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ABSTRACT

The EWMA Sign control chart is an efficient tool for monitoring shifts in a pro-
cess regardless the observations’ underlying distribution. Recent studies have shown
that, for nonparametric control charts, due to the discrete nature of the statistics
being used (such as the Sign statistic), it is impossible to accurately compute their
Run Length properties using Markov chain or integral equation methods. In this
work, a modified nonparametric Phase Il EWMA chart based on the Sign statistic
is proposed and its exact Run Length properties are discussed. A continuous trans-
formation of the Sign statistic, combined with the classical Markov Chain method,
is used for the determination of the chart’s in- and out-of-control Run Length prop-
erties. Additionally, we show that when ties occur due to measurement rounding-off
errors, the EWMA Sign control chart is no longer distribution-free and a Bernoulli
trial approach is discussed to handle the occurrence of ties and makes the proposed
chart almost distribution-free. Finally, an illustrative example is provided to show
the practical implementation of our proposed chart.

Keywords:Nonparametric control chart, Sign statistic, Markov chain, EWMA control
chart,Rounding-off errors.

1. Introduction

Control charts are one of the major tools of Statistical Process Monitoring (SPM),
a technique which plays a vital role in manufacturing industries. They can be used
for the monitoring of a process in real-time, aiming to identify possible assignable
causes in it quickly and accurately. The most well-known control charts are the
Shewhart-type control charts introduced by Shewhart in [27]. Shewhart charts are
suitable for detecting sudden, and of large magnitude, shifts in process parameters.
However, when the changes in process parameters are of small to moderate magnitude,
Cumulative Sum (CUSUM, see [22]) and Exponentially Weighted Moving Averge
(EWMA, see [26]) charts are preferable than Shewhart charts. Because of their

psarakis@aueb.gr(corresponding author)



memory-type property, CUSUM and EWMA charts are known to react more quickly
than Shewhart charts. It is worth stretching that for the design of CUSUM and
EWMA charts, we assume that the distribution of the observations collected at each
sampling point, is known. However, practitioners usually do not have an a priori
information about the distribution of the monitored characteristic. As a consequence,
a new class of control charts has been proposed, known as nonparametric (or
distribution-free) control charts, capable of monitoring shifts in process parameters
without any knowledge of the observations’ underlying distribution. A detailed
review of existing univariate and multivariate distribution-free control charts can be
found in [7]. Over the past two decades, the design of nonparametric EWMA-type
schemes has drawn the researchers’ attention introducing EWMA charts based on
popular nonparametric statistics, like the Sign statistic (see, [2, 13, 15, 25, 29]) or the
Wilcoxon Signed Rank or Rank-Sum statistic (see [1, 8, 14]).

In general, for EWMA and CUSUM-type schemes, in the case of monitoring
observations from a continuous distribution, a reliable approximation of their RL
(Run Length) properties such as the ARL (Average Run Length), and the SDRL
(Standard Deviation Run Length) can be obtained by using the Markov chain method
of Brook and Evans presented in [3]. Recently, Wu et al. (see, [28]) noticed that the
method of Brook and Evans [3] is not always an efficient technique for computing
the RL properties of a distribution-free EWMA control chart. In particular, since
the distribution of the statistics that are being used (for example the sign statistic)
is a discrete one, it is not always possible to compute exactly the in-control and
the out-of-control ARL (to be denoted as ARLgy, ARL;j, respectively) by using
this approach. In order to tackle this problem, Wu et al. in [28], proposed a new
method, known as the “continuousify” method, for calculating the RL properties
of an EWMA chart for count data. According to this method, the initial discrete
random variables (count data) are transformed into continuous ones, which are a
mixture of normally distributed random variables. Similarly, Perdikis et al. in [23],
using the “continuousify” method presented in [28], proposed a modified one-sided
distribution-free EWMA chart based on Signed Ranks and derived its exact in- and
out-of-control RL properties.

It should be noted that besides the use of reliable metrics regarding the effi-
cient evaluation of the chart’s performance, the accuracy of the measurement system
also plays a vital role in its design phase. Over the past decades, the investigation
of conventional control charts (i.e charts assuming normality) under measurement
errors has drawn the researchers’ interest in particular with reference to the bias
and precision errors which introduce a rounding-off error resulting in a discretization
of the observed measures. For a detailed literature review of control charts under
measurement errors the reader is refered to Maleki et al. in [18]. It is worth stretching
that, rounding-off errors often result in “ties”, even if their true distribution is
continuous. Generally, in nonparametric statistical inference the treatment of ties is of
high importance due to the fact that the distribution of the nonparametric statistics
such as the Sign or the Wilcoxon signed rank statistics is seriously affected by the
presence of ties([11, 12, 24]). As far as we know there are few publications related
with the effect of the measurement error in nonparametric control charts. Castagliola
et al. in [4] investigated the performance of the Shewhart Sign control chart under
measurement error scenarios. Recently, Nojavan et al. in [21] examined the effect of
the measurement error on the performance of Shewhart control charts, based on the



Mann-Whitney and Signed-Rank statistics.

In this work, using the methodology of Wu et al. presented in [28], a new EWMA
control chart based on the Sign statistic chart is proposed and its exact RL properties
are computed. Additionally, its distribution-free property under measurement errors is
investigated and procedures to handle the occurrence of ties are discussed. The paper
is structured as follows: In Section 2, an extended version of the distribution-free
EWMA Sign chart originally introduced by Graham et al. in [13] is proposed (to be
denoted as the C-SN EWMA chart) and its exact RL properties are evaluated via the
“continuousify” method. In addition, the efficiency of the “continuousify” method is
investigated and the chart’s optimal parameters (A\*, K*) are presented under several
scenarios. In Section 3, the distribution of the Sign statistic is defined when ties exist.
In Section 4, our proposed C-SN EWMA chart “with ties” is defined and the effect of
the measurement system resolution is examined. Additionally, we discuss procedures
to tackle the occurrence of rounding-off errors. In Section 5 an illustrative example
is discussed to show the practical implementation of the operation of our proposed
chart when ties are present. Finally, some concluding remarks and suggestions for
future work are presented in Section 6.

2. The EWMA Sign chart without ties

Graham et al. in [13] introduced a new nonparametric two-sided EWMA chart
based on the Sign statistic and, using the Markov-Chain approach of Brook and
Evans presented in [3], obtained its optimal design parameters and investigated its
out-of-control performance under several distributions.

Suppose that, at each sampling point ¢ = 1,2,..., a subgroup {X;1,X¢2,..., X¢n}
of size n following an unknown continuous distribution with c.d.f. (cumulative
distribution function) Fx(z|f) is collected where € is the location parameter to be
monitored. If § = 6y the process is declared as in-control and, if 8 = 61, the process
is declared as out-of-control. In this work, we consider 6§ as being the median of the
distribution. The two-sided EWMA chart based on the Sign statistic is defined by the
following formulas:

SNy =) Sij,
j=1

Zy = ASNy + (1 — )\)th17 Zy = EO(SNt)a (1)

where Eq(SN;) is the in-control expectance of SN; and S;; = sign(X;; — y) with
sign(x) = —1, 0 or +1 if x < 0,z = 0 or & > 0, respectively. Moreover, let
p =(p—1,p0,p+1) be the vector of probabilities:



p-1= P(Sm =-1)= (th < 00) FX(QO‘G)v
po = (St,] = 0) = P(Xt,; = o),
p+1="P(S; =+1) = P(Xy; > 0) = 1 — Fx(6o|0).

It should be noted that, the assumption of having samples from a continuous distri-
bution, prevents to have tied pairs for X;; and 6y and so, the event S;; = 0 is not
possible to occur. As a consequence, S ; can be either +1 or —1 and we have pg = 0
and p_1 = 1 — py1. The theoretical properties of SN; can be derived by taking into
account that SNy is defined on {—n,—n +2,...,n — 2,n} and its distribution can be
derived from the relationship SN; = 2D; — n, where D; is the number of observa-
tions {X¢1, X 2,...X¢ 5} larger than 6. Therefore, since p11 = P(X;; > 6), Dy is a
binomial random variable with parameters n and and success probability py;. As a
consequence, the c.d.f. Fgn,(s|n,ps1) of SNy is equal to

n—+s
Fsn, (s|n,pi1) = FBin< n, p+1> 2)

where s € {—n,—n+2,...,n—2,n} and Fpi,(...|n,ps1) is the c.d.f. of the binomial
distribution which depends on the sample size n and pyi. Additionally, when the
process is in-control p_1 = p4; = 0.5, and so the c.d.f. of SN; reduces to:

Fe, (s|n,0.5) = FBm<” 5,0, 5)

Using the relationship between SN; and Dy, the expectance and variance of SN; are
equal to

E(SN¢) = 2E(D;) — n = 2np41 —n,
V(SNt) = 4V(Dt) = 4np+1(1 _p—‘,—l)-

For the in-control case, since p_; = p41 = 0.5, the in-control expectance Eq(SN;) and
variance Vo(SN;) of SN; are simply defined as:

Eo(SNy)
Vo(SNy)

0,
n.

Therefore, the asymptotic upper and lower control limits of the two-sided SN EWMA
chart are obtained by using the following classical formulas (see,[7])

LCL = E(SNy) — K+/Vo(SN;) x ,/%,
UCL = EO(SNt) + K\/ VO(SNt) X \l %



If we consider the in-control values Eq(SN;) and Vo(SN;), the asymptotic upper and
lower control limits simply reduce to

nA

LCL = —-Ky/ ——
¢ 2—- )\

L=K .
UuC 5\

2.1. Performance

For EWMA-type schemes, the techniques that are commonly used for the computation
of their ARL and SDRL are the Markov chain method of Brook and Evans ([3]) and
the method of integral equations (Crowder [10]). Champ and Rigdon [9] compared
and showed that these two methods are actually equivalent when used with the
EWMA chart. Here, we proceed with the Markov chain method because it has been
widely used for the computation of the RL properties of nonparametric EWMA-type
charts. The method of Brook and Evans in [3], assumes that the operation of the
EWMA control chart can be well represented by a discrete-time Markov chain where
the control limit interval [LCL, UCL] is divided into 2m + 1 subintervals of width 2A
where A = % Moreover, let H; = w + 27A be the j-th midpoint of
state j = {—m, .m}. The tran81t10n probablhty matrix P for the two-sided
SN EWMA Chart is deﬁned as:

Q—m,—m <. Q—m,—l Q—m,O Q—m,l e Q—m,m T—m
Q-1-m --- Q11 Q10 Q11 ... Q-1m 71
p_(Q ry_| Q-m - Qo1 Qoo Qo1 ... Qom 70
0T 1 Qi-m - Qi1 Qo Qi1 .. Qim 11
Qm,fm <. Qm,fl Qm,O Qm,l .- Qm,m Tm
0 - 0 0 0 - 0 1

where Q is the (2m + 1,2m + 1) matrix of transient probabilities, 0T = (0,0,...,0)
andr=1-Ql1.In addltlon the transient probabilities, ) will be computed as:

H,+A—-(1—-MNH; H,—A—-(1—-MNH;
Qj,k:FSNt< i /\( ) ]’n,P+1>—FSNt< i )\( ) J!n7p+1>-

where Fyn,(z|n,py1) is the c.d.f. of SN; as defined in equation (2). Let q =
(G—my---,90y---,qm)T be the (2m + 1, 1) vector of initial probabilities associated with
the 2m + 1 transient states. In our case, we assume q = (0,...,1,...,0)T where the



value 1 at the m-th entry, corresponds to Zy = Eg(SN¢) = 0. When the number 2m+1
of subintervals is sufficiently large, this approach is supposed to provide an effective
method that allows the ARL and SDRL of continuous statistics to be accurately eval-
uated using the following classical formulas from the Markov chains theory (see, for
instance [16, 20])

ARL=q'I-Q)7'1,
SDRL = 1/2q7(I — Q)—2Q1 + ARL(1 — ARL).

