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ABSTRACT 26 

 27 

Although several studies have examined the relationship between organochlorine pesticides (OCPs) 28 

and prostate cancer (PCa) risk, no data are available concerning the association between OCPs 29 

concentrations in periprostatic adipose tissue (PPAT), which reflects cumulative exposure, and PCa 30 

aggressiveness. Moreover, no previous study has compared OCPs exposure in two distinct ethno-31 

geographical populations. The objectives were to analyze OCPs in PPAT of PCa patients from either 32 

Mainland France or French West Indies in correlation with features of tumor aggressiveness, after 33 

adjusting for potential confounders such age, BMI, and polyunsaturated fatty acid (PUFA) content of 34 

PPAT .  35 

PPAT was analyzed in 160 patients (110 Caucasians and 50 African-Caribbeans), 80 with an indolent 36 

tumor (ISUP group 1 + pT2), and 80 with an aggressive tumor (ISUP group more than 3 + pT3). The 37 

concentrations of 29 OCPs were measured in PPAT concomitantly with the characterization of PUFA 38 

content. 39 

Exposure patterns of OCPs differed according to the ethno-geographical origin. Most OCPs were 40 

found at higher concentration in Caucasian patients, whereas pp’-DDE content was twice as high in 41 

African-Caribbeans. Chlordecone was only detected in PPAT from African-Caribbean patients. Most 42 

OCP concentrations were positively correlated with age, and some with BMI. After adjusting for age, 43 

BMI, and PUFA composition of PPAT, no significant association was found between OCPs content and 44 

risk of aggressive disease, except of mirex which appeared inversely associated with aggressive 45 

features of PCa in Caucasian patients.  46 

These results highlight a significant ethno-geographic variation in internal exposure to OCPs, which 47 

likely reflects differences in consumption patterns. The inverse relationship observed between mirex 48 

concentration and markers of PCa aggressiveness need to be further investigated. 49 

 50 

Keywords: prostate cancer; persistent organic pollutants; organochlorine pesticides; exposure; 51 

adipose tissue; fatty acids 52 

 53 

 54 

 55 
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 58 
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1. INTRODUCTION 60 

 61 

Prostate cancer (PCa) is the most frequently diagnosed cancer in men in Western countries. 62 

Significant ethnic disparities in PCa risk have been reported, with a higher incidence among African-63 

American men compared with European-Americans (1). Similarly, in the French West Indies, where at 64 

least 90% of the population is of African origin, the incidence of PCa is twice as high as in the rest of 65 

France (2). In addition to genetic parameters, it has been suggested that environmental factors 66 

including dietary intake, play a role in the risk and progression of PCa (3). We have previously shown 67 

that the polyunsaturated fatty acid (PUFA) composition of peri-prostatic adipose tissue (PPAT), which 68 

reflects PUFA intake, was associated with PCa aggressiveness, and differed according to the ethno-69 

geographical origin. Linoleic acid (LA), an essential n-6 PUFA, was 2-fold higher in African-Caribbean 70 

PPAT than in Caucasian patients, and was inversely associated with features of PCa aggressiveness. In 71 

Caucasians, a negative association was observed between eicosapentaenoic acid (EPA) levels (an n-3 72 

PUFA) and disease aggressiveness (4). 73 

Organochlorine pesticides (OCPs) are a group of Persistent Organic Pollutants (POPs) with endocrine 74 

disrupting and bioaccumulative properties (5). OCPs have been widely used in agriculture and pest 75 

control, and most of them have now been banned for decades in Western countries, due to public 76 

health concerns. However, due to their persistent nature, they are still present in the environment, 77 

food, and consequently in human matrices (6). Food and drinking water are the main sources of 78 

contamination (7). In the human body, due to their highly lipophilic properties, they tend to 79 

accumulate in tissues with high fat content, mainly adipose tissue (8).  80 

Several epidemiologic studies have investigated the relationship between OCP exposure levels and 81 

