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In cameras that implement color filter arrays, the sensors on the focal plane array are overlaid with color filters that follow specific pattern. Demosaicking consists in reconstructing the RGB image from the raw image, finding the colors discarded by the color filters. However, this operation is often tailored for the most common color filters patterns (the Bayer and Quad-Bayer patterns). This specialization, leaving behind less common patterns (but used in commercial cameras nonetheless) is even more striking concerning learning-based demosaicking, able to work with the pattern they were trained for. In this work, we present a generalized framework for demosaicking applicable for such patterns, with a model-based method minimizing of a cost function with a total variation (TV) regularizer. Some preliminary experimental results are also presented, which apply to the reconstruction of acquisitions of Sparse 3 camera.

INTRODUCTION

In a wide variety of fields like medical imaging, remote sensing, or in computational imaging in general, the data acquisition process using cameras usually combines two different actions, raw image acquisition and demosaicking, as illustrated in Figure 1. The first one is the process of image formation, acquiring the raw data. It consists of measuring a light intensity on a 2D array of sensors which are the pixels. This acquisition represents only a scalar image. During this first part each pixel will only detect a specific color thanks to the Color Filter Array (CFA). The CFA is a pattern of color filters that is repeated on top of the sensor, in a way that each pixel forming the sensor will be covered by a color filter, meaning that each pixel will detect only one interval of the light spectrum.

The usual image acquisition process uses a predetermined CFA pattern to assign a color to each pixel of the sensor. While the most common pattern is the Bayer pattern ( [START_REF] Li | Colour filter array demosaicking using cubic spline interpolation[END_REF], [START_REF] Yamaguchi | Image demosaicking via chrominance images with parallel convolutional neural networks[END_REF]) Fig. 1. The acquisition and reconstruction pipelines. other configurations exist. Some of them have filters in nonvisible light, while others use different filters than the usual red green and blue bands. We focus on the Sparse 3 CFA which is more unconventional but has nonetheless real life applications. Indeed a camera with Sparse 3 CFA is used in the AMICal Sat project [START_REF] Barthelemy | Amical sat: A sparse rgb imager on board a 2u cubesat to study the aurora[END_REF], to study northern lights from a satellite. Sparse 3 CFA contains a majority of pixels without a color filter (meaning that a pixel without a color filter will detect all the incoming light in the range of the sensitivity of the detector, independently from the wavelength), which allows for increased brightness. Both patterns are presented in Figure 2.

The second step is known as reconstruction or demosaicking, which aim is to find the missing colors in order to obtain the reconstruction, an RGB image of the physical scene in input. This demosaicking operation, done numerically, can be done in multiple ways: by classic interpolation between the pixels ([1], [START_REF] Malvar | High-quality linear interpolation for demosaicing of bayer-patterned color images[END_REF]), by model-based methods which relies on a known mathematical model linking the input to the raw acquisition. More recently neural networks strategies appeared ( [START_REF] Sharif | Beyond joint demosaicking and denoising: An image processing pipeline for a pixel-bin image sensor[END_REF], [START_REF] Feng | Mosaic convolution-attention network for demosaicing multispectral filter array images[END_REF]), in general they are based on end-to-end training with large data-sets.

However, all those methods have drawbacks. The interpolations methods are not able to work with any CFA and are often ad-hoc solutions. Model-based approaches need a precise knowledge of the real acquisition conditions. This knowledge is encapsulated in the forward model, used to represent the camera's acquisition process, like the one presented in [START_REF] Picone | Joint demosaicing and fusion of multiresolution compressed acquisitions: Image formation and reconstruction methods[END_REF]. But there are no guaranties that this model follows all the behaviours of the camera and thus reality. Finally, data-driven based methods need a huge amount of data to be trained on and are often specialised on specific CFAs, leaving no possibilities for adaptation beside new training. For example, paper [START_REF] Sharif | Beyond joint demosaicking and denoising: An image processing pipeline for a pixel-bin image sensor[END_REF] proposes an efficient demosaicking neural network for Bayer CFA, but its performances are not guarantied with Sparse 3 CFA. So is the case for the methods [START_REF] Malvar | High-quality linear interpolation for demosaicing of bayer-patterned color images[END_REF], [START_REF] Yamaguchi | Image demosaicking via chrominance images with parallel convolutional neural networks[END_REF], [START_REF] Li | Colour filter array demosaicking using cubic spline interpolation[END_REF] and [START_REF] Ueki | Adaptive guided upsampling for color image demosaicking[END_REF] that focuses only on Bayer CFA.

For these reasons this paper proposes a general method able to solve the demosaicking problem for Sparse 3 CFA, which is used in real life. This method relies on a modelbased approach and minimizes a regularized convex cost function.

The novel contribution of this paper are:

• a forward model capable of simulating the camera's action, with support of Sparse 3 CFA and noise;

• a model-based method able to perform demosaicking with Sparse 3 CFA that could be used with other CFAs.

In Section 2.1 we present how we obtain the raw image (the gray-scale image) from a colored image modeling the physical light. In 2.2 we present our method to recover the full RGB image using the proposed algorithm. Finally we present the results in Section 3.