Generally, in conventional parametric EWMA control charts for monitoring measure-
ment data from a continuous distribution as the number of subintervals (i.e. 2m + 1)
increases the method proposed by Brook and Evans [3] is known to be a reliable
approximation of the chart’s RL properties. On the other hand, as recent studies
have shown (see, for example, Wu et al. in [28]), when the classical method of Brook
and Evans [3] is used for the determination of the RL properties of a nonparmetric
EWMA chart, the ARL values are highly affected by the number of subintervals.
Consequently, the standard method of Brook and Evans [3] is not reliable for the
computation of the RL properties of a EWMA chart when a discrete statistic in being
used for monitoring the time between events. Similarly, Perdikis et al. in [23] verified
that the ARL values of a EWMA chart based on the Wilcoxon Signed Rank statistic
are highly affected by the number of subintervals.

Following [23, 28], in order to clarify further this point, we present in Table 1 some
in- and out-of-control pairs of (ARL,SDRL) values as a function of the number of
subintervals 2m + 1 € {51,61,...,201} for the two-sided SN EWMA chart with pa-
rameters A = 0.2, K = 2.75. The (ARL, SDRL) values have been calculated by using
the “standard” Markov chain method presented above. The (A, K) values have been
selected for illustrative purposes. In practice, for the EWMA schemes, a general rec-
ommendation is to set A = 0.2 and K =~ 2.7 (see, for example, [19]). Moreover, the
corresponding (ARL, SDRL) values have been estimated via Monte Carlo simulation
(10° runs) and they are presented in the last row (labelled as “sim”) of Table 1. From
Table 1, it can be seen that the ARL values of the two-sided SN EWMA chart ob-
tained using the “classical” Markov Chain method presented in [3] are affected by
the number of subintervals 2m + 1. In particular, regarding the in-control case, when
(n,p4+1) = (13,0.5) the ARL( values vary from 271.4 to 300.4 while the correspond-
ing simulated ARLy = 286.6. Similarly, when (n,py1) = (21,0.5) the ARL( values
vary from 275.9 to 306.4 while the corresponding simulated ARLg = 279.6. As a re-
sult, practitioners might not be able to find the optimal design parameters of the
two-sided SN EWMA chart if the ARLg values are computed through the standard
Markov Chain method presented in [3]. Additionally, the same pattern also occurs
for the out-of-control scenarios where, for each case, the corresponding ARL; values
are not stable. It is also worth stretching that exactly the same pattern occurs for
the corresponding SDRL values which clearly depend on the number of subintervals
2m + 1. As a consequence, based on the above findings, we can argue that the use
of the classical Markov chain method presented in [3], does not yield reliable results
regarding the determination of the chart’s in- and out-of-control performances in the
case of the two-sided SN EWMA control chart. In order to tackle this problem, in
the next Section, a simple methodology originally introduced in [28] will be proposed
which not only guarantees robust results for the in- and out-of-control ARL values,



but also allows to find an optimal pair (A*, K*) with corresponding ARLg to be ezactly
equal to the desired one (say for instance ARLy = 370.4).

2.2. The “continuousify” approach

In Section 2.1, we emphasized the fact that the number of subintervals 2m + 1 affects
the ARL values when the standard method of Brook and Evans [3] is used. As a so-
lution to this problem Wu et al. in [28] stated that a combination of the traditional
approach of Brook and Evans [3] along with a continuous transformation of the discrete
non-parametric statistic (such us the Sign or the Wilcoxon signed ranked statistic),
results to steady ARL values and makes their calculation unaffected by the number
of subintervals. More specifically, let X be a discrete random variable defined on the
set W = {41,19,...} with corresponding p.m.f. fx(¢|@) and @ be a vector of param-
eters. Then, the discrete random variable X can be represented by a new continuous
random variable, X*, defined as a mixture of normally distributed random variables
YJl, Y$2, ... where, for each ¢ € U, YJ; follows a normal distribution with mean
and standard deviation o (i.e. Y~ N(v,0)). Consequently, the corresponding p.m.f.
fx+(x]|0) and c.d.f. Fx-(x|0) of X* will be defined as:

Ppew
x-(210) = ) fx(¥|0) Fx(zly, o), (4)
Ppew

where fx(z[t,0) and Fx(z|, o) are the p.d.f. and c.d.f. of the N(¢, o) distribution,
respectively, and ¢ > 0 is a fixed parameter known as the “continuousify” parameter. It
is worth stretching that the choice of the Normal distribution for defining the p.m.f. and
c.d.f. in equations (3) and (4) is just a possible choice among many others. In particular,
Perdikis et al. in [23] already tested several symmetrical distributions/kernels (such as
Normal, Parabolic, Biweight, Triweight, Cosine) and they concluded that the choice
of the distribution has almost no impact on the computation of the ARL. Therefore,
the practitioner is free to choose the distribution (kernel) of his/her choice as it will
not significantly impact the results. For our proposed EWMA control chart based on
the Sign statistic, since SNy is defined in ¥ = {—n,—n 4+ 2,...,n — 2,n}, it can be
transformed into a new continuous one, based on the Normal Kernel, denoted as SNy
with corresponding p.d.f. fon:(s|n,py1) and c.d.f. Fsn: (s|n, py1) defined for s € R as:

fonz(sln,pr1) = > fein <¢Z+n|n,10+1> In(sl, o),

Yew

Fsn: (sln, py1) Z fBin ( ]n P+1> Fx(sly, o),

Ppew

where fgin(...|n,p+1) is the p.m.f. of the Binomial distribution with parameters n
and py1. Finally, the plotting statistic of the “continuousified” two-sided SN EWMA
(denoted as the C-SN EWMA chart) will be computed through the recursive formula
as:

Z; = ASN} + (L= N)Z{_y, Z5 = Bo(SN}). (5)



It can be easily proven that the in-control mean Eo(SN;}) and variance Vo(SN}) of SNy
are equal to:

Eo(SN7) = Eo(SNy) = 0, (6)
Vo(SNy) = Vo(SNy) + 0 = n + 07, (7)

and, therefore, the control limits LCL* and UCL* of the two-sided C-SN EWMA chart
are

2

LCL* = — K (”;_"A)A (8)
2)\

UCL* = + K (”;_"A) )

In Table 1, besides the in- and out-of-control pairs of (ARL,SDRL) values of the
two-sided SN EWMA chart (computed through the standard method of [3]), the
corresponding pairs of (ARL, SDRL) values of the proposed two-sided C-SN EWMA
chart (where the “continuousify” method is used) are also reported using the same
design parameters A\ = 0.2, K = 2.75. It should be noted that, in Table 1, even
though the value of ¢ = 0.2 is fixed, as it will be explained hereafter through a
numerical analysis, the results remain the same regardless the value of o. Finally,
the RL properties of the two-sided C-SN EWMA control chart, are derived through
the standard discrete-time Markov chain approach of Brook and Evans [3] presented
in Section 2.1 with the only difference that in the computation of the transient
probabilities @ the p.d.f. of SN; is substituted by the p.d.f. of the transformed
statistic SNy .

Based on the results in Table 1, we can conclude that:

e The in-control ARL values obtained using the standard method of Brook and
Evans [3] are affected by the number of subintervals 2m+1. As it was highlighted
in the previous Section, in case when (n = 21,p;; = 0.5) the ARLg values vary
from 275.9 to 306.4 while the corresponding simulated ARLy = 279.6.

e On the other hand, the use of the “continuousify” method of Wu et al.[28] yields
steady and robust results even small values like 2m + 1 ~ 51. More specifically,
when (n,py1) = (21,0.5), the ARL values obtained through “continuousify”
method converge to 280.3 quite soon even when 2m + 1 ~ 51. Strictly speaking,
only some minor differences in the first decimal place do exist but they are small
and will not affect the performance of the chart.

e [t is worth stretching that a similar behaviour is also noticed for the correspond-
ing SDRL values. For every case it can be clearly seen that the “continuousify”
method yields robust and stable SDRL results when 2m + 1 =~ 51.

Note also that it can be observed that the pairs of (ARL,SDRL) values obtained
with the “continuousify” method (see for example the cases when 2m 4+ 1 = 201), are
almost the same or just a bit larger than the ones obtained using simulations which
are given in the last line of Table 1.

Regarding the choice of the optimal value of the “continuousify” parameter o,
in Table 2 we present a sensitivity analysis under different combinations of n and p4



Table 1. Comparison of in- and out-of-control pairs of (ARL,SDRL) values for the two-sided SN EWMA
(without “continuousify”) and two-sided C-SN EWMA (with “continuousify” and o = 0.2) charts when A\ = 0.2
and K = 2.75.

