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ABSTRACT
The EWMA Sign control chart is an efficient tool for monitoring shifts in a pro-
cess regardless the observations’ underlying distribution. Recent studies have shown
that, for nonparametric control charts, due to the discrete nature of the statistics
being used (such as the Sign statistic), it is impossible to accurately compute their
Run Length properties using Markov chain or integral equation methods. In this
work, a modified nonparametric Phase II EWMA chart based on the Sign statistic
is proposed and its exact Run Length properties are discussed. A continuous trans-
formation of the Sign statistic, combined with the classical Markov Chain method,
is used for the determination of the chart’s in- and out-of-control Run Length prop-
erties. Additionally, we show that when ties occur due to measurement rounding-off
errors, the EWMA Sign control chart is no longer distribution-free and a Bernoulli
trial approach is discussed to handle the occurrence of ties and makes the proposed
chart almost distribution-free. Finally, an illustrative example is provided to show
the practical implementation of our proposed chart.

Keywords:Nonparametric control chart, Sign statistic, Markov chain, EWMA control
chart,Rounding-off errors.

1. Introduction

Control charts are one of the major tools of Statistical Process Monitoring (SPM),
a technique which plays a vital role in manufacturing industries. They can be used
for the monitoring of a process in real-time, aiming to identify possible assignable
causes in it quickly and accurately. The most well-known control charts are the
Shewhart-type control charts introduced by Shewhart in [27]. Shewhart charts are
suitable for detecting sudden, and of large magnitude, shifts in process parameters.
However, when the changes in process parameters are of small to moderate magnitude,
Cumulative Sum (CUSUM, see [22]) and Exponentially Weighted Moving Averge
(EWMA, see [26]) charts are preferable than Shewhart charts. Because of their
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memory-type property, CUSUM and EWMA charts are known to react more quickly
than Shewhart charts. It is worth stretching that for the design of CUSUM and
EWMA charts, we assume that the distribution of the observations collected at each
sampling point, is known. However, practitioners usually do not have an a priori
information about the distribution of the monitored characteristic. As a consequence,
a new class of control charts has been proposed, known as nonparametric (or
distribution-free) control charts, capable of monitoring shifts in process parameters
without any knowledge of the observations’ underlying distribution. A detailed
review of existing univariate and multivariate distribution-free control charts can be
found in [7]. Over the past two decades, the design of nonparametric EWMA-type
schemes has drawn the researchers’ attention introducing EWMA charts based on
popular nonparametric statistics, like the Sign statistic (see, [2, 13, 15, 25, 29]) or the
Wilcoxon Signed Rank or Rank-Sum statistic (see [1, 8, 14]).

In general, for EWMA and CUSUM-type schemes, in the case of monitoring
observations from a continuous distribution, a reliable approximation of their RL
(Run Length) properties such as the ARL (Average Run Length), and the SDRL
(Standard Deviation Run Length) can be obtained by using the Markov chain method
of Brook and Evans presented in [3]. Recently, Wu et al. (see, [28]) noticed that the
method of Brook and Evans [3] is not always an efficient technique for computing
the RL properties of a distribution-free EWMA control chart. In particular, since
the distribution of the statistics that are being used (for example the sign statistic)
is a discrete one, it is not always possible to compute exactly the in-control and
the out-of-control ARL (to be denoted as ARL0, ARL1, respectively) by using
this approach. In order to tackle this problem, Wu et al. in [28], proposed a new
method, known as the “continuousify” method, for calculating the RL properties
of an EWMA chart for count data. According to this method, the initial discrete
random variables (count data) are transformed into continuous ones, which are a
mixture of normally distributed random variables. Similarly, Perdikis et al. in [23],
using the “continuousify” method presented in [28], proposed a modified one-sided
distribution-free EWMA chart based on Signed Ranks and derived its exact in- and
out-of-control RL properties.

It should be noted that besides the use of reliable metrics regarding the effi-
cient evaluation of the chart’s performance, the accuracy of the measurement system
also plays a vital role in its design phase. Over the past decades, the investigation
of conventional control charts (i.e charts assuming normality) under measurement
errors has drawn the researchers’ interest in particular with reference to the bias
and precision errors which introduce a rounding-off error resulting in a discretization
of the observed measures. For a detailed literature review of control charts under
measurement errors the reader is refered to Maleki et al. in [18]. It is worth stretching
that, rounding-off errors often result in “ties”, even if their true distribution is
continuous. Generally, in nonparametric statistical inference the treatment of ties is of
high importance due to the fact that the distribution of the nonparametric statistics
such as the Sign or the Wilcoxon signed rank statistics is seriously affected by the
presence of ties([11, 12, 24]). As far as we know there are few publications related
with the effect of the measurement error in nonparametric control charts. Castagliola
et al. in [4] investigated the performance of the Shewhart Sign control chart under
measurement error scenarios. Recently, Nojavan et al. in [21] examined the effect of
the measurement error on the performance of Shewhart control charts, based on the
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Mann-Whitney and Signed-Rank statistics.

In this work, using the methodology of Wu et al. presented in [28], a new EWMA
control chart based on the Sign statistic chart is proposed and its exact RL properties
are computed. Additionally, its distribution-free property under measurement errors is
investigated and procedures to handle the occurrence of ties are discussed. The paper
is structured as follows: In Section 2, an extended version of the distribution-free
EWMA Sign chart originally introduced by Graham et al. in [13] is proposed (to be
denoted as the C-SN EWMA chart) and its exact RL properties are evaluated via the
“continuousify” method. In addition, the efficiency of the “continuousify” method is
investigated and the chart’s optimal parameters (λ∗,K∗) are presented under several
scenarios. In Section 3, the distribution of the Sign statistic is defined when ties exist.
In Section 4, our proposed C-SN EWMA chart “with ties” is defined and the effect of
the measurement system resolution is examined. Additionally, we discuss procedures
to tackle the occurrence of rounding-off errors. In Section 5 an illustrative example
is discussed to show the practical implementation of the operation of our proposed
chart when ties are present. Finally, some concluding remarks and suggestions for
future work are presented in Section 6.

2. The EWMA Sign chart without ties

Graham et al. in [13] introduced a new nonparametric two-sided EWMA chart
based on the Sign statistic and, using the Markov-Chain approach of Brook and
Evans presented in [3], obtained its optimal design parameters and investigated its
out-of-control performance under several distributions.

Suppose that, at each sampling point t = 1, 2, . . ., a subgroup {Xt,1, Xt,2, . . . , Xt,n}
of size n following an unknown continuous distribution with c.d.f. (cumulative
distribution function) FX(x|θ) is collected where θ is the location parameter to be
monitored. If θ = θ0 the process is declared as in-control and, if θ = θ1, the process
is declared as out-of-control. In this work, we consider θ as being the median of the
distribution. The two-sided EWMA chart based on the Sign statistic is defined by the
following formulas:

SNt =

n∑
j=1

St,j ,

Zt = λSNt + (1− λ)Zt−1, Z0 = E0(SNt), (1)

where E0(SNt) is the in-control expectance of SNt and St,j = sign(Xt,j − θ0) with
sign(x) = −1, 0 or +1 if x < 0, x = 0 or x > 0, respectively. Moreover, let
p =(p−1, p0, p+1) be the vector of probabilities:
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p−1 = P(St,j = −1) = P(Xt,j < θ0) = FX(θ0|θ),
p0 = P(St,j = 0) = P(Xt,j = θ0),

p+1 = P(St,j = +1) = P(Xt,j > θ0) = 1− FX(θ0|θ).

It should be noted that, the assumption of having samples from a continuous distri-
bution, prevents to have tied pairs for Xt,j and θ0 and so, the event St,j = 0 is not
possible to occur. As a consequence, St,j can be either +1 or −1 and we have p0 = 0
and p−1 = 1 − p+1. The theoretical properties of SNt can be derived by taking into
account that SNt is defined on {−n,−n+ 2, . . . , n− 2, n} and its distribution can be
derived from the relationship SNt = 2Dt − n, where Dt is the number of observa-
tions {Xt,1, Xt,2, ...Xt,n} larger than θ0. Therefore, since p+1 = P(Xt,j > θ0), Dt is a
binomial random variable with parameters n and and success probability p+1. As a
consequence, the c.d.f. FSNt

(s|n, p+1) of SNt is equal to

FSNt
(s|n, p+1) = FBin

(
n+ s

2

∣∣n, p+1

)
, (2)

where s ∈ {−n,−n+ 2, . . . , n− 2, n} and FBin(. . . |n, p+1) is the c.d.f. of the binomial
distribution which depends on the sample size n and p+1. Additionally, when the
process is in-control p−1 = p+1 = 0.5, and so the c.d.f. of SNt reduces to:

FSNt
(s|n, 0.5) = FBin

(
n+ s

2

∣∣n, 0.5).
Using the relationship between SNt and Dt, the expectance and variance of SNt are
equal to

E(SNt) = 2E(Dt)− n = 2np+1 − n,

V(SNt) = 4V(Dt) = 4np+1(1− p+1).

For the in-control case, since p−1 = p+1 = 0.5, the in-control expectance E0(SNt) and
variance V0(SNt) of SNt are simply defined as:

E0(SNt) = 0,

V0(SNt) = n.

Therefore, the asymptotic upper and lower control limits of the two-sided SN EWMA
chart are obtained by using the following classical formulas (see,[7])

LCL = E0(SNt)−K
√

V0(SNt)×
√

λ

2− λ
,

UCL = E0(SNt) +K
√

V0(SNt)×
√

λ

2− λ
.
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If we consider the in-control values E0(SNt) and V0(SNt), the asymptotic upper and
lower control limits simply reduce to

LCL = −K
√

nλ

2− λ
,

UCL = K

√
nλ

2− λ
.

2.1. Performance

For EWMA-type schemes, the techniques that are commonly used for the computation
of their ARL and SDRL are the Markov chain method of Brook and Evans ([3]) and
the method of integral equations (Crowder [10]). Champ and Rigdon [9] compared
and showed that these two methods are actually equivalent when used with the
EWMA chart. Here, we proceed with the Markov chain method because it has been
widely used for the computation of the RL properties of nonparametric EWMA-type
charts. The method of Brook and Evans in [3], assumes that the operation of the
EWMA control chart can be well represented by a discrete-time Markov chain where
the control limit interval [LCL,UCL] is divided into 2m+ 1 subintervals of width 2∆
where ∆ = UCL−LCL

4m+2 . Moreover, let Hj = LCL+UCL
2 + 2j∆ be the j-th midpoint of

state j = {−m, . . . , 0, . . .m}. The transition probability matrix P for the two-sided
SN EWMA chart is defined as:

P =

(
Q r
0⊺ 1

)
=



Q−m,−m . . . Q−m,−1 Q−m,0 Q−m,1 . . . Q−m,m r−m
...

...
...

...
...

...
...

Q−1,−m . . . Q−1,−1 Q−1,0 Q−1,1 . . . Q−1,m r−1

Q0,−m . . . Q0,−1 Q0,0 Q0,1 . . . Q0,m r0
Q1,−m . . . Q1,−1 Q1,0 Q1,1 . . . Q1,m r1
...

...
...

...
...

...
...

Qm,−m . . . Qm,−1 Qm,0 Qm,1 . . . Qm,m rm
0 . . . 0 0 0 . . . 0 1


where Q is the (2m + 1, 2m + 1) matrix of transient probabilities, 0⊺ = (0, 0, . . . , 0)
and r = 1−Q1. In addition, the transient probabilities, Qj,k will be computed as:

Qj,k = FSNt

(
Hk +∆− (1− λ)Hj

λ
|n, p+1

)
− FSNt

(
Hk −∆− (1− λ)Hj

λ
|n, p+1

)
.

where FSNt
(x|n, p+1) is the c.d.f. of SNt as defined in equation (2). Let q =

(q−m, . . . , q0, . . . , qm)
⊺ be the (2m+1, 1) vector of initial probabilities associated with

the 2m + 1 transient states. In our case, we assume q = (0, . . . , 1, . . . , 0)⊺ where the
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value 1 at the m-th entry, corresponds to Z0 = E0(SNt) = 0. When the number 2m+1
of subintervals is sufficiently large, this approach is supposed to provide an effective
method that allows the ARL and SDRL of continuous statistics to be accurately eval-
uated using the following classical formulas from the Markov chains theory (see, for
instance [16, 20])

ARL = q⊺(I−Q)−11,

SDRL =
√

2q⊺(I−Q)−2Q1+ARL(1−ARL).

