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Abstract. Intima-media thickness (IMT) of the common carotid artery
is routinely measured in ultrasound images and its increase is a marker
of pathology. Manual measurement being subject to substantial inter-
and intra-observer variability, automated methods have been proposed
to find the contours of the intima-media complex (IMC) and to deduce
the IMT thereof. Most of them assume that these contours are smooth
curves passing through points with strong intensity gradients expected
between artery lumen and intima, and between media and adventitia
layers. These assumptions may not hold depending on image quality
and arterial wall morphology. We therefore relaxed them and developed
a region-based segmentation method that learns the appearance of the
IMC from data annotated by human experts. This deep-learning method
uses the dilated U-net architecture and proceeds as follows. First, the
shape and location of the arterial wall are identified in full-image-height
patches using the original image resolution. Then, the actual segmen-
tation of the IMC is performed at a finer spatial resolution, in patches
distributed around around the location thus identified. Eventually, the
predictions from these patches are combined by majority voting and the
contours of the segmented region are extracted. On a public database of
2676 images the accuracy and robustness of the proposed method out-
performed state-of-the-art algorithms. The first step was successful in
98.7% of images, and the overall mean absolute error of the estimated
IMT was of 100± 89µm.

Keywords: segmentation, ultrasound images, deep learning.

1 Introduction

Atherosclerosis, the “silent killer” that can progress to acute events such as stroke
or heart attack, begins to develop in the intima-media complex (IMC), the in-
nermost structure of the artery wall. IMC thickening is widely considered as a
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marker of the atherosclerosis onset. Its screening is usually performed in ultra-
sound (US) images of the carotid artery. In the clinical routine, the measurement
of the intima-media thickness (IMT) is performed manually, which may lead to
substantial inter- and intra-observer variability.

Fig. 1. Longitudinal US images of the common carotid artery, examples. The curves
represent the lumen-intima (red) and media-adventitia (green) boundaries of the far
wall interpolated from expert’s annotations (dots). The annotations were restricted to
the exploitable region (ROI) where the characteristic double-line pattern of the IMC
is discernible. Yellow arrows point examples of inconsistent annotations.

Numerous methods, compared in several surveys [10, 2, 3], have been devel-
oped to automate the measurement of the carotid artery IMT. Most of them infer
the IMT as the distance between the lumen-intima (LI) and media-adventitia
(MA) contours extracted within a region of interest (ROI) cropped manually or
automatically by seeking the window where the characteristic dual–line pattern
is discernible (Fig. 1). Contour extraction is performed using various “conven-
tional” algorithms, such as snakes or dynamic programming. Virtually all assume
that the contours are smooth curves passing through points with strong inten-
sity gradients expected between artery lumen and intima, and between media
and adventitia layers. Lately, deep-learning-based (DL) methods have also been
proposed for this task and obtained promising results, but the comparisons [1]
were performed on different datasets. A recent study [6] compared five state-of-
the-art conventional methods on an open access dataset CUBS1 [7] containing
2176 US images from two centers, and concluded that their accuracy is compara-
ble to skilled human experts, while presenting substantially smaller variability.



Deep learning segmentation of the arterial wall in US image sequences 3

In that study, the best results were achieved by a method based on dynamic
programming [15]. A subsequent study [4] confronted the same methods with
two DL approaches on another dataset CUBS2 [5] containing 500 US images
from five different centers. This comparison has demonstrated the sensitivity of
several methods to the arterial wall morphology, namely a decreased accuracy
in curved or inclined arteries. One of the DL-based methods, previously unpub-
lished, outperformed the others in almost all comparisons except for processing
time. While the selected network architecture was the well-known U-net [12],
the original contribution of the method resides in a specific patch-based strategy
devised to cope with inclined and curved arteries. In this article, we describe
for the first time the details of this method, and then report main results in
terms of accuracy and robustness on both open-access datasets CUBS1 [7] and
CUBS2 [5], compared to available expert annotations and the other methods.
We also assess how much the processing time can be improved by changing the
parameter setting, without degrading the accuracy.

