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Seeded free-electron laser driven by a 
compact laser plasma accelerator

Free-electron lasers generate high-brilliance coherent radiation at 
wavelengths spanning from the infrared to the X-ray domains. The recent 
development of short-wavelength seeded free-electron lasers now allows 
for unprecedented levels of control on longitudinal coherence, opening 
new scientific avenues such as ultra-fast dynamics on complex systems 
and X-ray nonlinear optics. Although those devices rely on state-of-the-art 
large-scale accelerators, advancements on laser-plasma accelerators, which 
harness gigavolt-per-centimetre accelerating fields, showcase a promising 
technology as compact drivers for free-electron lasers. Using such 
footprint-reduced accelerators, exponential amplification of a shot-noise 
type of radiation in a self-amplified spontaneous emission configuration 
was recently achieved. However, employing this compact approach for the 
delivery of temporally coherent pulses in a controlled manner has remained 
a major challenge. Here we present the experimental demonstration 
of a laser-plasma accelerator-driven free-electron laser in a seeded 
configuration, where control over the radiation wavelength is accomplished. 
Furthermore, the appearance of interference fringes, resulting from the 
interaction between the phase-locked emitted radiation and the seed, 
confirms longitudinal coherence. Building on our scientific achievements, 
we anticipate a navigable pathway to extreme-ultraviolet wavelengths, 
paving the way towards smaller-scale free-electron lasers, unique tools for a 
multitude of applications in industry, laboratories and universities.

Research and daily life have been profoundly impacted by the inven-
tion of the laser. This impact has grown with the expansion of avail-
able parameters thanks to innovations in system architecture and 
gain media. With the advent of ultrashort-pulse and high-peak-power 
technology based on chirped pulse amplification1, lasers have pushed 
the frontiers of science, opening the door to new applications in 
relativistic-intensity laser–matter interactions2, of which laser-plasma 
acceleration3 is a prominent example. However, fundamental limi-
tations remain regarding the generation of X-ray radiation, as light 
amplification is based on the population inversion of electronic states, 
typically in a solid-state material. Free-electron lasers (FELs)4, in con-
trast, harness a completely different gain medium, where relativistic 
electron beams wiggle in a periodically alternating magnetic field. FELs 

have undergone game-changing progress over recent decades. The 
first low-gain infrared FELs providing picojoule pulse energies5 paved 
the way to higher gain6, shorter wavelengths7–12 and, finally, mature 
hard-X-ray tunable systems13,14. Applications of FELs advanced simul-
taneously, and X-ray FELs are now established as unique high-brilliance 
tools for the investigation of matter with atomic resolution at femto- to 
attosecond timescales15. This progress has been enabled by continu-
ous improvements in electron-beam-source quality, supported by the 
next generation of particle colliders16. However, the length of such 
state-of-the-art linear accelerators increases with the beam energy, and 
thus involves high investment and high operational costs. FEL facilities 
presently extend over 350 m for beam energies of 1 GeV and FEL wave-
lengths in the extreme-ultraviolet (EUV) range (for example, FERMI12), 
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Electrons accelerated by Laser) beam manipulation line56. A schematic 
of the experimental layout is provided in Fig. 1. The LPA is operated 
in a tailored self-truncated ionization-induced injection scheme57, 
employing beam loading to limit the energy spread40. The LPA per-
formance is optimized for high-charge and low-divergence beams. 
The latter is achieved by shaping the gas-density profile directly at 
the accelerator exit to induce a plasma lens effect, resulting in electron 
beams with high spectral charge density. Discarding off-energy and 
low-charge-density shots, which cannot lead to FEL observation 
(Extended Data Fig. 1), the electron beams exhibit a peak energy Ee 
of 188 MeV, with a statistical standard deviation (s.d.) of 6 MeV, a 
relative energy spread σE of 6.3 ± 0.8% (root-mean square 
(r.m.s.) ± s.d.), resulting in a spectral charge density of 
6.3 ± 1.3 pC MeV−1 (full-width at half-maximum (FWHM) ± s.d.), with 
a mean horizontal divergence σx′ of 0.8 ± 0.2 mrad (r.m.s. ± s.d.) 
throughout a ±5% energy band (180–198 MeV). The electron-beam 
duration σz can be estimated to be ~14.8 ± 1.6 fs (FWHM ± s.d.) based 
on previous measurements43. With the spectrometer removed, the 
electron beam is transported through the COXINEL beamline56. A 
triplet of tunable high-gradient quadrupoles (QUAPEVAs), located 
behind the LPA, first handle the electron-beam divergence for chro-
matic emittance growth mitigation. The beam is then decompressed 
in a four-dipole-magnet chicane. For a nominal chicane strength R56 
of −1.8 mm, the chicane stretches the beam up to 0.9 ps (FWHM), 
while imposing an energy-position correlation (chirp) according to 
γ(t) = γ0(1 + ct/R56), where t is the longitudinal position along the beam 
(t < 0 corresponds to the head) with respect to the central-energy γ0 
location, and c is the speed of light. Subsequently, four quadrupoles 
create a chromatic sliding focusing47 of the electrons according to 
their energy inside an in-vacuum undulator. This undulator consists 
of 97 periods of 20-mm length, with a gap tunable down to 4 mm, 
providing a maximum deflection parameter Ku of 2.47. Electrons are 
finally deflected with a dipole, allowing for photon-beam diagnostics. 
The seed is generated by frequency-conversion of a small fraction of 
the driver laser, providing a pulse energy Eseed of 0.8 μJ within a band-
width Δλseed of 3.9 nm (FWHM) at a central wavelength λ0 of 269 nm. 
To relax the temporal overlap between the seed and electron beam, 
the seed is stretched to an estimated duration (ΔTseed) of 1 ps (FWHM) 
by introducing dispersion. This stretching induces a strong longitu-
dinal dependence (linear chirp) of the seed wavelength according to 
λseed(t) = λ0 + (t − τ)/Dλ, where τ is the delay with respect to the 
electron-beam maximum charge-density location, and Dλ is the 
group-delay dispersion. The radiation at the undulator exit is 
near-field-imaged onto a two-dimensional (2D) UV spectrometer, 
providing a 2D spatio-spectral distribution, that is, vertical position 
versus spectral distribution.