Generally, in conventional parametric EWMA control charts for monitoring measure-
ment data from a continuous distribution as the number of subintervals (i.e. 2m+ 1)
increases the method proposed by Brook and Evans [3] is known to be a reliable
approximation of the chart’s RL properties. On the other hand, as recent studies
have shown (see, for example, Wu et al. in [28]), when the classical method of Brook
and Evans [3] is used for the determination of the RL properties of a nonparmetric
EWMA chart, the ARL values are highly affected by the number of subintervals.
Consequently, the standard method of Brook and Evans [3] is not reliable for the
computation of the RL properties of a EWMA chart when a discrete statistic in being
used for monitoring the time between events. Similarly, Perdikis et al. in [23] verified
that the ARL values of a EWMA chart based on the Wilcoxon Signed Rank statistic
are highly affected by the number of subintervals.

Following [23, 28], in order to clarify further this point, we present in Table 1 some
in- and out-of-control pairs of (ARL, SDRL) values as a function of the number of
subintervals 2m + 1 ∈ {51, 61, ..., 201} for the two-sided SN EWMA chart with pa-
rameters λ = 0.2, K = 2.75. The (ARL, SDRL) values have been calculated by using
the “standard” Markov chain method presented above. The (λ,K) values have been
selected for illustrative purposes. In practice, for the EWMA schemes, a general rec-
ommendation is to set λ ≈ 0.2 and K ≈ 2.7 (see, for example, [19]). Moreover, the
corresponding (ARL,SDRL) values have been estimated via Monte Carlo simulation
(106 runs) and they are presented in the last row (labelled as “sim”) of Table 1. From
Table 1, it can be seen that the ARL values of the two-sided SN EWMA chart ob-
tained using the “classical” Markov Chain method presented in [3] are affected by
the number of subintervals 2m+ 1. In particular, regarding the in-control case, when
(n, p+1) = (13, 0.5) the ARL0 values vary from 271.4 to 300.4 while the correspond-
ing simulated ARL0 = 286.6. Similarly, when (n, p+1) = (21, 0.5) the ARL0 values
vary from 275.9 to 306.4 while the corresponding simulated ARL0 = 279.6. As a re-
sult, practitioners might not be able to find the optimal design parameters of the
two-sided SN EWMA chart if the ARL0 values are computed through the standard
Markov Chain method presented in [3]. Additionally, the same pattern also occurs
for the out-of-control scenarios where, for each case, the corresponding ARL1 values
are not stable. It is also worth stretching that exactly the same pattern occurs for
the corresponding SDRL values which clearly depend on the number of subintervals
2m + 1. As a consequence, based on the above findings, we can argue that the use
of the classical Markov chain method presented in [3], does not yield reliable results
regarding the determination of the chart’s in- and out-of-control performances in the
case of the two-sided SN EWMA control chart. In order to tackle this problem, in
the next Section, a simple methodology originally introduced in [28] will be proposed
which not only guarantees robust results for the in- and out-of-control ARL values,
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but also allows to find an optimal pair (λ∗,K∗) with corresponding ARL0 to be exactly
equal to the desired one (say for instance ARL0 = 370.4).

2.2. The “continuousify” approach

In Section 2.1, we emphasized the fact that the number of subintervals 2m+ 1 affects
the ARL values when the standard method of Brook and Evans [3] is used. As a so-
lution to this problem Wu et al. in [28] stated that a combination of the traditional
approach of Brook and Evans [3] along with a continuous transformation of the discrete
non-parametric statistic (such us the Sign or the Wilcoxon signed ranked statistic),
results to steady ARL values and makes their calculation unaffected by the number
of subintervals. More specifically, let X be a discrete random variable defined on the
set Ψ = {ψ1, ψ2, . . .} with corresponding p.m.f. fX(ψ|θ) and θ be a vector of param-
eters. Then, the discrete random variable X can be represented by a new continuous
random variable, X∗, defined as a mixture of normally distributed random variables
Y ∗
ψ1
, Y ∗

ψ2
, . . . where, for each ψ ∈ Ψ, Y ∗

ψ follows a normal distribution with mean ψ

and standard deviation σ (i.e. Y ∗
ψ ∼ N(ψ, σ)). Consequently, the corresponding p.m.f.

fX∗(x|θ) and c.d.f. FX∗(x|θ) of X∗ will be defined as:

fX∗(x|θ) =
∑
ψ∈Ψ

fX(ψ|θ)fN(x|ψ, σ), (3)

FX∗(x|θ) =
∑
ψ∈Ψ

fX(ψ|θ)FN(x|ψ, σ), (4)

where fN(x|ψ, σ) and FN(x|ψ, σ) are the p.d.f. and c.d.f. of the N(ψ, σ) distribution,
respectively, and σ > 0 is a fixed parameter known as the “continuousify” parameter. It
is worth stretching that the choice of the Normal distribution for defining the p.m.f. and
c.d.f. in equations (3) and (4) is just a possible choice among many others. In particular,
Perdikis et al. in [23] already tested several symmetrical distributions/kernels (such as
Normal, Parabolic, Biweight, Triweight, Cosine) and they concluded that the choice
of the distribution has almost no impact on the computation of the ARL. Therefore,
the practitioner is free to choose the distribution (kernel) of his/her choice as it will
not significantly impact the results. For our proposed EWMA control chart based on
the Sign statistic, since SNt is defined in Ψ = {−n,−n + 2, . . . , n − 2, n}, it can be
transformed into a new continuous one, based on the Normal Kernel, denoted as SN∗

t

with corresponding p.d.f. fSN∗
t
(s|n, p+1) and c.d.f. FSN∗

t
(s|n, p+1) defined for s ∈ R as:

fSN∗
t
(s|n, p+1) =

∑
ψ∈Ψ

fBin

(
ψ + n

2
|n, p+1

)
fN(s|ψ, σ),

FSN∗
t
(s|n, p+1) =

∑
ψ∈Ψ

fBin

(
ψ + n

2
|n, p+1

)
FN(s|ψ, σ),

where fBin(. . . |n, p+1) is the p.m.f. of the Binomial distribution with parameters n
and p+1. Finally, the plotting statistic of the “continuousified” two-sided SN EWMA
(denoted as the C-SN EWMA chart) will be computed through the recursive formula
as:

Z∗
t = λSN∗

t + (1− λ)Z∗
t−1, Z

∗
0 = E0(SN

∗
t ). (5)
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It can be easily proven that the in-control mean E0(SN
∗
t ) and variance V0(SN

∗
t ) of SN

∗
t

are equal to:

E0(SN
∗
t ) = E0(SNt) = 0, (6)

V0(SN
∗
t ) = V0(SNt) + σ2 = n+ σ2, (7)

and, therefore, the control limits LCL∗ and UCL∗ of the two-sided C-SN EWMA chart
are

LCL∗ =−K

√
(n+ σ2)λ

2− λ
, (8)

UCL∗ =+K

√
(n+ σ2)λ

2− λ
. (9)

In Table 1, besides the in- and out-of-control pairs of (ARL, SDRL) values of the
two-sided SN EWMA chart (computed through the standard method of [3]), the
corresponding pairs of (ARL, SDRL) values of the proposed two-sided C-SN EWMA
chart (where the “continuousify” method is used) are also reported using the same
design parameters λ = 0.2, K = 2.75. It should be noted that, in Table 1, even
though the value of σ = 0.2 is fixed, as it will be explained hereafter through a
numerical analysis, the results remain the same regardless the value of σ. Finally,
the RL properties of the two-sided C-SN EWMA control chart, are derived through
the standard discrete-time Markov chain approach of Brook and Evans [3] presented
in Section 2.1 with the only difference that in the computation of the transient
probabilities Qj,k the p.d.f. of SNt is substituted by the p.d.f. of the transformed
statistic SN∗

t .

Based on the results in Table 1, we can conclude that:

• The in-control ARL values obtained using the standard method of Brook and
Evans [3] are affected by the number of subintervals 2m+1. As it was highlighted
in the previous Section, in case when (n = 21, p+1 = 0.5) the ARL0 values vary
from 275.9 to 306.4 while the corresponding simulated ARL0 = 279.6.

• On the other hand, the use of the “continuousify” method of Wu et al.[28] yields
steady and robust results even small values like 2m+ 1 ≈ 51. More specifically,
when (n, p+1) = (21, 0.5), the ARL values obtained through “continuousify”
method converge to 280.3 quite soon even when 2m+1 ≈ 51. Strictly speaking,
only some minor differences in the first decimal place do exist but they are small
and will not affect the performance of the chart.

• It is worth stretching that a similar behaviour is also noticed for the correspond-
ing SDRL values. For every case it can be clearly seen that the “continuousify”
method yields robust and stable SDRL results when 2m+ 1 ≈ 51.

Note also that it can be observed that the pairs of (ARL,SDRL) values obtained
with the “continuousify” method (see for example the cases when 2m+ 1 = 201), are
almost the same or just a bit larger than the ones obtained using simulations which
are given in the last line of Table 1.

Regarding the choice of the optimal value of the “continuousify” parameter σ,
in Table 2 we present a sensitivity analysis under different combinations of n and p+1
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Table 1. Comparison of in- and out-of-control pairs of (ARL, SDRL) values for the two-sided SN EWMA

(without “continuousify”) and two-sided C-SN EWMA (with “continuousify” and σ = 0.2) charts when λ = 0.2
and K = 2.75.

(n = 6, p+1 = 0.5) (n = 8, p+1 = 0.5) (n = 13, p+1 = 0.5) (n = 21, p+1 = 0.5)

2m+ 1 SN EWMA C-SN EWMA SN EWMA C-SN EWMA SN EWMA C-SN EWMA SN EWMA C-SN EWMA

51 (299.3,295.1) (309.3,304.9) (328.2,323.8) (293.1,288.8) (297.1,293) (287.4,283.2) (306.4,302.2) (282.2,278)
61 (311.9,307.5) (309.8,305.4) (290,285.6) (293.6,289.3) (271.4,267.3) (287.1,282.9) (285.5,281.3) (279.2,275.1)
71 (292.3,287.9) (310.1,305.7) (276.8,272.5) (293.9,289.6) (280.7,276.5) (287.4,283.2) (283.3,279.2) (279.6,275.4)
81 (312.5,308) (310.3,305.9) (309.2,304.8) (294.1,289.8) (299.5,295.3) (287.6,283.4) (277.9,273.7) (279.7,275.6)
91 (304.8,300.5) (310.4,306) (297.4,293.1) (294.3,289.9) (284.7,280.5) (287.7,283.5) (281.8,277.6) (279.9,275.7)
101 (312.5,308) (310.5,306.1) (285.9,281.6) (294.4,290) (294.5,290.2) (287.8,283.6) (301.2,297) (280,275.8)
111 (310.5,306.2) (310.6,306.2) (287.3,283) (294.4,290.1) (282.3,278.1) (287.9,283.7) (282.8,278.7) (280,275.9)
121 (309.4,305) (310.6,306.2) (291.7,287.4) (294.5,290.2) (283.7,279.5) (288,283.8) (283.8,279.7) (280.1,275.9)
131 (315,310.6) (310.7,306.3) (284.6,280.2) (294.5,290.2) (300.4,296.3) (288,283.8) (276.7,272.6) (280.1,276)
141 (310.6,306.2) (310.7,306.3) (291.2,287) (294.6,290.3) (286.9,282.7) (288,283.8) (279.7,275.6) (280.2,276)
151 (307.8,303.4) (310.7,306.3) (300.2,295.9) (294.6,290.3) (281.3,277.1) (288.1,283.8) (268.1,264) (280.2,276.1)
161 (304.3,300) (310.8,306.4) (300.1,295.7) (294.6,290.3) (291.9,287.7) (288.1,283.9) (281.9,277.7) (280.2,276.1)
171 (305.9,301.5) (310.8,306.4) (288,283.7) (294.7,290.3) (284.8,280.6) (288.1,283.9) (282.6,278.5) (280.2,276.1)
181 (305.8,301.4) (310.8,306.4) (294.3,289.9) (294.7,290.4) (287.1,282.8) (288.1,283.9) (278.2,274.1) (280.3,276.1)
191 (309.4,305) (310.8,306.4) (295.1,290.7) (294.7,290.4) (288,283.8) (288.1,283.9) (277.3,273.2) (280.3,276.1)
201 (304.9,300.5) (310.8,306.4) (289.7,285.4) (294.7,290.4) (290.8,286.6) (288.1,283.9) (275.9,271.7) (280.3,276.1)
sim (310.7,304.8) (293.9,289.2) (286.6,282.5) (279.6,274.3)

(n = 7, p+1 = 0.52) (n = 8, p+1 = 0.55) (n = 19, p+1 = 0.53) (n = 24, p+1 = 0.52)