2 Datasets

In this work, for training and evaluation purposes, we have used both previously
mentioned publicly-available datasets CUBS13 and CUBS24, i.e., a total of 2676
static US images acquired with different clinical equipment and including a sub-
set (n = 100) of simulated images. These images have pixel sizes ranging from
29 to 267µm (mean size 64µm in CUBS1 and 60µm in CUBS2) and come along
with LI and MA contours independently traced by two or more experts, one
of them having traced them twice. The experts independently selected a ROI,
where they considered the LI and MA interfaces as sufficiently perceptible, and
traced control points within it. To obtain smooth contours, piecewise cubic Her-
mite interpolating polynomial (PCHIP) was applied using MATLAB, Version
2020b (The Math Works, Inc.). The same annotations as in the previous stud-
ies [6, 4] were used as reference. These will be referred to as A1. According to
A1, the mean IMT was of 725µm in CUBS1 and 857µm in CUBS2. The same
expert’s second set of annotations (A1’) was used to calculate the intra-observer
variability, while the inter-observer variability was calculated between A1 and
the second expert’s annotations (A2).

3 Segmentation method

Similarly to many existing methods, e.g. [15], the first step is a very simple user
interaction (two mouse clicks) defining the exploitable ROI, where the IMC is
perceptible. The remainder is fully automatic and split into two main steps:
localization of the far wall and actual IMC segmentation (Fig. 2).

3 https://data.mendeley.com/datasets/fpv535fss7/1
4 https://data.mendeley.com/datasets/m7ndn58sv6/1
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Fig. 2. Flowchart of the proposed method: a) Input image. b) User delimitation of the
left and right borders of the ROI. c) Far wall detection: patches are extracted through
a sliding window with overlap within ROI borders; post-processing of predicted over-
lapping masks leads to extraction of the median axis (green). d) IMC segmentation:
overlapping patches are picked along the median axis and post-processing of the pre-
dicted masks leads to extraction of the LI (red) and MA (yellow) interfaces.

The proposed solution is based on U-net architecture [12], which has widely
demonstrated its ability to produce accurate results in medical image segmenta-
tion with limited annotated data available for supervised training. We have kept
standard components, such as ReLU activation function, and experimentally se-
lected the following settings: number of layers 5, initial number of convolution
kernels 32, and size of the kernel 3× 3 (with batch normalization and bias). We
implemented dilated convolutions on the bottleneck, to increase the receptive
field [9]. The outputs of the filters with different dilation factors {1, 2, 3, 4, 5, 6}
are concatenated into one single tensor. The U-net operates in fixed-size (128-
pixel width W , 512-pixel height H) overlapping patches distributed within the
ROI. The two first layers contract only the height, so as to achieve a square
shape (128 × 128) of the feature space starting from the third layer. The hori-
zontal overlap between patches is equal to W −∆x, where ∆x is the horizontal
shift. A post-processing combines the predictions made within the patches to
extract smooth contours over the entire ROI regardless of its width. The core of
the method consists of two steps: approximately localizing the far wall (Fig. 2c),
and precisely segmenting the IMC around this location (Fig. 2d).

3.1 Detection of the far wall

Like in many state-of-the-art methods [14, 13, 8, 11], the initial localization of the
far wall is performed to focus the subsequent actual segmentation. In this step,
the algorithm attempts to separate the ROI in two regions: above and below the
median axis of the IMC, respectively. Here, the patches are of full image height,
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and the corresponding U-net will be referred to as ΘFW . We first describe how
the images were pre-processed and how ΘFW was trained, then we specify the
post-processing chosen to obtain the curve approximately localizing the far wall
on the entire ROI width from patch-wise predictions inferred using ΘFW .