PCa risk, both in occupational exposure and in the general population, with mainly tenuous, 82 

inconsistent or opposite findings (9, 10, 11, 12). Furthermore, some studies have focused on the 83 

association between exposure to selected OCPs and aggressive disease in the general population, 84 

reporting significant associations of high risk or metastatic PCa, with p-p’DDE, oxychlordane, and 85 

chlordecone, respectively (13-16). In most of these studies, exposure to OCPs was evaluated either 86 

by questionnaires or by blood measurements. Because OCPs accumulates in fat, their measurement 87 

in adipose tissue represent cumulative internal exposure, accounting for all exposure routes and 88 

sources (17).  Therefore, adipose tissue, when available, is a good indicator of long-term exposure for 89 

lipophilic chemicals.  90 

In the present study, we aimed to determine the concentration levels of 29 OCPs and related 91 

metabolites from the Stockholm convention list, in PPAT from patients with PCa. The measurements 92 
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were performed in two populations of different ethno-geographical origin, and in association with 93 

features of disease aggressiveness, after adjusting or not for PUFA composition.  94 

95 

Jo
urn

al 
Pre-

pro
of



5 

 

2. MATERIAL AND METHODS 96 

 97 

2. 1. Studied population and collected biological tissues 98 

PPAT has been sampled during the surgical procedure in patients treated by radical prostatectomy 99 

for clinically localized PCa in 6 University Hospitals. Five of these centers mainly recruited Caucasian 100 

patients, while the one located in the French West Indies recruited African-Caribbean patients. All 101 

patients have signed an informed consent, after agreement of the Ethical Committee/IRB, 102 

clinicaltrials registration number NCT03214315. Clinical and biological annotations included age, 103 

ethno-geographic origin, preoperative prostatic specific antigen (PSA), pathological stage, ISUP 104 

group, body mass index (BMI). From 1000 cases included in the database, patients with aggressive 105 

PCa have been selected on the criteria of high risk disease, i.e. ISUP group more than 3 and pT3 106 

stage. Each of these patients have then been matched (within each center) for the age with one 107 

patient with indolent disease. Criteria for indolent PCa include ISUP group 1 and pT2 stage and 108 

preoperative PSA less than 10 ng/ml. At the end, PPAT from 160 patients (110 Caucasians, 50 African-109 

Caribbeans) have been analyzed, including 80 with indolent disease and 80 with aggressive disease. 110 

The characteristics of this studied population are summarized in table 1.  111 

 112 

2. 2. Organochlorine pollutants (OCP) extraction and quantification by gas chromatography-high 113 

resolution mass spectrometry (GC-HRMS) and liquid chromatography-tandem mass spectrometry 114 

(LC-MS/MS) 115 

Sample preparation for adipose tissues consisted in 1 g freeze-dried sample extracted with a 116 

toluene/acetone mixture (70:30, v/v) using a Speed Extractor E-914 from Buchi (Rungis, France). 117 

Pressure and temperature were set at 100 bars and 120 ◦C respectively.  118 

Tissue extracts were then purified on a Gel Permeation Chromatography (GPC) system. GPC extracts 119 

were split into two fractions. The first fraction was used for OCP analysis by GC–HRMS, the second 120 

for chlordecone analysis by LC–MS/MS. Extracts were carefully evaporated to dryness under a gentle 121 

stream of nitrogen before reconstituting the chlordecone fraction in 50 microL acetonitrile and the 122 

OCP fraction in 50 microL of 13C-PCB-111 at 20 pg.L−1 (in nonane for GC–MS analysis).  123 