(n=6,p41 =0.5) (n=8,p41 =0.5) (n=13,p41 =0.5) (n=21,py1 =0.5)

2m+1 SNEWMA C-SN EWMA SN EWMA  C-SN EWMA SN EWMA  C-SN EWMA SN EWMA  C-SN EWMA

51 (209.3,205.1) (309.3,304.9)  (328.2,323.8) (203.1,288.8) (207.1,293)  (287.4,2832)  (306.4,302.2)  (282.2,278)
61 (311.9,307.5) (309.8,305.4) (200,285.6)  (293.6,280.3)  (271.4,267.3) (287.1,282.9)  (285.5,281.3) (279.2,275.1)
71 (202.3,287.9) (310.1,305.7)  (276.8,272.5) (203.9,280.6)  (280.7.276.5) (287.4,283.2)  (283.3,279.2)  (279.6,275.4)
81 (312.5,308)  (310.3,305.9)  (309.2,304.8) (204.1,280.8)  (209.5,295.3) (287.6,283.4)  (277.9.273.7) (279.7,275.6)
91 (304.8,300.5)  (310.4,306) (207.4,203.1)  (294.3,280.9)  (284.7,280.5) (287.7,283.5)  (281.8,277.6)  (279.9,275.7)
101 (3125,308)  (310.5,306.1)  (285.9,281.6)  (294.4,290) (204.5,290.2)  (287.8,283.6) (301.2,297)  (280,275.8)
11 (3105,306.2)  (310.6,306.2) (287.3,283)  (204.4,200.1)  (282.3278.1) (287.9,283.7)  (282.8,278.7)  (280,275.9)
121 (309.4,305)  (310.6,306.2)  (201.7,287.4) (204.5,200.2)  (283.7,279.5)  (288,283.8) (283.8,279.7)  (280.1,275.9)
131 (315,310.6)  (310.7,306.3)  (284.6,280.2) (204.5,200.2)  (300.4,206.3)  (288,283.8) (276.7,272.6)  (280.1,276)
141 (310.6,306.2) (310.7,306.3) (291.2,287)  (294.6,290.3)  (286.9,282.7)  (288,283.8) (279.7,275.6)  (280.2,276)
151 (307.8,303.4) (310.7,306.3)  (300.2,295.9) (294.6,200.3)  (281.3,277.1) (288.1,283.8) (268.1,264)  (280.2,276.1)
161 (304.3300) (310.8,3064)  (300.1,295.7) (204.6,200.3)  (291.9,287.7) (288.1,283.9)  (281.9277.7) (280.2,276.1)
171 (305.9,301.5)  (310.8,306.4) (288,283.7)  (204.7,200.3)  (284.8,280.6) (288.1,283.9)  (282.6,278.5) (280.2,276.1)
181 (305.8,301.4) (310.8,306.4)  (204.3.280.9) (294.7,200.4)  (287.1,282.8) (288.1,283.9)  (278.2,274.1) (280.3,276.1)
191 (309.4,305)  (310.8,306.4)  (295.1,200.7) (294.7,290.4) (288,283.8)  (288.1,283.9)  (277.3,273.2)  (280.3,276.1)
201 (304.9,3005) (310.8,306.4)  (289.7,285.4) (294.7,290.4)  (200.8,286.6) (288.1,283.9)  (275.9,271.7) (280.3,276.1)
sim  (310.7,304.8) (293.9,289.2) (286.6,282.5) (279.6,274.3)
(n=7.pp1 =052) (n=8,py1 = 0.55) (n=19,p;1 = 0.53) (n=24,p1 =0.52)

2m+1 SN EWMA C-SN EWMA SN EWMA  C-SN EWMA SN EWMA  C-SN EWMA SN EWMA  C-SN EWMA

51 (202.3,197.5)  (225.5,220.7) (92.3,86.8)  (85.8,80.4) (91.6,86.4)  (92.8,87.6) (153.6,148.6)
61 (219.5,214.9) (225.8,221.1) (84.9,79.5)  (85.9,80.4) (91.3,86.2) (q; 1,87.9) (145.2,140.2)
71 (232,227.2) (225.221.3) (82.5,77.2)  (85.9,80.5) (92.3,87.1) (144 1,139.1)
81 (229.6,224.9) (88.7,83.2)  (85.9,80.5) (90,84.8) ( 9)
91 (226.6,221.9) (86.3,80.8)  (85.9,80.5) (92.4,87.1) ( 4)
101 (230,225.2) (83.8,78.4)  (85.9,80.5) (94.8,89.6) (15 5.2)
11 (227.9,223.2) (83.8,78.4) (86,80.5) (96.2,91) ( )
121 (217.92132) (85.1,79.7) (86,80.5) (92.987.7)  ( 1) ( 2)
131 (227.4,222.6) (83.5,78.1) (86,80.5) (92.7,87.5)  (93.3,88.1) (141 4,136.4)
141 (228.5,223.8) (84.9,79.5) (86,80.5) (93.7.885)  (93.3.88.1) (142.8,137.8)
151 (230.2,225.5) (86.7,81.3) (86,80.6) (92.8,87.6)  (93.3,88.1) (137.8132.9) (1429, 133)
161 (225.5,220.7) (86.5,81.1) (86,80.6) (94.3,80.1)  (93.3,88.1) (143.6,138.6)  (142.9,138)
171 (2261,221.4) (84.2,78.8) (86,80.6) (93.8,88.5)  (93.3,88.1) (143.9,138.9)  (143,138)
181 (227.5,222.7) (85.5,80.1) (86,80.6) (92.7,87.5)  (93.3,88.1) (142,137) (143,138)
191 (225.8,221.1) (85.6,80.2) (86,80.6) (92.5,87.2)  (93.3,88.1) (141.5,136.5)  (143,138)
201 (226.9,222.1) (84.4,79) (86,80.6) (94.1,88.8)  (93.3,88.1) (141.1,136.1)  (143,138)
sim  (225.8,220.7) (85.6,80.1) (92.9,87.6) (143,137.8)

for A = 0.2, K = 2.75, and o € {0.1,0.15,...,0.3}. Based on these results, it can
be clearly concluded that the ARL values obtained for the two-sided C-SN EWMA
chart are not only very stable, even for small values of 2m 4 1 = 51, but also they are
not seriously affected by the value of the “continuousify” parameter ¢ with only some
minor differences occurring in the first decimal place. As a consequence, as long as o
is neither too small nor too large, the results are not affected by its value. Therefore,
for the value of the “continuousify” parameter ¢ = 0.2 can be considered in the rest
of the paper as a reasonable choice.

Finally, the results of a numerical study for the performance of the two-sided C-SN
EWMA control chart are presented. The desired in-control ARL value is set equal to
370.4 and no head-start feature has been used (i.e Z§ = 0). In Table 3, the optimal pairs
of the design parameters (\*, K*) are provided for different shifts (p;1) and sample
sizes (n) along with the corresponding ARL; values setting the number of subintervals
equal to 2m+1 = 201. Since, we are investigating shifts in the process median (i.e when
the process is in-control we have py; = 0.5) an out-of-control value of p1; close to 0.5
corresponds to a “small” shift from 0y to #;. On the other hand, an out-of-control value
of p41 close 0 or 1 corresponds to a “large” shift from 6y to 6;. Note that, due to the
symmetry of the distribution (assuming 6y as the in-control median) it is only necessary
to investigate py1 € (0.5,1) since the results are the same for p;1 € (0,0.5). For the
determination of the optimal pair (A\*, K*) for the two-sided C-SN EWMA chart, the



Table 2. ARL values of the two-sided C-SN EWMA chart for A = 0.2, K = 2.75 and for fixed values of
o =1{0.1,0.15,...,0.3} and different combinations of (n, p+1).

(n,p1) = (7,0.5) (n,p1) = (13,0.5) (n,p1) = (15,0.5)

o o o
2m+1 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3

51 295.7 297.4 297.7 297.8 297.8 294.1 289.5 287.4 286.7 286.4 281.4 2821 2824 282.6 2828
61 298.5 298.3 298.3 298.4 298.4 286.5 287.0 287.1 287.0 286.9 283.8 283.2 283.1 283.2 2833
71 298.8 298.6 298.7 298.7 298.7 286.9 2874 2874 287.3 287.1 279.2 2824 2833 283.5 283.6
81 298.8 298.9 298.9 299.0 298.9 289.0 287.8 287.6 287.5 287.3 283.4 283.5 283.6 283.7 283.8
91 299.0 299.0 299.1 299.1 299.1 287.1 287.8 287.7 287.6 2874 283.3 283.6 283.7 283.8 283.9
101 299.1 299.1 299.2 299.2 299.2 287.9 2879 287.8 287.7 2875 284.4 283.7 2838 2839 284.0
111 299.2 299.2 299.3 299.3 299.3 288.0 287.9 287.9 287.8 287.6 283.8 283.8 2839 2840 284.1
121 299.2 299.3 2994 2994 299.4 287.9 288.0 287.9 287.8 287.6 283.8 283.8 2839 2840 284.1
131 299.3 299.4 2994 2994 299.4 288.1 288.1 288.0 287.9 287.7 283.8 283.9 284.0 284.1 2842
141 299.3  299.4 2994 299.5 299.4 288.1 288.1 288.0 287.9 287.7 283.9 283.9 284.0 284.1 2842
151 299.4 299.4 299.5 299.5 299.5 288.1 288.1 288.1 287.9 287.7 283.9 283.9 284.0 284.1 2842
161 299.4 299.4 299.5 299.5 299.5 288.1 288.1 288.1 287.9 287.7 283.9 284.0 284.1 2842 2842
171 299.4 299.5 299.5 299.6 299.5 288.1 288.1 288.1 287.9 2878 283.9 284.0 284.1 284.2 2843
181 299.4 299.5 299.5 299.6 299.5 288.2 288.2 288.1 288.0 287.8 283.9 284.0 284.1 2842 2843
191 299.5 299.5 299.6 299.6 299.6 288.2 288.2 288.1 288.0 287.8 283.9 284.0 284.1 284.2 2843
201 299.5 299.5 299.6 299.6 299.6 288.2 288.2 288.1 288.0 287.8 283.9 284.0 284.1 284.2 2843