Pre-processing and training: All images of the database were resampled to
a constant height of 512 pixels; as the native height of all images in the database
is around 600 pixels, the distortion thus introduced was minimal (regions con-
taining alphanumerical information and/or ECG curve overlaid onto the actual
image were not clipped). For training data, the median axis of the IMC was de-
fined as the line halfway between LI and MA annotations, interpolated across the
entire width of the ROI, and a reference mask (MROI) was generated by setting
all pixels below the median axis to one and the others to zero. Then the ROI and
MROI were identically cut into patches; a 100-pixel overlap (∆x = 28) between
patches aimed at data augmentation. Thus obtained patches with their associ-
ated masks (Fig. 3) were fed into the training process, which used the ADAM
optimizer and the sum of the binary cross-entropy and the Dice loss as the loss
function. The latter was experimentally chosen to minimize the boundary dis-
tance and maximize the overlay with respect to the reference masks. Training
was performed with on-the-fly data augmentation: horizontal and vertical flip
applied on 50% of the images, and affine transformation with random rotation
[−2, 2] degrees, shearing [−2, 2] degrees, and translation (vertical [−20, 20] pix-
els, horizontal [−5, 5] pixels). The batch size was of 32, and the number of epochs
300 with early stopping switched on, so that the process stopped if the loss value
on the validation subset did not improve during 50 epochs.

Inference and post-processing: Prior to inference, each image is resampled
as described above, and then the corresponding ROI is cut into overlapping
128 × 512-pixel patches. Next, all patches are segmented using ΘFW . Knowing
the location and the size of each patch, two maps are created:

– prediction map: contains, for each pixel, the sum of values predicted by
ΘFW in all patches.

– overlay map: contains, for each pixel, the number of overlapping patches
it belonged to.

Dividing the prediction map by the overlay map provides, for each pixel, an
average value in the range [0, 1], which is then binarized by using a threshold
of 0.5, to obtain the segmentation map. The latter is cleaned by retaining the
largest connected component. The median axis we seek is the upper boundary
of thus segmented region. Eventually, this boundary is smoothed by using a
third-order polynomial regression.

3.2 Segmentation of the IMC

The above-described approximation of the far-wall median axis is used to ini-
tialize the actual segmentation of the IMC. This segmentation process presents
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Fig. 3. Data used during the far wall detection training phase: patch cut from the
ROI (left) and the corresponding patch from MROI . Red and cyan dots represent the
annotations for LI and MA interfaces, respectively. The green curve is the median axis
calculated from the interpolated annotations.

many similarities with concepts explained in Section 3.1: overlapping patches of
128 × 512 pixels, an overlay map, a prediction map, a similar post-processing
except that two contours are extracted (the LI and MA interfaces), as well as the
same optimizer, loss function, and U-net architecture. The dilated U-net trained
here will be referred to as ΘIMC . Hereafter, we emphasize the specific choices
made for this step.

Pre-processing and training: The segmentation task has to be as accurate as
possible, hence the algorithm works at a sub-pixel resolution. To this purpose,
the vertical pixel size of the images was homogenized to 5µm using a linear
interpolation. According to this physical size, the patch height H = 512 pixels
roughly corresponds to 2.6 mm, which aims to encompass the IMC, knowing that
the average IMC thickness is about 0.8 mm. For training, the ground truth was
then deduced from thus interpolated images (Fig. 4): each pixel located between
the annotated LI and MA interfaces was set to one, and the others to zero. Un-
like the far wall detection, the patches were extracted along the median axis and,
in addition to the 100-pixel horizontal overlap (i.e., ∆x = W − 100 = 28-pixel
shift), at each abscissa xi, the mean ordinate yi of the median axis was computed
on the patch width W = 128, and three patches were extracted, respectively cen-
tered at yi and yi±∆y (∆y = 128). This data augmentation attempted to cope
with possibly inaccurate far-wall approximation as well as with tilted arteries.

Inference and post-processing: During inference, the patches are extracted
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Fig. 4. Data used during the training phase for IMC segmentation. Patches and their
associated masks located at: a) (xi, yi − 128), b) (xi, yi), and c) (xi, yi + 128). Red
and blue dots represent the corresponding annotations for LI and MA interfaces, re-
spectively. The contours were obtained by interpolating the annotations. Of note: the
actual size of the patches is 128× 512 pixels, but they have been vertically compressed
for display purposes.

along the far wall approximation resulting from the first step (Section 3.1). At
each abscissa xi three or more patches are captured at different ordinates, de-
pending on the tilt of the median axis, with the goal to cover all the expected
extent of the IMC. The predictions made by ΘIMC in all patches are combined
into a prediction map, and then the segmentation map is derived thereof, as
described above. Finally, the LI and MA interfaces are respectively defined as
the upper and lower boundaries of the region thus segmented.

