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1 Introduction

Random matrix models [1–3] are often encountered in the large N treatment of partition
functions of gauge theories. In the class of unitary matrix models, one such celebrated
example is the Gross-Witten-Wadia (GWW) model arising out of U(N) lattice gauge theory
in two dimensions [4–6]. This original model with U(N) as background gauge group and
one non-negative real coupling constant β demonstrated, in the statistical mechanical limit
N →∞, two distinct phases demarcated by a third-order phase transition at β = 1. The
free energy F as a function of the coupling parameter is straightforward to compute in
both phases — β ≤ 1 defining the ungapped phase, and β > 1 the gapped phase — using
functional integral and complex analytic techniques [6, 7].

The GWWmodel was subsequently extended to a form with arbitrary coupling constants
(see [8, section 4] for a comprehensive list of related matrix models), but the phase space
structure for such cases is in general not trivial to describe using the analytic methods applied
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for the one-parameter model. However we can use ideas from representation theory to demon-
strate the existence of phase transitions for the general case and also describe these various
phases by their free energy. More precisely, we may decompose the general integral in terms
of Schur polynomials [9] and use the random partition related to the Schur measure [10] to
obtain a discrete kernel [11]. For arbitrary coupling constants the phase structure shows mul-
ticritical behaviour [12, 13] described by the higher-order Tracy-Widom distributions [12, 14].

The goal of this paper is to consider generalizations of the GWW model where the
gauge group U(N) is replaced by any of the other compact classical groups, namely, the
special orthogonal groups SO(2N) and SO(2N + 1), and the symplectic groups Sp(N). We
are motivated to take up these specific groups as real subgroups of unitary groups. They
have been studied in other physical contexts. For example, the authors of [15] have analyzed
the general problem of a specific integrable function over the compact classical groups
whose integral decomposes into one over the non-trivial eigenvalues of the integrand. Using
Andréief’s identity [16] they have obtained some factorization formulae for such integrals in
the large N limit. It seems possible to apply these formulae to the GWW matrix model to
obtain some equations linking the partition functions for the different gauge groups — as
has been done for the case of one coupling constant in [15].

We seek to extend the analysis of the special orthogonal and symplectic GWW models
paralleling the existing unitary group techniques. First in a Coulomb gas framework we
consider the ungapped phase for arbitrary coupling constants in a path integral formulation
akin to the well-developed unitary treatment (see [7]). For the gapped phase we switch to a
resolvent formalism that converts the problem into a Riemann-Hilbert problem invoking the
Plemelj formula [17]. Specifically, in the case of one coupling constant we seek an explicit
calculation of the free energy in parallel with the known expression in the unitary case [6, 7].

Second, we aim to demonstrate the universality of the phase transition for arbitrary
coupling constants by converting the matrix integral into a sum over characters of the
respective gauge group. We parallel the treatment of the unitary case in [13] using properties
of the generalized orthogonal and symplectic Schur functions (see [18] and [19]). We remark
that this random partition representation can describe asymptotic behaviour of the free
energy, which becomes rather involved in the Coulomb gas analysis in general.

At this stage it is important to discuss the normalization convention chosen for the
free energy in this paper. We choose the convention of normalizing the free energy by the
square of the rank of the gauge group, which is N for all the classical compact groups in
their usual notation.

We also briefly explain the terminology of splitting the free energy into the continuum
and fluctuation components in the random partition formalism. The continuum component is
the phase-independent contribution to the free energy, which corresponds to an unrestricted
sum over partitions of the Schur polynomials. In the unitary model the continuum component
is the sole contributor to the ungapped phase free energy, and we seek to see if this is true
for the special orthogonal and symplectic cases as well. The fluctuation component, on the
other hand, is obtained from the restricted sum over partitions, which is expressed as the
Fredholm determinant. This part describes the universal multi-criticality of the model, and
is the object of interest in the asymptotic behaviour analysis.
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Summary. In section 2 we briefly review the unitary GWW model and its phase structure
in both the one-parameter and arbitrary-parameter cases. Beginning with the Coulomb
gas model, we proceed to review the analysis in [13] of the continuum and fluctuation
components of the free energy, which involves rewriting the partition function as a sum
over Schur polynomials. The differing asymptotics of the fluctuation component in different
regimes confirm the phase transitions.

In section 3 we develop the special orthogonal and symplectic GWW models in the
Coulomb gas formalism, following the existing treatment for the unitary case. For the
ungapped phase — with arbitrary couplings — we obtain the probability distribution and
free energy using variational analysis of the partition function following [7]. For the gapped
phase we take up a resolvent formalism and obtain the exact free energy in the one-coupling
parameter case. In both of these treatments, we obtain the result that the free energy for
the special orthogonal and symplectic cases is twice the respective free energy in the unitary
case. The former case, i.e. for the continuum free energy, corroborates the factorization
formulae for the one-coupling case in [15, section 3.2].

In section 4 we develop the random partition model for the special orthogonal and
symplectic cases, using the Cauchy sum formulae [15] for the orthogonal and symplectic
Schur polynomials. This allows us to write the partition function as a sum over Schur
polynomials but now with some additional multiplicative factors arising out of the Cauchy
sum formulae. Under the large N limit we find that the continuum component of the free
energy is twice its unitary counterpart, but the fluctuation component is the same. The
continuum component inclusive of O

(
1
N

)
subleading contributions corroborates the result

due to the Szegö-Johansson theorem [15, 20]. The identical fluctuation component shows
that the multicritical fluctuations of the classical group models are universally described by
the higher-order Tracy-Widom distributions.

2 Review of the U(N) model

We begin with an outline of the salient points of the U(N) GWW model. For details
on the full one-parameter solution and the formal general ungapped phase solution, we
refer to [7, section 8.3] and [6]. For a detailed analysis of the multicritical behaviour in
the general case we refer to [13, 21].1 We will describe and use these techniques in greater
detail in subsequent sections. We also refer to these sections for some definitions.

The original model formulated in [4–6] deals with the large N behaviour of the partition
function

ZU(N)(β) =
∫

U(N)
dU exp

(
Nβ

2
(
trU + trU−1

))
, (2.1)

with a coupling constant β ∈ R≥0. This finite N integral over U(N) may be converted into
one over its maximal torus TN , i.e. into a multiple integral over N angular variables defined
on [−π, π). It is actually possible (see [23] for details; also compare with a similar result

1See also [22] for the random partition analysis in the multicritical regime.
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in [24]) to write down an exact determinantal expression2 for (2.1),

ZU(N)(β) =
∏N−1
k=0 k!