Seeded FEL demonstration
The measured spatio-spectral distributions are presented in Fig. 2a. 
The synchrotron radiation (SR) alone (Fig. 2a(i)) exhibits a broadband 
spectral distribution due to the large electron-beam energy spread. 
The absence of narrowband spikes states that, in the present experi-
ment, SASE cannot be observed due to the too low charge density of the 
electron beam. The seed radiation only (Fig. 2a(ii)) has a nearly Gauss-
ian spatio-spectral distribution with a peak intensity approximately 
eight orders of magnitude higher than the synchrotron radiation. Once 
the 3D (spatial, temporal and frequency) overlap between the elec-
trons and the seed is established inside the undulator (Methods), an 
additional redshifted signal appears (Fig. 2a(iii)). To ease its viewing, 
the seed contribution (Fig. 2a(ii)) is subtracted (Methods), leading 
to the trace shown in Fig. 2a(iv). This isolated trace is spectrally red-
shifted by more than 5 nm with respect to the seed. The experimental 
spatio-spectral distributions (Fig. 2a) and on-axis spectral intensities 
detailed as lineouts in Fig. 2c are found to be in very good agreement 
with the simulations (Methods) shown in Fig. 2b. The isolated redshifted 

and over 750 m for beam energies above 5 GeV and sub-nanometre FEL 
wavelengths (SACLA17, Swiss-FEL18, LCLS13 and E-XFEL14). With their 
unprecedented accelerating fields, laser-plasma accelerators (LPAs)19 
have appeared as alternative drivers20, promising a downscaling in 
size by more than one order of magnitude. Thus, the realization of a 
compact LPA-driven FEL has been identified as one of the major chal-
lenges of this decade, as addressed by the European Plasma Research 
Accelerator with eXcellence In Applications (EuPRAXIA)21 in the Euro-
pean Strategic Forum for Research Infrastructure (ESFRI) roadmap.

In FELs, the wiggling relativistic electron beam interacts with 
co-propagating radiation at the resonant undulator wavelength 
λR = λu × (1 + K2

u/2)/(2γ2), where γ is the Lorentz factor of the electron 
beam, λu is the undulator period and Ku is its deflection parameter. This 
interaction leads to an energy modulation, which is further converted 
into a density modulation of the electron bunch at λR, initiating a coher-
ent emission process scaling quadratically with the bunch charge. FEL 
radiation is spectrally tunable via the electron energy and the deflection 
parameter. In oscillator22 and self-amplified spontaneous emission 
(SASE)23 configurations, the radiation starts from shot noise. SASE FELs 
can provide gigawatt-level peak power pulses with a high degree of 
transverse coherence. However, they suffer from low longitudinal 
coherence because of this shot-noise starting point, generally exhibit-
ing spiky temporal and spectral distributions. To mitigate these issues, 
external seeding was proposed24,25. In a seeded configuration, the initial 
radiation is an external coherent source or a monochromatized 
upstream SASE pulse tuned to λR. Seeding thus accelerates the first 
energy exchange stage, but is also a powerful strategy to control the 
pulse shape and guarantee longitudinal coherence26,27, even down to 
very short wavelengths7,12,25,28,29. At present, most XUV and X-ray FELs 
can be externally seeded or self-seeded to provide the highest level of 
spectral purity30,31 and the possibility to tailor emission 
properties32,33.

LPAs rely on ultrashort and relativistic-intensity laser pulses2,34 
focused into underdense plasma to excite micrometre-scale collec-
tive plasma oscillations, which travel at nearly the speed of light in 
the wake of the drive laser pulse. Unlike cavity-based accelerators, 
LPAs are not limited by vacuum breakdown, and their acceleration 
gradients can reach several hundreds of gigavolts per metre. LPAs have 
developed rapidly as a result of extensive research into high-quality 
injection and acceleration schemes35, plasma targets, drive laser tech-
nologies36 and diagnostics34. They now feature electron bunches with 
optimized parameters at energies up to 8 GeV (ref. 37), emittances 
down to 0.1 mm mrad (ref. 38), sub-percent energy spread39 and nano-
coulomb charges40,41, with durations typically around 10 fs (refs. 42,43) 
and sustaining peak currents of several tens of kiloampères40,43,44, all 
with improved stability45.

LPAs are now setting the stage to drive smaller-footprint FELs. 
After the development of LPA beam manipulation strategies46,47 and 
the observation of spontaneous emission48–52, the first SASE FEL ampli-
fication driven by an LPA was reported53,54 at a wavelength of 27 nm. As 
SASE radiation still inherently lacks temporal coherence, in this Article 
we aim to experimentally demonstrate a seeded LPA-driven FEL. Using 
an external seed at 270 nm, we achieve control of the FEL-radiated 
wavelength, taking advantage of the energy and wavelength chirps of 
both the electron and the seed laser beams, respectively. Longitudinal 
coherence is substantiated by the observation of phase-locked interfer-
ence fringes between the seed and the FEL pulses. These experimental 
results are supported quantitatively by both numerical simulations 
and analytical modelling.