(n,p1) = (18,0.53) (n,p1) = (22,0.55) (n,p1) = (25,0.6)
I o 4
g 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3
51 97.7 977 977 97T 977 35.8 357 357 357 358 9.1 9.1 9.1 9.1 9.1
61 99.7 985 979 978 97.8 35.6 357 357 357 358 9.1 9.1 9.1 9.1 9.1
71 97.8 978 97.7 978 978 35.5 356 357 357 358 9.1 9.1 9.1 9.1 9.1
81 97.6 97.7 97.8 978 97.8 35.6 357 357 357 358 9.1 9.1 9.1 9.1 9.1
91 97.9 978 97.8 978 97.8 35.6 357 357 357 358 9.1 9.1 9.1 9.1 9.1
101 97.8 978 97.8 978 97.8 35.6 357 357 357 358 9.1 9.1 9.1 9.1 9.1
111 97.7 978 97.8 978 97.8 35.6 357 357 357 358 9.1 9.1 9.1 9.1 9.1
121 97.8 978 97.8 978 978 35.7 357 357 357 358 9.1 9.1 9.1 9.1 9.1
131 97.8 978 97.8 978 97.8 35.7 357 357 357 358 9.1 9.1 9.1 9.1 9.1
141 97.8 978 97.8 978 97.8 35.7 357 357 357 358 9.1 9.1 9.1 9.1 9.1
151 97.8 978 97.8 978 978 35.7 357 357 357 358 9.1 9.1 9.1 9.1 9.1
161 97.8 978 97.8 978 978 35.7 357 357 357 358 9.1 9.1 9.1 9.1 9.1
171 97.8 978 97.8 978 978 35.7 357 357 357 358 9.1 9.1 9.1 9.1 9.1
181 97.8 978 97.8 978 978 35.7 357 357 357 358 9.1 9.1 9.1 9.1 9.1
191 97.8 978 97.8 978 978 35.7 357 357 357 358 9.1 9.1 9.1 9.1 9.1
201 97.8 978 97.8 978 97.8 35.7 357 357 357 358 9.1 9.1 9.1 9.1 9.1

following procedure was utilised: Find out the optimal pair (A\*, K*) such that for a
fixed value of sample size n, we have ARL(n, \*, K*,p4; = 0.5) = 370.4 and, for a fixed
value of p;1 € {0.55,0.6,...,0.95}, ARL(n, \*, K*,p11) is the smallest out-of-control
ARL. It is worth mentioning that (see, for example, [5]), for the two-sided Shewhart
chart based on the Sign statistic it is impossible to obtain an in-control ARLg ~ 370
for small values of the sample size n (e.g. for n € {2,3,...,10}). Additionally, for small
values of \ singularity problems might occur during the optimization procedure. On
the contrary, based on the results presented in Table 3, it can be observed that, in
the proposed C-SN EWMA scheme, we are able to find an optimal pair of parameters
(A*, K*) giving an ARLg ezactly equal to 370.4 even for n = 2 and A =~ 0.02. For
the above computations, the Markov chain method presented in Section 2.1 was used
and all the calculations were performed in R. For any combination of A and K and
for given values n and pii, by using a computer with Intel(R) Core(TM) i7-7500U
CPU, it takes about 0.5 seconds to get the values (ARL,SDRL) for the two-sided
C-SN EWMA chart using for 2m + 1 ~ 101. On the other hand, in order to obtain a
relatively robust result with the standard method of Brook and Evans, the number of
subintervals should be at least 2m + 1 ~ 501 (see, [14]). The corresponding time for
these computations is 1.42 seconds.

3. Distribution of the Sign statistic when ties are present
Generally, the smooth operation of a control chart during the on-line process moni-

toring, besides it’s theoretical optimal design, relies on the sample’s values accuracy
collected at each sampling point t. However in practice, due to the measurement
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Table 3. Optimal combinations of (A*, K*) for the two-sided C-SN EWMA chart along with the corresponding
ARL; values.

P+1

n 0.55 0.60 0.65 0.70 0.80 0.85 0.9

2 (0.02,2.138,135.61)  (0.02,2.138,57.65)  (0.04,2.41,33.49 ) (0.06,2.54,22.2)  (0.12,2.693,11.97)  (0.16,2.719,9.3) (0.195,2.72,7.43)
3 (0.02,2.14,106.54)  (0.03,2.304,44.087) (0.055,2.509,25.13) (0.085,2.62,16.48)  (0.15,2.737,8.72)  (0.19,2.769,6.81)  (0.31,2.757,5.38)
4 (0.02,2.138,89.04)  (0.035,2.363,36.21)  (0.065,2.57,20.38)  (0.1,2.682,13.26)  (0.185,2.775,7.01) (0.215,2.783,5.46)  (0.33,2.798,4.32)
5 (0.02,2.138,77.25)  (0.04,2.407,31.03) (0.08,2.621,17.3)  (0.12,2.726,11.18) (0.215,2.814,5.89) (0.345,2.815,4.59) (0.455,2.799,3.46)
6 (0.02,2.137,68.74)  (0.05,2.489,27.27)  (0.09,2.661,15.11)  (0.135,2.746,9.76)  (0.27,2.844,5.06)  (0.295,2.848,3.91) (0.315,2.849,3.13)
7 (0.02,2.137,62.29)  (0.055,2.513,24.44) (0.1,2.69,13.46) (0.145,2.771,8.67)  (0.33,2.857,4.53)  (0.37,2.861,3.48)  (0.38,2.862,2.81)
8 (0.02,2.137,57.2) (0.06,2.548,22.2) (0.11,2.709,12.19)  (0.175,2.805,7.82)  (0.285,2.863,4.09)  (0.36,2.866,3.18) (0.4,2.865,2.56)
9 (0.025,2.229,53.03) (0.065,2.572,20.38)  (0.12,2.736,11.15)  (0.18,2.811,7.16)  (0.345,2.881,3.72)  (0.38,2.882,2.91)  (0.715,2.838,2.19)
10 (0.025,2.231,49.47)  (0.07,2.594,18.88)  (0.135,2.76,10.29) (0.195,2.83,6.6)  (0.375,2.887,3.45)  (0.66,2.866,2.65)  (0.67,2.865,1.94)
11 (0.025,2.228,46.48) (0.075,2.616,17.61)  (0.135,2.763,9.58)  (0.205,2.835,6.14) (0.525,2.894,3.22)  (0.545,2.893,2.4)  (0.565,2.891,1.87)
12 (0.03,2.303,43.85)  (0.08,2.632,16.53)  (0.145,2.781,8.96)  (0.23,2.856,5.73)  (0.47,2.902,2.98) (0.485,2.9,2.3) (0.505,2.898,1.84)
13 (0.03,2.3,41.57) (0.085,2.652,15.57)  (0.165,2.802,8.44)  (0.24,2.866,5.39)  (0.435,2.908,2.8)  (0.745,2.889,2.05)  (0.77,2.885,1.5)
14 (0.03,2.303,39.55)  (0.095,2.68,14.74) (0.16,2.802,7.98) (0.26,2.873,5.1) (0.595,2.91,2.65)  (0.625,2.907,1.95) (0.645,2.905,1.49)
15 (0.035,2.36,37.73) (0.095,2.683,14) (0.17,2.811,7.57) (0.25,2.874,4.84)  (0.535,2.915,2.49)  (0.555,2.914,1.89)  (0.56,2.914,1.49)
16 (0.035,2.362,36.1) (0.1,2.696,13.35) (0.18,2.824,7.2) (0.27,2.884,4.6) (0.48,2.921,2.38) (0.78,2.91,1.77) (0.8,2.91,1.33)
17 (0.035,2.361,34.65) (0.105,2.708,12.76)  (0.19,2.836,6.87) (0.28,2.888,4.4) (0.65,2.921,2.25)  (0.69,2.918,1.64)  (0.71,2.916,1.26)
18 (0.04,2.411,33.3) (0.11,2.721,12.22)  (0.195,2.838,6.59)  (0.285,2.894,4.21)  (0.59,2.926,2.13)  (0.59,2.926,1.62)  (0.95,2.874,1.27)
19 (0.04,2.411,32.07)  (0.115,2.73,11.74) (0.2,2.846,6.32) (0.34,2.913,4.03)  (0.51,2.931,2.09) (0.8,2.924,1.56)  (0.815,2.925,1.21)
20 (0.04,2.411,30.96)  (0.12,2.743,11.29) (0.22,2.861,6.07)  (0.305,2.903,3.89)  (0.69,2.93,1.94) (0.72,2.928,1.43)  (0.73,2.928,1.14)

system resolution, the real values X; ; are not directly observed. Instead, a measured
value X # X;; is obtained introducing a rounding-off error Wthh results in
a dlscretlzatlon of the observed measures. Note that, even if the sample’s true
distribution is continuous, the presence of rounding-off errors might result in “ties”
between the real values X; ; and the in-control value 0y of the median.

A well known linear measurement error model to account for three well-known
sources of error is (see [17]):

Xij =

LA + BX;j +e + EJM (10)

P 2

where the constants (A, B) are related with the bias- linearity error, the noise €; ; (r.v.)
accounts for the precision error and p is a parameter quantifying the device resolution,
which introduces a rounding-off error. More specifically, if p is the resolution of the
measurement system then X;j =z if Xy j € (x—§,2+5§). For instance, if p = 0.2 and

0o = 100 then possible measured values X, -~ are {...99.6,99.8,100,100.2,100.4, ...}

and, if the real value is X; ; = 100.038, then the measured observation is X tj = = 100.
As a consequence, a tie is generated. In general, the rounding-off error introduced by
the device resolution in the measurement of the true value of a quality characteristic,
results in a discretization of the observed quality characteristic and, in case of contin-
uous measurements, the probability of having ties is therefore increased. In this work,
we will investigate the effect of the tool resolution by maintaining the assumption
of a perfect tool calibration, (A, B) = (0,1) and overlook the precision error. As a
consequence, the error model given in (10) will simply be defined as:

(11)

’ Xt,]
tvj -

+1J

In Section 2, it was stated that when X is a continuous random variable, regardless
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the value of 6, we always have pg = P(X;; = 6p) = 0. However, due to the occurrence
of tied observations caused by the rounding-off errors of the measurement system ,
the statistic S ; presented in Section 2 is no longer defined on {—1,1} but rather
on {—1,0,1}. As a consequence, S ; = sign(X;; — 6p) has to be replaced by S;; =
sign(XI; ; — o) and the vector of probabilities p = (p—1,po, p+1) must be redefined as:

p_1=P(X;; <) =P (Xt,j < — g) = Fx (90 - g\9> :

Do :P(X;j :9(]) =P (90— g < X@j < 90‘*’%)

= Fx (00 + £10) = Fx (00— 210) .

pi1=P(X,; >0) =P (Xt,j > 0 + g) —1- Fy (90 v g\e) .