The methodologies applied to isolate, detect, and quantify the targeted organochlorine pesticides 124 

except chlordecone, using GC-HRMS, have been described earlier (12). Briefly, 13C-labeled congeners 125 

were added to each sample for quantification according to the isotopic dilution method. OC 126 

measurements were performed by gas chromatography (Agilent 7890A) coupled to high-resolution 127 

mass spectrometry (GC-HRMS) on electromagnetic sector instruments (JEOL MS 700D or 800D), 128 

operating at 10,000 resolution and in the single ion monitoring (SIM) acquisition mode. QA/QC 129 
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procedures included systematic analysis of negative (procedural blank, n = 3) and positive (standard 130 

reference compounds, n = 1) quality control samples in each batch of analysis. All these methods 131 

were fully validated . 132 

The methodology applied to isolate, detect, and quantify chlordecone using LC–MS/MS has been 133 

described earlier (18). An Acquity Ultra Performance Liquid Chromatography (UPLC) System (Waters, 134 

Milford, MA, USA) equipped with a C30 Thermo Accucore column (100 mm × 2.1 mm i.d., 2.6 µm 135 

granulometry) was used for liquid chromatography (LC) separation. The column temperature was set 136 

at 40 ◦C. A Xevo TQ-S triple quadrupole mass spectrometer (Waters, Milford, MA, USA) equipped 137 

with an electrospray ionization source was used in negative mode (ESI-). TargetLynx V 4.1 (Waters, 138 

Milford, MA, USA) software was used for the integration and assignment of all chromatographic 139 

peaks acquired in the selected reaction monitoring (SRM) mode. 140 

The following OCPs were analyzed: hexachlorobenzene (HCB), pentachlorobenzene (PeCB), -141 

hexachlorocyclohexane (-HCH), -hexachlorocyclohexane (-HCH), -hexachlorocyclohexane (-142 

HCH), -hexachlorocyclohexane (-HCH), -chlordane, -chlordane, cis-nonachlor, trans-nonachlor, 143 

heptachlor, cis-heptachlor-epoxyde, trans-heptachlor-epoxyde, oxychlordane, -endosulfan, -144 

endosulfan, endosulfan-sulfate, aldrin, endrin, dieldrin, o,p’-DDT, p,p’-DDT, o,p’-DDD, p,p’-DDD, o,p’-145 

DDE, p,p’-DDE, methoxychlor, mirex, chlordecone. Results are expressed as ng per g of extracted 146 

lipids. 147 

 148 

2. 3. Fatty acid analysis of PPAT  149 

Total lipids were extracted, according to the Folch method , with chloroform/methanol 2:1 and saline 150 

solution. Organic phase was collected and triglycerides were purified by preparative Thin Layer 151 

Chromatography. FA were transmethylated with 14% boron trifluoride in methanol, and FA methyl 152 

esters were dissolved in hexane and analyzed by capillary gas chromatography. FA were identified by 153 

comparison of their retention times with those of a standard mixture (SupelcoTM 37 component FA 154 

methyl ester MIX, Supelco). Results for each FA expressed as mole % of total chromatogram fatty 155 

acids area.  156 

 157 

2. 4. Statistical analysis 158 

Statistical analyses were carried out with AddinsoftTM XLSTAT (New York, NY, USA). Comparison 159 

between groups was performed using the nonparametric Mann-Whitney U test. The relationship 160 

between 2 continuous variables was evaluated using the nonparametric Spearman rank correlation 161 

test. Logistic regressions were performed to evaluate the association between each OCP and features 162 

of aggressive versus indolent disease. OCPs were entered in the logistic models as 2 categories, 163 
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above and below the median value. Each model was adjusted on age and BMI as continuous 164 

variables, because OCPs are known to bio-accumulate. The second model also adjusted for EPA and 165 

AL content of PPAT, PUFA that have been associated with features of PCa aggressiveness, in the 166 

Caucasian and African-Carribean population, respectively, and that are therefore confounders (4). 167 