(Nβ)N(N−1)/2

det
(
(Nβ)i−1Ii−1(nβ)

)N
i,j=1

det ((Nβ)i−1)Ni,j=1
, (2.2)

where Ii is a modified Bessel function of the first kind parameterized by the positive integer i.
Under the large N limit, the multiple integral can be well-approximated by a path

integral over a probability distribution ρ : [−π, π) → R≥0 obeying the normalization
condition

∫ π

−π
dφ ρ(φ) = 1. The overwhelming contrbution to this path integral comes from

the region around the classical saddle point, i.e. the particular probability distribution ρ0 for
which the effective action is extremized. In the chosen coordinates this extremal probability
distribution is obtained by standard variational and complex analytic methods to be

ρ0(φ) =


1

2π (1 + β cosφ) β ≤ 1,

β

π
cos

(
φ

2

)√ 1
β
− sin2

(
φ

2

)
× 1[−α,α](φ) β > 1,

(2.3)

where in the β > 1 case, α is defined to be the smallest positive root of sin
(
φ
2

)
= 1

β , and
the characteristic function 1I for any interval I ⊂ [−π, π) is defined to be

1I(φ) =

1 φ ∈ I,
0 φ 6∈ I.

(2.4)

The phase corresponding to β ≤ 1 is characterized by a non-vanishing distribution over
[−π, π), with the exception of the transition point β = 1, where, interpreting the domain
as the unit circle, ρ(−π) = ρ(π) = 0. There being no gaps in the distribution in this
interpretation, this phase is termed the ungapped phase. The distribution for phase
corresponding to β > 1, however, exhibits a gap over the interval [α, 2π − α] in the unit
circle interpretation, and hence this phase is termed the gapped phase. That the phase
transition is of third order may be seen by observing the structure of the free energy per
unit degree of freedom in the large N limit, FU(β) = limN→∞

1
N2 lnZU(N)(β):

FU(β) =


β2

4 β ≤ 1,

β − 1
2 ln β − 3

4 β > 1.
(2.5)

As an extension of this original model one can consider a version with an atmost-
countable set of coupling constants (gn)n≥1,

ZU(N)(g1, ḡ1, . . .) ≡ ZU(N)(β,γ) =
∫

U(N)
dU exp

N ∑
n≥1

(
gn trUn + gn trU−n

) . (2.6)

The complex couplings — taken as conjugates in order to have a real action — are expressed
in terms of real numbers as gn = 1

2n (βn − iγn), ḡn = 1
2n (βn + iγn). The symbols β and γ

2We are thankful to the reviewer for bringing these to our attention.
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represent the tuplets (βn)n≥1 and (γn)n≥1 respectively. Using the same functional integral
techniques as the one-parameter case, a formal solution to the large N extremal probability
distribution may be derived,

ρ(φ) = 1
2π + 1

2π
∑
n≥1

(βn cosnφ+ γn sinnφ) , (2.7)

and the formal free energy,

FU(β,γ) =
∑
n≥1

β2
n + γ2

n

4n . (2.8)

The distribution (2.7) is non-negative — hence a valid physical solution — for a well-defined
subset of the phase space of coupling constants around the origin (β,γ) = 0. For example,
one may consider the Fourier series of any integrable 2π-periodic, non-negative function
normalized over [−π, π). In general, for an infinite set of non-zero coupling constants, (2.7)
and (2.8) make sense only if the βn and γn decay suitably with respect to n for convergence. If
required, we will assume such convergence in similar expressions appearing in the remainder
of this paper. For a finite set of non-zero coupling constants, these expressions are always
well-defined in some region of the phase space surrounding the origin.

Further, just as for the one-parameter model, this phase is the only ungapped phase,
with (2.8) representing the free energy in this phase. However, with the increasing complexity
of the phase space with an increasing number of coupling constants, the exact phase-space
structure and the orders of these possible phase transitions are not trivial to obtain in
general using the same complex analytic techniques. Neither is it straightforward to obtain
the functional forms of the distribution in the other possible phases. This necessitates the
consideration of other perspectives to extract dynamical information.

2.1 Multicritical phase space behaviour

Using connections to random partitions, the general matrix model (2.6) for finite N may
be rephrased in terms of the Miwa variables

Ngn = 1
n
tn = 1

n
trXn, Nḡn = 1

n
t̄n = 1

n
trY n, (2.9)

and the Cauchy sum formula over partitions restricted to depth N [11]

ZU(N)(β,γ) =
∫

U(N)
dU exp

( ∞∑
n=1

1
n

(
tn trUn+ t̄n trU−n

))
=

∑
λ|`(λ)≤N

sλ(X)sλ(Y ). (2.10)

Here X and Y are infinite-dimensional matrices whose eigenvalues parametrize the couplings
and we note that the Schur function, sλ(X) and sλ(Y ), may be interpreted as a function of
these eigenvalues. See, e.g., [9] for details about the Schur functions. The large N analysis
of this integral is performed in [13] using the techniques introduced in [10, 11]. We also
have the unrestricted Cauchy sum, which is conveniently expressed using the plethystic
exponential (see appendix A.1 for definition),

Z∞(β,γ) := lim
N→∞

ZU(N)(β,γ) =
∑
λ

sλ(X)sλ(Y ) = PE [trX trY ] . (2.11)

– 5 –
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The free energy3 is then given by

FU(β,γ) = lim
N→∞

1
N2 lnZU(N)(β,γ) = lim

N→∞

1
N2 lnZ∞(β,γ)︸ ︷︷ ︸
FcU(β,γ)

+ lim
N→∞

1
N2 ln

(
ZU(N)(β,γ)
Z∞(β,γ)

)
︸ ︷︷ ︸

FfU(β,γ)

,

(2.12)
which may be written as the sum of the continuum contribution FcU and the fluctuation
contribution FfU. The continuum component does not undergo phase transitions and
gives the ungapped phase free energy (2.8) — this is straightforward to show from (2.9)
and (2.11). The fluctuation component is responsible for the phase transition, exhibiting
different asymptotic behaviours in the ungapped and gapped phases. Imposing the condition
of real and equal couplings, i.e. X = Y = Z or γ = 0, the behaviour of the fluctuation
component is analyzed. In the context of our work, the relevant regions of the random
partition are the right and left edges, where we can analyze the contributions to the free
energy. To obtain these edge contributions, if we define the parameters

αk =
∞∑
n=1

2nk+1tn
k! , β = α0 =

∞∑
n=0

2ntn, (2.13)

then clamping αp′ = 0 for all p′ < p with p, p′ being positive integers and p being even, it is
obtained that

FfU(β,0) ∼ N−2 lim
s→±∞

lnFp(s), s = (βc − β)N
(αpN)

1
p+1

, (2.14)

where Fp is the higher-order Tracy-Widom distribution [12, 14, 22]4 of order p, and βc has
the interpretation of heralding a phase transition as β is varied. The order of these phase
transitions may be explained from the asymmetric asymptotics of the Fp; briefly stating,
one obtains the large N limit edge fluctuations

FfU(β,0) ∼


O
(
e−cN

)
, β < βc,

α
−2/p
p |βc − β|2(p+1)/p +O(N−2), β > βc.