Without loss of generality, let us assume that the process shift can be expressed in
terms of the standardized distribution shift of magnitude 4, as 67 = 6y + dw. Also,
we assume that F'x(z|f) belongs to a location-scale family of distributions which can
be rewritten as Fx(z|f) = FZ(%%) where w is the standard deviation of X. If we
define the quantity x = 5 as the standardized resolution, the vector of probabilities

p = (p—1,p0,p+1) can be rewritten as:

p-1=1Fy <—g —5>7

po=1s(5-0) - Pz (-5 -9). (12
pi=1-Fy (gﬂs).
which simplify to
pa=rz(-3).
po=1%(5) -2 (-3).
pa=1-1%(3).

when the process is in-control (i.e. 6 = 0). It can be clearly concluded that, the
variable SN; is no longer defined on {—n, —n+2,...,n—2,n} but it is rather defined
on {—n,—n+1,...,n—1,n} and the p.m.f. of SN; cannot be computed through the
binomial distribution as in (2). The p.m.f. fgn,(s|n,p) of SN; in presence of ties has
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already been derived by Castagliola et al. in [4] and is equal to

[%52] .
n =1\ i n—s—2i s+i
fon (slnp) = (Z> <S+i>p_1po Hpsh. (13)

i=max(0,—s)

Finally, regarding the computation of the distribution of the transformed variable,
SN}, when ties are present it will be computed as:

fSN;‘ (s|n,p) = Z fSNt (1/}|nvp) fN(SWJaU)v

Yew

Fsn; (sln,p) = > fon, (¢[n, p) Fn(s|¢), o),

pew

where fsn, (¢¥|n,p) is the p.m.f. of SN, when ties are present defined in (13) with
parameters n and the vector of probabilities p = (p_1, po, p+1) presented in (12) . Note
that, when ties are present, the two-sided C-SN EWMA chart is no longer distribution-
free since the in-control distribution of SN; depends on Fx(x|6) through the vector
of probabilities p = (p—1, po, p+1)- Additionally, the domain ¥ depends on the value
of k. More specifically, when kK = 0, ¥ € {—n,—n +2,...,n — 2,n} and for k > 0,
Vef{-n—n+1,...,n—1,n}

4. Effect of the measurement system resolution

In this Section, we will investigate the effect of the measurement system resolution and
the related probability to have tied observations under different design scenarios. As
it was previously stated, in cases where ties are present, the proposed C-SN EWMA
chart, is no longer distribution free. In order to investigate the chart’s RL properties,
following a semi-parametric design already suggested in [4], we will examine the in-
and out-of-control robustness of the two-sided C-SN EWMA chart under a benchmark
of 17 Johnson’s type distributions covering a wide range of skewness v3 and kurtosis
~4. By definition, a Johnson’s-type distribution depends on four parameters a, b > 0,
c and d > 0 and it is defined as:

e bounded on [¢,c + d] (denoted as B in Table 4) with Fz(z) equal to:

Fy(z) = FN<a+ bIn (Ci‘lf:) >

e unbounded on (—o0,0) (denoted as U in Table 4) with Fz(z) equal to:

Fy(z) = Fx <a + bsinh ™ <x;0) )

The vector of parameters a, b, c,d for the 17 Johnson’s type distributions (Table 4),
are such that the conditions med(Z) = 0 (for the median) and o(Z) = 1 (for the
standard-deviation) are fulfilled. In terms of skewness (vy3) and kurtosis (74), cases
1-6 correspond (without being exactly identical) to some well known symmetric
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Table 4. Benchmark of 17 Johnson’s type distributions.
Y4 type a b c d

case 7

@

1.7464  0.69076 -0.48932 6.6213
3.3279 1.227  -1.0016  16.088
-4.85600 1.8044 -1.41900 0.19332
-1.0444 1.432 -0.65538 0.82361
-0.52977  1.2093 -0.33154 0.73314
-0.34371  1.0892  -0.2023  0.63054
52193 0.98134 -0.47316 97.043
-4.01870  1.0864 -0.56652 0.02806
-0.75701  0.98744 -0.32033 0.37954
-0.43187  0.90797 -0.18538 0.37543
-0.29868 0.85558 -0.12122  0.34029

1 0 -1.2 0 0.64646 -1.81530 3.63060
2 0 -06 0 1.39830 -3.10970  6.21950
3 0 0 0 100 0 100

4 0 1 0 2.3212 0 2.10940
5 3 0 1.6104 0 1.31180
6 6 0 1.3493 0 1

7 :
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distributions. More specifically, case 1 corresponds to the uniform distribution, case 2
corresponds to the triangular distribution, case 3 corresponds to the normal distribu-
tion (setting b = d = 100) and cases 4-6 correspond to the Student ¢ distribution with
10, 6 and 5 degrees of freedom, respectively. Finally, cases 7-17 cover a large variety
of asymmetric distributions with various values for the skewness y3 > 0 and kurtosis
v4 > 0. A graphical reprensentation of all these Johnson’s distribution can be found
in page 116 in [4].

In this work, we aim to present a suitable procedure to reduce or, ideally, eliminate the
effect of the rounding-off error providing an efficient design of a nonparametric Sign
EWMA chart capable of handling scenarios where tied observations occur during the
process monitoring. The rest of this Section is organised as follows. For the 17 John-
son’s type distributions presented in Table 4, the ARL values of the two-sided C-SN
EWMA control chart will be presented for shifts 6 € {—0.5,—0.2,—-0.1,0,0.1,0.2,0.5}
and for standardized resolution x = 0 (without ties) and x € {0.05,0.1,0.2} (with
ties) using two different strategies. More specifically, in Section 4.1 the same control
limits (UCL*, LCL*) will be used, for the 17 Johnson’s type distributions. In Section
4.2 a Bernoulli trial-based approach will be investigated where tied observations will
be equally treated as negative or positive differences. For each approach and a fixed
value of n = 20 , two optimal pairs (A\*, K*) listed in Table 3 will be investigated:

e The first optimal pair is (A\* = 0.12, K* = 2.743). This one corresponds to
the optimal pair (\*, K*) for detecting a shift corresponding to a small value
p+1 = 0.6 for n = 20. The value p;; = 0.6 is considered as a small shift in the
in-control process median.

e The second optimal pair is (A\* = 0.72, K* = 2.928). This one corresponds to
optimal pair (A*, K*) for detecting a shift corresponding to a moderate to large
value py1 = 0.85 for n = 20. The value p;11 = 0.8 corresponds to a moderate
shift in the in-control process median.

4.1. Run length properties of the C-SN EWMA using the traditional
control limits

In this section we will examine the RL properties of the two-sided C-SN EWMA chart
under tied scenarios using the charting statistic defined in equation (5) and the fixed
control limits as defined in equations (8) and (9). Regarding the computation of the
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control limits, the in-control mean, Eo(SN}) and variance, Vo(SN;}) of SN} will be the
same for all the cases regardless the underlying distribution as defined in (6) and (7).
From the results in Table 5 (top) we can conclude the following:

e For k = 0 the in-control values of ARL are steady and exactly equal to 370.4
(as expected). Note that this is an advantage of our proposed scheme since,
regardless the sample size, it can be designed giving a corresponding in-control
ARL value, to be exactly equal to the predefined value of ARLg. On the other
hand, for k > 0, even for small values of k, the in-control ARL values are
different. For example when (py1,A, K) = (0.6,0.12,2.743) and x = 0.05 we
have ARLg = 391.1 for case 1 and ARLy = 432.2 for case 15. In addition, for
heavy tailed distributions ( i.e for large values of v4) the ARL values become
larger (see for example the last four cases).

e For the first 6 symmetric cases the corresponding out-of-control values are the
same for shifts 6 and —¢§ regardless the value of k. On the other hand, for the
asymmetric cases, negative shifts, § give larger ARL; values than positive ones.
For example, in case 10, when (p41,\, K) = (0.6,0.12,2.743) and x = 0.2 for
6 = —0.1 we have ARL; = 37.7 and for 6 = 0.1 we have ARL; = 30.6.

e Regardless the type of distribution, as x increases the out-of-control ARL;
values are becoming larger. For instance, for 6 = 0.1 and (p41,\, K) =
(0.85,0.72,2.928) we have ARL; = 131.7 for k = 0, ARL; = 143.4 for x = 0.05,
ARL; = 157.4 for k = 0.1 and ARL; = 193.9 for k = 0.2.

4.2. Run length properties of the C-SN EWMA under the “flip a coin
strategy”

As it has been proposed by Castagliola et al. in [4], an efficient strategy to handle ties
in the design of a Sign chart is the “flip a coin” strategy in which the probability pg is
equally allocated on both sides for values S;; = +1 and S; ; = —1. More specifically,
for each value S;; = 0 it is proposed the transformation S;; = 2A;; — 1 where
A j ~ Ber(0.5) is a Bernoulli random variable of parameter 0.5. As a consequence,
applying this strategy is equivalent to consider the two-sided C-SN EWMA control
chart in the “without ties” case with the following new probabilities:

Po

Pl =p_1+ o
po =0,

Po

P =pi+ o

In Table 6, the in-control (§ = 0) vectors of probabilities p’ = (p’_;, pf,p/,;) for the
17 distributions are reported for different values of k. We can conclude that when
r = 0, as expected, we always have pj = 0,p’ ; = p__; = 0.5 no matter the considered
distribution. Moreover, for the symmetric cases 1 — 6, (when x > 0) we always have
P’y = p_; = 0.5 This is also an expected result. Finally, for the asymmetric cases,
even though p/ ; differs from p’ ; all the p/,; values remain really close to 0.5, since
Ip'.; — 0.5] < 0.01 for the cases 7-17. Next, using the new p’ i, p’,; probabilities, we
evaluated the performance of the C-SN EWMA chart. Based on the results presented
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Table 5. ARL values when n = 20 for (p41,\, K) = (0.6,0.12,2.743) and (p41,\, K) = (0.85,0.72, 2.928)
with(top) and without(bottom) the “flip a coin” strategy.

Without the

“flip a coin” strategy

(p+1, A, K) = (0.6,0.12,2.743)

K = 0.05 k=01 k=02
§ 5 [
case -0.5 01 02 05 05 01 0 01 02 05 02 01 0 01 02 05 -05 -02 -01 0 01 02 05
1 68 935 286 6.8 6.9 956 3911 956 288 6.9 200 978 4134 978 200 6.9 68 205 1023 4640 1023 295 638
2 53 642 193 5.3 5.3 65.7 3968 655 194 5.3 195 671 4259 67.0 195 53 53 198 70.5 4940 703 198 53
3 47 53.6 163 4.7 47 54.7 3999 547 163 4.7 164 559 4328 559 164 47 167 588 5114 588 167 48
4 43 454 140 43 13 463 4031 463 141 4.3 141 473 4399 473 141 43 144 497 5206 497 144 43
5 39 37.5 119 3.9 3.9 382 407.1 382 119 39 120 390 4490 390 120 3.9 122 411 5539 4L1 122 40
6 36 318 104 3.6 3.6 323 4110 323 104 3.6 105 330 4581 330 105 3.6 107 348 5787 348 107 3.7
743 215 64 2.0 13 30.5 4165 215 64 20 1.1 318 4681 209 63 20 1.6 369 5361 185 59 20
8 44 308 93 28 44 371 4096 312 93 28 124 383 4543 312 93 28 129 425 5563 304 91 28
9 44 335 102 3.1 44 388 4081 340 102 3.1 127400 4510 342 102 3.1 131 439 5531 340 101 3.1
10 40 207 94 31 1.0 33.6 4113 301 94 3.1 112 345 4587 304 94 3.1 1.6 37.7 5750 306 94 31
1136 252 83 3.0 3.6 280 4160 255 84 3.0 97 288 4696 258 84 3.0 100 314 6062 263 85 3.0
12 34 217 75 29 3.4 239 4207 220 75 29 86 245 4809 223 76 29 88 267 6394 229 T7 29
13 33 127 44 20 3.3 181 4353 127 43 20 74 189 5089 123 43 20 77220 5472 110 41 20
4 34 150 51 20 35 204 4205 149 50 20 80 212 4980 147 50 20 83 244 5841 134 48 20
15 32 148 53 22 3.2 186 4322 149 54 22 73 192 5069 149 54 22 76 218 6552 145 54 22
16 3.0 133 51 23 3.0 159 4386 134 51 23 65 164 5235 135 52 23 68 185 7209 136 53 23
17 28 118 48 23 2.8 138 4457 119 48 23 58 142 5423 121 48 23 6.1 160 7873 125 50 23
(41, K) = (0.85,0.72,2.928)