2m+ 1 SN EWMA C-SN EWMA SN EWMA C-SN EWMA SN EWMA C-SN EWMA SN EWMA C-SN EWMA

51 (202.3,197.5) (225.5,220.7) (92.3,86.8) (85.8,80.4) (91.6,86.4) (92.8,87.6) (153.6,148.6) (143.9,138.9)
61 (219.5,214.9) (225.8,221.1) (84.9,79.5) (85.9,80.4) (91.3,86.2) (93.1,87.9) (145.2,140.2) (142.6,137.7)
71 (232,227.2) (226,221.3) (82.5,77.2) (85.9,80.5) (92.3,87.1) (93.2,88) (144.1,139.1) (142.7,137.8)
81 (229.6,224.9) (226.2,221.4) (88.7,83.2) (85.9,80.5) (90,84.8) (93.2,88) (141.8,136.9) (142.8,137.8)
91 (226.6,221.9) (226.3,221.5) (86.3,80.8) (85.9,80.5) (92.4,87.1) (93.2,88) (143.4,138.4) (142.8,137.9)
101 (230,225.2) (226.4,221.6) (83.8,78.4) (85.9,80.5) (94.8,89.6) (93.3,88) (151.3,146.2) (142.9,137.9)
111 (227.9,223.2) (226.4,221.6) (83.8,78.4) (86,80.5) (96.2,91) (93.3,88) (143.8,138.8) (142.9,137.9)
121 (217.9,213.2) (226.5,221.7) (85.1,79.7) (86,80.5) (92.9,87.7) (93.3,88.1) (144.2,139.2) (142.9,137.9)
131 (227.4,222.6) (226.5,221.7) (83.5,78.1) (86,80.5) (92.7,87.5) (93.3,88.1) (141.4,136.4) (142.9,137.9)
141 (228.5,223.8) (226.5,221.7) (84.9,79.5) (86,80.5) (93.7,88.5) (93.3,88.1) (142.8,137.8) (142.9,137.9)
151 (230.2,225.5) (226.5,221.8) (86.7,81.3) (86,80.6) (92.8,87.6) (93.3,88.1) (137.8,132.9) (142.9,138)
161 (225.5,220.7) (226.5,221.8) (86.5,81.1) (86,80.6) (94.3,89.1) (93.3,88.1) (143.6,138.6) (142.9,138)
171 (226.1,221.4) (226.6,221.8) (84.2,78.8) (86,80.6) (93.8,88.5) (93.3,88.1) (143.9,138.9) (143,138)
181 (227.5,222.7) (226.6,221.8) (85.5,80.1) (86,80.6) (92.7,87.5) (93.3,88.1) (142,137) (143,138)
191 (225.8,221.1) (226.6,221.8) (85.6,80.2) (86,80.6) (92.5,87.2) (93.3,88.1) (141.5,136.5) (143,138)
201 (226.9,222.1) (226.6,221.8) (84.4,79) (86,80.6) (94.1,88.8) (93.3,88.1) (141.1,136.1) (143,138)
sim (225.8,220.7) (85.6,80.1) (92.9,87.6) (143,137.8)

for λ = 0.2, K = 2.75, and σ ∈ {0.1, 0.15, . . . , 0.3}. Based on these results, it can
be clearly concluded that the ARL values obtained for the two-sided C-SN EWMA
chart are not only very stable, even for small values of 2m+1 ≈ 51, but also they are
not seriously affected by the value of the“continuousify” parameter σ with only some
minor differences occurring in the first decimal place. As a consequence, as long as σ
is neither too small nor too large, the results are not affected by its value. Therefore,
for the value of the “continuousify” parameter σ = 0.2 can be considered in the rest
of the paper as a reasonable choice.

Finally, the results of a numerical study for the performance of the two-sided C-SN
EWMA control chart are presented. The desired in-control ARL value is set equal to
370.4 and no head-start feature has been used (i.e Z∗

0 = 0). In Table 3, the optimal pairs
of the design parameters (λ∗,K∗) are provided for different shifts (p+1) and sample
sizes (n) along with the corresponding ARL1 values setting the number of subintervals
equal to 2m+1 = 201. Since, we are investigating shifts in the process median (i.e when
the process is in-control we have p+1 = 0.5) an out-of-control value of p+1 close to 0.5
corresponds to a “small” shift from θ0 to θ1. On the other hand, an out-of-control value
of p+1 close 0 or 1 corresponds to a “large” shift from θ0 to θ1. Note that, due to the
symmetry of the distribution (assuming θ0 as the in-control median) it is only necessary
to investigate p+1 ∈ (0.5, 1) since the results are the same for p+1 ∈ (0, 0.5). For the
determination of the optimal pair (λ∗,K∗) for the two-sided C-SN EWMA chart, the
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Table 2. ARL values of the two-sided C-SN EWMA chart for λ = 0.2, K = 2.75 and for fixed values of

σ = {0.1, 0.15, . . . , 0.3} and different combinations of (n, p+1).

(n, p1) = (7, 0.5) (n, p1) = (13, 0.5) (n, p1) = (15, 0.5)

σ σ σ
2m+ 1 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3

51 295.7 297.4 297.7 297.8 297.8 294.1 289.5 287.4 286.7 286.4 281.4 282.1 282.4 282.6 282.8
61 298.5 298.3 298.3 298.4 298.4 286.5 287.0 287.1 287.0 286.9 283.8 283.2 283.1 283.2 283.3
71 298.8 298.6 298.7 298.7 298.7 286.9 287.4 287.4 287.3 287.1 279.2 282.4 283.3 283.5 283.6
81 298.8 298.9 298.9 299.0 298.9 289.0 287.8 287.6 287.5 287.3 283.4 283.5 283.6 283.7 283.8
91 299.0 299.0 299.1 299.1 299.1 287.1 287.8 287.7 287.6 287.4 283.3 283.6 283.7 283.8 283.9
101 299.1 299.1 299.2 299.2 299.2 287.9 287.9 287.8 287.7 287.5 284.4 283.7 283.8 283.9 284.0
111 299.2 299.2 299.3 299.3 299.3 288.0 287.9 287.9 287.8 287.6 283.8 283.8 283.9 284.0 284.1
121 299.2 299.3 299.4 299.4 299.4 287.9 288.0 287.9 287.8 287.6 283.8 283.8 283.9 284.0 284.1
131 299.3 299.4 299.4 299.4 299.4 288.1 288.1 288.0 287.9 287.7 283.8 283.9 284.0 284.1 284.2
141 299.3 299.4 299.4 299.5 299.4 288.1 288.1 288.0 287.9 287.7 283.9 283.9 284.0 284.1 284.2
151 299.4 299.4 299.5 299.5 299.5 288.1 288.1 288.1 287.9 287.7 283.9 283.9 284.0 284.1 284.2
161 299.4 299.4 299.5 299.5 299.5 288.1 288.1 288.1 287.9 287.7 283.9 284.0 284.1 284.2 284.2
171 299.4 299.5 299.5 299.6 299.5 288.1 288.1 288.1 287.9 287.8 283.9 284.0 284.1 284.2 284.3
181 299.4 299.5 299.5 299.6 299.5 288.2 288.2 288.1 288.0 287.8 283.9 284.0 284.1 284.2 284.3
191 299.5 299.5 299.6 299.6 299.6 288.2 288.2 288.1 288.0 287.8 283.9 284.0 284.1 284.2 284.3
201 299.5 299.5 299.6 299.6 299.6 288.2 288.2 288.1 288.0 287.8 283.9 284.0 284.1 284.2 284.3

(n, p1) = (18, 0.53) (n, p1) = (22, 0.55) (n, p1) = (25, 0.6)

σ σ σ
g 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3

51 97.7 97.7 97.7 97.7 97.7 35.8 35.7 35.7 35.7 35.8 9.1 9.1 9.1 9.1 9.1
61 99.7 98.5 97.9 97.8 97.8 35.6 35.7 35.7 35.7 35.8 9.1 9.1 9.1 9.1 9.1
71 97.8 97.8 97.7 97.8 97.8 35.5 35.6 35.7 35.7 35.8 9.1 9.1 9.1 9.1 9.1
81 97.6 97.7 97.8 97.8 97.8 35.6 35.7 35.7 35.7 35.8 9.1 9.1 9.1 9.1 9.1
91 97.9 97.8 97.8 97.8 97.8 35.6 35.7 35.7 35.7 35.8 9.1 9.1 9.1 9.1 9.1
101 97.8 97.8 97.8 97.8 97.8 35.6 35.7 35.7 35.7 35.8 9.1 9.1 9.1 9.1 9.1
111 97.7 97.8 97.8 97.8 97.8 35.6 35.7 35.7 35.7 35.8 9.1 9.1 9.1 9.1 9.1
121 97.8 97.8 97.8 97.8 97.8 35.7 35.7 35.7 35.7 35.8 9.1 9.1 9.1 9.1 9.1
131 97.8 97.8 97.8 97.8 97.8 35.7 35.7 35.7 35.7 35.8 9.1 9.1 9.1 9.1 9.1
141 97.8 97.8 97.8 97.8 97.8 35.7 35.7 35.7 35.7 35.8 9.1 9.1 9.1 9.1 9.1
151 97.8 97.8 97.8 97.8 97.8 35.7 35.7 35.7 35.7 35.8 9.1 9.1 9.1 9.1 9.1
161 97.8 97.8 97.8 97.8 97.8 35.7 35.7 35.7 35.7 35.8 9.1 9.1 9.1 9.1 9.1
171 97.8 97.8 97.8 97.8 97.8 35.7 35.7 35.7 35.7 35.8 9.1 9.1 9.1 9.1 9.1
181 97.8 97.8 97.8 97.8 97.8 35.7 35.7 35.7 35.7 35.8 9.1 9.1 9.1 9.1 9.1
191 97.8 97.8 97.8 97.8 97.8 35.7 35.7 35.7 35.7 35.8 9.1 9.1 9.1 9.1 9.1
201 97.8 97.8 97.8 97.8 97.8 35.7 35.7 35.7 35.7 35.8 9.1 9.1 9.1 9.1 9.1

following procedure was utilised: Find out the optimal pair (λ∗,K∗) such that for a
fixed value of sample size n, we have ARL(n, λ∗,K∗, p+1 = 0.5) = 370.4 and, for a fixed
value of p+1 ∈ {0.55, 0.6, . . . , 0.95}, ARL(n, λ∗,K∗, p+1) is the smallest out-of-control
ARL. It is worth mentioning that (see, for example, [5]), for the two-sided Shewhart
chart based on the Sign statistic it is impossible to obtain an in-control ARL0 ≈ 370
for small values of the sample size n (e.g. for n ∈ {2, 3, ..., 10}). Additionally, for small
values of λ singularity problems might occur during the optimization procedure. On
the contrary, based on the results presented in Table 3, it can be observed that, in
the proposed C-SN EWMA scheme, we are able to find an optimal pair of parameters
(λ∗,K∗) giving an ARL0 exactly equal to 370.4 even for n = 2 and λ ≈ 0.02. For
the above computations, the Markov chain method presented in Section 2.1 was used
and all the calculations were performed in R. For any combination of λ and K and
for given values n and p+1, by using a computer with Intel(R) Core(TM) i7-7500U
CPU, it takes about 0.5 seconds to get the values (ARL,SDRL) for the two-sided
C-SN EWMA chart using for 2m+ 1 ≈ 101. On the other hand, in order to obtain a
relatively robust result with the standard method of Brook and Evans, the number of
subintervals should be at least 2m + 1 ≈ 501 (see, [14]). The corresponding time for
these computations is 1.42 seconds.