4 Results

The evaluation was carried out using 5-fold cross-validation, so as to assess
each network on data not seen during its training. In each fold, the database
(combined data from the open-access datasets CUBS1 [7] and CUBS2 [5]) was
split into training (60%), validation (20%), and testing (20%) subsets. Thus, five
pairs of networks ΘFW and ΘIMC were trained and tested independently, and
the results reported here are the merging of the test sets of these five pairs, thus
evaluating the method on the entire database.

In the proposed cascade approach, a failure of the first step (far wall detec-
tion) will trigger a failure of the second step (IMC segmentation). To conduct
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Table 1. Errors of segmentation results (mean ± standard deviation): mean absolute
difference (MAD) for thickness quantification (IMT) and Hausdorff distance (HD) for
contour locations (LI and MA). The comparisons are reported for the entire database
and separately for CUBS1 and CUBS2 datasets. For each dataset, the following differ-
ences are reported: the proposed method against reference annotations, the inter- and
intra-observer variabilities.

Comparison
Measure IMT LI MA

Dataset MAD (µm) HD (µm) HD (µm)

CUBS1∪CUBS2
Method vs. A1 100± 89 317± 193 287± 152
A2 vs. A1 204± 168 370± 197 348± 162
A1’ vs. A1 147± 127 356± 194 324± 161

CUBS1
Method vs. A1 99± 89 320± 193 287± 153
A2 vs. A1 206± 168 380± 207 351± 161
A1’ vs. A1 144± 123 357± 204 319± 155

CUBS2
Method vs. A1 106± 89 305± 197 289± 147
A2 vs. A1 192± 166 327± 138 338± 184
A1’ vs. A1 160± 140 352± 140 346± 185

a fair evaluation of both steps, we first quantified the success rate of the first
step alone, and then we quantified the accuracy of the second step by manually
enforcing valid initial conditions when needed.

Robustness of the far wall detection: After visual inspection, 36 out of 2676
predicted median axes (1.3% of the database) were considered as failures, i.e.,
curves unusable to initialize the IMC segmentation step. Hence, the success rate
was of 98.7% and, in the 36 images with failures, the median axis was manually
redrawn using a home-made graphical interface.

Accuracy of the IMC segmentation: The segmentation error was quantified
in two ways. To enable a fair comparison of our method with five state-of-the-
art methods evaluated on the CUBS1 and CUBS2 datasets in the previously
mentioned recent studies [6, 4], we asked the first authors of the latter (see Ac-
knowledgements) to apply onto the LI and MA contours extracted by our method
exactly the same evaluation protocol and metrics as used in their publications.
Hence, the IMT values and all errors were calculated on a region restricted to
a common support where all participating methods succeeded in extracting the
contours. The IMT was measured as the polyline distance between LI and MA
contours, and its error was calculated as the mean absolute difference (MAD)
between the method output and the reference values calculated from the expert’s
(A1) annotations. The (worst case) errors for LI and MA were separately esti-
mated by calculating the Hausdorff distances between the respective contours
extracted by the method and the annotations performed by A1. These results
are summarized in Table 1.

The reported values were obtained with the same implementation and pa-
rameter settings as in the previous study restricted to the CUBS2 dataset [4]. In
that study, the processing time was the only drawback of our method: 0.92 sec for
far-wall localization and 1.77 sec for IMC segmentation, i.e., a total of 2.69 sec
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per image, and was achieved with a very large horizontal overlap of 124 pix-
els (i.e., shift ∆x = 4). Therefore, without modifying the implementation, we
varied ∆x ∈ {8, 16, 32, 64, 96} to check how much the horizontal overlap – and
thereby the number of processed patches – can be decreased without degrading
the results, and how much the processing time can thus be improved. The results
obtained on the entire database are summarized in Table 2. Here the IMT and
the errors in contour extraction were assessed using in-house tools, by measuring
the column-wise distances instead of the polyline and Hausdorff distances. Also,
the comparison was not restricted to the common support for all methods, and
used the full extent of the extracted contours. In addition, the failures of the
automatic far-wall localization step were not manually corrected. For all these
reasons, the results for ∆x = 4 differ from those in Table 1, but they can be
consistently compared with those obtained for the remaining shifts.