Experimental set-up
The experiment was performed at the Helmholtz-Zentrum 
Dresden-Rossendorf (HZDR), combining the LPA driven by the 
100-TW-class arm of the DRACO (Dresden Laser Acceleration Source) 
laser55 with the COXINEL (COherent X-ray source INferred from 
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trace shown in Fig. 2a(iv) evidences seeded FEL operation, following 
the prediction of ref. 58.

The fundamental mechanism leading to this redshift is illus-
trated in Fig. 3. In a seeded configuration (Fig. 3a), the first step of 
the FEL process is energy exchange between the seed and electron 
beam at the resonance wavelength. As both the seed wavelength and 
the electron-beam energy are time-dependent, the resonant con-
dition λseed(t) = λR(t) can only be met at one longitudinal position, t0  
(Fig. 3b and Methods). This local energy exchange at t0 leads to an energy 

and further density modulation of the electrons at λseed(t0) (or λR(t0)), 
expected to be followed by a coherent emission at the same wavelength. 
However, if, at the scale of one modulation period, the electrons’ energy 
varies substantially, which is the case due to the strong electron-beam 
chirp, the initial density modulation period is stretched by the disper-
sion experienced along the undulator. This leads to a lengthening 
of the coherent emission wavelength (Fig. 3c), that is, a redshift58. 
According to this model, the final seeded FEL wavelength is expected  
to behave as

~30 µm
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Fig. 1 | Experimental layout. The LPA is driven by the DRACO laser (for more 
details on the DRACO footprint, see ref. 55). The electron beam generated in the 
LPA is first characterized using a removable electron spectrometer and then sent 
through a triplet of quadrupoles (QUAPEVAs) for beam transport to the undulator 
and FEL radiation generation. ICTs, integrated current transformers. Non-labelled 
elements: dipoles, red blocks; optical lenses, blue disks; mirrors, grey circled 

black disks. a, Particle-in-cell simulation rendering of the accelerating structure 
driven by the laser pulse (red); the electron cavity sheet formed from the plasma 
medium (light blue) is in purple and the accelerated electron bunch in green. b–d, 
Electron-beam transverse distribution measured at the LPA exit (b), the undulator 
entrance (c) and the undulator exit (d).
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Fig. 2 | Spatio-spectral distributions of the radiation at the undulator exit. 
a,b, Spatio-spectral distributions for an undulator gap of 4.3 mm (Ku = 2.35) and 
an optimum delay of +0.1 ps: experimental measurements (a) and simulation (b) 
of SR only (i), seed only (ii), SR with seed (iii) and the difference between the (iii) 
and (ii) images (iv). c, On-axis spectral intensity I extracted along the red line in a 
and blue line in b with integration over Δy = 0.3 mm and median filtering of the 
simulated profile. In a,b,c(i–iii), distributions are normalized to their maximum 

intensity and displayed in logarithmic (dB) scale. In a,b,c(iv), the distributions 
are displayed in a linear scale. Simulation parameters (electron-beam parameters 
given at the source point): Ee = 188.8 MeV, charge = 150 pC, σz = 2 μm (r.m.s.), 
normalized emittance ϵx, y = (1.5; 1.0) mm mrad, divergence σx′, y′ = (1.5; 1.0) mrad 
(r.m.s.), σe = 5% (r.m.s.), R56 = −1.8 mm, QUAPEVA 2 strength detuned by −2%, 
Eseed = 0.5 μJ, λseed = 269 nm, Δλseed = 3.9 nm (FWHM) and ΔTseed = 1.0 ps (FWHM).
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λFEL = (λ0 +
t0 − τ
Dλ

) × (1 −
1 + K2

u0/2

γ(t0)
2
R56

Leff) (1)

where Ku0 is the deflection parameter ensuring resonance at τ = 0, and 
Leff is the effective undulator length along which the modulation period 
stretching takes place. The isolated trace exhibited in Fig. 2a(iv) is red-
shifted up to a central wavelength of 274 nm—matching well the 276-nm 
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of the electron beam. The periodic modulation initiated by the seed laser at 
the resonant wavelength is thus stretched, leading to a FEL coherent emission 
redshifted with respect to the seed-laser optical wavelength. d, λFEL versus delay 
τ (Extended Data Fig. 2). τ = 0 corresponds to perfect synchronization between 
the seed and the electron beam. For τ < 0 (resp. τ > 0), the seed arrives before 
(resp. after) the electron beam at the undulator entrance. Experimental data are 
shown as grey dots, with the colour scale representing the charge of each single 
shot. The delay scan was carried out for a 4.3-mm-undulator gap. The model 
results are shown as a black dashed line, using equation (1) with Ee = 188.8 MeV, 
R56 = −1.8 mm, Leff = 1.87 m and D = −0.296 ps nm−1. Simulations are shown as red 
diamonds and use the same parameters as in Fig. 2, except for charge (100 pC), 
corresponding to a spectral charge density of 3 pC MeV−1.
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prediction of equation (1) using Leff = 1.9 m. This absolute agreement 
confirms the observation of a seeded FEL.