(2.15)

which again is understood in terms of the asymptotic limit, and is also modulo an ad-
ditive term. These asymptotics follow from the those of the higher-order Tracy-Widom
distributions,

Fp(s) ∼


1−O

(
s
− p+1

p es
p+1
p

)
s→∞,

O
(
e−|s|

2(p+1)
p

)
s→ −∞.

(2.16)

The factor of c in the subcritical regime free energy asymptotics comes from the constants
in the definition of s in (2.14). The fractional power behaviour in the supercritical regime

3Note that X and Y depend on N through the coupling relation.
4There are alternative expressions, e.g. [25–27], for the higher-order Tracy-Widom distributions, not all

of which match with [12]; only those in [14] were shown in [22] to agree with the multicritical points of [12].
We thank the reviewer for pointing this out.
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for p > 2 is indicative of multicriticality. This establishes the universality of the phase
transition for the general U(N) model.

Finally to conclude this review section we remark that there has been recent progress
towards finding explicit multi-cut solutions to the generalized unitary GWW model — see
e.g. [28, section 4] for details.

3 Coulomb gas formalism for the SO & Sp models

We now broach the main subject of this paper, the generalization of (2.6) to the special
orthogonal groups SO(2N) and SO(2N + 1), and the symplectic groups Sp(N). We adapt
the variational formalism from that of the original U(N) model in [7, section 8.3], to develop
the formal solution in the ungapped regime in section 3.1. For the analysis of the gapped
regime with one coupling constant, we use a slightly different formalism (following [29]) in
section 3.2.

We begin with the important observation that we consider the compact real forms
of these groups, i.e. the maximal compact subgroups of their complexified forms. That
is, SO(N) ⊂ SO(N,C) is composed of N × N real special orthogonal matrices, and
Sp(N) = Sp(2N,C) ∩ U(2N) is composed of 2N × 2N complex symplectic and unitary
matrices. For these groups, trX = trX−1 ∈ R for any X ∈ SO(N), Sp(N), and hence to
get a real action, the generalized GWW model must have real coupling constants — in fact,
it may be parametrized by just one set of real coupling constants (gn)n≥1 with gn = βn

n :

ZG(N)(β) =
∫

G(N)
dX exp

N ∑
n≥1

gn trXn

 , (3.1)

where G(N) is any of the groups

G(N) = SO(2N), SO(2N + 1), Sp(N). (3.2)

Under the largeN limit, matrix integrals (3.1) become path integrals over an appropriate
functional measure, and are computed by switching from an integral over G to one over its
maximal torus using the Weyl integral formula (see appendix A). The groups (3.2) are of
rank N , i.e. the maximal torus is of N dimensions in all cases and can be parametrized by
N angular variables φi ∈ [−π, π), 1 ≤ i ≤ N . The change of variables introduces a measure
factor, the generalized Vandermonde determinant. We write down this factor for each of
the groups (3.2) in appendix A.1.

Employing the Weyl integral formula and ignoring numerical prefactors,5 in all these
cases we may write the finite N partition function (3.1) as

ZG(N)(β) =
∫ π

−π

N∏
j=1

dφj
2π exp

 N∑
k,l=1
k 6=l

∆(φk, φl) +
N∑
k=1

Ξ(φk) +N
N∑
k=1

V (φk)

 . (3.3)

5The Weyl group cardinality prefactor and other terms from the measure change can be thought of as
being absorbed into the eventual path integral. Upon doing so, they enter the exponential as O(N) terms
and hence may be ignored — see the discussion following (3.6).
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Here ∆(φk, φl) and Ξ(φk) come from the Vandermonde determinant, and the single-variable
action V (φi) comes from the switch to the maximal torus. The specific forms of ∆ and Ξ
for the groups (3.2) are listed in appendix A.2, and the respective single-variable actions
are listed in appendix B.1. We define the effective action Veff(φ1, . . . , φN ) as

N2Veff(φi) =
N∑

k,l=1
k 6=l

∆(φk, φl) +
N∑
k=1

Ξ(φk) +N
N∑
k=1

V (φk), (3.4)

and the free energy,
FG(β) = lim

N→∞

1
N2 lnZG(N)(β). (3.5)

3.1 Ungapped phase: formal solution

Under the large N limit the partition function (3.3) becomes a path integral over a
normalized distribution of eigenvalues ρ defined on [−π, π),

ZG(N)(β)[ρ]

=
∫
‖ρ‖1=1

Dρ exp

N2
(
P
∫ π

−π

∫ π

−π
dφdϕ∆(φ,ϕ)ρ(φ)ρ(ϕ)+ 1

N
P
∫ π

−π
dφΞ(φ)+

∫ π

−π
dφV (φ)ρ(φ)

)
︸ ︷︷ ︸

Seff[ρ]

 ,
(3.6)

where we define the large N effective action Seff [ρ] = limN→∞ Veff(φ). The notation ‖f‖1
denotes the L1-norm of a function f defined on [−π, π). We remark that double integral
over φ and ϕ is to be understood at the Cauchy principal value as ∆ is singular along the
diagonals φ = ±ϕ; hence the diagonals are understood to be removed from the integration.
We also note that the term containing Ξ — similarly possibly singular, see (A.8) — is of
order N and can be ignored in subsequent calculations, and a similar truncation can be
done to the single-variable action in the SO(2N + 1) case (see appendix B). For the three
cases, we find identical expressions for ∆ upto O(N2), and hence, identical effective actions.

The integral (3.6) may be well-approximated at the stationary, i.e. classical configuration
ρ0 which extremizes Seff [ρ]. Consequently the path integral analogue of the discrete free
energy defined earlier,6 FG(β)[ρ] = limN→∞

1
N2 lnZG(N)[ρ], may be approximated as

FG = FG(β)[ρ0] ≈ Seff [ρ0]. The extremal distribution ρ0 may be obtained using the
method of Lagrange multipliers. We seek to extremize the free energy density

FG(β)[ρ, ξ] = Seff [ρ] + ξ

(∫ π

−π
dφ ρ(φ)− 1

)
, (3.7)

where ξ accounts for the normalization condition. Noting that ∆ is symmetric in its
arguments in all cases, taking functional derivatives with respect to ρ and differentiating

6We consider the two to be equal, though from a rigorous mathematical standpoint one may point out
that convergence of functional integrals is not well-defined in general.
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the resultant equation with respect to φ to eliminate ξ yields

2P
∫ π

−π
dϕ∆(φ, ϕ)ρ(ϕ) + V (φ) + ξ = 0, (3.8a)

2P
∫ π

−π
dϕ ∂∆

∂φ
(φ, ϕ)ρ(ϕ) + V ′(φ) = 0. (3.8b)

These are Fredholm integral equations of the first kind, and we again note that the integrals
in (3.8) are understoood to be at the Cauchy principal value as the respective kernels ∆
and ∂∆

∂φ are singular along the diagonals φ = ±ϕ. The solutions to (3.8a) and (3.8b), when
plugged back in (3.7), give us the approximate free energy FG. This calculation simplifies
using (3.8a):