PROPOSED METHODS

In this section we present the acquisition process and the reconstruction. The first step is to model the image acquisition process usually done by the camera itself. We represent the process by a forward model taking in input the reference image, in order to obtain the raw image. Then the reference image is reconstructed from the raw image using a model-based method.

The reference image, representing the physical scene is encoded as X, a M × N × C tensor where C = 3 for a RGB image, M and N being the spatial dimensions. The raw image Y representing the observation, is the M × N scalar matrix coming from the forward model. Finally we denote by X the M × N × 3 RGB image reconstructed from the raw image Y . When dealing with matrix operations we will use the vectors

x = vec(X) ∈ R M N C , y = vec(Y ) ∈ R M N and x = vec( X) ∈ R M N C ,
the vectors in lexicographic order of the images.

Forward model

The forward model is inspired by the work [START_REF] Picone | Joint demosaicing and fusion of multiresolution compressed acquisitions: Image formation and reconstruction methods[END_REF], where the author presents a forward model in a different setting. In order to apply a CFA a mask H ∈ R M ×N ×C is used, encoding the wanted CFA. As the incoming light is represented by X ∈ R M ×N ×C (an RGB image for instance), the output of the CFA operation is obtained with:

Y = C k=1 X k ⊙ H k ( 1 
)
where ⊙ is the Hadamard product between matrices, X k and H k are matrices which denote the k th channel (or color) of the tensors X and H respectively. The tensor H encoding the mask contains a 1 in the positions where the information is kept. The rest is set at 0, discarding the information at those positions. The image Y is then composed of scalar values, where for each pixel is kept only the information from the selected channels.

In the case of a pixel without color filter (like in the Sparse 3 CFA), the coefficients in the mask are weight to compute an average. Those weights depend on the camera to represent and by default are equal to 1 C in all the channels. This will compute the mean over all the channels for the considered pixel and place it in the corresponding place in the raw image.

The CFA operation is linear, since we can write its corresponding matrix A ∈ R M N ×M N C , allowing us to present the forward model with a matrix-vector multiplication:

y = Ax + n (2) 
where n ∈ R M N is a Gaussian noise vector. The noise is here to represent the gap between the forward model and the reality it should depicts. Moreover it allows to model the physical noise present on the sensor of the camera. The forward model also needs to be able to give access to the adjoint of the CFA operator for it will be useful during the demosaicking. As the operation in purely taking place in the real domain the adjoint of the CFA is simply the transpose of the matrix A.

However the adjoint operation can be performed with the next expression to compute the adjoint operation applied to the raw image Y :

Z ::k = H ::k ⊙ Y , ∀k ∈ {0, ..., C -1} (3) 
where Z ∈ R M ×N ×C . This operation corresponds to reshaping the raw acquisition into a tensor of size M × N × C, placing the color information in the channel they belong to.

Model-based demosaicking

The demosaicking problem is ill-posed as there are more unknowns than there is information as the goal is to recover data lost during the acquisition process. We formulate this problem as a minimization of a cost function with a regularization term:

x = arg min x ∥Ax -y∥ 2 2 + λ∥L(x)∥ 221 (4) 
where A ∈ R M N ×M N C is the forward operator defined above in matrix form, y ∈ R M N , x ∈ R M N C being the acquisition and the reconstruction in lexicographic order. λ∥L(.)∥ 221 is the regularizer: L is the total variation operator, λ is the regularizer's scalar coefficient, and || • || 221 denotes an ℓ 2 norm in the channel and gradient domain followed by an ℓ 1 norm in the spatial one. This term is derived from [START_REF] Picone | Joint demosaicing and fusion of multiresolution compressed acquisitions: Image formation and reconstruction methods[END_REF] and [START_REF] Wen | Efficient total variation minimization methods for color image restoration[END_REF], where experimentation yielded good results in a similar setup to ours. The Alternating Direction Method of Multipliers (ADMM) [START_REF] Parikh | Proximal Algorithms, Foundations and Trends in Optimization[END_REF] is a well-known algorithm used to solve convex problems represented by the sum of two convex functions from R n to R, but are not necessarily smooth. This is the case of the demosaicking problem and can be re-written in the ADMM framework:

min x,z f (x) + g(z) such that L(x) -z = 0 (5)
where f and g encode respectively the fidelity term and the regularization term of the previous equation. L is a linear operator derived from the forward operator A. Then following [START_REF] Parikh | Proximal Algorithms, Foundations and Trends in Optimization[END_REF] and [START_REF] Condat | Proximal Splitting Algorithms for Convex Optimization: A Tour of Recent Advances, with New Twists[END_REF] we obtain the updates variables using the linearized Alternating Direction Method of Multipliers, which allows to save some expensive computations compared to the regular ADMM algorithm. The three updates variables are:

     x k+1 = prox τ,f (x k - τ σ L T (L(x k ) -z k + u k )) z k+1 = prox σ,g (L(x k+1 ) + u k ) u k+1 = u k + L(x k+1 ) -z k+1 ( 
6) with τ and σ ADMM parameters (the proximal steps for f and g respectively). This algorithm needs access to the adjoint of L and thus to the adjoint of A. The computation of the adjoint of the CFA operation should be done quickly as the 3 variables of ADMM are updated at each iteration.