FEL spectral control
The measured λFEL as a function of the delay τ is shown in Fig. 3d. Beyond 
τ = ± 1 ps, the FEL signal disappears. With the seed pulse longitudi-
nally sweeping the electron-beam distribution, this ±1-ps interval is in 
good agreement with the convolution between two ~1-ps FWHM pulses 
(seed and electron beam). Within the observation range, λFEL correlates 
linearly with τ, in good agreement with simulations, accurately fol-
lowing the prediction of equation (1). These results show that the FEL 
wavelength is locked thanks to the external seeding and can be fully 
controlled by the electron-beam and seed chirps.

Charge dependence
To further classify the FEL emission, a new observable is derived from 
the isolated trace shown in Fig. 2c(iv): the isolated FEL pulse energy, ξFEL 
(Methods). Two sets of ξFEL measurements are presented in Fig. 4a. For 
each set, the best ξFEL shots at a given charge are consistent with a quad-
ratic dependence versus beam charge. The first set is well-reproduced 
by simulations using a spectral charge density of 3 pC MeV−1, and the 
second set, recorded 1 h later, is matched using 2 pC MeV−1, indicating 
a slight detuning of the LPA performance, that is, a reduction of charge 
density over time. The shots below the driving quadratic behaviour are 
attributed to the intrinsic shot-to-shot jitter of the LPA beam, leading 
to a gain loss and/or to a spatial or spectral mismatch between the 
seed and the electron beam in the undulator. The upper-limit quad-
ratic charge dependence is a signature of an FEL in the coherent  
emission regime.

Longitudinal coherence
In Fig. 4b, two sets of measured FEL spectra are shown. First, the FEL 
wavelength stays locked and is independent of the beam charge as 
predicted by equation (1). The spectra also exhibit a systematic periodic 
perturbation spectrally positioned between the seed and the FEL peak 
intensity (within the dashed rectangle). For a more thorough study, the 
seed contribution is removed from the FEL spectra (Methods), resulting 
in the ΔFEL trace shown in Fig. 4c. The perturbations unambiguously 
correspond to interference fringes between the seed and FEL pulses58. 
Over the two sets of measurements, both the period and the phase of 
those fringes remain stable. Such a stability can only be derived from 
phase-locking between the seed and the FEL pulses, providing conclu-
sive evidence of temporal coherence.

Conclusion
We have demonstrated an LPA-driven seeded FEL. Its radiation is 
spectrally controlled and, in contrast to SASE, it exhibits a defined 
longitudinal phase correlation, adding temporal coherence to this 
compact light source. The continuous progress of the LPA beam 
quality, confirmed here, together with the accuracy of the demon-
strator modelling, enables straightforward scaling of our results to 
the application-relevant XUV range. Considering a 400-MeV electron 
beam with parameters as described in ref. 41, together with the current 
COXINEL beamline upgraded with a 3-m-long cryogenic undulator with 
a period of 15 mm (available at SOLEIL) and a seed generated by harmon-
ics in gas, coherent FEL pulses above the gigawatt level are predicted at 
40 nm (Extended Data Fig. 4). There is no showstopper for LPA-based 
seeded FELs down to XUV wavelengths. The path towards compact 
LPA-driven X-ray FELs remains challenging. Stringent electron-beam 
parameters have to be met, and higher-repetition-rate operation and 
system stability have to be improved further. Although these will be 
met by a large community effort over a long timescale, our findings 
represent a key milestone towards controlled, smaller-scale LPA-based 
FELs for applications benefiting from intrinsic laser-to-FEL pulse  
synchronization.
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Methods
Laser system
The DRACO Ti:sapphire chirped pulse amplification system is a dual 
beam (1 PW and 100 TW) laser system55. The 100-TW system occu-
pies a footprint area of ~50 m2 hosted at the centre of the high-power 
radiation source, HZDR. The system delivers pulses of ~30-fs (FWHM) 
duration at a central wavelength of 800 nm. In the present experiment, 
only the 100-TW arm is used, delivering 2.1 J on target following a 
6-m-long beamline to transport the laser beam from the compressor 
vacuum chamber to the electron experimental hutch. This hutch of 
~70-m2 area is under heavy radiation shielding and capable of sup-
porting the LPA operating up to gigaelectronvolt energies as well as 
the COXINEL beamline. An off-axis parabolic mirror (f/20, focal length 
of 2 m) focuses the laser beam into the gas target, 2.5 mm above the 
nozzle. Before experiments, a wavefront sensor (PHASICS SID4) in 
closed loop with a deformable mirror provides focal-spot optimiza-
tion, resulting in a spot size of 21 μm (FWHM) measured at the vacuum 
focus position, and yielding a normalized vector potential a0 of 2.6. 
The spectral phase is measured with spectral-phase interferometry 
for a direct electric-field reconstruction (SPIDER-A.P.E.) in paral-
lel with self-referenced spectral interferometry (WIZZLER-fastlite) 
in closed loop with an acousto-optic programmable dispersive fil-
ter (DAZZLER-fastlite) for correction of dispersion mismatch along 
the laser-amplifier and laser-beam transport chain. The LPA perfor-
mance is further optimized by phase correction on the second-order 
(group-velocity) dispersion at DAZZLER. Active beam stabilization 
within the amplification system in conjunction with online diagnostics 
for laser near-field and far-field monitoring at the experimental area 
ensures shot-to-shot pointing stability.