FG(β) = P
∫ π

−π
dφ

[∫ π

−π
dϕ∆(φ, ϕ)ρ0(ϕ) + V (φ)

]
ρ0(φ) = 1

2

∫ π

−π
dφV (φ)ρ0(φ)− ξ

2 . (3.9)

Solution for arbitrary coupling constants. Using the common first-order derivative
of the integral equation kernel (A.6b) and single-variable action (B.2b) for the three cases,
we proceed to obtain the formal solution for the ungapped phase for the model (3.1). The
integral equation (3.8b) becomes

P
∫ π

−π
dϕ

[
cot

(
φ+ ϕ

2

)
+ cot

(
φ− ϕ

2

)]
ρ(ϕ) = 2

∑
n≥1

βn sinnφ. (3.10)

The symmetry ϕ↔ −ϕ of the kernel implies that ρ is even. We assume an even Fourier
series for ρ,

ρ(ϕ) = 1
2π +

∞∑
n=1

Bn cosnϕ, (3.11)

with Fourier coefficients (Bn)n≥1, and the constant term fixed by the normalization, and
decompose the integral equation kernel by using the Fourier series for cot

(
x
2
)
(see ap-

pendix C.1),

cot
(
φ+ ϕ

2

)
+ cot

(
φ− ϕ

2

)
= 4

∞∑
n=1

sinnφ cosnϕ. (3.12)

Plugging in (3.11) and (3.12) into (3.10) and using standard Fourier series techniques yields
2πBn = βn for all defined βn, and vanishing otherwise. Hence we obtain the distribution
for the ungapped phase,

ρ0(φ) = 1
2π + 1

2π
∑
n≥1

βn cosnφ, (3.13)

which is of the same form as the U(N) solution (2.7), but without the imaginary coupling
constants.

Using (3.9) we now calculate the free energy in this phase. The extremal value of ξ
can now be found out from (3.8a), with the trick of setting φ = 0 without loss of generality
to simplify the calculation. The solution now proceeds exactly as in the U(N) case [7,
chapter 8.3] except for a factor of 2, giving ξ = 0, and the free energy density is calculated
by the usual Fourier series integrals,

FG(β) = 1
2

∫ π

−π
dφV (φ)ρ0(φ) =

∑
n≥1

β2
n

2n. (3.14)
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The free energy density in the ungapped phase noticeably differs by a factor of 2 from
that obtained for the U(N) case (2.8), with the imaginary couplings switched off, i.e.
FG(β) = 2FU(β,0). This may be viewed as a consequence of the 2N dimensions in
consideration rather than N . We also note that this is consistent with the identities derived
for the one-coupling constant partition function in [15, section 3.2], which relate the U(2N)
and U(2N + 1) partition functions to the G(N) ones through some product formulae valid
at large N . The limit is taken before the normalization, showing that this corresponds to
the continuum free energy. We remind ourselves that, when comparing the continuum free
energy from these formulae in [15], the normalization factor at leading order for the unitary
partition functions would be 1

4N2 in our chosen convention.

3.2 Gapped phase

To obtain the gapped phase solutions we use a technique employing a resolvent (see [29,
section 3] for details) which is different from the previous presentation. We consider the
finite N effective action (3.4) and take its derivatives with respect to the angular parameters,
getting the N equations

− V ′(φk) = 2
N

N∑
l=1
l 6=k

∂∆
∂φk

(φk, φl) + 1
N

∂Ξ
∂φk

(φk). (3.15)

To pass to the large N limit we introduce the resolvent for the integral equation kernel (A.6b),

W (φ) = 2
N

N∑
l=1

∂∆
∂φ

(φ, φl) = 1
N

N∑
l=1

[
cot

(
φ+ φl

2

)
+ cot

(
φ− φl

2

)]
, (3.16)

which has 2N poles φ = ±φl in general and is an odd function in φ. Then, the saddle point
equation (3.15) for these kernels can be rewritten as

− V ′(φk) = 1
2 [W (φk + i0) +W (φk − i0)] + 1

N

∂Ξ
∂φk

(φk). (3.17)

We use the notation f(z ± i0) = limε→0+ f(z ± iε) for a complex function f , assuming such
a limit is defined.

Upon taking (3.17) to the large N limit, the Ξ-term vanishes, the poles of the re-
solvent (3.16) are promoted to a cut singularity C in the complex plane, and writing V
explicitly from (B.2b), (3.17) transforms into the crossing-cut equation

2
∑
n≥1

βn sinnφ = 1
2 [W (φ+ i0) +W (φ− i0)] , (3.18)

which we need to solve for W (φ). We note that the complex asymptotic behaviour of the
finite N resolvent (3.16) results in the following asymptotics for the large N resolvent,
defining z = iφ:

W (φ) z→±∞−−−−→ ±2i. (3.19)

We remark that the domain of consideration may be promoted to a Riemann surface R —
for example, if there is one cut in the principal domain, we may promote to the Riemman

– 10 –



J
H
E
P
0
9
(
2
0
2
2
)
1
6
3

sphere; for multiple cuts we shall have higher-genus Riemann surfaces. We work in the
usual complex coordinates interpreting C as a subset of R. To recover the density function,
we can assume that ρ will be even as with in the ungapped phase, and use the relation

ρ(φ) = 1
8πi [W (φ− i0)−W (φ+ i0)] , (3.20)

which may be derived by contour integration arguments using the content of the Sokhotski-
Plemelj theorem [17, 30]. A sketch of the argument for this result at finite N level may be
found in appendix C.2. Now we define the following function f : R → R which is given in
our local complex coordinates by

f(φ) = −
[
2V ′(φ) +W (φ)

]
W (φ) =

4
∑
n≥1

βn sinnφ−W (φ)

W (φ), (3.21)

and using (3.18) it may be shown that f is regular, i.e. f(φ+ i0) = f(φ− i0) on the real
line. From (3.19) we get

f(φ) z→±∞−−−−→ 4βn̄e±n̄z, (3.22)

where n̄ is the largest n such that βn 6= 0. In the complex plane these asymptotics fix the
function f to be a polynomial in e±z of degree n̄ with only the coefficients of e±n̄z fixed,

f(φ) = 8βn̄ cos n̄φ+ 4c+ 4
n̄−1∑
n=1

(an cosnφ+ bn sinnφ), (3.23)

with unknown coefficients7 (an, bn)1≤n≤n̄−1 and c.
From (3.21), the resolvent may be provisionally written as

W (φ) =−V ′(φ)−
√
V ′(φ)2−f(φ) = 2

∑
n≥1

βn sinnφ−2

√√√√( n̄∑
n=1

βn sinnφ
)2

− f(φ)
4 . (3.24)

The sign factor in front of the square root is determined to be consistent with the asymptotic
behavior of the resolvent (3.19). Since V ′(φ)2 and f(φ) are degree 2n̄ and n̄ trigonometric
functions, we may write

V ′(φ)2 − f(φ) = A(φ)2B(φ) , (3.25)

where A(φ) is a function of degree (n̄−m) for a certain integer m ≤ n̄ and B(φ) is a degree
2m function,

B(φ) =
2m∏
α=1

sin(φ− φα) . (3.26)

We assume the ordering of the parameters −π ≤ φ1 < φ2 < · · · < φ2m ≤ +π. Then, we
obtain the density function from the discontinuity of the resolvent (3.20) as follows,

ρ(φ) = 1
4πA(φ)

√
−B(φ)× 1C(φ) , (3.27)

which has a support on C =
⊔m
α=1[φ2α−1, φ2α], so that this is called the m-cut solution.