3. Distribution of the Sign statistic when ties are present

Generally, the smooth operation of a control chart during the on-line process moni-
toring, besides it’s theoretical optimal design, relies on the sample’s values accuracy
collected at each sampling point t. However in practice, due to the measurement
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Table 3. Optimal combinations of (λ∗,K∗) for the two-sided C-SN EWMA chart along with the corresponding

ARL1 values.

p+1

n 0.55 0.60 0.65 0.70 0.80 0.85 0.9

2 (0.02,2.138,135.61) (0.02,2.138,57.65) (0.04,2.41,33.49 ) (0.06,2.54,22.2) (0.12,2.693,11.97) (0.16,2.719,9.3) (0.195,2.72,7.43)
3 (0.02,2.14,106.54) (0.03,2.304,44.087) (0.055,2.509,25.13) (0.085,2.62,16.48) (0.15,2.737,8.72) (0.19,2.769,6.81) (0.31,2.757,5.38)
4 (0.02,2.138,89.04) (0.035,2.363,36.21) (0.065,2.57,20.38) (0.1,2.682,13.26) (0.185,2.775,7.01) (0.215,2.783,5.46) (0.33,2.798,4.32)
5 (0.02,2.138,77.25) (0.04,2.407,31.03) (0.08,2.621,17.3) (0.12,2.726,11.18) (0.215,2.814,5.89) (0.345,2.815,4.59) (0.455,2.799,3.46)
6 (0.02,2.137,68.74) (0.05,2.489,27.27) (0.09,2.661,15.11) (0.135,2.746,9.76) (0.27,2.844,5.06) (0.295,2.848,3.91) (0.315,2.849,3.13)
7 (0.02,2.137,62.29) (0.055,2.513,24.44) (0.1,2.69,13.46) (0.145,2.771,8.67) (0.33,2.857,4.53) (0.37,2.861,3.48) (0.38,2.862,2.81)
8 (0.02,2.137,57.2) (0.06,2.548,22.2) (0.11,2.709,12.19) (0.175,2.805,7.82) (0.285,2.863,4.09) (0.36,2.866,3.18) (0.4,2.865,2.56)
9 (0.025,2.229,53.03) (0.065,2.572,20.38) (0.12,2.736,11.15) (0.18,2.811,7.16) (0.345,2.881,3.72) (0.38,2.882,2.91) (0.715,2.838,2.19)
10 (0.025,2.231,49.47) (0.07,2.594,18.88) (0.135,2.76,10.29) (0.195,2.83,6.6) (0.375,2.887,3.45) (0.66,2.866,2.65) (0.67,2.865,1.94)
11 (0.025,2.228,46.48) (0.075,2.616,17.61) (0.135,2.763,9.58) (0.205,2.835,6.14) (0.525,2.894,3.22) (0.545,2.893,2.4) (0.565,2.891,1.87)
12 (0.03,2.303,43.85) (0.08,2.632,16.53) (0.145,2.781,8.96) (0.23,2.856,5.73) (0.47,2.902,2.98) (0.485,2.9,2.3) (0.505,2.898,1.84)
13 (0.03,2.3,41.57) (0.085,2.652,15.57) (0.165,2.802,8.44) (0.24,2.866,5.39) (0.435,2.908,2.8) (0.745,2.889,2.05) (0.77,2.885,1.5)
14 (0.03,2.303,39.55) (0.095,2.68,14.74) (0.16,2.802,7.98) (0.26,2.873,5.1) (0.595,2.91,2.65) (0.625,2.907,1.95) (0.645,2.905,1.49)
15 (0.035,2.36,37.73) (0.095,2.683,14) (0.17,2.811,7.57) (0.25,2.874,4.84) (0.535,2.915,2.49) (0.555,2.914,1.89) (0.56,2.914,1.49)
16 (0.035,2.362,36.1) (0.1,2.696,13.35) (0.18,2.824,7.2) (0.27,2.884,4.6) (0.48,2.921,2.38) (0.78,2.91,1.77) (0.8,2.91,1.33)
17 (0.035,2.361,34.65) (0.105,2.708,12.76) (0.19,2.836,6.87) (0.28,2.888,4.4) (0.65,2.921,2.25) (0.69,2.918,1.64) (0.71,2.916,1.26)
18 (0.04,2.411,33.3) (0.11,2.721,12.22) (0.195,2.838,6.59) (0.285,2.894,4.21) (0.59,2.926,2.13) (0.59,2.926,1.62) (0.95,2.874,1.27)
19 (0.04,2.411,32.07) (0.115,2.73,11.74) (0.2,2.846,6.32) (0.34,2.913,4.03) (0.51,2.931,2.09) (0.8,2.924,1.56) (0.815,2.925,1.21)
20 (0.04,2.411,30.96) (0.12,2.743,11.29) (0.22,2.861,6.07) (0.305,2.903,3.89) (0.69,2.93,1.94) (0.72,2.928,1.43) (0.73,2.928,1.14)

system resolution, the real values Xt,j are not directly observed. Instead, a measured
value X

′

t,j ̸= Xt,j is obtained introducing a rounding-off error which results in
a discretization of the observed measures. Note that, even if the sample’s true
distribution is continuous, the presence of rounding-off errors might result in “ties”
between the real values Xt,j and the in-control value θ0 of the median.

A well known linear measurement error model to account for three well-known
sources of error is (see [17]):

X
′

t,j =
⌊A+BXt,j + εt,j

ρ
+

1

2

⌋
ρ, (10)

where the constants (A,B) are related with the bias- linearity error, the noise εt,j (r.v.)
accounts for the precision error and ρ is a parameter quantifying the device resolution,
which introduces a rounding-off error. More specifically, if ρ is the resolution of the
measurement system then X

′

t,j = x if Xt,j ∈ (x− ρ
2 , x+

ρ
2). For instance, if ρ = 0.2 and

θ0 = 100 then possible measured values X
′

t,j are {. . . 99.6, 99.8, 100, 100.2, 100.4, . . .}
and, if the real value is Xt,j = 100.038, then the measured observation is X

′

t,j = 100.
As a consequence, a tie is generated. In general, the rounding-off error introduced by
the device resolution in the measurement of the true value of a quality characteristic,
results in a discretization of the observed quality characteristic and, in case of contin-
uous measurements, the probability of having ties is therefore increased. In this work,
we will investigate the effect of the tool resolution by maintaining the assumption
of a perfect tool calibration, (A,B) = (0, 1) and overlook the precision error. As a
consequence, the error model given in (10) will simply be defined as:

X
′

t,j =
⌊Xt,j

ρ
+

1

2

⌋
ρ, (11)

In Section 2, it was stated that when X is a continuous random variable, regardless
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the value of θ, we always have p0 = P(Xt,j = θ0) = 0. However, due to the occurrence
of tied observations caused by the rounding-off errors of the measurement system ,
the statistic St,j presented in Section 2 is no longer defined on {−1, 1} but rather
on {−1, 0, 1}. As a consequence, St,j = sign(Xt,j − θ0) has to be replaced by St,j =
sign(X

′

t,j − θ0) and the vector of probabilities p = (p−1, p0, p+1) must be redefined as:

p−1 = P(X
′

t,j < θ0) = P
(
Xt,j ≤ θ0 −

ρ

2

)
= FX

(
θ0 −

ρ

2
|θ
)
,

p0 = P(X
′

t,j = θ0) = P
(
θ0 −

ρ

2
< Xt,j ≤ θ0 +

ρ

2

)
= FX

(
θ0 +

ρ

2
|θ
)
− FX

(
θ0 −

ρ

2
|θ
)
,

p+1 = P(X
′

t,j > θ0) = P
(
Xt,j > θ0 +

ρ

2

)
= 1− FX

(
θ0 +

ρ

2
|θ
)
.

Without loss of generality, let us assume that the process shift can be expressed in
terms of the standardized distribution shift of magnitude δ, as θ1 = θ0 + δω. Also,
we assume that FX(x|θ) belongs to a location-scale family of distributions which can
be rewritten as FX(x|θ) = FZ(

x−θ
ω ) where ω is the standard deviation of X. If we

define the quantity κ = ρ
ω as the standardized resolution, the vector of probabilities

p = (p−1, p0, p+1) can be rewritten as:

p−1 = FZ

(
−κ
2
− δ

)
,

p0 = FZ

(κ
2
− δ

)
− FZ

(
−κ
2
− δ

)
, (12)

p+1 = 1− FZ

(κ
2
− δ

)
.

which simplify to

p−1 = FZ

(
−κ
2

)
,

p0 = FZ

(κ
2

)
− FZ

(
−κ
2

)
,

p+1 = 1− FZ

(κ
2

)
.

when the process is in-control (i.e. δ = 0). It can be clearly concluded that, the
variable SNt is no longer defined on {−n,−n+2, . . . , n− 2, n} but it is rather defined
on {−n,−n+ 1, . . . , n− 1, n} and the p.m.f. of SNt cannot be computed through the
binomial distribution as in (2). The p.m.f. fSNt

(s|n,p) of SNt in presence of ties has
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already been derived by Castagliola et al. in [4] and is equal to

fSNt
(s|n,p) =

⌊n−s

2
⌋∑

i=max(0,−s)

(
n

i

)(
n− i

s+ i

)
pi−1p

n−s−2i
0 ps+i+1 . (13)

Finally, regarding the computation of the distribution of the transformed variable,
SN∗

t , when ties are present it will be computed as:

fSN∗
t
(s|n,p) =

∑
ψ∈Ψ

fSNt
(ψ|n,p) fN(s|ψ, σ),

FSN∗
t
(s|n,p) =

∑
ψ∈Ψ

fSNt
(ψ|n,p)FN(s|ψ, σ),

where fSNt
(ψ|n,p) is the p.m.f. of SNt when ties are present defined in (13) with

parameters n and the vector of probabilities p = (p−1, p0, p+1) presented in (12) . Note
that, when ties are present, the two-sided C-SN EWMA chart is no longer distribution-
free since the in-control distribution of SNt depends on FX(x|θ) through the vector
of probabilities p = (p−1, p0, p+1). Additionally, the domain Ψ depends on the value
of κ. More specifically, when κ = 0, Ψ ∈ {−n,−n + 2, . . . , n − 2, n} and for κ > 0,
Ψ ∈ {−n,−n+ 1, . . . , n− 1, n}.

4. Effect of the measurement system resolution

In this Section, we will investigate the effect of the measurement system resolution and
the related probability to have tied observations under different design scenarios. As
it was previously stated, in cases where ties are present, the proposed C-SN EWMA
chart, is no longer distribution free. In order to investigate the chart’s RL properties,
following a semi-parametric design already suggested in [4], we will examine the in-
and out-of-control robustness of the two-sided C-SN EWMA chart under a benchmark
of 17 Johnson’s type distributions covering a wide range of skewness γ3 and kurtosis
γ4. By definition, a Johnson’s-type distribution depends on four parameters a, b > 0,
c and d > 0 and it is defined as:

• bounded on [c, c+ d] (denoted as B in Table 4) with FZ(x) equal to:

FZ(x) = FN

(
a+ b ln

(
x− c

c+ d− x

))
,

• unbounded on (−∞,∞) (denoted as U in Table 4) with FZ(x) equal to:

FZ(x) = FN

(
a+ b sinh−1

(
x− c

d

))
.

The vector of parameters a, b, c, d for the 17 Johnson’s type distributions (Table 4),
are such that the conditions med(Z) = 0 (for the median) and σ(Z) = 1 (for the
standard-deviation) are fulfilled. In terms of skewness (γ3) and kurtosis (γ4), cases
1-6 correspond (without being exactly identical) to some well known symmetric
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Table 4. Benchmark of 17 Johnson’s type distributions.
case γ3 γ4 type a b c d
1 0 -1.2 B 0 0.64646 -1.81530 3.63060
2 0 -0.6 B 0 1.39830 -3.10970 6.21950
3 0 0 U 0 100 0 100
4 0 1 U 0 2.3212 0 2.10940
5 0 3 U 0 1.6104 0 1.31180
6 0 6 U 0 1.3493 0 1
7 2 4.3 B 1.7464 0.69076 -0.48932 6.6213
8 2 6.1 B 3.3279 1.227 -1.0016 16.088
9 2 7.9 U -4.85600 1.8044 -1.41900 0.19332
10 2 10.8 U -1.0444 1.432 -0.65538 0.82361
11 2 16.7 U -0.52977 1.2093 -0.33154 0.73314
12 2 25.5 U -0.34371 1.0892 -0.2023 0.63054
13 5 52.6 B 5.2193 0.98134 -0.47316 97.043
14 5 65.3 U -4.01870 1.0864 -0.56652 0.02806
15 5 86 U -0.75701 0.98744 -0.32033 0.37954
16 5 128.7 U -0.43187 0.90797 -0.18538 0.37543
17 5 192.1 U -0.29868 0.85558 -0.12122 0.34029

distributions. More specifically, case 1 corresponds to the uniform distribution, case 2
corresponds to the triangular distribution, case 3 corresponds to the normal distribu-
tion (setting b = d = 100) and cases 4-6 correspond to the Student t distribution with
10, 6 and 5 degrees of freedom, respectively. Finally, cases 7-17 cover a large variety
of asymmetric distributions with various values for the skewness γ3 > 0 and kurtosis
γ4 > 0. A graphical reprensentation of all these Johnson’s distribution can be found
in page 116 in [4].