LPA
The laser wakefield accelerator19 is operated in a tailored scheme 
of the self-truncated ionization injection regime59 detailed in ref. 57.  
A 2.5-mm-diameter supersonic gas nozzle (SourceLAB SL-NOZ), 
mounted on a fast gas valve (Parker 9-series), provides the gas 
medium. The gas-jet profile is characterized with an interferomet-
ric method60, yielding a flat-top region of ~1.1 mm with a gas density 
of 1.4 × 1018 cm−3 (resulting in a plasma density of 2.8 × 1018 cm−3) and 
density ramps of ~0.5 mm on both sides along the laser-propagation 
axis. A low ionization threshold gas (He), ionized by the main 
laser-preceding pedestal, provides the plasma medium. K-shell 
electrons of a 1-vol% fraction high-ionization-threshold gas (N2) 
are only ionized in the vicinity of the laser intensity peak, provid-
ing injected electrons that constitute the final electron beam. The 
injection time is limited by a confined injection volume, where the 
injection conditions are satisfied, governed by the laser and wake-
field evolution59. This scheme nevertheless allows for injection 
of large quantities of charge, constituting a nanocoulomb-class 
accelerator where energy spread is minimized by beam  
loading40.

LPA beam characterization
The electron-beam spectrometer at the LPA exit consists of a 0.4-m-long 
permanent magnet dipole with a magnetic field strength of 0.9 T. 
Phosphor-based scintillating screens (CAWO-OG-16 FRONT), imaged 
onto 12-bit CMOS cameras (Basler acA2040-35gm), are positioned such 
that the energy resolution is optimized with point-to-point imaging55 
from 60 to 270 MeV. The absolute charge response of these scintillating 
screens was calibrated using the ELBE (Electron Linac for beams with 
high Brilliance and low Emittance) accelerator61. This broad-range 
spectrometer enables us to determine the electron-beam spectral 
distribution and divergence in the horizontal (that is, non-bending) 
axis plane. Being a destructive beam diagnostic, it can be inserted on 
demand into the beam path, but is removed for beam transport through 
the COXINEL beamline.

Beamline magnetic components
The COXINEL beamline starts with a triplet of high-gradient 
permanent-magnet-based quadrupoles with variable gradient (QUA-
PEVAs)62,63 placed 4.5 cm from the gas jet. Their characteristics, as in 
magnetic length and gradient, are as follows: (40.7 mm, 171.706 T m−1), 
(44.7 mm, −152.18 T m−1) and (26 mm, 131.82 T m−1). The chicane consists 
of four electromagnet dipoles. The current applied to each dipole is 
33.15 A, leading to an R56 of −1.8 mm. This is the minimum R56 allowing 
for the insertion of the seed injection mirror. The electromagnetic 
quadrupoles further downstream have a magnetic length of 213 mm 
each, with strengths of −1.0737 T m−1, 3.3388 T m−1, −9.1712 T m−1 and 
4.2974 T m−1, respectively. The electromagnetic dipole used to dump 
the beam is operated with a current of 100 A.

Undulator
The radiation source is a planar in-vacuum hybrid undulator consisting 
of 97 periods of 20-mm length. This was built using NdFeB magnets 
and vanadium Permendur poles, and optimized at Synchrotron SOLEIL. 
Using a series type-C Hall probe and a rotating coil, the phase error and 
electron trajectory were optimized. The measured magnetic field Bu 
(first harmonic) versus undulator gap g can be fitted according to 

Bu = 2.58 exp [−3.37 g

λu
+ 0.095( g

λu
)
2
] in agreement with RADIA64 simula-

tions. The undulator deflection parameter Ku can be derived from Bu 
according to Ku = 0.9338 × Bu[T] × λu[cm]. With a minimum gap of 4 mm, 
the maximum Ku is 2.47.

Electron-beam transport method
The magnetic elements and the diagnostics are aligned with a 
laser tracker and a theodolite on the laser axis using the main laser 
cross-shape references with an accuracy of ±0.025 mm. To transport 
the electron beam, a beam pointing alignment compensation (BPAC) 
method56 relying on the transport matrix response is used to compen-
sate for initial electron beam pointing or eventual misalignments of 
the QUAPEVAs magnetic axis. The position and dispersion along the 
line can be independently corrected, thanks to a modification of the 
QUAPEVAs magnetic centre via the translation tables on which they are 
mounted. Finally, the strength of the QUAPEVAs (by a modification of 
rotating cylindrical permanent magnets) is adjusted to correctly set the 
electron-beam transported energy. The electron beam transport along 
the COXINEL beamline can be simulated with BETA65 and ELEGANT66 
codes (Extended Data Fig. 5).

Electron-beam diagnostics
Five electron-beam imagers are implemented along the beamline. They 
all consist of a scintillating screen, imaging optics and a camera. The 
screens are mounted on a motorized stage for on-demand insertion 
on the electron-beam axis and finally backside-imaged. The screen of 
the first imager (at the LPA exit) is a LANEX screen protected by 75-μm 
black ionized aluminium foil. It is imaged with a pair of simple focus-
ing lenses onto a 12-bit charge-coupled device (CCD) camera (Basler 
acA640). The magnification ratio (0.12 and 0.17 resp. in the horizontal 
and vertical planes) together with the screen lead to a resolution of 
~150 μm. All downstream imagers are equipped with a 16-bit CMOS 
camera (HAMAMATSU, ORCA Flash 4.0). The screen of the second 
imager (in the chicane) is a YAG:Ce screen protected by a 25-μm black 
ionized aluminium foil, and the imaging optics is a QIOPTIC custom 
objective, providing a resolution of ~4.7 μm in both planes. The screens 
of the third and fourth imagers (at the entrance and exit of the undula-
tor) are YAG:Ce, and their imaging optics is a f/2 100-mm-focal-length 
ZEISS macro objective. The resolution is 6.0 μm (resp. 6.4 μm) in the 
horizontal (resp. vertical) plane at the undulator entrance and 6.5 μm 
(resp. 6.8 μm) in the horizontal (resp. vertical) plane at the undulator 
exit. The screen of the last imager (after the dump dipole) is a LANEX 
screen protected by a 25-μm black ionized aluminium foil, and the 
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imaging optics is a f/2.8 105-mm-focal-length SIGMA macro objective. 
The resolution is 21 μm in both planes.