7The situation of n̄ =∞, i.e. infinite coupling constants, is more subtle in the Coulomb gas formalism.
At present for the purposes of this section we restrict n̄ to be finite.
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Solution with one coupling constant. The density function (3.27) may be solved for
the general case of an arbitrary number of coupling constants (we refer to [29, section 3.2.2]
for details; also see8 [31, 32] for corresponding literature in Hermitian matrix models for a
comparative understanding, and [33] for a treatment involving Jacobi theta functions). For
general n̄ the solution is rather involved, but the case of n̄ = 1, i.e. one coupling constant
βl = δl,1β is tractable, for then we have just one undetermined coefficient c which may be
found by the normalization condition. In this case it is clear that for β > 1 we expect a gap
to appear symmetric around ±π. From (3.27) it may be shown that we get a distribution
with exactly one gap, i.e. C = [−α, α] in the principal interval, as a physically expected
continuation only if −2β < c < 1 + β2. Further, it turns out that c = 2β uniquely fixes the
normalization (see appendix C.3), and so from (3.27) we get the gapped regime distribution

ρ0(φ) = β

π
cos

(
φ

2

)√ 1
β
− sin2

(
φ

2

)
, (3.28)

with domain [−α, α] where sin
(
α
2
)

= 1
β . Hence we have shown that for the case of one

real coupling constant, the orthogonal and symplectic cases have a solution identical in
structure to the solution for the U(N) model (2.1).

The free energy density in this phase may now be calculated using (3.9). The calculation
is identical in structure with that for the U(N) case in [7], except for the factor of 2 from
the single-variable action, which arises from the consideration of 2N dimensions rather than
N . We get

FG(β) = 2β − ln β − 3
2 . (3.29)

A comparison with (3.14) for one coupling constant shows that the phase transition at
β = 1 is third order, and one with (2.5) gives FG(β) = 2FU(β).

4 Random partition formulation

The variational and resolvent techniques described so far output a reasonable amount of
qualitative information about the generalized GWW model. In particular for the ungapped
phase we can fully describe the system, and for the one-constant case, also describe the
gapped phase and demonstrate the third-order nature of the phase transition. However as
we have seen this is not trivial to do for arbitrary coupling constants.

The universality of the phase transition may be demonstrated using character theory
properties of the relevant groups. The irreducible characters U(N) and the groups (3.2) can
be indexed using partitions of positive integers [18]. For partitions of length less than or
equal to the dimensions of the maximal torus, these characters are respectively equivalent to
the generalized Schur functions sλ, oeven

λ , oodd
λ , spλ. The definitions of these Schur, orthogonal

Schur and symplectic Schur functions may be found in [18]. The arguments of these functions
are tuplets of parameters — possibly infinite. These may be conveniently interpreted as the
eigenvalues of (possibly infinite dimensional) matrices. For matrices X,Y with eigenvalues

8We thank the reviewer for bringing these to our attention.
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(xi)i≥1, (yi)i≥1 respectively, and partition λ, these generalized Schur functions obey the
Cauchy sum formulae [15, 19]9

U(N) :
∑
λ

sλ(X)sλ(Y ) =
∏
i,j

(1−xiyj)−1 = PE[trX trY ] , (4.1a)

SO(2N) :
∑
λ

oeven
λ (X)sλ(Y ) =

∏
i,j

(1−xiyj)−1∏
i≤j

(1−yiyj)

= PE[trX trY ]PE
[1

2
(
−trY 2−(trY )2

)]
, (4.1b)

SO(2N+1) :
∑
λ

oodd
λ (X)sλ(Y ) =

∏
i,j

(1−xiyj)−1∏
i≤j

(1−yiyj)
∏
j

(1−yj)−1

= PE[trX trY ]PE
[1

2
(
−trY 2−(trY )2

)
+trY

]
, (4.1c)

Sp(N) :
∑
λ

spλ(X)sλ(Y ) =
∏
i,j

(1−xiyj)−1∏
i<j

(1−yiyj)

= PE[trX trY ]PE
[1

2
(
trY 2−(trY )2

)]
. (4.1d)

The definition of pleythistic exponential is as in appendix A. In each of these cases,
if the matrices X or Y are elements of the groups U(N) or G(N), they have N non-
repeated eigenvalues, and the generalized Schur functions vanish for partitions λ with
depth `(λ) = λT1 > N . For `(λ) ≤ N they represent irreducible characters10 which are
orthonormal under the corresponding group integral,∫

U(N)
dU sλ(U)sµ(U−1) = δλµ, (4.2a)∫

SO(2N)
dX oeven

λ (X)oeven
µ (X−1) = δλµ, (4.2b)∫

SO(2N+1)
dX oodd

λ (X)oodd
µ (X−1) = δλµ, (4.2c)∫

Sp(N)
dX spλ(X)spµ(X−1) = δλµ, (4.2d)

where λ, µ are partitions with `(λ), `(µ) ≤ N and the labels s, o and sp correspond to
the unitary, orthogonal and symplectic characters respectively. We note that for X,Y ∈
U(N), (4.1a) just reproduces (2.10). The unrestricted Schur sum (2.11) plays the role of
normalizer in the subsequent analysis. We now express the finite N partition function (3.1)
in terms of the irreducible characters of the respective groups. First, for each gauge group
we may reparametrize the coupling constants in terms of eigenvalues of matrices Z with

9For the arguments of the functions, we group all the eigenvalues under the label x. In the literature it is
typically (x, x−1) in the Sp(N) and SO(2N) cases, and (1, x, x−1) in the SO(2N + 1) case. Also note that
the eigenspectrum in each case is equivalent to that of a corresponding maximal torus (see appendix B),
because any element of a Lie group is conjugate to some element of any maximal torus.

10There is some subtlety about the irreducibility; see [19] or [15] for details.
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eigenvalues (zi)i≥1 and the corresponding Miwa variables tn,

Ngn = 2
n

tr (Zn) = 2
n
tn. (4.3)

The matrices Z are infinite dimensional; the Schur polynomial is defined in terms of the
infinite array of eigenvalues (zi)i≥1. (3.1) now decomposes as a product of two plethystic
exponentials,

ZG(N)(β) =
∫

G(N)
dX exp

( ∞∑
n=1

2
n

trZn trXn

)

=
∫

G(N)
dX PE [trZ trX] PE

[
trZ trX−1

]
, (4.4)

where we use the reality condition trX = trX−1. Now we may use the equations (4.2)
and (4.1) separately in the three cases.