In this work, we aim to present a suitable procedure to reduce or, ideally, eliminate the
effect of the rounding-off error providing an efficient design of a nonparametric Sign
EWMA chart capable of handling scenarios where tied observations occur during the
process monitoring. The rest of this Section is organised as follows. For the 17 John-
son’s type distributions presented in Table 4, the ARL values of the two-sided C-SN
EWMA control chart will be presented for shifts δ ∈ {−0.5,−0.2,−0.1, 0, 0.1, 0.2, 0.5}
and for standardized resolution κ = 0 (without ties) and κ ∈ {0.05, 0.1, 0.2} (with
ties) using two different strategies. More specifically, in Section 4.1 the same control
limits (UCL∗,LCL∗) will be used, for the 17 Johnson’s type distributions. In Section
4.2 a Bernoulli trial-based approach will be investigated where tied observations will
be equally treated as negative or positive differences. For each approach and a fixed
value of n = 20 , two optimal pairs (λ∗,K∗) listed in Table 3 will be investigated:

• The first optimal pair is (λ∗ = 0.12,K∗ = 2.743). This one corresponds to
the optimal pair (λ∗,K∗) for detecting a shift corresponding to a small value
p+1 = 0.6 for n = 20. The value p+1 = 0.6 is considered as a small shift in the
in-control process median.

• The second optimal pair is (λ∗ = 0.72,K∗ = 2.928). This one corresponds to
optimal pair (λ∗,K∗) for detecting a shift corresponding to a moderate to large
value p+1 = 0.85 for n = 20. The value p+1 = 0.8 corresponds to a moderate
shift in the in-control process median.

4.1. Run length properties of the C-SN EWMA using the traditional
control limits

In this section we will examine the RL properties of the two-sided C-SN EWMA chart
under tied scenarios using the charting statistic defined in equation (5) and the fixed
control limits as defined in equations (8) and (9). Regarding the computation of the
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control limits, the in-control mean, E0(SN
∗
t ) and variance, V0(SN

∗
t ) of SN

∗
t will be the

same for all the cases regardless the underlying distribution as defined in (6) and (7).
From the results in Table 5 (top) we can conclude the following:

• For κ = 0 the in-control values of ARL are steady and exactly equal to 370.4
(as expected). Note that this is an advantage of our proposed scheme since,
regardless the sample size, it can be designed giving a corresponding in-control
ARL value, to be exactly equal to the predefined value of ARL0. On the other
hand, for κ > 0, even for small values of κ, the in-control ARL values are
different. For example when (p+1, λ,K) = (0.6, 0.12, 2.743) and κ = 0.05 we
have ARL0 = 391.1 for case 1 and ARL0 = 432.2 for case 15. In addition, for
heavy tailed distributions ( i.e for large values of γ4) the ARL0 values become
larger (see for example the last four cases).

• For the first 6 symmetric cases the corresponding out-of-control values are the
same for shifts δ and −δ regardless the value of κ. On the other hand, for the
asymmetric cases, negative shifts, δ give larger ARL1 values than positive ones.
For example, in case 10, when (p+1, λ,K) = (0.6, 0.12, 2.743) and κ = 0.2 for
δ = −0.1 we have ARL1 = 37.7 and for δ = 0.1 we have ARL1 = 30.6.

• Regardless the type of distribution, as κ increases the out-of-control ARL1

values are becoming larger. For instance, for δ = 0.1 and (p+1, λ,K) =
(0.85, 0.72, 2.928) we have ARL1 = 131.7 for κ = 0, ARL1 = 143.4 for κ = 0.05,
ARL1 = 157.4 for κ = 0.1 and ARL1 = 193.9 for κ = 0.2.

4.2. Run length properties of the C-SN EWMA under the “flip a coin
strategy”

As it has been proposed by Castagliola et al. in [4], an efficient strategy to handle ties
in the design of a Sign chart is the “flip a coin” strategy in which the probability p0 is
equally allocated on both sides for values St,j = +1 and St,j = −1. More specifically,
for each value St,j = 0 it is proposed the transformation St,j = 2∆t,j − 1 where
∆t,j ∼ Ber(0.5) is a Bernoulli random variable of parameter 0.5. As a consequence,
applying this strategy is equivalent to consider the two-sided C-SN EWMA control
chart in the “without ties” case with the following new probabilities:

p′−1 = p−1 +
p0
2
,

p′0 = 0,

p′+1 = p+1 +
p0
2
.

In Table 6, the in-control (δ = 0) vectors of probabilities p′ = (p′−1, p
′
0, p

′
+1) for the

17 distributions are reported for different values of κ. We can conclude that when
κ = 0, as expected, we always have p′0 = 0, p′+1 = p′−1 = 0.5 no matter the considered
distribution. Moreover, for the symmetric cases 1 − 6, (when κ > 0) we always have
p′+1 = p′−1 = 0.5 This is also an expected result. Finally, for the asymmetric cases,
even though p′+1 differs from p′−1 all the p′+1 values remain really close to 0.5, since
|p′+1 − 0.5| < 0.01 for the cases 7-17. Next, using the new p′−1, p

′
+1 probabilities, we

evaluated the performance of the C-SN EWMA chart. Based on the results presented
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Table 5. ARL values when n = 20 for (p+1, λ,K) = (0.6, 0.12, 2.743) and (p+1, λ,K) = (0.85, 0.72, 2.928)

with(top) and without(bottom) the “flip a coin” strategy.
Without the “flip a coin” strategy

(p+1, λ,K) = (0.6, 0.12, 2.743)

κ = 0 κ = 0.05 κ = 0.1 κ = 0.2

δ δ δ δ
case -0.5 -0.2 -0.1 0 0.1 0.2 0.5 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 -0.5 -0.2 -0.1 0 0.1 0.2 0.5

1 6.8 28.6 93.5 370.4 93.5 28.6 6.8 6.9 28.8 95.6 391.1 95.6 28.8 6.9 6.9 29.0 97.8 413.4 97.8 29.0 6.9 6.8 29.5 102.3 464.0 102.3 29.5 6.8
2 5.3 19.3 64.3 370.4 64.2 19.3 5.3 5.3 19.4 65.7 396.8 65.5 19.4 5.3 5.3 19.5 67.1 425.9 67.0 19.5 5.3 5.3 19.8 70.5 494.0 70.3 19.8 5.3
3 4.7 16.3 53.6 370.4 53.6 16.3 4.7 4.7 16.3 54.7 399.9 54.7 16.3 4.7 4.7 16.4 55.9 432.8 55.9 16.4 4.7 4.8 16.7 58.8 511.4 58.8 16.7 4.8
4 4.3 14.0 45.4 370.4 45.4 14.0 4.3 4.3 14.1 46.3 403.1 46.3 14.1 4.3 4.3 14.1 47.3 439.9 47.3 14.1 4.3 4.3 14.4 49.7 529.6 49.7 14.4 4.3
5 3.9 11.9 37.5 370.4 37.5 11.9 3.9 3.9 11.9 38.2 407.1 38.2 11.9 3.9 3.9 12.0 39.0 449.0 39.0 12.0 3.9 4.0 12.2 41.1 553.9 41.1 12.2 4.0
6 3.6 10.4 31.8 370.4 31.8 10.4 3.6 3.6 10.4 32.3 411.0 32.3 10.4 3.6 3.6 10.5 33.0 458.1 33.0 10.5 3.6 3.7 10.7 34.8 578.7 34.8 10.7 3.7
7 4.3 10.9 29.8 370.4 21.5 6.4 2.0 4.3 11.0 30.5 416.5 21.5 6.4 2.0 4.3 11.1 31.8 468.1 20.9 6.3 2.0 4.4 11.6 36.9 536.1 18.5 5.9 2.0
8 4.4 12.3 36.3 370.4 30.8 9.3 2.8 4.4 12.3 37.1 409.6 31.2 9.3 2.8 4.4 12.4 38.3 454.3 31.2 9.3 2.8 4.4 12.9 42.5 556.3 30.4 9.1 2.8
9 4.4 12.6 38.0 370.4 33.5 10.2 3.1 4.4 12.6 38.8 408.1 34.0 10.2 3.1 4.4 12.7 40.0 451.0 34.2 10.2 3.1 4.4 13.1 43.9 553.1 34.0 10.1 3.1
10 4.0 11.1 32.9 370.4 29.7 9.4 3.1 4.0 11.1 33.6 411.3 30.1 9.4 3.1 4.0 11.2 34.5 458.7 30.4 9.4 3.1 4.0 11.6 37.7 575.0 30.6 9.4 3.1
11 3.6 9.6 27.5 370.4 25.2 8.3 3.0 3.6 9.6 28.0 416.0 25.5 8.4 3.0 3.7 9.7 28.8 469.6 25.8 8.4 3.0 3.7 10.0 31.4 606.2 26.3 8.5 3.0
12 3.4 8.5 23.5 370.4 21.7 7.5 2.9 3.4 8.5 23.9 420.7 22.0 7.5 2.9 3.4 8.6 24.5 480.9 22.3 7.6 2.9 3.4 8.8 26.7 639.4 22.9 7.7 2.9
13 3.3 7.3 17.8 370.4 12.7 4.4 2.0 3.3 7.3 18.1 435.3 12.7 4.3 2.0 3.3 7.4 18.9 508.9 12.3 4.3 2.0 3.4 7.7 22.0 547.2 11.0 4.1 2.0
14 3.4 7.9 20.0 370.4 15.0 5.1 2.0 3.5 7.9 20.4 429.5 14.9 5.0 2.0 3.5 8.0 21.2 498.0 14.7 5.0 2.0 3.5 8.3 24.4 584.1 13.4 4.8 2.0
15 3.2 7.2 18.2 370.4 14.8 5.3 2.2 3.2 7.3 18.6 432.2 14.9 5.4 2.2 3.2 7.3 19.2 506.9 14.9 5.4 2.2 3.3 7.6 21.8 655.2 14.5 5.4 2.2
16 3.0 6.4 15.7 370.4 13.3 5.1 2.3 3.0 6.4 15.9 438.6 13.4 5.1 2.3 3.0 6.5 16.4 523.5 13.5 5.2 2.3 3.0 6.8 18.5 720.9 13.6 5.3 2.3
17 2.8 5.8 13.6 370.4 11.8 4.8 2.3 2.8 5.8 13.8 445.7 11.9 4.8 2.3 2.8 5.8 14.2 542.3 12.1 4.8 2.3 2.9 6.1 16.0 787.3 12.5 5.0 2.3

(p+1, λ,K) = (0.85, 0.72, 2.928)

κ = 0 κ = 0.05 κ = 0.1 κ = 0.2

δ δ δ δ
case -0.5 -0.2 -0.1 0 0.1 0.2 0.5 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 -0.5 -0.2 -0.1 0 0.1 0.2 0.5