The p values have not been corrected for multiplicity, because the study has been performed for 168 

descriptive purposes, focused on a few planned comparisons. Therefore the following results should 169 

clearly be labelled as exploratory. 170 

171 
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3. RESULTS 172 

 173 

3. 1. OCP concentration levels in PPAT 174 

The following OCPs were found below the limit of detection (LOD) in more than 70% of individuals in 175 

both group of patients: −HCH, -HCH, -HCH, -chlordane, -chlordane, heptachlor, trans-176 

heptachlor-epoxyde, -endosulfan, -endosulfan, endosulfan-sulfate, aldrin, endrin, o,p’-DDT, o,p’-177 

DDD, o,p’-DDE, methoxychlor. 178 

The following OCPs were detectable in all patients in both groups: HCB, PeCB, -HCH, trans-179 

nonachlor, cis-heptachlor-epoxyde, oxychlordane, dieldrin, p,p’-DDE, mirex. 180 

Cis-nonachlor, p,p’-DDT and p,p’-DDD were detectable in more than 70% of patients in both groups. 181 

Chlordecone was detectable in around 70% of patients in PPAT from African-Caribbean patients, and 182 

below the LOD in PPAT from Caucasian patients. For the few cases below the LOD, non-detected 183 

values have been replaced by limits of detection (upper bound approach). 184 

The main contributors to the OCP contamination profile observed in PPAT are p, p’-DDE, -HCH, 185 

trans-nonachlor, HCB, and oxychlordane (figure 1).  186 

 187 

3. 2. The OCP exposure patterns in PPAT differed according to the ethno-geographical origin 188 

Most OCPs were found at higher concentration level in PPAT from Caucasian patients when 189 

compared to PPAT from African-Caribbean patients, including -HCH, trans-nonachlor, HCB, PeCB, 190 

oxychlordane, dieldrine, cis-heptachlor-epoxyde, and cis-nonachlor (table 2). In contrast, OCP 191 

concentrations in PPAT were higher in African-Caribbean patients for p,p’-DDE (more than twice), 192 

p,p’-DDT, and mirex. Chlordecone was detected only in PPAT from African-Caribbean patients. 193 

 194 

3. 3. Correlations between OCPs 195 

Spearman’s rank correlations between OCPs are represented in figure 2 as heatmaps built for each 196 

population. Strong correlations were observed between HCB, -HCH, cis-nonachlor, trans-nonachlor, 197 

cis-heptachlor-epoxyde, oxychlordane, dieldrin, and p,p’-DDE, regardless of the ethno-geographic 198 

group. PeCB was slightly (but significantly) correlated with cis-nonachlor, trans-nonachlor, cis-199 

heptachlor-epoxyde, oxychlordane, dieldrin, and mirex, but only in Caucasian patients. 200 

In the Caucasian population, mirex appeared significantly correlated with HCB, PeCB, -HCH, cis-201 

nonachlor, trans-nonachlor, cis-heptachlor-epoxyde, oxychlordane, and dieldrin. In African-Caribbean 202 

patients, mirex was found significantly correlated with -HCH, p,p’-DDE, and chlordecone. 203 

 204 

 205 
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3. 4. Correlation between OCP accumulation in PPAT, age and BMI 206 

In Caucasian patients, most OCP concentrations were positively correlated with patient’s age, 207 

including p, p’-DDE (Rho: 0.264, p=0.006, Spearman test), -HCH (Rho: 0.367, p=0.0001), trans-208 

nonachlor (Rho: 0.409, p<0.0001), HCB (Rho: 0.303, p=0.0015), oxychlordane (Rho: 0.411, p<0.0001), 209 

mirex (Rho: 0.362, p=0.0002), dieldrin (Rho: 0.373, p<0.0001), cis-heptachlor-epoxyde (Rho: 0.400, 210 

p<0.0001), and PeCB (Rho: 0.221, p=0.02). In African-Caribbean patients, only p, p’-DDE and 211 

oxychlordane increased statistically with patient’s age (Rho: 0.358 and 0.308, p=0.01 and 0.03, 212 

respectively). 213 

In Caucasian patients, the following OCPs were positively correlated with the BMI: -HCH (Rho: 214 