Two absolute charge monitors, turbo integrating current trans-
formers (ICTs) from Bergoz, are installed at the entrance ( just after the 
LPA chamber) and at the exit ( just after the undulator) of the beamline.

Seed
A small fraction of the LPA driver laser is extracted from its centre 
axis using a 1/2-inch pick-off mirror to generate the seed by frequency 
conversion. A half-λ plate combined with reflective thin polarizing 
plates allows step-less adjustment of the frequency conversion input 
energy from 0.05 up to 1.2 mJ. Frequency tripling is achieved using 
a set of two beta-barium borate crystals (type 1 SHG and type 1 THG) 
in combination with a group-velocity delay compensation plate and 
a dual waveplate (EKSMA femtokit). Discriminative spectral filtering 
for the frequency-tripled component is achieved using a dichroic 
mirror and propagation over nine laserline mirrors (262–266 nm; 
Thorlabs NB1-K04). A broadband spectrometer (Avantes StarLine 
AvaSpec, ILS2048CL-EVO) confirms no remaining fundamental or 
second-harmonic contributions in the final seed. The seed has a central 
wavelength of λseed = 269 nm with a bandwidth of Δλseed = 3.9 nm (FWHM), 
measured at the undulator exit (Fig. 2). To relax synchronization, the 
seed is stretched by introducing temporal dispersion. The total thick-
ness of the FuSi optical elements is d = 59.9 mm. Taking into account the 
group-velocity dispersion of FuSi at 270 nm, D = −4,945.5 ps (nm km)−1, 
the final group-delay dispersion is Dλ = D × d = −0.296 ps nm−1. In other 
terms, the seed laser pulse experiences a second-order dispersion 
D2 = 1.146 × 104 fs2. Assuming an initial pulse duration of 30 fs (FWHM), 
being the Fourier limit, the final seed pulse duration is estimated 
to be ΔTseed = Dλ × Δλseed ≈ 1 ps (FWHM). Both ΔTseed and D2 are used 
as input parameters for simulations. Spatial filtering is performed 
after frequency tripling using a lens (f = 922 mm) combined with a 
210-μm-diameter ceramic pinhole. A second lens (f = 461 mm) col-
lects the beam and projects a weak focus with a Rayleigh length of 
zR = 15 m and a waist located 5 m before the undulator entrance. The 
seed is injected into the COXINEL beamline using a flat enhanced 
aluminium mirror inserted into the middle of the chicane. Using 
a calibrated photodetector (Gentec PE10B-Si-D0), the seed energy 
is measured to be 0.8 μJ at the entrance and 0.5 μJ at the exit of the  
COXINEL beamline.

Photon-beam diagnostics
The main radiation diagnostics are located after the dump dipole at 
the end of the beamline. The radiation is collected by a pair of lenses: 
one plano-convex FuSi of focal length f = 400 mm followed by one 
plano-concave FuSi of focal length f = −200 mm. Depending on the 
distance between the two lenses, this optical system can image the 
radiation from the undulator entrance to the undulator exit onto a fixed 
image plane downstream. In this fixed image plane, two diagnostics 
can be implemented: a UV camera or a 2D spectrometer depending on 
the position of a final motorized enhanced aluminium mirror. The UV 
camera is an ORCA-II from Hamamatsu. The spectrometer is an iHR320 
from Horiba/Jobin-Yvon equipped with a back-illuminated camera, 
providing the spectral distribution along the horizontal axis and the 
spatial distribution along vertical axis.

3D overlap adjustment
The interaction, that is, energy exchange, between the seed and the 
electron beam inside the undulator requires an overlap in three dimen-
sions: space, frequency and time. Spatial overlap is achieved using the 
near-field imaging system on both the UV camera (for the horizontal) 
and the UV spectrometer (for the vertical) while steering both the seed 
and the electron beam. Because the distance between the two lenses 
of the imaging system can be remotely adjusted to change the object 
plane, the spatial overlap can be monitored all along the undulator. The 

frequency overlap is achieved using the spectrometer while tuning the 
undulator gap. Because both seed and electron beam originate from 
the same laser, they are inherently synchronized and free of jitter. The 
remaining delay τ is adjusted using a delay stage on the seed path while 
monitoring the arrival times of the seed and synchrotron radiation 
with a streak camera (Hamamatsu, FESCA-100). For this purpose, the 
seed and synchrotron radiation can be extracted at the undulator exit 
using a removable aluminium mirror, and further focused using a FuSi 
lens (f = 1 m) into the streak camera entrance slit. Seed and synchrotron 
radiation pulses are simultaneously observed in single-shot while 
adjusting the delay stage on the seed path, until the temporal overlap 
falls beyond the accessible resolution (~500 fs).