1 12.7 103.7 236.9 370.4 236.9 103.7 12.7 12.9 108.5 251.7 398.2 251.7 108.5 12.9 13.1 113.6 268.0 429.2 268.0 113.6 13.1 13.6 125.4 305.7 502.3 305.7 125.4 13.6
2 7.3 68.2 192.9 370.4 192.7 68.1 7.3 7.4 71.5 207.1 406.0 206.9 71.4 7.4 7.5 75.3 223.3 446.8 223.0 75.2 7.5 7.7 84.5 262.1 547.4 261.8 84.4 7.7
3 5.7 54.9 171.8 370.4 171.8 54.9 5.7 5.8 57.7 185.3 410.3 185.3 57.7 5.8 5.8 60.9 200.9 456.7 200.9 60.9 5.8 6.0 68.8 239.4 573.9 239.4 68.8 6.0
4 4.6 44.7 152.8 370.4 152.8 44.7 4.6 4.7 47.0 165.6 414.7 165.6 47.0 4.7 4.7 49.7 180.6 466.9 180.6 49.7 4.7 4.9 56.5 218.3 602.1 218.3 56.5 4.9
5 3.7 35.0 131.7 370.4 131.7 35.0 3.7 3.8 36.7 143.4 420.3 143.4 36.7 3.8 3.8 38.9 157.4 480.3 157.4 38.9 3.8 3.9 44.5 193.9 640.5 193.9 44.5 3.9
6 3.2 28.0 114.3 370.4 114.3 28.0 3.2 3.2 29.4 125.0 425.7 125.0 29.4 3.2 3.2 31.2 138.1 493.6 138.1 31.2 3.2 3.3 35.9 173.0 680.1 173.0 35.9 3.3
7 4.7 30.3 107.7 370.4 77.0 11.1 1.0 4.7 31.7 117.9 433.8 84.6 11.5 1.0 4.7 33.7 132.3 513.4 91.2 11.7 1.0 4.9 39.9 180.3 730.9 98.9 11.3 1.0
8 4.8 36.6 128.1 370.4 111.1 23.2 1.8 4.8 38.4 139.6 423.8 121.5 24.3 1.8 4.9 40.8 154.5 488.9 132.6 25.5 1.8 5.0 47.5 198.3 664.5 156.0 27.9 1.8
9 4.7 38.1 133.2 370.4 119.8 27.2 2.3 4.8 39.9 145.0 421.7 130.7 28.6 2.3 4.8 42.4 159.9 483.8 142.8 30.1 2.3 5.0 49.1 202.4 650.1 170.1 33.4 2.3
10 3.9 31.3 117.9 370.4 107.3 23.4 2.2 3.9 32.8 128.8 426.2 117.5 24.6 2.3 4.0 34.8 142.8 494.8 129.2 25.9 2.3 4.1 40.5 183.1 683.4 156.9 29.2 2.3
11 3.2 24.3 99.9 370.4 91.5 18.9 2.1 3.2 25.4 109.6 432.8 100.5 19.8 2.1 3.2 27.0 122.4 511.0 111.3 20.9 2.2 3.3 31.6 160.1 734.1 138.5 23.8 2.2
12 2.7 19.3 85.0 370.4 78.2 15.4 2.0 2.7 20.2 93.7 439.4 86.2 16.1 2.0 2.8 21.5 105.2 527.9 96.1 17.0 2.0 2.8 25.3 140.5 789.4 122.5 19.6 2.1
13 2.6 14.5 61.7 370.4 38.8 4.7 1.0 2.6 15.1 68.4 461.0 42.7 4.8 1.0 2.7 16.0 78.6 584.4 46.2 4.9 1.0 2.7 19.2 117.8 954.2 50.0 4.7 1.0
14 2.8 16.9 71.1 370.4 49.0 6.6 1.0 2.8 17.6 78.6 452.5 54.1 6.8 1.0 2.9 18.7 89.7 561.9 59.1 6.9 1.0 2.9 22.3 129.6 889.0 66.7 7.0 1.0
15 2.5 14.3 63.6 370.4 48.5 7.5 1.2 2.5 14.8 70.5 456.1 53.7 7.7 1.2 2.5 15.8 80.6 571.7 59.8 8.1 1.2 2.6 18.9 116.7 934.3 74.0 9.0 1.3
16 2.1 11.1 52.2 370.4 41.5 6.8 1.3 2.1 11.5 58.0 465.2 46.1 7.0 1.3 2.1 12.2 66.7 596.7 52.0 7.3 1.3 2.2 14.7 98.8 1032.8 68.3 8.5 1.4
17 1.9 8.8 42.7 370.4 34.7 5.9 1.3 1.9 9.1 47.5 475.6 38.6 6.0 1.3 1.9 9.7 55.1 626.0 44.0 6.4 1.3 2.0 11.6 83.9 1154.1 60.6 7.5 1.4

With the “flip a coin” strategy

(p+1, λ,K) = (0.6, 0.12, 2.743)

κ = 0 κ = 0.05 κ = 0.1 κ = 0.2

δ δ δ δ
case -0.5 -0.2 -0.1 0 0.1 0.2 0.5 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 -0.5 -0.2 -0.1 0 0.1 0.2 0.5

1 6.8 28.6 93.5 370.4 93.5 28.6 6.8 6.8 28.6 93.5 370.4 93.5 28.6 6.8 6.8 28.6 93.5 370.4 93.5 28.6 6.8 6.8 28.6 93.4 370.4 93.4 28.6 6.8
2 5.3 19.3 64.3 370.4 64.2 19.3 5.3 5.3 19.3 64.3 370.4 64.2 19.3 5.3 5.3 19.3 64.3 370.4 64.2 19.3 5.3 5.3 19.4 64.6 370.4 64.5 19.4 5.3
3 4.7 16.3 53.6 370.4 53.6 16.3 4.7 4.7 16.3 53.6 370.4 53.6 16.3 4.7 4.7 16.3 53.7 370.4 53.7 16.3 4.7 4.8 16.4 54.1 370.4 54.1 16.4 4.8
4 4.3 14.0 45.4 370.4 45.4 14.0 4.3 4.3 14.0 45.4 370.4 45.4 14.0 4.3 4.3 14.0 45.5 370.4 45.5 14.0 4.3 4.4 14.2 46.0 370.4 46.0 14.2 4.4
5 3.9 11.9 37.5 370.4 37.5 11.9 3.9 3.9 11.9 37.5 370.4 37.5 11.9 3.9 3.9 11.9 37.7 370.4 37.7 11.9 3.9 4.0 12.1 38.2 370.4 38.2 12.1 4.0
6 3.6 10.4 31.8 370.4 31.8 10.4 3.6 3.6 10.4 31.8 370.4 31.8 10.4 3.6 3.6 10.5 32.0 370.4 32.0 10.5 3.6 3.7 10.6 32.6 370.4 32.6 10.6 3.7
7 4.3 10.9 29.8 370.4 21.5 6.4 2.0 4.3 10.9 30.0 370.2 21.2 6.4 2.0 4.3 11.0 30.8 367.7 20.4 6.3 2.0 4.4 11.5 34.4 331.6 17.8 5.9 2.0
8 4.4 12.3 36.3 370.4 30.8 9.3 2.8 4.4 12.3 36.5 370.4 30.7 9.3 2.8 4.4 12.4 37.0 369.9 30.2 9.3 2.8 4.4 12.7 39.5 363.1 28.6 9.1 2.8
9 4.4 12.6 38.0 370.4 33.5 10.2 3.1 4.4 12.6 38.2 370.4 33.4 10.2 3.1 4.4 12.7 38.7 370.1 33.1 10.2 3.1 4.4 13.0 40.7 366.3 31.9 10.1 3.1
10 4.0 11.1 32.9 370.4 29.7 9.4 3.1 4.0 11.1 33.0 370.4 29.6 9.4 3.1 4.0 11.2 33.5 370.2 29.4 9.4 3.1 4.0 11.5 35.2 367.2 28.8 9.4 3.1
11 3.6 9.6 27.5 370.4 25.2 8.3 3.0 3.6 9.6 27.6 370.4 25.2 8.4 3.0 3.7 9.7 28.0 370.2 25.1 8.4 3.0 3.7 9.9 29.5 367.5 24.9 8.4 3.0
12 3.4 8.5 23.5 370.4 21.7 7.5 2.9 3.4 8.5 23.6 370.4 21.8 7.5 2.9 3.4 8.5 23.9 370.2 21.8 7.6 2.9 3.4 8.8 25.3 367.6 21.8 7.7 2.9
13 3.3 7.3 17.8 370.4 12.7 4.4 2.0 3.3 7.3 18.0 370.0 12.6 4.3 2.0 3.3 7.4 18.5 364.2 12.2 4.3 2.0 3.4 7.7 21.0 291.7 10.8 4.1 2.0
14 3.4 7.9 20.0 370.4 15.0 5.1 2.0 3.4 7.9 20.2 370.1 14.8 5.0 2.0 3.5 8.0 20.7 366.5 14.4 5.0 2.0 3.5 8.3 23.1 319.2 13.1 4.8 2.0
15 3.2 7.2 18.2 370.4 14.8 5.3 2.2 3.2 7.3 18.4 370.3 14.8 5.4 2.2 3.2 7.3 18.8 368.3 14.6 5.4 2.2 3.3 7.6 20.8 340.7 14.1 5.4 2.2
16 3.0 6.4 15.7 370.4 13.3 5.1 2.3 3.0 6.4 15.8 370.3 13.3 5.1 2.3 3.0 6.5 16.2 368.8 13.3 5.2 2.3 3.0 6.8 17.8 347.5 13.3 5.3 2.3
17 2.8 5.8 13.6 370.4 11.8 4.8 2.3 2.8 5.8 13.7 370.3 11.9 4.8 2.3 2.8 5.8 14.0 368.9 11.9 4.9 2.3 2.8 6.1 15.5 350.0 12.2 5.0 2.3

(p+1, λ,K) = (0.85, 0.72, 2.928)

κ = 0 κ = 0.05 κ = 0.1 κ = 0.2

δ δ δ δ
case -0.5 -0.2 -0.1 0 0.1 0.2 0.5 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 -0.5 -0.2 -0.1 0 0.1 0.2 0.5

1 12.7 103.7 236.9 370.4 236.9 103.7 12.7 12.7 103.7 236.9 370.4 236.9 103.7 12.7 12.7 103.7 236.9 370.4 236.9 103.7 12.7 12.7 103.6 236.8 370.4 236.8 103.6 12.7
2 7.3 68.2 192.9 370.4 192.7 68.1 7.3 7.3 68.2 193.0 370.4 192.8 68.1 7.3 7.3 68.3 193.1 370.4 192.9 68.2 7.3 7.3 68.6 193.5 370.4 193.3 68.5 7.3
3 5.7 54.9 171.8 370.4 171.8 54.9 5.7 5.7 55.0 171.8 370.4 171.8 55.0 5.7 5.7 55.1 172.0 370.4 172.0 55.1 5.7 5.8 55.5 172.8 370.4 172.8 55.5 5.8
4 4.6 44.7 152.8 370.4 152.8 44.7 4.6 4.7 44.8 152.9 370.4 152.9 44.8 4.7 4.7 44.9 153.2 370.4 153.2 44.9 4.7 4.7 45.5 154.2 370.4 154.2 45.5 4.7
5 3.7 35.0 131.7 370.4 131.7 35.0 3.7 3.7 35.0 131.8 370.4 131.8 35.0 3.7 3.8 35.2 132.2 370.4 132.2 35.2 3.8 3.8 35.8 133.7 370.4 133.7 35.8 3.8
6 3.2 28.0 114.3 370.4 114.3 28.0 3.2 3.2 28.1 114.4 370.4 114.4 28.1 3.2 3.2 28.3 114.9 370.4 114.9 28.3 3.2 3.2 29.0 116.8 370.4 116.8 29.0 3.2
7 4.7 30.3 107.7 370.4 77.0 11.1 1.0 4.7 30.5 108.6 370.4 75.9 11.0 1.0 4.7 31.0 111.2 369.9 72.9 10.6 1.0 4.8 33.0 122.6 362.3 61.8 9.2 1.0
8 4.8 36.6 128.1 370.4 111.1 23.2 1.8 4.8 36.8 128.7 370.4 110.6 23.1 1.8 4.8 37.1 130.4 370.3 109.1 22.9 1.8 4.9 38.7 137.4 369.0 103.5 22.1 1.8
9 4.7 38.1 133.2 370.4 119.8 27.2 2.3 4.7 38.2 133.6 370.4 119.4 27.2 2.3 4.8 38.5 135.0 370.3 118.4 27.0 2.3 4.8 39.9 140.7 369.6 114.6 26.5 2.3
10 3.9 31.3 117.9 370.4 107.3 23.4 2.2 3.9 31.4 118.3 370.4 107.1 23.4 2.2 3.9 31.7 119.6 370.4 106.5 23.4 2.3 4.0 32.9 124.9 369.8 104.2 23.3 2.3
11 3.2 24.3 99.9 370.4 91.5 18.9 2.1 3.2 24.4 100.3 370.4 91.4 18.9 2.1 3.2 24.7 101.5 370.4 91.2 19.0 2.1 3.3 25.8 106.6 369.8 90.3 19.2 2.2
12 2.7 19.3 85.0 370.4 78.2 15.4 2.0 2.7 19.4 85.4 370.4 78.2 15.4 2.0 2.7 19.7 86.7 370.4 78.2 15.5 2.0 2.8 20.7 91.7 369.9 78.5 16.0 2.0
13 2.6 14.5 61.7 370.4 38.8 4.7 1.0 2.6 14.6 62.5 370.3 38.1 4.7 1.0 2.6 14.9 64.8 369.2 36.3 4.6 1.0 2.7 16.2 75.1 352.3 30.0 4.2 1.0
14 2.8 16.9 71.1 370.4 49.0 6.6 1.0 2.8 17.0 71.8 370.3 48.4 6.5 1.0 2.8 17.3 74.0 369.7 46.7 6.4 1.0 2.9 18.6 83.7 359.4 40.5 6.0 1.0
15 2.5 14.3 63.6 370.4 48.5 7.5 1.2 2.5 14.3 64.2 370.4 48.3 7.5 1.2 2.5 14.6 66.1 370.0 47.6 7.5 1.2 2.5 15.8 74.3 364.4 45.1 7.7 1.3
16 2.1 11.1 52.2 370.4 41.5 6.8 1.3 2.1 11.2 52.8 370.4 41.5 6.8 1.3 2.1 11.4 54.5 370.1 41.5 6.9 1.3 2.2 12.4 61.8 365.8 41.4 7.3 1.3
17 1.9 8.8 42.7 370.4 34.7 5.9 1.3 1.9 8.9 43.2 370.4 34.8 5.9 1.3 1.9 9.1 44.8 370.1 35.2 6.0 1.3 1.9 10.0 51.6 366.3 36.5 6.5 1.3
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Table 6. Vector of in-control probabilities (p′−1, p
′
0, p

