarm, the LP earthquakes occur from their
shallowest location (around 25 km depth) to their
deepest location (around 40 km) at an average speed
(removing outliers) of 19.2 km·h−1 or 5.3 m·s−1. With
this average speed, the migration doesn’t seem com-
patible with a migrating fluid (estimated for exam-
ple at a maximum of 0.3 m·s−1 on Piton de la Four-
naise volcano by Duputel et al. [2019]). Those two ob-
servations suggests that these events are not linked
to an ascension of fluids. However, it coincides with
the ideas developed in the previous paragraph, and
these events could be associated with a propagation
through a gas-saturated conduit. Still, their down-
ward propagation remains unexplained.

Since the LP earthquakes occur at a different loca-
tion than the VT earthquakes, it means that their ori-
gin could be different. The LP swarms often coincide
temporally with very long period events (VLP) which
have been observed along with the rest of the activ-
ity and was one of the indicators that the activity had
a volcanic origin [Laurent et al., 2020, REVOSIMA-
IPGP, 2021]. This implies that their origins could be
linked. Although the origin of the LP events could be
linked to shear failure generating waves propagating
through a gas saturated medium, their trigger seems
to have a volcanic origin. A thorough analysis of the
links between the different signals will be the subject
of another study.

Our interpretation of the LP seismicity is still lim-
ited by the lack of focal mechanism solutions that
could help distinguish physical processes [Chouet
and Matoza, 2013]. The land stations are all dis-
tributed to the west of the seismicity, which makes it
difficult to obtain reliable focal mechanisms. Broad-
band OBS surrounding the seismicity in the east
would certainly help improve the event location’s
precision to better understand the process behind
this LP seismicity. They could also allow us to per-
form reliable focal mechanisms to help determine
whereas those LP events are volumetric sources or VT
sources travelling through a highly attenuating area.

5. Conclusions

The use of neural-network-based automatic picking
permitted us to precisely re-analyze the seismicity
linked to the volcanic system in Mayotte from March
2019 to March 2021. We detected and accurately lo-
cated 50,512 earthquakes which is close to 8 times
more than the 6508 earthquakes in the currently
available catalog (RENASS/REVOSIMA). This auto-
matic picking algorithm has been converted into an
operational automatic process to monitor the seis-
mic activity in Mayotte since March 2021 [Retailleau
et al., 2022]. We separated two types of events from
their frequency content as VT and LP earthquakes.
These two types of events show a different behav-
ior through time and space. While VT earthquakes
are spread over the two clusters observed throughout
the crisis, LP earthquakes are restricted to the cen-
ter of the VT proximal cluster. Moreover, VT earth-
quakes appear to occur continuously, decaying with
time, while LP earthquakes appear to happen episod-
ically in swarms and are on-going. Contrary to VT
earthquakes, LP earthquakes may propagate through
a fluid area that modified their waveforms and low-
ered their frequency content. Alternatively, their dif-
ferent location could imply a different source mech-
anism. In any case, their apparent link to VLP events
seems to imply a volcanic trigger, which still needs to
be explored.
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