k=0 K =0.05 K=0.1 K=02

5 § 5 5
case -05 0.2 01 0 01 02 05 05 02 -01 0 01 02 05 05 -02 -01 0 0l 02 05 05 -02 -01 0 01 02 05
1127 1037 2369 3704 2369 1037 127 129 1085 2517 3982 2517 1085 129 131 1136 2680 4292 2680 113.6 13.1  13.6 1254 3057 5023 3057 1254 136
273 682 1929 3704 1927 681 73 74 715 2071 406.0 2069 Tl4 74 75 753 2233 4468 2230 752 7.5 77 845 2621 5474 2618 844 7.7
3 57 549 1718 3704 1718 549 57 58 577 1853 4103 1853 577 5.8 58 609 2009 456.7 2009 60.9 5.8 6.0 688 2394 5739 2394 6.0
4 46 447 1528 3704 1528 447 46 47 470 1656 4147 1656 470 4T 47 497 1806 466.9 180.6 49.7 4.7 49 565 2183 6021 2183 4.9
5 37 350 1317 3704 1317 350 3.7 38 367 1434 4203 1434 367 338 38 389 1574 4803 1574 389 38 3.9 445 1939 640.5 1939 3.9
6 32 280 1143 3704 1143 280 32 32 204 1250 4257 1250 204 32 32 312 1381 4936 1381 312 32 33 359 1730 680.1 173.0 33
747 303 1077 3704 770 111 10 47 317 1179 4338 846 115 10 47 337 1323 5134 912 117 10 49 399 1803 7309 989 1.0
8 48 366 1281 3704 1111 232 18 48 384 1396 4238 1215 243 18 49 408 1545 4889 1326 255 18 50 475 1983 664.5 156.0 18
9 47 381 1332 3704 1198 272 23 48 399 1450 4217 1307 286 23 48 424 1599 4838 1428 3001 23 50 491 2024 6501 170.1 2.3
10 39 313 1179 3704 107.3 234 22 39 328 1288 4262 117.5 246 23 40 348 1428 4948 1202 259 23 41 405 1831 6834 1569 2.3
1132 243 999 3704 915 189 21 32 254 1096 4328 100.5 198 2.1 32 27.0 1224 5110 1113 209 22 33 316 160.1 7341 1385 2.2
12 27 193 850 3704 782 154 2.0 27 202 937 4394 862 161 2.0 28 215 1052 5279 961 170 20 28 253 1405 7894 1225 2.1
13 26 145 617 3704 388 47 10 26 151 684 4610 427 48 10 27 160 786 5844 462 49 10 27 192 1178 9542  50.0 1.0
14 28 169 7L1 3704 490 66 10 28 176 786 4525 541 68 1.0 29 187 897 5619 591 69 10 29 223 1206 889.0 66.7 1.0
15 25 143 636 3704 485 7.5 12 25 148 705 4561 537 77 12 25 158 806 5717 598 81 12 26 189 1167 9343 740 13
16 21 111 522 3704 415 68 13 21 115 580 4652 461 7.0 13 21 122 667 5967 520 7.3 13 22 147 988 10328 683 14
17 19 88 427 3704 347 59 13 19 91 475 4756 386 60 13 19 97 551 6260 440 64 13 20 116 839 11541 60.6 14

With the “fip a coin” strategy
(p+1, A K) = (0.6,0.12,2.743)

k=0 K = 0.05

5 § 5 [
case  -0.5 01 0 01 02 05 05 -02 -01 0 0l 02 05 02 01 0 01 02 05 -05 -02 -01 0 01 02 05
168 93.5 3704 935 286 6.8 68 286 935 3704 935 286 6.8 286 935 3704 935 286 6.8 68 286 934 3704 934 286 638
2 53 643 3704 642 193 53 53 193 643 3704 642 193 53 193 643 3704 642 193 53 53 194 646 3704 645 194 53
3 47 53.6 3704 536 163 4.7 47 163 536 3704 536 163 4.7 163 537 3704 537 163 47 48 164 541 3704 541 164 48
4 43 45.4 3704 454 140 4.3 43 140 454 3704 454 140 43 14.0 455 3704 455 140 43 44 142 460 3704 460 142 44
5 39 37.5 3704 375 119 3.9 39 119 375 3704 375 119 3.9 1.9 377 3704 377 119 39 40 121 382 3704 382 121 40
6 36 318 3704 318 104 3.6 36 104 318 3704 318 104 3.6 105 320 3704 320 105 36 37 106 326 3704 326 106 3.7
743 208 3704 215 64 2.0 43 109 300 3702 212 64 2.0 1.0 308 3677 204 63 20 44 115 344 3316 178 59 20
8 44 36.3 3704 308 93 28 44 123 365 3704 307 93 28 124 370 3699 302 93 28 44 127 395 3631 286 9.1 28
9 44 380 3704 335 102 3.1 44 126 382 3704 334 102 3.1 127 387 3701 331 102 3.1 44 130 407 3663 319 101 3.1
10 40 32.9 3704 297 94 3.1 40 111 330 3704 296 94 3.1 112 335 3702 204 94 3.1 40 115 352 3672 288 94 3.1
1136 27.5 3704 252 83 3.0 36 96 276 3704 252 84 3.0 37 97 280 3702 251 84 3.0 37 99 205 3675 249 84 3.0
12 34 235 3704 217 75 29 34 85 236 3704 218 75 29 34 85 239 3702 218 7.6 29 34 88 253 367.6 218 77 29
13 33 178 3704 127 44 20 33 73 180 3700 126 43 20 33 74 185 3642 122 43 20 34 77 210 2017 108 41 20
14 34 200 3704 150 51 20 34 79 202 3701 148 50 20 35 80 207 3665 144 50 20 35 83 231 3192 131 48 20
15 32 182 3704 148 53 22 32 73 184 3703 148 54 22 32 73 188 3683 146 54 22 33 76 208 3407 141 54 22
16 3.0 157 3704 133 51 23 30 64 158 3703 133 51 23 30 65 162 3688 133 52 23 30 68 178 3475 133 53 23
17 28 136 3704 118 48 23 28 58 137 3703 119 48 23 28 58 140 3689 119 49 23 28 61 155 3500 122 50 23

(P41, A\ K) = (0.85,0.72,2.928)

k=0 K = 0.05 k=01 k=02

5 § 5 [
case <05 -02 01 0 01 02 05 05 01 0 01 02 05 05 -02 -01 0 0l 02 05 05 -02 -0.1 0 01 02 05
1127 1037 2369 3704 2369 1037 127 127 236.9 3704 2369 103.7 127 127 1037 2369 3704 2369 103.7 127 127 103.6 2368 3704 2368 103.6 127
273 682 1927 681 7.3 7.3 193.0 3704 1928 681 7.3 73 683 1931 3704 1929 682 73 73 686 1935 3704 1933 685 7.3
3 57 549 1718 549 5.7 5.7 1718 3704 1718 550 5.7 5.7 1720 3704 1720 551 5.7 58 555 1728 3704 1728 555 5.8
446 447 1528 447 4.6 47 1529 3704 1529 448 47 47 153.2 3704 1532 449 47 47 455 1542 3704 1542 455 4.7
5 37 350 1317 350 3.7 3.7 1318 3704 1318 350 3.7 3.8 1322 3704 1322 352 38 38 358 1337 3704 1337 358 38
6 32 280 1143 280 3.2 3.2 1144 3704 1144 281 32 3.2 1149 3704 1149 283 32 32 200 1168 3704 1168 200 32
747 303 770 1L1 10 47 1086 3704 759 110 1.0 47 112 369.9 729 106 1.0 48 330 1226 3623 618 92 1.0
8 48 366 111 232 18 4.8 1287 3704 1106 231 18 48 1304 370.3 1091 229 18 49 387 1374 3690 1035 221 18
9 47 381 1198 27.2 23 47 1336 3704 1194 272 23 48 135.0 370.3 1184 270 23 48 399 1407 369.6 1146 265 23
10 39 313 107.3 234 22 3.9 1183 3704 107.1 234 22 3.9 119.6 3704 1065 234 23 40 329 1249 3698 1042 233 23
1132 43 915 189 21 3.2 1003 3704 914 189 2.1 3.2 1015 3704 912 190 2.1 33 258 1066 369.8 903 192 22
12 27 193 782 154 20 2.7 854 3704 782 154 20 2.7 86.7 3704 782 155 20 28 207 9LT  369.9 785 160 2.0
13 26 145 388 47 10 2.6 62.5 3703 381 47 10 2.6 648 3692 363 46 10 162 751 3523 300 42 10
4 28 169 490 6.6 1.0 2.8 718 3703 484 65 1.0 2.8 740 3697 467 64 1.0 186 837 3594 405 60 1.0
15 25 143 485 75 12 25 642 3704 483 75 12 25 66.1 3700 476 7.5 12 158 743 3644 451 7.7 13
16 2.1 11.1 41.5 6.8 1.3 2.1 52.8 3704 415 6.8 1.3 2.1 54.5  370.1 415 6.9 1.3 124 61.8 365.8 414 7.3 1.3
1719 88 347 59 13 1.9 43.2 3704 348 59 13 1.9 448 3701 352 60 13 100 516 3663 365 65 1.3
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Table 6. Vector of in-control probabilities (le R p6,p’+1) with the “flip a coin” strategy for the 17 distributions
in Table 4.
case k=20 r =0.05 k=0.1 k=02

1 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000

2 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000

3 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000

4 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000
5 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000
6
7
8

0.5000  0.0000 0.5000 0.5000  0.0000 0.5000 0.5000  0.0000  0.5000 0.5000  0.0000 0.5000

0.5000  0.0000 0.5000 0.4996 0.0000 0.5004 0.4986 0.0000 0.5014 0.4942  0.0000 0.5058