0.251, p=0.009), dieldrin (Rho: 0.219, p=0.02), and cis-heptachlor-epoxyde (Rho: 0.225, p=0.02). 215 

Mirex concentration in PPAT from Caucasian patients was associated with lower BMI (Rho: -0.251, 216 

p=0.009). In African-Caribbean patients, both dieldrin and chlordecone concentrations in PPAT were 217 

positively correlated withBMI (Rho: 0.343 and 0.381, p=0.07 and 0.008, respectively). 218 

 219 

3. 5. OCP exposure and tumor aggressiveness 220 

The association between OCP internal exposure levels and features of aggressive disease compared 221 

to indolent disease has been analyzed using logistic regression models adjusted for age and BMI 222 

(tables 3 and 4). Moreover, since EPA and AL were associated with aggressive disease in Caucasians 223 

and African-Carribeans, respectively (4), they have been included in a second model (tables 3 and 4). 224 

Results concerning omega 6 and omega 3 fatty acids content in PPAT are available in the 225 

supplemental table. In the Caucasian population, mirex was the only OCP significantly associated 226 

with features of aggressive disease, with an inverse association after adjustment for age and BMI 227 

(p=0.027), and after adjustment for age, BMI, and EPA content (p=0.029). In the African-Caribbean 228 

population, the inverse association between mirex and features of PCa aggressiveness was close to 229 

significancy (p=0.06 and 0.10 in models 1 and 2, respectively). In this population, we also found 230 

almost significant associations between aggressive disease and oxychlordane, dieldrine and cis 231 

heptachlorepoxyde, but only in the first model.  232 

233 
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4. DISCUSSION 234 

 235 

Most of the considered OCPs have been withdrawn from the market for a long time, but their low 236 

ability to degrade leads to their persistence in the environment as well as their bioaccumulation. As a 237 

result, populations are still exposed, mainly through dietary intake. Measurement of OCPs and their 238 

metabolites in biological matrices is considered a reference method to assess exposure at steady 239 

state. Although most previous reports have analyzed OCPs content in blood, few studies have 240 

reported OCPs composition in adipose tissue, and none in PPAT. The concentration we found for p-241 

p’DDT and its metabolite p-p’DDE is close or slightly higher to that described in populations of 242 

patients from Mainland France with either endometriosis (19) or gastric cancer (20), but is quite 243 

lower than those reported in Spanish or Danish women with breast cancer (21, 22), in non-cancer 244 

patients from Tunisia (23), and in PCa patients from Sweden (24). The differences observed could be 245 

due to the diversity of the populations studied, in terms of age, gender, geographical origin (and 246 

therefore exposure), and also in terms of location of the adipose tissue (subcutaneous versus deep 247 

fat). However, in all studies, the high ratio p-p’DDE/p-p’DDT reflects a preferential exposure to the 248 

metabolite and not to the parent molecule. Concerning the other OCPs, the concentration we found 249 

in the PPAT of Caucasian patients is of the same order as that reported in the most recent study 250 

performed in Mainland France (20).  251 

We observed that most of OCPs concentrations increased with age, mainly in the Caucasian group, 252 

that reflects cumulative exposure, as previously reported (25). Some of them, including -HCH, 253 

dieldrin, cis-heptachlor-epoxyde, and chlordecone in the African-Caribbean population, had 254 

concentrations increasing with the BMI. Although in some studies no significant relationship was 255 

found (24), high BMI has often been associated with higher POPs levels in adipose tissue (26). This 256 

association may be related to food intake, since individuals with a higher BMI are likely to have 257 

consumed more food and therefore more POPs. Alternatively, POPs are considered to have 258 

obesogenic effects through endocrine disruption (27). We observed herein that mirex is the only OCP 259 

which concentration in PPAT was inversely associated with BMI. Such an inverse relationship 260 

between BMI and mirex concentration has previously been reported (28). A potential explanation 261 

may be the dilution capabilities in adipose tissue of mirex,  one of the most lipophilic compounds. 262 