′
+1) with the “flip a coin” strategy for the 17 distributions

in Table 4.
case κ = 0 κ = 0.05 κ = 0.1 κ = 0.2
1 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000
2 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000
3 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000
4 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000
5 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000
6 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000
7 0.5000 0.0000 0.5000 0.4996 0.0000 0.5004 0.4986 0.0000 0.5014 0.4942 0.0000 0.5058
8 0.5000 0.0000 0.5000 0.4999 0.0000 0.5001 0.4994 0.0000 0.5006 0.4976 0.0000 0.5024
9 0.4999 0.0000 0.5001 0.4998 0.0000 0.5002 0.4995 0.0000 0.5005 0.4982 0.0000 0.5018
10 0.5000 0.0000 0.5000 0.4999 0.0000 0.5001 0.4996 0.0000 0.5004 0.4984 0.0000 0.5016
11 0.5000 0.0000 0.5000 0.4999 0.0000 0.5001 0.4996 0.0000 0.5004 0.4985 0.0000 0.5015
12 0.5000 0.0000 0.5000 0.4999 0.0000 0.5001 0.4996 0.0000 0.5004 0.4985 0.0000 0.5015
13 0.5000 0.0000 0.5000 0.4994 0.0000 0.5006 0.4978 0.0000 0.5022 0.4912 0.0000 0.5088
14 0.4999 0.0000 0.5001 0.4995 0.0000 0.5005 0.4983 0.0000 0.5017 0.4932 0.0000 0.5068
15 0.5000 0.0000 0.5000 0.4997 0.0000 0.5003 0.4987 0.0000 0.5013 0.4950 0.0000 0.5050
16 0.5000 0.0000 0.5000 0.4997 0.0000 0.5003 0.4989 0.0000 0.5011 0.4957 0.0000 0.5043
17 0.5000 0.0000 0.5000 0.4997 0.0000 0.5003 0.4989 0.0000 0.5011 0.4959 0.0000 0.5041

in Table 5(bottom) we can conclude that:

• For symmetric distributions, no matter the value of κ and the pair of (λ,K), the
“the flip a coin” strategy guarantees that our proposed nonparametric control
chart almost maintains its distribution-free property. On the other hand, if we
do not use the “the flip a coin” strategy we proved that the chart is no longer
distribution-free.

• Regarding the choice of the pair (λ,K) it seems that using larger values of λ,
except from cases 14 and 15 improves significantly the distribution-free property
of our chart for heavy-tailed distributions (cases 13− 17) and large values of κ.
For example for κ = 0.2 using (λ,K) = (0.12, 2.743) the in-control ARL value
for case 16 is ARL = 347.5 and for case 17 is ARL = 350. On the other hand,
using the pair (λ,K) = (0.72, 2.928), the in-control ARL value for case 16 is
ARL = 365.8 and for case 17 is ARL = 366.3.

• Similarly, for the out-of-control cases, we can conclude that no matter the value
of κ the ARL1 values are almost the same. For example, when δ = 0.1 using
using (λ,K) = (0.72, 2.928) for κ = {0, 0.05, 0.1, 0.2} the corresponding ARL1 =
{78.2, 78.2, 78.2, 78.5}.

4.3. Performance evaluations

The performance of the C-SN EWMA chart under the “flip a coin strategy” will be
compared with the Shewhart Sign chart presented in [4] under the Benchmark of the
distributions listed in Table 4. As far as we are concerned, these are the only two
existing schemes dealing with rounding-off errors. In Table 7 the corresponding ARL1

values are presented for n = 20 for both charts. In order to perform fair comparisons
since for the Shewhart chart the closest ARL0 value to 370.4 is ARL0 ≈ 388.1 when
the control limit equals C = 14, our chart will be optimized in order to also verify
ARL0 = 388.1. More specifically, for a fixed value of λ the corresponding value of
K will be computed such that it gives ARL0 = 388.1 when κ = 0. Finally the same
optimal pair of (λ,K) will be used in order to compute the chart’s performance for
κ = {0.05, 0.1, 0.2}. Note that, as presented above, setting λ > 0.7 guarantees an
approximately distribution-free behaviour for the C-SN EWMA chart. So it would be
logical to optimize λ also. Nevertheless, it is not necessary to do this since, even by
setting λ = 0.7, our chart outperforms the Shewhart chart. In particular, from Table
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7 we may conclude that our chart performs better for any shift magnitude regardless
the underlying distribution or the value of κ. For instance, for cases #6,#7,#8, when
the shift magnitude is δ = 0.2 and κ = 0.2 the corresponding ARL1 values of the Sign
Shewhart chart are 56.9, 18.4, 44, 4 respectively. On the other hand, for the same cases,
the corresponding ARL1 values of the C-SN EWMA chart are 28.4, 8.9, 21.6.

Table 7. Performance comparisons between the C-SN EWMA and the Shewhart Sign charts under the “flip
a coin” strategy for n = 20

C-SN EWMA chart

κ = 0 κ = 0.05 κ = 0.1 κ = 0.2

δ δ δ δ
-0.5 -0.2 -0.1 0.1 0.2 0.5 -0.5 -0.2 -0.1 0.1 0.2 0.5 -0.5 -0.2 -0.1 0.1 0.2 0.5 -0.5 -0.2 -0.1 0.1 0.2 0.5

1 12.40 103.90 243.20 243.20 103.90 12.40 12.40 103.90 243.20 243.20 103.90 12.40 12.40 103.80 243.20 243.20 103.80 12.40 12.40 103.80 243.10 243.10 103.80 12.40
2 7.10 67.60 196.60 196.40 67.60 7.10 7.10 67.70 196.60 196.40 67.60 7.10 7.10 67.70 196.70 196.50 67.70 7.10 7.20 68.10 197.20 197.00 68.00 7.20
3 5.60 54.30 174.40 174.40 54.30 5.60 5.60 54.40 174.40 174.40 54.40 5.60 5.60 54.50 174.60 174.60 54.50 5.60 5.70 54.90 175.40 175.40 54.90 5.70
4 4.60 44.10 154.60 154.60 44.10 4.60 4.60 44.10 154.70 154.70 44.10 4.60 4.60 44.30 154.90 154.90 44.30 4.60 4.60 44.80 156.00 156.00 44.80 4.60
5 3.70 34.30 132.60 132.60 34.30 3.70 3.70 34.40 132.80 132.80 34.40 3.70 3.70 34.60 133.20 133.20 34.60 3.70 3.80 35.20 134.70 134.70 35.20 3.80
6 3.10 27.50 114.70 114.70 27.50 3.10 3.10 27.50 114.90 114.90 27.50 3.10 3.20 27.70 115.40 115.40 27.70 3.20 3.20 28.40 117.30 117.30 28.40 3.20
7 4.60 29.70 107.90 76.60 10.80 1.00 4.60 29.90 108.80 75.50 10.70 1.00 4.60 30.40 111.60 72.40 10.30 1.00 4.70 32.30 123.30 61.20 8.90 1.00
8 4.70 36.00 129.00 111.40 22.70 1.80 4.70 36.10 129.60 110.90 22.60 1.80 4.70 36.50 131.30 109.40 22.40 1.80 4.80 38.10 138.50 103.70 21.60 1.80
9 4.70 37.40 134.20 120.30 26.70 2.30 4.70 37.50 134.70 120.00 26.60 2.30 4.70 37.90 136.10 119.00 26.50 2.30 4.80 39.30 142.00 115.00 26.00 2.30
10 3.90 30.60 118.40 107.60 22.90 2.30 3.90 30.70 118.80 107.40 22.90 2.30 3.90 31.00 120.20 106.70 22.90 2.30 4.00 32.30 125.60 104.30 22.80 2.30
11 3.20 23.80 99.90 91.30 18.40 2.10 3.20 23.80 100.40 91.20 18.40 2.10 3.20 24.10 101.60 91.00 18.50 2.10 3.20 25.20 106.90 90.10 18.80 2.20
12 2.70 18.90 84.80 77.80 15.00 2.00 2.70 18.90 85.20 77.80 15.00 2.00 2.70 19.20 86.40 77.80 15.20 2.00 2.80 20.20 91.60 78.10 15.60 2.00
13 2.60 14.10 61.20 38.10 4.70 1.00 2.60 14.20 61.90 37.50 4.60 1.00 2.60 14.50 64.20 35.60 4.50 1.00 2.70 15.80 74.70 29.40 4.10 1.00
14 2.80 16.40 70.60 48.40 6.40 1.00 2.80 16.50 71.30 47.80 6.40 1.00 2.80 16.90 73.60 46.00 6.30 1.00 2.90 18.20 83.40 39.80 5.90 1.00
15 2.50 13.90 63.10 47.80 7.30 1.20 2.50 14.00 63.70 47.60 7.30 1.20 2.50 14.30 65.60 46.90 7.40 1.20 2.50 15.40 73.90 44.50 7.50 1.30
16 2.10 10.80 51.60 40.90 6.60 1.30 2.10 10.90 52.10 40.90 6.70 1.30 2.10 11.10 53.80 40.80 6.70 1.30 2.20 12.10 61.20 40.80 7.10 1.40
17 1.90 8.60 42.10 34.10 5.70 1.30 1.90 8.70 42.60 34.20 5.80 1.30 1.90 8.90 44.20 34.50 5.90 1.30 1.90 9.80 51.00 35.90 6.40 1.40

Shewhart Sign chart

κ = 0 κ = 0.05 κ = 0.1 κ = 0.2

δ δ δ δ
-0.5 -0.2 -0.1 0.1 0.2 0.5 -0.5 -0.2 -0.1 0.1 0.2 0.5 -0.5 -0.2 -0.1 0.1 0.2 0.5 -0.5 -0.2 -0.1 0.1 0.2 0.5

1 25.90 164.70 296.10 296.10 164.70 25.90 25.90 164.70 296.10 296.10 164.70 25.90 25.90 164.60 296.10 296.10 164.60 25.90 25.90 164.60 296.10 296.10 164.60 25.90
2 14.30 118.20 258.40 258.20 118.10 14.30 14.30 118.30 258.40 258.20 118.20 14.30 14.30 118.40 258.50 258.30 118.30 14.30 14.40 118.80 258.90 258.70 118.70 14.40
3 10.70 99.00 238.40 238.40 99.00 10.70 10.80 99.10 238.50 238.50 99.10 10.80 10.80 99.20 238.70 238.70 99.20 10.80 10.90 99.90 239.40 239.40 99.90 10.90
4 8.30 83.30 219.50 219.50 83.30 8.30 8.30 83.30 219.60 219.60 83.30 8.30 8.40 83.50 219.90 219.90 83.50 8.40 8.50 84.40 221.00 221.00 84.40 8.50
5 6.30 67.30 197.00 197.00 67.30 6.30 6.30 67.40 197.20 197.20 67.40 6.30 6.30 67.60 197.60 197.60 67.60 6.30 6.40 68.70 199.20 199.20 68.70 6.40
6 5.00 55.20 177.30 177.30 55.20 5.00 5.00 55.40 177.50 177.50 55.40 5.00 5.00 55.70 178.00 178.00 55.70 5.00 5.10 56.90 180.20 180.20 56.90 5.10
7 8.30 59.30 169.50 130.40 22.60 1.00 8.30 59.60 170.50 129.00 22.30 1.00 8.40 60.40 173.70 124.80 21.40 1.00 8.60 63.80 186.90 109.10 18.40 1.00
8 8.60 70.10 193.10 173.50 46.40 2.10 8.70 70.30 193.70 172.90 46.30 2.10 8.70 70.90 195.60 171.20 45.90 2.10 8.90 73.50 203.20 164.40 44.40 2.20
9 8.50 72.50 198.70 183.60 53.80 3.00 8.50 72.60 199.20 183.20 53.70 3.00 8.60 73.20 200.70 182.10 53.50 3.00 8.80 75.50 206.80 177.60 52.50 3.10
10 6.70 60.90 181.40 169.00 46.90 3.00 6.70 61.10 181.90 168.80 46.90 3.00 6.70 61.60 183.40 168.10 46.80 3.00 6.90 63.80 189.40 165.20 46.70 3.10
11 5.00 48.50 160.00 149.40 38.20 2.70 5.00 48.60 160.50 149.30 38.30 2.70 5.10 49.10 162.00 149.00 38.40 2.70 5.20 51.20 168.20 147.90 38.90 2.80
12 4.00 39.10 141.10 132.00 31.40 2.40 4.00 39.30 141.60 132.00 31.50 2.40 4.00 39.80 143.30 132.10 31.70 2.50 4.10 41.80 149.80 132.40 32.60 2.60
13 2.80 18.00 71.60 29.80 1.60 1.00 2.80 18.10 72.80 28.60 1.60 1.00 2.80 18.60 76.70 25.10 1.50 1.00 2.90 20.90 95.00 15.20 2.00 1.00
14 3.80 29.50 109.00 73.60 8.50 1.00 3.80 29.70 110.10 72.50 8.40 1.00 3.80 30.30 113.40 69.50 8.20 1.00 3.90 32.90 127.80 58.60 7.30 1.00
15 4.20 34.30 122.30 90.00 12.70 1.00 4.20 34.50 123.30 89.10 12.60 1.00 4.30 35.10 126.30 86.30 12.30 1.00 4.40 37.80 139.30 76.40 11.30 1.00
16 3.40 29.10 111.80 89.20 14.70 1.20 3.50 29.30 112.70 88.80 14.70 1.20 3.50 29.90 115.40 87.70 14.80 1.20 3.60 32.20 126.70 83.90 15.10 1.30
17 2.70 22.50 94.90 78.10 13.10 1.40 2.70 22.70 95.70 78.10 13.20 1.40 2.70 23.20 98.30 78.00 13.40 1.40 2.80 25.30 109.10 78.00 14.30 1.40
18 2.30 17.60 80.00 66.80 11.10 1.40 2.30 17.80 80.80 67.00 11.20 1.40 2.30 18.30 83.40 67.60 11.40 1.40 2.30 20.20 94.00 69.90 12.60 1.40