0.5000  0.0000 0.5000 0.4999  0.0000 0.5001 0.4994 0.0000 0.5006 0.4976  0.0000 0.5024
9  0.4999 0.0000 0.5001 0.4998  0.0000 0.5002 0.4995 0.0000 0.5005 0.4982  0.0000 0.5018
10 0.5000 0.0000 0.5000 0.4999  0.0000 0.5001 0.4996  0.0000 0.5004 0.4984 0.0000 0.5016
11 0.5000 0.0000 0.5000 0.4999  0.0000 0.5001 0.4996  0.0000 0.5004 0.4985 0.0000 0.5015
12 0.5000 0.0000 0.5000 0.4999  0.0000 0.5001 0.4996  0.0000 0.5004 0.4985 0.0000 0.5015
13 0.5000 0.0000 0.5000 0.4994  0.0000 0.5006 0.4978  0.0000 0.5022 0.4912  0.0000 0.5088
14 0.4999 0.0000 0.5001 0.4995 0.0000 0.5005 0.4983 0.0000 0.5017 0.4932  0.0000 0.5068
15 0.5000 0.0000 0.5000 0.4997  0.0000 0.5003 0.4987 0.0000 0.5013 0.4950  0.0000 0.5050
16 0.5000 0.0000 0.5000 0.4997  0.0000 0.5003 0.4989 0.0000 0.5011 0.4957  0.0000 0.5043
17 0.5000 0.0000 0.5000 0.4997 0.0000 0.5003 0.4989 0.0000 0.5011 0.4959 0.0000 0.5041

in Table 5(bottom) we can conclude that:

e For symmetric distributions, no matter the value of x and the pair of (A, K), the
“the flip a coin” strategy guarantees that our proposed nonparametric control
chart almost maintains its distribution-free property. On the other hand, if we
do not use the “the flip a coin” strategy we proved that the chart is no longer
distribution-free.

e Regarding the choice of the pair (A, K) it seems that using larger values of A,
except from cases 14 and 15 improves significantly the distribution-free property
of our chart for heavy-tailed distributions (cases 13 — 17) and large values of k.
For example for k = 0.2 using (A, K) = (0.12,2.743) the in-control ARL value
for case 16 is ARL = 347.5 and for case 17 is ARL = 350. On the other hand,
using the pair (A, K) = (0.72,2.928), the in-control ARL value for case 16 is
ARL = 365.8 and for case 17 is ARL = 366.3.

e Similarly, for the out-of-control cases, we can conclude that no matter the value
of x the ARL; values are almost the same. For example, when 6 = 0.1 using
using (A, K) = (0.72,2.928) for k = {0,0.05,0.1,0.2} the corresponding ARL; =
{78.2,78.2,78.2,78.5}.

4.3. Performance evaluations

The performance of the C-SN EWMA chart under the “flip a coin strategy” will be
compared with the Shewhart Sign chart presented in [4] under the Benchmark of the
distributions listed in Table 4. As far as we are concerned, these are the only two
existing schemes dealing with rounding-off errors. In Table 7 the corresponding ARL;
values are presented for n = 20 for both charts. In order to perform fair comparisons
since for the Shewhart chart the closest ARLq value to 370.4 is ARLg =~ 388.1 when
the control limit equals C' = 14, our chart will be optimized in order to also verify
ARLg = 388.1. More specifically, for a fixed value of A the corresponding value of
K will be computed such that it gives ARLg = 388.1 when « = 0. Finally the same
optimal pair of (A, K) will be used in order to compute the chart’s performance for
r = {0.05,0.1,0.2}. Note that, as presented above, setting A > 0.7 guarantees an
approximately distribution-free behaviour for the C-SN EWMA chart. So it would be
logical to optimize A also. Nevertheless, it is not necessary to do this since, even by
setting A = 0.7, our chart outperforms the Shewhart chart. In particular, from Table
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7 we may conclude that our chart performs better for any shift magnitude regardless
the underlying distribution or the value of . For instance, for cases #6,#7,#8, when
the shift magnitude is § = 0.2 and k = 0.2 the corresponding ARL; values of the Sign
Shewhart chart are 56.9, 18.4, 44, 4 respectively. On the other hand, for the same cases,
the corresponding ARL; values of the C-SN EWMA chart are 28.4,8.9,21.6.

Table 7. Performance comparisons between the C-SN EWMA and the Shewhart Sign charts under the “flip

a coin” strategy for n = 20
C-SN EWMA chart

k=0 ©=0.05 k=01 k=02
5 5
-0.5 -0.2 -0.1 0.1 0.2 0.5 -0.5 -0.2 -0.1 0.1 0.2 0.5 -0.5 -0.2 -0.1 0.1 0.2 0.5 -0.5 -0.2 -0.1 0.1 0.2 0.5
1 1240 103.90 24320 24320 103.90 12.40 1240 103.90 24320 24320 103.90 1240 12.40 103.80 24320 24320 103.80 12.40 12.40 103.80 243.10 243.10 103.80 12.40
2 710 67.60 196.60 196.40 7.10 7.10  67.70 196.60 196.40 67.60  7.10 7.10 67.70  196.70 196.50 7.10 720 6810 197.20 197.00 68.00 7.20
3 5.60 5430 174.40 174.40 5.60 5.60 54.40 17440 17440 5440  5.60 5.60 54.50  174.60 174.60 5.60 570 5490 17540 17540  54.90 5.70
1460 15460 154.60 1.60 160 4410 15470 15470 4410 460  4.60 30 15490 154.90 160 160 44.80 15600 156.00 44.80  4.60
5 3.70 132.60 132.60 3 3.70 3.70 3 0 132.80 13280 34.40 3.70 3.70 34.60 13320 133.20 3.70 3.80 3520 134.70 134.70  35.20 3.80
6 310 1470 11470 2750 310 3.0 2750 11490 11490 27.50 300 320 2770 11540 11540 320 320 2840 117.30 117.30 2840  3.20
7 4.60 107.90  76.60 1.00 4.60 29.90 108.80  75.50 10.70 1.00 4.60 30.40  111.60 72.40 1.00 4.70 3230 12330 61.20 8.90 1.00
8 4.70 129.00  111.40 1.80 470 36.10 129.60 110.90  22.60 1.80 4.70 36.50 13130 109.40 1.80 4.80 3810 13850 103.70  21.60 1.80
9 470 13420 120.30 230 170 37.50 13470 12000 26.60 2.30 170 37.90 13610 119.00 2.30 180 3930 14200 115.00 2600 230
10 3.90 118.40  107.60 2.30 3.90  30.70 11880 107.40 2290  2.30 3.90 31.00 12020 106.70 2.30 4.00 3230 125.60 104.30 22.80 2.30
1320 99.90  91.30 210 320 2380 10040 9120 1840 210 320 2410 10160 91.00 210 320 2520 10690 9010 1880  2.20
12 270 84.80  77.80 2.00 2.70 18.90 85.20 77.80 15.00  2.00 2.70 1920 86.40 77.80 2.00 280 2020 91.60 78.10 15.60 2.00
13 2.60 61.20 3810 1.00 2.60 14.20 61.90  37.50 4.60 1.00 2.60 14.50  64.20 35.60 1.00 2.70 15.80 7470 29.40 4.10 1.00
14 280 70.60  48.40 1.00 2.80 16.50 71.30 47.80 6.40 1.00 2.80 16.90 73.60  46.00 1.00 2.90 1820  83.40  39.80 5.90 1.00
15 2.50 63.10  47.80 1.20 2.50 14.00 63.70  47.60 7.30 1.20 2.50 1430 65.60  46.90 1.20 2.50 15.40 73.90  44.50 7.50 1.30
16 210 51.60 40.90 1.30 2.10 10.90 52.10 40.90 6.70 1.30 2.10 11.10  53.80  40.80 1.30 2.20 12,10 61.20 40.80 7.10 1.40
17 1.90 42,10 34.10 1.30 1.90 8.70 42.60  34.20 5.80 1.30 1.90 8.90 44.20 34.50 1.30 1.90 9.80 51.00  35.90 6.40 1.40
Shewhart Sign chart
k=0 K =0.05 k=01 k=02
5
-0.5 -0.2 -0.1 0.1 0.2 0.5 -0.5 -0.2 -0.1 0.1 0.2 0.5 -0.5 -0.2 -0.1 0.1 0.2 0.5 -0.5 -0.2 -0.1 0.1 0.2 0.5

1 2590 164.70 296.10 296.10 164.70 25.90 25.90 164.70 296.10 296.10 164.70 25.90 25.90 164.60 296.10 296.10 164.60 25.90 25.90 164.60 296.10 296.10 164.60 25.90
2 1430 11820 25840 258.20 14.30 14.30 118.30 25840 25820 118.20 14.30 14.30 11840 25850 258.30 118.30 14.30 1440 118.80 25890 258.70 118.70 14.40
3 1070 99.00 238.40 238.40 10.70 10.80  99.10 23850 238.50 99.10 10.80 10.80  99.20 238.70 23870 99.20 10.80 10.90  99.90 239.40 239.40 99.90 10.90
4
5

8.30  83.30 219.50 219.50 8.30 830  83.30 219.60 219.60 83.30 830 840 83.50  219.90 219.90 83.50  8.40 8.50  84.40 221.00 221.00 84.40  8.50
b 6.30  67.30  197.00 197.00 6.30 6.30 6740 197.20 197.20 6740  6.30 6.30  67.60 197.60 197.60 67.60  6.30 6.40 6870 199.20 199.20 68.70  6.40
6 500 5520 177.30 177.30 55.20  5.00 5.00 5540 17750 177.50 55.40  5.00 5.00  55.70 178.00 178.00 55.70  5.00 5.10  56.90 180.20 180.20 56.90  5.10

7830 5930 169.50 13040 2260 1.00 830  59.60 170.50 129.00 22.30  1.00 840 6040 173.70 124.80 2140  1.00 8.60  63.80 186.90 109.10 1840  1.00
8 860 70.10 193.10 173.50 46.40  2.10 870  70.30 193.70 17290 46.30 2.10 870 7090 19560 171.20 45.90  2.10 8.90  73.50 203.20 164.40 4440 220

9 850 7250 198.70 183.60 53.80  3.00 850 72,60 199.20 18320 53.70  3.00 860  73.20  200.70 18210 53.50  3.00 8.80  75.50 206.80 177.60 52.50  3.10
10 6.70  60.90 181.40 169.00 46.90  3.00 6.70  61.10 181.90 168.80 46.90  3.00 6.70  61.60 183.40 168.10 46.80  3.00 6.90  63.80 189.40 16520 46.70  3.10
11 500 4850 160.00 149.40 3820  2.70 500 4860 160.50 149.30 38.30  2.70 510 49.10 162.00 149.00 38.40  2.70 520 5120 168.20 147.90 38.90  2.80