In the present study, we found a differential OCPs concentration in PPAT according to the ethno-263 

geographical origin of the patients. -HCH, trans-nonachlor, HCB, PeCB, oxychlordane, dieldrine, cis-264 

heptachlor-epoxyde, and cis-nonachlor levels were higher in PPAT from Caucasian patients, whereas 265 

the concentrations of p,p’-DDE, p,p’-DDT, and mirex were higher in African-Caribbean patients. No 266 

previous study has compared the impregnation levels by OCPs in 2 distinct ethno-geographic 267 
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populations. However, the report of the serum concentration of OCPs in the Guadeloupean 268 

population by the Kannari Study (29) evidenced lower -HCH and higher p,p’-DDE when compared to 269 

the levels identified in Mainland France by the French National Nutrition and Health Study (ENNS) 270 

(30). Since food is the main vector of exposure to OCPs, differences between Guadeloupe and 271 

Mainland France probably reflect differences in eating behaviors, but also differences in the 272 

geographical origins of food resources. In the West Indies, although some of the foodstuffs come 273 

from Mainland France, many others come directly from the USA, Central America, and other islands 274 

of the Caribbean. We found a pp’-DDE concentration twice as high in PPAT of African-Carribean 275 

patients compared to Caucasian patients.  Such differences in pp’-DDE blood levels have already 276 

been reported between different parts of the globe (31). The difference in p,p-DDE between African-277 

Caribbean and Caucasian men could be partly explained by more recent exposure in West indies, due 278 

to the sporadic use of DDT for disease vector control. Pesticides HCB, -HCH, cis-nonachlor, trans-279 

nonachlor, cis-heptachlor-epoxyde, oxychlordane, and dieldrin, that we found well correlated to each 280 

other and that are in higher concentrations in PPAT from Caucasian patients, could come mainly from 281 

foodstuffs of Mainland France origin. Mirex was discreetly used in Guadeloupe to control the fire ant, 282 

and has also been worldwide used as a flame retardant. The greatest concentration in African-283 

Caribbean PPAT could be explained by the geographical origins of food resources and perhaps to a 284 

lesser extent by the use of the molecule in the West Indies until early 1980s. Chlordecone is an 285 

organochlorine insecticide used in the French West Indies between 1972 and 1993 to control banana 286 

weevil. This highly stable, persistent organic substance detected in soils is capable of contaminating 287 

plant or animal foodstuffs as well as aquatic environments (32). As expected, we detected 288 

chlordecone only in PPAT from African-Caribbean patients. Furthermore, chlordecone is poorly 289 

correlated with other contaminants, that clearly reflects its local food origin. We note that the only 290 

molecules for which a certain correlation is observed, are -HCH, dieldrin and mirex, pesticides 291 

previously used in the French West Indies. 292 

Several previous non occupational case-control studies have analyzed in the general population the 293 

relationship between PCa incidence and exposure to OCPs, determined by blood measurements. 294 

Although a meta-analysis failed to evidence an association between specific OCPs and increased 295 

incidence of PCa (10), individual studies led to conflicting results. Some reports found no significant 296 

associations (33-35), while others observed a positive association between PCa incidence and several 297 

OCPs, including -HCH (36, 37), oxychlordane (38), and p-p’DDE (13). In another study, oxychlordane 298 

has also been found to be correlated with the risk of metastatic PCa (14). One case-control study has 299 

to date analyzed the link between chlordecone plasma concentrations and PCa in a Guadeloupean 300 

population, and the authors described a significant association with a dose-response positive 301 
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relationship (15). The follow-up of PCa patients included in this case-control study also evidenced a 302 

link between risk of biochemical recurrence after surgical treatment and plasma chlordecone 303 

concentration (16). Except for these above mentioned studies, most of the previous reports have 304 

focused on the association between OCPs and total PCa risk. In the present study, we used indolent 305 

cases as the reference group, that allowed to identify factors associated with aggressiveness, defined 306 