EXPERIMENTAL RESULTS

In this section we present our first results on the Sparse 3 CFA. The associated code to reproduce the results of this section is publicly available on GitHub1 . We compare our method with a data-driven method. Among those learning methods the PIPNet network [START_REF] Sharif | Beyond joint demosaicking and denoising: An image processing pipeline for a pixel-bin image sensor[END_REF] which is based on UNet [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] has given very good results on Bayer demosaicking. Moreover we compare our method with the one presented by e2v, manufacturer of Onyx sensor, which uses the Sparse 3 pattern. This method explained in the user's notice of the camera [START_REF] Teledyne E2v | Application note : How to interpolate the sparse 3 onyx sensor[END_REF] consists in a pansharpening problem. The idea of the approach is to extract in one image the luminance (a scalar image) with full spatial resolution, and in another image the colors (the full spectral resolution), with lower spatial resolution (of a factor 1 16 ). Then the goal is to fuse those two images into a reconstruction of full spatial and spectral resolution. This method is represented in Figure 3. Concerning our method the parameters are found experimentally and set as follows: σ = 50, τ = 12.5 and λ = 0.001. Moreover the number of iterations is fixed at N = 1000 as it is a good compromise between reconstruction quality and computation time. We experienced that increasing the iteration number gives very little improvement, and increases linearly the computation time. Finally, we chose to use a Gaussian noise with a standard deviation of 0.05. When applied after the CFA operation this allows to model the acquisition noise on the sensor, caused by the physical constraints. Such noise also represent the gap between the proposed forward model and the real setup of the camera.

The tables of errors are computed from a subset of 25 RGB images (481 × 321) taken from the BSD500 dataset [START_REF] Arbelaez | Contour detection and hierarchical image segmentation[END_REF]. The three images used to show the quantitative results are RGB 512 × 512 images taken from [START_REF] Sharif | Beyond joint demosaicking and denoising: An image processing pipeline for a pixel-bin image sensor[END_REF].

We present in Figure 4 a zoomed region of the outputs of the forward operator (the raw images). The CFA pattern is noticeable, especially in the red region (best viewed in zoom). Figure 5 shows the proposed reconstruction with the manufacturer's method and the PIPNet results using the Sparse 3 CFA. While PIPNet is effective at reconstructing Bayer raw images it fails at reconstructing Sparse 3 raw images, the two other methods give plausible results, especially the proposed one. Table 1 gives the mean and standard deviation of the Mean Square Error (MSE) and the mean and standard deviation of the Structural SIMilarity (SSIM). The presented figures are computed from a subset of 25 images taken in the BSD500 dataset, without noise and with an additive Gaussian noise of zero mean and standard deviation of 0.05. e2v's [START_REF] Teledyne E2v | Application note : How to interpolate the sparse 3 onyx sensor[END_REF] PIPNet [START_REF] Sharif | Beyond joint demosaicking and denoising: An image processing pipeline for a pixel-bin image sensor[END_REF] Proposed Noise std = 0 MSE 0.003 ± 0.002 0.08 ± 0.05 0.001 ± 0.001 SSIM 0.939 ± 0.020 0.50 ± 0.07 0.983 ± 0.010 Noise std = 0.05 MSE 0.006 ± 0.002 0.08 ± 0.05 0.004 ± 0.001 SSIM 0.713 ± 0.051 0.52 ± 0.07 0.723 ± 0.064 Table 1. The mean and standard deviation of the MSE and SSIM errors of the 3 methods (best results in bold). The e2v's method has the advantage to be very quick to implement but has two main drawbacks. Firstly it is dependent from the setup as it cannot be used in with a CFA where we do not have a majority of pixels without filter. Moreover this algorithm is dependent on the quality of the interpolation and extrapolations. More complex operations leads to better result but the implementation get more and more complex. Moreover learning-based approaches like PIPNet that require extensive training to achieve good results on specific cases. This is why we went for a more generic, flexible model-based method with the ADMM implementation.

On the contrary the proposed method is very flexible. It solves problems that can be represented by ( 4), and only the operator A has to change to reflect a change in the problem. This way the solver can give decent results on Sparse 3 CFA but also on all CFAs with minimal effort.

CONCLUSION

This paper presents a method able to perform demosaicking on raw images in addition to a forward model to represent the action of a camera in the case of Sparse 3 CFA. However the method can be generalized easily to different CFAs, as only the forward model has to change. While the method proposed by e2v is not versatile and gives rather poor results, the ADMM method gives a fairly good reconstruction and can be applied to a wide variety of demosaicking problems.
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 4 Fig. 4. The input (left), the Sparse 3 output (middle) and the Sparse 3 with noise std of 0.05 (right).
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 5 Fig. 5. Ground truth (1st line), manufacturer's output (2nd line), PIPNet output (3rd line) and ADMM output (4th line).
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