FEL simulation
The spatio-spectral distribution of the FEL at the undulator exit is 
simulated in four steps. In a first step, a 6D Gaussian electron-beam 
distribution with 106 particles is generated using a set of r.m.s. values 
for beam position, divergence, energy spread and duration and giv-
ing a total bunch charge. In the second step, this 6D distribution is 
transported down to the undulator entrance with BETA code, using 
a chromatic matching lattice set at 188.8 MeV. Transporting with 
this code or ELEGANT is equivalent (Extended Data Fig. 6). The 6D 
distribution obtained at the undulator entrance is longitudinally 
sampled into 2,000 slices, and each slice is described by the six r.m.s. 
values of its envelope. The duration of one slice is 4 × λseed, that is, 
3.6 fs. In parallel, the seed is simply modelled in the frequency domain 
according to its central wavelength λseed of 269 nm, bandwidth Δλseed of 
3.9 nm (FWHM) and group-delay dispersion Dλ of −0.296 ps nm−1. After 
Fourier transforming, the seed pulse in the time domain is sampled 
into 2,000 slices, and each slice is described by its peak power and 
phase. In the third step, both the seed and the electron-beam longi-
tudinal distributions are loaded into GENESIS67 code to simulate the 
radiation generation process along the undulator. The result of this 
simulation is the 3D (x, y, t) electric field at the undulator exit, with 
x (resp. y) the coordinate along the horizontal (resp. vertical) plane 
and t the longitudinal (time) coordinate. Using standard Fourier 
optics, the 2D (x = 0, y, t) field distribution is finally converted into 
the 2D (y, λ) spatio-spectral distributions illustrated in Fig. 2. The 
simulated spatio-spectral distributions can be compared directly to 
the spatio-spectral distribution recorded on the UV spectrometer.

FEL analytical modelling
The FEL emission is observed to be redshifted with respect to the seed 
wavelength. This redshift, ΔλFEL, can be attributed to a stretching of 
the initial density modulation (at λseed) along the undulator and is pro-
portional to the undulator and chicane dispersion ratio according to58

ΔλFEL =
(1 + K2

u/2)Leff
γ2R56

λseed. (2)

However, this simple formula does not take into account the time 
dependence of the electron-beam energy as well as the dispersion of 
the seed laser pulse. After passing through the chicane, the energy of 
the electrons mc2γ(t) is linearly correlated to their longitudinal posi-
tion t according to

γ(t) = γ0 +
cγ0
R56

t, (3)

where t is the longitudinal position along the beam with respect to the 
central energy mc2γ0. Due to the dispersion introduced by the optical 
elements, the seed laser is chirped and the instantaneous seed wave-
length also depends on t according to

λseed(t, τ) = λ0 +
t − τ
Dλ

, (4)
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where λ0 is the seed central wavelength and τ is the relative delay 
between the seed laser pulse and the electron beam.

To fulfil the undulator resonance condition, the FEL interaction 
can only occur at the longitudinal position t0 where

λR(t0) =
λu(1 + K2

u/2)
2γ(t0)

2 = λseed(t0), (5)

that is, at

t0 =
τ
Dλ

× [ 1
Dλ

+
λuc(1 + K2

u/2)
γ20R56

]
−1

. (6)

Taking into account the time dependence of the undulator resonance 
condition in equations (2)–(4) permits us to refine the expression of 
the redshifted FEL emission:

ΔλFEL(τ) =
(1 + K2

u/2)Leff
γ(t0)

2
R56

(λ0 +
t0 − τ
Dλ

), (7)

as a function of the relative delay τ between the seed laser and the 
electron beam.

FEL data analysis
Both the measured and simulated raw FEL data correspond to a 
single-shot 2D spatio-spectral distribution at the undulator exit. 
Experimental images correspond to the UV-spectrometer records 
using the near-field imaging system, whereas the simulated images cor-
respond to the Fourier transform of the 3D electric field simulated by 
GENESIS. From those images, ξFEL and λFEL are systematically extracted  
as follows.

Each measured image is processed to remove the camera sensor 
offset and the hot pixels from Bremsstrahlung radiation. A prelimi-
nary record of the synchrotron radiation signal alone, that is, with-
out seed, enables us to identify the vertical position of the expected 
FEL signal, which defines the y = 0 position. The FEL spectral profile 
IFEL(λ) is then obtained from vertical integration over a region of 
interest of ±6 pixels (corresponding to ±156 μm) around y = 0 and is 
normalized to its maximum value. The reference seed spectral pro-
file Iseed(λ) is deduced from the same image, integrating similarly the 
signal over the same pixel range but 30 pixels away from y = 0, and 
then normalizing to the maximum value. Each simulated image is 
treated exactly the same way to extract both the FEL and seed simulated  
spectral profiles.

The following process is then applied to both the measured and 
simulated spectral profiles. The FEL signal-to-noise ratio, SNRFEL, is 
defined as

SNRFEL(λ) =
IFEL(λ) − Iseed(λ)

Iseed(λ)
(8)

and fitted with a Gaussian function for an accurate retrieval of the 
FEL wavelength, λFEL (the location of maximum SNRFEL along λ). The 
FEL differential signal, corresponding to the FEL spectra with seed 
subtraction, is defined as

∆FEL(λ) = IFEL(λ) − Iseed(λ) (9)

and its integral within the spectral interval [λ1 = 239 nm; λ2 = 279 nm] 
gives

ξFEL = ∫
λ2

λ1

∆FEL(λ′)dλ′, (10)

that is, the energy (in arbitrary units) of the isolated FEL pulse.