Character polynomial expansion for SO(2N). The Cauchy sum formula (4.1b) gives

PE [trZ trX] = PE
[1

2
(
trZ2 + (trZ)2

)] ∑
λ|`(λ)≤N

sλ(Z)oeven
λ (X). (4.5)

Plugging this into (4.4), and using character reality and (4.2b), we get the random partition
representation for the SO(2N) case,

ZSO(2N)(β)

=
∫

SO(2N)
dX PE

[
trZ2+(trZ)2

] ∑
λ|`(λ)≤N

sλ(Z)oeven
λ (X)

 ∑
λ′|`(λ′)≤N

sλ′(Z)oeven
λ′ (X−1)


= PE

[
trZ2+(trZ)2

] ∑
λ,λ′|`(λ),`(λ′)≤N

sλ(Z)sλ′(Z)
∫

SO(2N)
dXoeven

λ (X)oeven
λ′ (X−1)

= PE
[
trZ2+(trZ)2

] ∑
λ|`(λ)≤N

sλ(Z)sλ(Z)

= PE
[
trZ2

]
Z∞(β,0)ZU(N)(β,0). (4.6)

The last step in this calculation comes from an application of (4.1a) and (2.11), with the
specific assignment henceforth of Z = X = Y .

Character polynomial expansion for SO(2N + 1). The SO(2N + 1) case proceeds
similarly. The Cauchy sum formula (4.1c) gives

PE [trZ trX] = PE
[1

2
(
trZ2 + (trZ)2

)
− trZ

] ∑
λ|`(λ)≤N

sλ(Z)oλ(X). (4.7)
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Plugging this into (4.4), and using character reality and (4.2c), we get the random partition
representation for the SO(2N + 1) case,

ZSO(2N+1)(β)

=
∫

SO(2N+1)
dX PE

[
trZ2+(trZ)2−2trZ

]

×

 ∑
λ|`(λ)≤N

sλ(Z)oodd
λ (X)

 ∑
λ′|`(λ′)≤N

sλ′(Z)oodd
λ′ (X−1)


= PE

[
trZ2+(trZ)2−2trZ

] ∑
λ,λ′|`(λ),`(λ′)≤N

sλ(Z)sλ′(Z)
∫

SO(2N+1)
dXoodd

λ (X)oodd
λ′ (X−1)

= PE
[
trZ2+(trZ)2−2trZ

] ∑
λ|`(λ)≤N

sλ(Z)sλ(Z)

= PE
[
tr
(
Z2−2Z

)]
Z∞(β,0)ZU(N)(β,0), (4.8)

the last step coming from (4.1a) and (2.11).

Character polynomial expansion for sp(N). Finally we find the partition function
representation for the Sp(N) case. From (4.1d) we have

PE [trZ trX] = PE
[1

2
(
− trZ2 + (trZ)2

)] ∑
λ|`(λ)≤N

sλ(Z)spλ(X), (4.9)

following which from (4.4), character reality and (4.2d) we get

ZSp(N)(β) =
∫

Sp(N)
dX PE

[
− trZ2 + (trZ)2

]

×

 ∑
λ|`(λ)≤N

sλ(Z)spλ(X)

 ∑
λ′|`(λ′)≤N

sλ′(Z)spλ′(X−1)


= PE

[
− trZ2 + (trZ)2

] ∑
λ,λ′|`(λ),`(λ′)≤N

sλ(Z)sλ′(Z)
∫

Sp(N)
dX spλ(X)spλ′(X−1)

= PE
[
− trZ2 + (trZ)2

] ∑
λ|`(λ)≤N

sλ(Z)sλ(Z)

= PE
[
− trZ2

]
Z∞(β,0)ZU(N)(β,0), (4.10)

the last step again coming from (4.1a) and (2.11).
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4.1 Free energy

As with eq. (2.12), we now see from (4.6), (4.8) and (4.10) the free energy in the SO and
Sp cases has three contributing terms:

Feven
SO (β) = lim

N→∞
1

N2 lnPE
[
trZ2

]
+ lim
N→∞

1
N2 lnZ2

∞(β,0)︸ ︷︷ ︸
=Fc,even

SO (β)

+ lim
N→∞

1
N2 ln

(
ZU(N)(β,0)
Z∞(β,0)

)
︸ ︷︷ ︸

Ff,even
SO (β)

,

(4.11a)

Fodd
SO (β) = lim

N→∞
1

N2 lnPE
[
tr
(
Z2−2Z

)]
+ lim
N→∞

1
N2 lnZ2

∞(β,0)︸ ︷︷ ︸
=Fc,odd

SO (β)

+ lim
N→∞

1
N2 ln

(
ZU(N)(β,0)
Z∞(β,0)

)
︸ ︷︷ ︸

Ff,odd
SO (β)

,

(4.11b)

FSp(β) = lim
N→∞

1
N2 lnPE

[
−trZ2

]
+ lim
N→∞

1
N2 lnZ2

∞(β,0)︸ ︷︷ ︸
=FcSp(β)

+ lim
N→∞

1
N2 ln

(
ZU(N)(β,0)
Z∞(β,0)

)
︸ ︷︷ ︸

FfSp(β)

.

(4.11c)

We assume the limits are well-defined. It is immediate to notice from a comparison
with (2.12) that the continuum component in all the cases is functionally twice that in
the U(N) case with switched-off imaginary couplings, and the fluctuation components are
identical:

Fc,even
SO (β) = Fc,odd

SO (β) = FcSp(β) = 2FcU(β,0), (4.12a)

Ff,even
SO (β) = Ff,odd

SO (β) = FfSp(β) = FfU(β,0). (4.12b)

Hence both the continuum and fluctuation parts may be treated identically, in analysis
of qualitative behaviour, to the U(N) treatment in [13]. Just like for the U(N) model, a
straightforward calculation using (4.1a) and (4.3) shows that the continuum part is the
ungapped phase free energy (3.14).