by both ISUP group more than 3 and pT3 stage. In the African-Caribbean group only, we found 307 

associations close to significancy between features of aggressive disease and oxychlordane, dieldrine 308 

and cis heptachlorepoxyde. However, this almost significance was lost when AL content of PPAT was 309 

entered into the model, PUFA that we previously found to be inversely associated with PCa 310 

aggressiveness, and which is therefore a confounder (4). We also observed an inverse association 311 

between mirex content in PPAT and aggressive PCa. This association was significant in the Caucasian 312 

group only, and remained significant after adjusting for age, BMI, and for EPA content in PPAT. (4). In 313 

the African-Caribbean population, the inverse association between mirex and features of 314 

aggressiveness was close to significancy, after adjusting or not for PUFA content. This inverse 315 

association has already been observed with other types of pesticides, such as polychlorinated 316 

biphenyls (PCBs) (13, 14). Moreover, the case-control study performed in a Canadian population also 317 

evidenced an almost significant inverse association between plasma mirex levels and PCa risk (34). 318 

Although it is unexpected that mirex could be protective for PCa, it is possible that this inverse 319 

association could reflect hormonal modifications linked to mirex exposure, and this finding warrants 320 

further studies. An inverse association between testosterone levels and mirex serum concentrations 321 

has previously been described in boys and men, after adjusting for potential confounders such age 322 

and BMI (39, 40). Also, we cannot excude that this inverse association could result from bias due to 323 

either unmeasured confounders, or socio-demographic variables that could impact both dietary 324 

intake or PSA screening. 325 

The limit of the present study is first the low number of cases, particularly in the African-Caribbean 326 

population, that limits its power. Moreover, except for the ethnic origin, genetic determinants of PCa 327 

aggressiveness, including family history of PCa, were not available and therefore were not taken into 328 

account. 329 

The study has nevertheless several strengths: first, OCPs concentrations were measured directly in 330 

adipose tissue, the preferential reservoir of lipophilic pesticides accumulation in the human body, 331 

and the most appropriate tissue for assessing long term exposure. In addition, the use of indolent 332 

PCa cases as a reference group exempts the study from the bias linked to the identification of control 333 

cases. Indeed, some OCPs, and particularly p-p’DDE, the main contributor of OCPs profile in PPAT, 334 

are known inhibitors of the androgen receptor, and have been shown to repress PSA levels in human 335 
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PCa cell lines at high concentration (41). Strong exposure to these OCPs may therefore produce a 336 

false-negative PSA test when screening for prostate cancer.  337 

In conclusion, the present study showed a differential OCPs internal exposure levels and patterns in 338 

adipose tissue according to the ethno-geographical origin. The inverse relationship in adjusted 339 

models between mirex concentration and features of PCa aggressiveness deserves further 340 

mechanistic and epidemiological studies. 341 

342 
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FIGURE LEGENDS 481 

Figure 1: Main contributors to the exposure profiles in PPAT in France mainland and in 482 

Guadeloupe. 483 

Figure 2: Heatmaps displaying the Spearmen’s rank correlation coefficients between OCPs in 484 

the African-Caribbean (A) and Caucasian (B) populations. The color relates to the direction of 485 

the association (blue: positive, red: negative), and the intensity to the correlation coefficient 486 

magnitude. 487 
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HIGHLIGHTS 

- Organochlorine pesticides (OCPs) concentration in periprostatic adipose tissue from men 

with prostate cancer differed according to the ethno-geographical origin, which likely reflects 

differences in consumption patterns.  

- Most OCPs were found at higher concentration in PPAT from Caucasian patients.  

Chlordecone was only found in PPAT of African-Caribbean patients, with moreover a DDE 

concentration twice as high as in Caucasian patients. 

- After adjusting for age, BMI, and PUFA content, mirex concentration in PPAT from Caucasian 

patients was inversely associated with features of aggressive disease. 
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