12400 3910 14110 13200 31.40 240 4.00  39.30  141.60 132.00 31.50 240 4.00  39.80 14330 13210 31.70 250 410 41.80 149.80 13240 32.60  2.60
13 280 18.00 7160  29.80 1.60 1.00 2.80  18.10 72.80  28.60 1.60 1.00 2.80 1860 76.70  25.10 1.50 1.00 290 2090 95.00 1520 2.00 1.00
14 380 29.50 109.00 73.60 8.50 1.00 3.80  29.70 110.10  72.50 8.40 1.00 3.80 3030 11340  69.50 8.20 1.00 3.90 3290 127.80 58.60 7.30 1.00

15 420 3430 12230 90.00 1270  1.00 420 3450 12330 89.10 12.60  1.00 4.30 3510 12630 86.30 1230 1.00 140  37.80 13930 76.40 11.30  1.00
16 340  29.10 111.80 89.20 1470  1.20 112,70 88.80 1470 120 3.50 2990 11540 87.70 14.80  1.20 3.60 3220 126.70 83.90 1510 1.30
17 270 2250 9490 7810 1310 1.40 95.70 7810 13.20 140 270 2320 9830 78.00 1340 140 2.80 2530 109.10 78.00 1430 140
18 230 17.60 80.00 66.80 11.10 1.40 230 17.80 80.80 67.00 11.20 1.40 230 1830 8340 67.60 11.40 1.40 230 2020 94.00 69.90 12.60 1.40

5. An illustrative example

In this Section a modified version of the example originally discussed by Celano
et al. in [6] is provided, to show a practical Phase II implementation of the design
and operation of our proposed chart under the case of measurement error. In this
example, the quality characteristic to be monitored is the radial error, defined as “a
quality characteristic frequently monitored in hole drilling processes of mechanical
parts and assembly processes of printed circuit boards”. At each sampling point ¢, a
subgroup of size n = 20 is collected in order to detect a shift in the median of the
quality characteristic of interest such that py = 0.5 shifts to p; = 0.7. Additionally,
as shown in [6] the in-control value of the median for the radial error is y = 0.338.
The original dataset is presented in Table 8 (top). For illustration purposes let us
assume that the practitioner does not have at his disposal the true values due to a
rounding-off error in the measurement system (the resolution value is p = 0.05), and
through the model presented in equation (10), obtains the values presented in Table
8 (bottom). Similarly the observed value of the median will be 6], = 0.3 instead of the
true one 6y = 0.338.

Moreover, in Table 8 (top) the corresponding values of S;; = sign(Xl;j - 6p)

are presented. In can be clearly seen that due to the rounding-off error in the
measurement system many ties occur (zero values for S;;). In order to overcome
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this problem we will use the “flip a coin” method presented in Section 4.2. More
specifically, each S;; = 0 will be substituted by Szé,j = 2A;; — 1 where A;; will
be a random number generated from Ber(0.5). These values are presented in Table
8 (bottom) along with the corresponding values of SN¢, SN} and Z;. Additionally,
for the design of the chart’s parameters we used \* = 0.305, K* = 2.903 (as the
optimal pair for detecting a shift p;; = 0.7 when n = 20), 0 = 0.2 (“continuousify”
parameter) and Z§ = 0 (no head-start feature). Then, by substituting these values
in equations (8) and (9), we obtain the values of the control limits for the two-sided
C-SN EWMA chart as LCL* = —5.5127, UCL* = 5.5127.

It should be pointed out that even though the operation of this chart requires
random numbers to be generated, its Run Length properties (such as ARL, SDRL),
are obtained directly through the distribution of the SNj with the exact Markov
chain method shown in Section 2.1 without the need of performing any simulations.
This fact has been also mentioned in [28]. Finally, the values of the charting statistic
Z are plotted in Figure 1. It can be seen that at the 4th sampling point (t = 4) an
out-of-control signal is given stating that the process median has changed.

C-SN EWMA chart for Phase Il data

ucL*

5 6
sample

Figure 1. Radial error example: the C-SN EWMA chart for the Phase II data presented in Table 8 (bottom)

6. Conclusions

In this paper we proposed a modified distribution-free EWMA control chart based
on the Sign statistic called as the C-SN EWMA chart. Using the “continuousify”
method originally introduced in [28] we determined its RL properties showing that
the results are not affected by the number of subintervals. It is worth stretching
that, its in- and out-of-control performances were computed regardless of the process
underlying distribution. Additionally, we examined how seriously the rounding-off
error affects the distribution-free properties of the EWMA Sign control chart.
Under a benchmark of 17 Johnson’s type distributions we proved that, when ties
occur, a conventional nonparametric EWMA chart based on the Sign statistic
is no longer distribution-free. The solution we opted was based on a Bernoulli
trial approach, originally introduced in [4], which turns out to be a very efficient
method to maintain the distribution-free property for our proposed C-SN EWMA
control chart and it is applicable to any situation. Finally, the perfomance of
our proposed chart was examined by comparing it with the Shewhart Sign chart
introduced in [4] and the superiority of our scheme was proven for any shift magnitude.
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Table 8. Radial error example: Phase II sample of t = 1,...10 subgroups of size n = 20 for the true values
(top) and the observed values (bottom) along with the S; ; values with and without the ”flip a coin strategy”

when p = 0.05
Without the “flip a coin” strategy
Xi; true values
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0.289 0.380 0.483 0.288 0.544 0.390 0.567 0.512 0.433 0.168 0.128 0.428 0.081 0.575 0.396 0.574 0.730 0.367 0.452
2 0447 0.599 0207 0.317 0.256 0.433 0.218 0.329 0.432 0.674 0.233 0.570 0.748 0.364 0.372 0.798 0.218 0.060 0.632
3 0.081 0.368 0.435 0216 0.246 0.229 0.623 0455 0.394 0.616 0.116 0.611 0.666 0.262 0.410 0.234 0.692 1.033  0.376
4 0954 0.537 0.621 0.513 1.540 0.609 0.801 1.080 1.069 0.954 0.852 0.425 1.389 0.794 1.081 0.900 0.521 0.761  0.535
5 0316 0.237 0.286 0.879 0.190 0.104 0.570 0.448 0.269 0.746 0.344 0.191 0.366 0.315 0.408 0.522 0.598 0.671 0.448
6 0342 0.378 0.287 0.328 0.589 0.233 0.255 0.119 0.284 0.499 0410 0.668 0.385 0.594 0.390 0.265 0.409 0.628 0.316
7 0370 0.391 0.525 0459 1.280 0.470 0.482 0.032 0.525 0.628 0.686 0.584 0.300 0.245 0.555 0.113 0.194 0.597  0.523
8 0352 0.264 0.759 0.154 0.256 0.426 0.363 0.310 0.303 0.316 0.807 0.235 0.173 0.183 1.105 0.068 0.368 0.097  0.060
9 0305 0.352 0.468 0.224 0.739 0.234 0.171 0.250 0.308 0.431 0.092 0.326 0.455 0.569 0.354 0.475 0.530 0.102  0.651
10 0.603 0.363 0.628 0.314 0.029 0.436 0.207 0.553 0.645 0.122 0.759 0.296 0.691 0.425 0.441 0.323 0.287 0.194  0.582
St values when p = 0.05
t S,y = sign(X[; — 6)
1 -1 1 1 -1 1 1 1 1 1 -1 -1 1 -1 1 1 1 1 1 0 1
2 1 1 -1 -1 -1 1 -1 0 1 1 -1 1 1 0 0 1 -1 1 -1 1
3 -1 0 1 -1 -1 -1 1 1 1 1 -1 1 1 -1 1 -1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 11
6 0 1 -1 0 1 1 1 1 1 1 1 1 1 1 1 a1 1 1 1
7 0 1 1 1 1 1 1 1 1 1 1 1 a1 1 1 a1 1 1 11
8 0 1 1 1 1 1 0 1 1 a1 1 1 a1 1 1 a1 0 1 1
9 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 11
10 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11
With the “flip a coin” strategy
X, ; observed values when p = 0.05
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 030 040 050 030 055 040 055 050 045 015 015 045 010 055 040 055 075 040 035 045
2 045 060 020 030 025 045 020 035 045 065 025 055 075 035 035 080 020 040 005 0.65
3 010 035 045 020 025 025 060 045 040 0.60 010 060 065 025 040 025 070 0.70 1.05 0.40
4 095 055 060 050 155 060 080 1.10 1.05 095 0.85 045 1.40 080 110 090 050 060 075 0.55
5 030 025 030 09 020 010 055 045 025 075 035 020 035 030 040 050 0.60 0.25 0.65 045
6 035 040 030 035 060 025 025 010 030 050 040 065 040 060 040 025 040 045 065 0.30
7 035 040 055 045 130 045 050 0.05 055 0.65 070 060 030 025 055 010 020 095 060 0.50
8 035 025 075 015 025 045 035 030 030 030 08 025 015 020 110 0.05 035 075 010 0.05
9 030 035 045 020 075 025 015 025 030 045 010 035 045 055 035 045 055 030 010 0.65
10 060 035 065 030 005 045 020 055 065 010 075 030 070 045 045 030 030 030 020 0.60
S} ; values using the “flip a coin strategy” along with the corresponding SN;, SN}, Z}" values
b ;5 = sign(X]; — ;) SN; SN} Vs
1 -1 1 1 -1 1 1 1 1 1 -1 -1 1 -1 1 1 1 1 1 -1 1 8 7.8729  2.4012
2 1 1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 -1 1 1 -1 1 -1 1 2 1.6446  2.1705
3 -1 1 1 -1 -1 -1 1 1 1 1 -1 1 1 -1 1 -1 1 1 1 1 6 6.1533  3.3853
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20 20.0549 8.4695
5 -1 -1 -1 1 -1 -1 1 1 -1 1 -1 -1 -1 -1 1 1 1 -1 1 1 -2 -2.0159 5.2715
6 1 1 -1 1 1 -1 -1 -1 -1 1 1 1 1 1 1 -1 1 1 1 -1 6 6.0806 5.5183
7 -1 1 1 1 1 1 1 -1 1 1 1 1 -1 -1 1 -1 -1 1 1 1 8 79114 6.2482
8 -1 -1 1 -1 -1 1 1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 1 -1 -1 -8 -T.7615 1.9752
9 -1 1 1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 -1 -1 1 -2 -2.2089 0.6991
10 1 1 1 -1 -1 1 -1 1 1 -1 1 -1 1 1 1 -1 -1 -1 -1 1 2 1.8322  1.0447
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As a future work many things can be pursued. For instance, the “continuousify”
method could be applied in EWMA-type schemes where other nonparametric statis-
tics are considered such as the Mann-Whitney, and the Ansari-Bradley statistics with
and without ties. Additionally, it would be interesting to examine the performance of
an EWMA chart based on the Wilcoxon Signed Rank statistic in the presence of ties
in the population. Finally, a challenging problem would be to investigate the use of
kernel-based techniques in distribution-free EWMA schemes designed for monitoring
bivariate processes.
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