Asymptotics of the residual term. We are left with the analysis of the first term in
the (4.11), which is different in the three cases. Denoting it to be Reven

SO (β),Rodd
SO (β),RSp(β)

respectively, we note that they have the following explicit expression in terms of the coupling
constants, using (4.1a) and (4.3):

Reven
SO (β) = lim

N→∞

1
N

∑
n≥1

β2n
2n , (4.13a)

Rodd
SO (β) = − lim

N→∞

1
N

∑
n≥1

β2n−1
2n− 1 , (4.13b)

RSp(β) = − lim
N→∞

1
N

∑
n≥1

β2n
2n , . (4.13c)

Hence they asymptotically go as O
(

1
N

)
and do not take part in the phase transitions. In fact,

they may be considered as subleading O
(

1
N

)
contributions to the continuum component. We
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note that we corroborate the expressions exp
(
N2Reven

SO (β)
)
Z2
∞(β), exp

(
N2Rodd

SO (β)
)
Z2
∞(β)

and exp
(
N2RSp(β)

)
Z2
∞(β),11 respectively with the results obtained due to the Szegö-

Johansson theorem [20] in [15, appendix B], where in eqs. (77) to (79) we have the
correspondence Vk = Nβk

k . In the context of the Coulomb gas formalism described in
section 3, an interpretation of these R-terms may be given by the sub-leading Ξ- and
single-variable action terms which we discarded in (3.6) and (3.15). The phase transition
dynamics are entirely due to the fluctuation free energy FfG =FfU, with edge asymptotics
described by (2.15). We note that the correspondence between the βn and the tn as defined
in (4.3) is the same as for the unitary model, i.e. (2.9). This means that all the notation
used in the review in section 2.1 can be directly interpreted without changes.

Acknowledgments

This work was supported by “Investissements d’Avenir” program, Project ISITE-BFC
(No. ANR-15-IDEX-0003), EIPHI Graduate School (No. ANR-17-EURE-0002), and
Bourgogne-Franche-Comté region. SP acknowledges discussions with Ali Zahabi. We
thank the reviewer for several useful suggestions and remarks.

A Weyl integration formula

Let G be a compact Lie group with maximal torus T . Assume that both have normalized
Haar measures defined on them. Then for any continuous complex function f on G, the
Weyl integral formula may be written as∫

G
dg f(g) = 1

|W |

∫
T

dt
[
det

(
IG/T −AdG/T (t−1)

) ∫
G

dg f(gtg−1)
]
. (A.1)

Here W is the Weyl group of G, and the Vandermonde determinant J(t) = det
(
IG/T −

AdG/T (t−1)
)
which appears as a Jabobian for the change of measure depends on the

elements of the maximal torus. The function f in the context of our work is a class function
composed of characters. We refer to standard texts, e.g. [18, 34] for further details on the
terms appearing in this formula.

A.1 Vandermonde determinant

The Vandermonde determinant J(t) is related to the root system of G. It may be written
in terms of the torus parameters as [18]

J(t) = 1∣∣PE
[∑

α

∏
k a

αk
k

]∣∣ =
∏
α

∣∣∣∣∣1−∏
k

aαkk

∣∣∣∣∣ , (A.2)

where α = (αk) is the set of non-zero roots of G and the ak parameterize the maximal
torus. The argument t ∈ T , an element of the maximal torus, may be described as a matrix

11In each case, the N2 factor preceding the R-term is to be understood as pre-limit.
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diag(ak). The operation of plethystic exponentiation is defined as

PE[f(xi)] = exp
( ∞∑
n=1

1
n
f(xni )

)
. (A.3)

For the gauge groups relevant to this paper, the Vandermonde determinant may be
written with the angular parametrization ak = eiφk as follows (see [18]):

U(N) :
N∏

k,l=1
k 6=l

∣∣∣eiφk − eiφl ∣∣∣ , (A.4a)

SO(2N) : 2
N∏

k,l=1
k 6=l

∣∣∣e i2 (φk+φl) − e−
i
2 (φk+φl)

∣∣∣ ∣∣∣e i2 (φk−φl) − e−
i
2 (φk−φl)

∣∣∣ , (A.4b)

SO(2N + 1) :
N∏

k,l=1
k 6=l

∣∣∣e i2 (φk+φl) − e−
i
2 (φk+φl)

∣∣∣ ∣∣∣e i2 (φk−φl) − e−
i
2 (φk−φl)

∣∣∣ N∏
k=1

∣∣∣∣e iφk2 − e−iφk2

∣∣∣∣2 ,
(A.4c)

Sp(N) :
N∏

k,l=1
k 6=l

∣∣∣e i2 (φk+φl) − e−
i
2 (φk+φl)

∣∣∣ ∣∣∣e i2 (φk−φl) − e−
i
2 (φk−φl)

∣∣∣ N∏
k=1

∣∣∣eiφk − e−iφk ∣∣∣2 .
(A.4d)

.

A.2 Effective action parameters

The integral equation kernels ∆(φ, ϕ) may then be obtained from the equations (A.4) by
a re-expression of the Vandermonde determinant using logarithms and symmetries of the
sums. More precisely, we take the double-index product sectors of the equations (A.4), while
ignoring the numerical pre-factor of 2 in the SO(2N) case, and the single-index product
factors in the SO(2N + 1) and Sp(N) cases. In the exponent they become sums over
logarithms as follows:

U(N) : ln

 N∏
k,l=1
k 6=l

∣∣∣eiφk−eiφl ∣∣∣
= 1

2

N∑
k,l=1
k 6=l

ln
(

4sin2
(
φk−φl

2

))
,

(A.5a)

SO(2N),SO(2N+1),Sp(N) : ln

 N∏
k,l=1
k 6=l

∣∣∣e i2 (φk+φl)−e−
i
2 (φk+φl)

∣∣∣ ∣∣∣e i2 (φk−φl)−e−
i
2 (φk−φl)

∣∣∣


= 1
2

N∑
k,l=1
k 6=l

[
ln
(

4sin2
(
φk+φl

2

))
+ln

(
4sin2

(
φk−φl

2

))]
.

(A.5b)
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Hence we get the expressions ∆(φ, ϕ) for the three cases:

U(N) : 1
2 ln

(
4sin2

(
φ−ϕ

2

))
, (A.6a)

SO(2N),SO(2N+1),Sp(N) : 1
2

[
ln
(

4sin2
(
φ+ϕ

2

))
+ln

(
4sin2

(
φ−ϕ

2

))]
. (A.6b)

For completeness we also include the U(N) kernel corresponding to the model (2.6), which
we do not treat in detail in this paper. The single-index or numerical product factors
similarly also become sums over logarithms in the exponent:

SO(2N) : ln 2 = 1
N

N∑
k=1

ln 2, (A.7a)

SO(2N + 1) : ln
(

N∏
k=1

∣∣∣∣e iφk2 − e−iφk2

∣∣∣∣2
)

=
N∑
k=1

ln
(

4 sin2
(
φk
2

))
, (A.7b)

Sp(N) : ln
(

N∏
k=1

∣∣∣eiφk − e−iφk ∣∣∣2) =
N∑
k=1

ln
(
4 sin2 φk

)
. (A.7c)

Hence we obtain the respective subleading contributions Ξ(φ):

SO(2N) : 1
N

ln 2, (A.8a)

SO(2N + 1) : ln
(

4 sin2
(
φ

2

))
, (A.8b)

Sp(N) : ln
(
4 sin2 φ

)
. (A.8c)

B Maximal tori

All maximal tori in a Lie group are conjugate to one another and formally equivalent in
choice in the Weyl integration formula (A.1). For convenience we choose the following
canonical maximal tori in our analysis:

(a) For U(N), we take the set of N ×N diagonal matrices,

diag
(
eiφ1 , . . . , eiφN

)
. (B.1a)

(b) For SO(2N), we take the set of 2N × 2N block-diagonal matrices in 2× 2 blocks of
SO(2) rotation matrices,

diag
((

cosφ1 − sinφ1
sinφ1 cosφ1

)
, . . . ,

(
cosφN − sinφN
sinφN cosφN

))
. (B.1b)

(c) For SO(2N + 1), the form of the elements is nearly the same as for SO(2N) but with
an additional solitary diagonal entry of 1, conventionally put at the upper left, i.e.
the set of (2N + 1)× (2N + 1) matrices

diag
(

1,
(

cosφ1 − sinφ1
sinφ1 cosφ1

)
, . . . ,

(
cosφN − sinφN
sinφN cosφN

))
. (B.1c)
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(d) For Sp(N) we take the set of 2N × 2N diagonal matrices

diag(e±iφ1 , . . . , e±iφN ), (B.1d)

i.e. two copies of the canonical U(N) tori.

We note that the SO(N) tori are N -dimensional by the identification U(1) ∼= SO(2).
Further, we remark that these decompositions show that the non-trivial eigenvalues of the
real matrices come in complex conjugate pairs — with the odd orthogonal case having an
extra trivial eigenvalue of 1.

B.1 Single-variable action

Using the maximal tori (B.1a) through (B.1d), we derive the single-variable action as defined
in (3.4). For completeness we also mention the U(N) action corresponding to (2.6). The
actions with their usual real parametrizations are:

U(N) :
∑
n≥1

1
n

(βn cosnφ+ γn sinnφ) , (B.2a)

SO(2N), Sp(N) :
∑
n≥1

2βn
n

cosnφ, (B.2b)

SO(2N + 1) :
∑
n≥1

2βn
n

(
cosnφ+ 1

2N

)
. (B.2c)

The O
(
N−1) term in the SO(2N + 1) case comes from the solitary matrix entry of 1 and

can be ignored, hence the expressions (B.2b) and (B.2c) may be considered identical. We
note that this particular action is even.

C Mathematical identities

C.1 Fourier series

The Fourier series for cot
(
x
2
)
may be derived as follows. We consider the formal expansion

(see the discussion following (3.17) for the notation)
∞∑
n=1

ein(x+i0) = ei(x+i0)

1− ei(x+i0) = i

2 cot
(
x

2 + i0
)
− 1

2 . (C.1)

Equating imaginary parts of (C.1) and performing the regularization gives the required
result

cot
(
x

2

)
= 2

∞∑
n=1

sinnx. (C.2)

C.2 Plemelj formula

For the discrete resolvent (3.16) we define the even discrete probability measure based on
the entries (φl)1≤l≤N ,

ρ(φ) = 1
2N

N∑
l=1

[δ(φ− φl) + δ(φ+ φl)] . (C.3)
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This is a valid probability measure for the set of singularities ±φl of (3.16). It is even, and
this evenness is preserved in the large N limit. For any interval I ⊂ [−π, π) let us define
the multisets AI = {φl ∈ I}, BI = {−φl ∈ I}, then we have

∫
I

dφ ρ(φ) = |AI |+ |BI |2N . (C.4)

By contour integration arguments, we have

∫
I

dφW (φ−i0)−
∫
I

dφW (φ+i0) =
∑
φl∈AI

∮
C(φl,R→0)

dφW (φ)+
∑
−φl∈BI

∮
C(−φl,R→0)

dφW (φ),

(C.5)
where we have written the difference of the two integrals as a sum over vanishing anticlockwise
contours around the relevant residues. From the form of the resolvent (3.16), we see that
only particular terms contribute to this sum:

∫
I

dφW (φ− i0)−
∫
I

dφW (φ+ i0)

= 1
N

∑
φl∈AI

∮
C(φl,R→0)

dφ cot
(
φ− φl

2

)
+ 1
N

∑
−φl∈BI

∮
C(−φl,R→0)

dφ cot
(
φ+ φl

2

)
. (C.6)

These contour integrals may be evaluated to give

∫
I

dφW (φ− i0)−
∫
I

dφW (φ+ i0) = 4πi
N

(|AI |+ |BI |) . (C.7)

Comparing with (C.4) and taking into consideration the arbitrariness of I gives the re-
sult (3.20) in the continuum limit.

C.3 One-gap probability distribution

Using the notation introduced at the end of section 3.2, let us analyze the definite integral

I(c) = 1
π

∫ α(c)

0

√
−β2 sin2 φ+ 2β cosφ+ c, (C.8)

where we have used the symmetry of the function to take just the positive part of the domain,
and α(c) is the smallest real number in [0, π) such that f(φ; c) = −β2 sin2 φ+2β cosφ+c = 0.
A straightforward analysis of the extrema of f(φ; c) in [0, π] shows that for exactly −2β <
c < 1 + β2, f(φ; c) > 0 in [0, α(c)), and strictly decreasing in (0, α(c)]. This determines
the condition for a gap to appear. Assuming c to lie in this range, we observe that I(c)
as a function of c is strictly increasing on (−2β, 1 + β2). Hence there will be, if at all, a
unique c such that I(c) = 1. We now evaluate I(2β) using the substitution z = sin

(
φ
2

)
and
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α(2β) = 2 arcsin 1√
β
:

I(2β) = 2β
π

∫ α(2β)

0
dφ
√

1
β
− sin2

(
φ

2

)

= 4β
π

∫ 1√
β

0
dz
√

1
β
− z2

= 4β
π

[
z

2

√
1
β
− z2 + 1

2β arcsin
√
βz

] 1√
β

0

= 1. (C.9)

Hence c = 2β fixes the normalization and is the unique such c.

C.4 Reality of compact classical group characters

We show that, for X ∈ G(N) as defined by (3.2), we have trX = trX−1 ∈ R.
For the special orthogonal case, the reality is immediate from the real nature of the

matrices, and equality is immediate from the observation that XT = X−1 and trX = trXT.
For the symplectic case, let us consider the elements X,X−1 of Sp(N) = Sp(2N,C) ∩

U(2N) in the canonical representation of 2N × 2N block-diagonal matrices, i.e.

X =
(
A B

C D

)
, Ω =

(
0 1
−1 0

)
, X−1 = −ΩXTΩ =

(
DT −BT

−CT AT

)
. (C.10)

Here all the entries A,B,C,D, 0,±1 are N×N complex matrices, and the expression for the
inverse is derived from the symplectic condition XTΩX = Ω, or equivalently, XΩXT = Ω.
The equality condition follows since trX−1 = − tr ΩXTΩ = − tr Ω2XT = trX. To
obtain the reality condition, X ∈ U(2N) so we must have X† = X−1, so from the block
decompositions we get A† = DT, B† = −CT. This means

trX = trA+ trD = trA+ trA∗ ∈ R. (C.11)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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