Table 2. Estimation errors (mean of absolute differences ± their standard deviation)
with respect to reference annotations A1, and processing time (FW stands for far-
wall localization and IMC for the actual segmentation), as a function of the horizontal
shift ∆x. The horizontal overlap between patches is equal to 128 −∆x. The reported
processing time was achieved on the following hardware: CPU Intel(R) Core(TM) i7-
6700, 32 GB RAM, 3.40 GHz; GPU NVIDIA GeForce GTX 1070, 8 GB RAM.

Shift ∆x (pixels) 4 8 16 32 64 96

IMT MAD± std (µm) 158± 88 158± 88 158± 88 159± 88 159± 89 160± 87
LI MAD± std (µm) 116± 68 116± 68 116± 68 113± 65 114± 66 118± 71
MA MAD± std (µm) 104± 62 104± 62 104± 63 107± 68 107± 68 105± 62
FW time (sec) 0.92 0.73 0.64 0.59 0.58 0.56
IMC time (sec) 1.77 1.14 0.80 0.65 0.58 0.55
total time (sec) 2.69 1.87 1.44 1.24 1.16 1.11

5 Discussion

We developed and assessed a deep-learning method to extract the contours of the
intima-media complex in longitudinal B-mode ultrasound images of the carotid
artery. The method first approximately localizes the far wall, and then segments
the anatomical interfaces of interest. The proposed approach allows for vari-
able width of the region of interest without rescaling the images. Robustness
of the far-wall localization step is a prerequisite for overall correct segmenta-
tion. This step was successful in 98.7% of the images, therefore attesting of the
method robustness. The actual segmentation step achieved good accuracy, with
errors smaller than the inter-observer and intra-observer variability. The results
reported in Section 4 were obtained on combined data from the open-access
datasets CUBS1 [7] and CUBS2 [5] and can be compared with the results of five
state-of-the-art methods evaluated on the same datasets in recent studies [6, 4].
On both datasets, our method outperformed the remaining ones. In particular,
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on the CUBS1 dataset, the compared methods produced IMT errors (MAD)
ranging from 114± 117 to 255± 230µm, while for our method the MAD was of
99± 89µm. Similarly, on the CUBS2 dataset, the other methods produced IMT
errors ranging from 139± 118 to 224± 178µm, while for our method the MAD
was of 106± 89µm.

On average, the MAD produced by the proposed method represented 1.6
pixels (which corresponds to 13.7% of the mean IMT) in CUBS1, and 1.8 pixels
(12.4%) in CUBS2, respectively. Although these inaccuracies remain relatively
large compared to the target measurement (IMT), they are respectively twice
and 1.5 times smaller than the inter-observer and intra-observer variabilities.

The processing time was below 1 sec for the far-wall localization step and
below 2 sec for the actual IMC segmentation step, when using a very large hor-
izontal overlap and thereby a large number of patches. It can be seen that, on
average, the errors were stable when decreasing the overlap, particularly up to
the shift ∆x = 16, but the resulting reduction of the processing time was lim-
ited. Of note, when segmenting a sequence of images, the far-wall localization
step needs to be executed only once, at the beginning of the sequence, while the
actual IMC segmentation needs to be repeated for each image. In the current im-
plementation, the processing time of this step remains greater than 0.5 sec even
with a strongly reduced overlap. Further reduction of this time would require an
optimization of the implementation, which has not yet been attempted.

The largest errors occurred in the presence of atherosclerotic plaques. As the
work presented here was oriented towards asymptomatic plaque-free subjects,
images with plaques were not expected. Nevertheless, we anticipate that results
might be improved by increasing the number of such images in the database and
re-training the networks.

In conclusion, with a 98.7% success rate and errors smaller than the inter-
and intra-observer variability, the proposed method likely is robust and ac-
curate enough to be used in clinical practice, as well as to study the peri-
odic compression-decompression of the arterial wall, which is another potential
biomarker of atherosclerosis.

Code and examples are available at https://github.com/nl3769/caroSegDeep.
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