Commissioning
The COXINEL beamline was initially installed in the Salle Jaune of the 
Laboratoire d’Optique Appliquée (LOA). Using the LPA beam driven 
by the Salle Jaune laser system, electron-beam transport methods, 
the generation of undulator radiation, seed generation and shaping, 
and beam diagnostics were extensively tested and optimized52,56. Vari-
ous methodologies to achieve the 3D overlap between the seed and 
electron beam, standard techniques on conventional radiofrequency 
accelerators but with adjustments for the specific LPA environment, 
were also tested. The experiment was then moved to HZDR, whose 
LPA allows the production of the higher charges that are required to 
demonstrate seeded FEL operation. A new undulator was built, and 
beamline components such as QUAPEVAs were modified and adapted 
for the HZDR experiment.

Data availability
All data are available upon reasonable request from the correspond-
ing author.

Code availability
Codes used in this study are available upon reasonable request from 
the corresponding author.
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Extended Data Fig. 1 | Electron beam properties at the entrance of COXINEL 
beamline. (a) the charge distribution of several sets of sequential shots at 
different times over two experimental days. No discrimination or sorting for 
performance is applied. (b) the mean RMS divergence and mean charge density 
evaluated for the ± 5% energy range (180–198 MeV) around the COXINEL design 
central energy (189 MeV) for all shots from a). Selecting shots considered to 

be of sufficient quality to contribute to FEL amplification, with a mean charge 
density > 4 pC/MeV throughout the abovementioned energy range (indicated by 
dashed box), selects 60% of all shots, consistent with experimental observations 
on FEL amplification signal probability per shot. Considering selected shots, a 
mean charge density of (6.3 ± 1.4 s.d.) pC/MeV with a mean RMS divergence of 
(0.80 ± 0.17 s.d.) mrad is found.
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Extended Data Fig. 2 | FEL spectra versus seed delay. Seed delay scan.a,b. 
Average FEL spectra versus seed delay. c,d. Average FEL differential signal ΔFEL(λ) 
(FEL spectra with seed subtraction) versus seed delay. b,d. Spectra for three 

seed delays: -0.66 ps (red), -0.16 ps (blue), and 0.34 ps (green). Black dashed line 
(a,d): analytical model for FEL wavelength red shift. Vertical dotted lines (b): 
bandwidth for integration of the FEL and seed intensity.
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Extended Data Fig. 3 | Electron beam properties at the exit of COXINEL 
beamline. a, Charge Q measured at beamline exit. b,c, Data analysis from last 
beamline imager after dipole dump. Images are calibrated along horizontal axis 

into energy, providing with the shot–to–shot energy variation ΔE with respect 
to the mean central energy (b). Charge density dQ (c) is deduced from Q and ΔE. 
Data collected during the two days of FEL experiments.
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Extended Data Fig. 4 | Simulation of a seeded FEL at 40 nm. Simulation of 
a seeded FEL at 40 nm. a,b. Electron beam energy and peak current (a), and 
energy spread (b) as a function of the spatial extent of the stretched bunch. In 
(c) is depicted the peak power along the undulator, with the GW level sketched 
by a red dashed line. Inset in (c) presents the FEL spectrum at the undulator exit. 

Beam parameters at source point: energy of 400 MeV, bunch length of 2 μm–rms, 
emittance of (0.3, 0.2) mm.mrad, divergence of (1.2, 0.8) mrad-rms, charge of 
1450 pC. Chicane strength: R56 = -1 mm. Undulator parameters: period 15 mm, 
number of periods = 200. Seed parameters: pulse energy of 5 nJ, Rayleigh length 
of 15 m, waist at 5 m upstream undulator.
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Extended Data Fig. 5 | Electron beam transport. a, b, COXINEL beamline lattice 
for chromatic matching in horizontal (a) and vertical (b) planes, with electron 
beam sizes (solid lines) and normalized emittances (dashed lines) for different 
energies. c, d, e, Electron beam phase-space at undulator entrance (c), middle (d) 
and exit (e). g-n, Electron beam longitudinal properties at source point (black 

lines) and entrance of undulator (blue lines). Transport calculation with 
ELEGANT and BETA using following beam parameters at source point: Ee=188.8 
MeV, charge Q=100 pC, σz=2 μm–RMS, normalized emittance ϵx,y=(1.5;1.0) 
mm.mrad, divergence σx′,y′=(1.5;1.0) mrad–RMS, σe = 5%–RMS, with QUAPEVA 2 
strength detuned by -2% and R56=-1.8 mm.
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Extended Data Fig. 6 | Electron beam transport method comparison and 
consequence on FEL performance. a–h Electron beam properties at undulator 
entrance: transverse phase–spaces (a,b,e,f) ; energy (c), current (d) and slice 
energy spread (g) longitudinal distributions ; charge density versus energy (h). 
Electron beam transported using BETA code with a Gaussian beam distribution at 
source point in (orange), using ELEGANT with same Gaussian beam at source 

point in (green) and using ELEGANT with electron beam energy and divergence 
distributions measured on the electron beam spectrometer (purple). Parameters 
for Gaussian beam definition at source point: Ee = 189 MeV, σe = 7%–RMS, 
divergence: σx′ = 0.85 mrad–RMS and σy′ = 0.57 mrad–RMS, normalized 
emittance: εx = 1.5 mm.mrad and εy = 1.0 mm.mrad, βx = 0.00562 m, βy = 0.00843 
m, σz = 1μm–RMS.
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