5. An illustrative example

In this Section a modified version of the example originally discussed by Celano
et al. in [6] is provided, to show a practical Phase II implementation of the design
and operation of our proposed chart under the case of measurement error. In this
example, the quality characteristic to be monitored is the radial error, defined as “a
quality characteristic frequently monitored in hole drilling processes of mechanical
parts and assembly processes of printed circuit boards”. At each sampling point t, a
subgroup of size n = 20 is collected in order to detect a shift in the median of the
quality characteristic of interest such that p0 = 0.5 shifts to p1 = 0.7. Additionally,
as shown in [6] the in-control value of the median for the radial error is θ0 = 0.338.
The original dataset is presented in Table 8 (top). For illustration purposes let us
assume that the practitioner does not have at his disposal the true values due to a
rounding-off error in the measurement system (the resolution value is ρ = 0.05), and
through the model presented in equation (10), obtains the values presented in Table
8 (bottom). Similarly the observed value of the median will be θ′0 = 0.3 instead of the
true one θ0 = 0.338.

Moreover, in Table 8 (top) the corresponding values of St,j = sign(X
′

t,j − θ′0)
are presented. In can be clearly seen that due to the rounding-off error in the
measurement system many ties occur (zero values for St,j). In order to overcome
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this problem we will use the “flip a coin” method presented in Section 4.2. More
specifically, each St,j = 0 will be substituted by S′

t,j = 2∆t,j − 1 where ∆t,j will
be a random number generated from Ber(0.5). These values are presented in Table
8 (bottom) along with the corresponding values of SNt, SN

∗
t and Z∗

t . Additionally,
for the design of the chart’s parameters we used λ∗ = 0.305,K∗ = 2.903 (as the
optimal pair for detecting a shift p+1 = 0.7 when n = 20), σ = 0.2 (“continuousify”
parameter) and Z∗

0 = 0 (no head-start feature). Then, by substituting these values
in equations (8) and (9), we obtain the values of the control limits for the two-sided
C-SN EWMA chart as LCL∗ = −5.5127,UCL∗ = 5.5127.

It should be pointed out that even though the operation of this chart requires
random numbers to be generated, its Run Length properties (such as ARL, SDRL),
are obtained directly through the distribution of the SN∗

t with the exact Markov
chain method shown in Section 2.1 without the need of performing any simulations.
This fact has been also mentioned in [28]. Finally, the values of the charting statistic
Z∗
t are plotted in Figure 1. It can be seen that at the 4th sampling point (t = 4) an

out-of-control signal is given stating that the process median has changed.

UCL*UCL*UCL*UCL*UCL*UCL*UCL*UCL*UCL*UCL*

LCL*LCL*LCL*LCL*LCL*LCL*LCL*LCL*LCL*LCL*
−4

0

4

1 2 3 4 5 6 7 8 9 10
sample 

Z
t*

C−SN EWMA chart for Phase II data

Figure 1. Radial error example: the C-SN EWMA chart for the Phase II data presented in Table 8 (bottom)

6. Conclusions

In this paper we proposed a modified distribution-free EWMA control chart based
on the Sign statistic called as the C-SN EWMA chart. Using the “continuousify”
method originally introduced in [28] we determined its RL properties showing that
the results are not affected by the number of subintervals. It is worth stretching
that, its in- and out-of-control performances were computed regardless of the process
underlying distribution. Additionally, we examined how seriously the rounding-off
error affects the distribution-free properties of the EWMA Sign control chart.
Under a benchmark of 17 Johnson’s type distributions we proved that, when ties
occur, a conventional nonparametric EWMA chart based on the Sign statistic
is no longer distribution-free. The solution we opted was based on a Bernoulli
trial approach, originally introduced in [4], which turns out to be a very efficient
method to maintain the distribution-free property for our proposed C-SN EWMA
control chart and it is applicable to any situation. Finally, the perfomance of
our proposed chart was examined by comparing it with the Shewhart Sign chart
introduced in [4] and the superiority of our scheme was proven for any shift magnitude.
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Table 8. Radial error example: Phase II sample of t = 1, . . . 10 subgroups of size n = 20 for the true values
(top) and the observed values (bottom) along with the St,j values with and without the ”flip a coin strategy”

when ρ = 0.05
Without the “flip a coin” strategy

Xt,j true values
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0.289 0.380 0.483 0.288 0.544 0.390 0.567 0.512 0.433 0.168 0.128 0.428 0.081 0.575 0.396 0.574 0.730 0.407 0.367 0.452
2 0.447 0.599 0.207 0.317 0.256 0.433 0.218 0.329 0.432 0.674 0.233 0.570 0.748 0.364 0.372 0.798 0.218 0.405 0.060 0.632
3 0.081 0.368 0.435 0.216 0.246 0.229 0.623 0.455 0.394 0.616 0.116 0.611 0.666 0.262 0.410 0.234 0.692 0.719 1.033 0.376
4 0.954 0.537 0.621 0.513 1.540 0.609 0.801 1.080 1.069 0.954 0.852 0.425 1.389 0.794 1.081 0.900 0.521 0.576 0.761 0.535
5 0.316 0.237 0.286 0.879 0.190 0.104 0.570 0.448 0.269 0.746 0.344 0.191 0.366 0.315 0.408 0.522 0.598 0.232 0.671 0.448
6 0.342 0.378 0.287 0.328 0.589 0.233 0.255 0.119 0.284 0.499 0.410 0.668 0.385 0.594 0.390 0.265 0.409 0.434 0.628 0.316
7 0.370 0.391 0.525 0.459 1.280 0.470 0.482 0.032 0.525 0.628 0.686 0.584 0.300 0.245 0.555 0.113 0.194 0.932 0.597 0.523
8 0.352 0.264 0.759 0.154 0.256 0.426 0.363 0.310 0.303 0.316 0.807 0.235 0.173 0.183 1.105 0.068 0.368 0.736 0.097 0.060
9 0.305 0.352 0.468 0.224 0.739 0.234 0.171 0.250 0.308 0.431 0.092 0.326 0.455 0.569 0.354 0.475 0.530 0.312 0.102 0.651
10 0.603 0.363 0.628 0.314 0.029 0.436 0.207 0.553 0.645 0.122 0.759 0.296 0.691 0.425 0.441 0.323 0.287 0.310 0.194 0.582

St,j values when ρ = 0.05

t St,j = sign(X ′
t,j − θ′0)

1 -1 1 1 -1 1 1 1 1 1 -1 -1 1 -1 1 1 1 1 1 0 1
2 1 1 -1 -1 -1 1 -1 0 1 1 -1 1 1 0 0 1 -1 1 -1 1
3 -1 0 1 -1 -1 -1 1 1 1 1 -1 1 1 -1 1 -1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 -1 -1 -1 1 -1 -1 1 1 -1 1 0 -1 0 -1 1 1 1 -1 1 1
6 0 1 -1 0 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 1 1 1 -1
7 0 1 1 1 1 1 1 -1 1 1 1 1 -1 -1 1 -1 -1 1 1 1
8 0 -1 1 -1 -1 1 0 -1 -1 -1 1 -1 -1 -1 1 -1 0 1 -1 -1
9 -1 0 1 -1 1 -1 -1 -1 -1 1 -1 0 1 1 0 1 1 -1 -1 1
10 1 0 1 -1 -1 1 -1 1 1 -1 1 -1 1 1 1 -1 -1 -1 -1 1

With the “flip a coin” strategy

X ′
t,j observed values when ρ = 0.05

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0.30 0.40 0.50 0.30 0.55 0.40 0.55 0.50 0.45 0.15 0.15 0.45 0.10 0.55 0.40 0.55 0.75 0.40 0.35 0.45
2 0.45 0.60 0.20 0.30 0.25 0.45 0.20 0.35 0.45 0.65 0.25 0.55 0.75 0.35 0.35 0.80 0.20 0.40 0.05 0.65
3 0.10 0.35 0.45 0.20 0.25 0.25 0.60 0.45 0.40 0.60 0.10 0.60 0.65 0.25 0.40 0.25 0.70 0.70 1.05 0.40
4 0.95 0.55 0.60 0.50 1.55 0.60 0.80 1.10 1.05 0.95 0.85 0.45 1.40 0.80 1.10 0.90 0.50 0.60 0.75 0.55
5 0.30 0.25 0.30 0.90 0.20 0.10 0.55 0.45 0.25 0.75 0.35 0.20 0.35 0.30 0.40 0.50 0.60 0.25 0.65 0.45
6 0.35 0.40 0.30 0.35 0.60 0.25 0.25 0.10 0.30 0.50 0.40 0.65 0.40 0.60 0.40 0.25 0.40 0.45 0.65 0.30
7 0.35 0.40 0.55 0.45 1.30 0.45 0.50 0.05 0.55 0.65 0.70 0.60 0.30 0.25 0.55 0.10 0.20 0.95 0.60 0.50
8 0.35 0.25 0.75 0.15 0.25 0.45 0.35 0.30 0.30 0.30 0.80 0.25 0.15 0.20 1.10 0.05 0.35 0.75 0.10 0.05
9 0.30 0.35 0.45 0.20 0.75 0.25 0.15 0.25 0.30 0.45 0.10 0.35 0.45 0.55 0.35 0.45 0.55 0.30 0.10 0.65
10 0.60 0.35 0.65 0.30 0.05 0.45 0.20 0.55 0.65 0.10 0.75 0.30 0.70 0.45 0.45 0.30 0.30 0.30 0.20 0.60

S′
t,j values using the “flip a coin strategy” along with the corresponding SNt,SN

∗
t ,Z

∗
t values

t S′
t,j = sign(X ′

t,j − θ′0) SNt SN∗
t Z∗

t

1 -1 1 1 -1 1 1 1 1 1 -1 -1 1 -1 1 1 1 1 1 -1 1 8 7.8729 2.4012
2 1 1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 -1 1 1 -1 1 -1 1 2 1.6446 2.1705
3 -1 1 1 -1 -1 -1 1 1 1 1 -1 1 1 -1 1 -1 1 1 1 1 6 6.1533 3.3853
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20 20.0549 8.4695
5 -1 -1 -1 1 -1 -1 1 1 -1 1 -1 -1 -1 -1 1 1 1 -1 1 1 -2 -2.0159 5.2715
6 1 1 -1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 1 1 1 -1 6 6.0806 5.5183
7 -1 1 1 1 1 1 1 -1 1 1 1 1 -1 -1 1 -1 -1 1 1 1 8 7.9114 6.2482
8 -1 -1 1 -1 -1 1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 1 -1 -1 -8 -7.7615 1.9752
9 -1 1 1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 -1 -1 1 -2 -2.2089 0.6991
10 1 1 1 -1 -1 1 -1 1 1 -1 1 -1 1 1 1 -1 -1 -1 -1 1 2 1.8322 1.0447
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As a future work many things can be pursued. For instance, the “continuousify”
method could be applied in EWMA-type schemes where other nonparametric statis-
tics are considered such as the Mann-Whitney, and the Ansari-Bradley statistics with
and without ties. Additionally, it would be interesting to examine the performance of
an EWMA chart based on the Wilcoxon Signed Rank statistic in the presence of ties
in the population. Finally, a challenging problem would be to investigate the use of
kernel-based techniques in distribution-free EWMA schemes designed for monitoring
bivariate processes.
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