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I. INTRODUCTION

Cardiovascular diseases-particularly atherosclerosis, known as the "silent killer"-are considered the leading cause of death worldwide [START_REF] Kaptoge | World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions[END_REF]. We seek to detect early manifestations of the disease by extracting biomarkers from the common carotid artery (CCA), considered the sentinel of atherosclerosis [START_REF] Yousefi Rizi | Carotid wall longitudinal motion in ultrasound imaging: An expert consensus review[END_REF].

In particular, we aim to quantify the displacement field of the CCA far wall in ultrasound (US) image sequences and to deduce thereof its kinematic behavior through a cardiac cycle, in order to predict if a patient is ill. Nevertheless, obtaining reliable references to validate motion tracking algorithms remains difficult, as ground truth information is unavailable. Moreover, newly developed algorithms based on fully-supervised deep learning generally perform better than traditional methods in other applications [START_REF] Jiang | Learning to estimate hidden motions with global motion aggregation[END_REF], [START_REF] Teed | Raft: Recurrent all-pairs field transforms for optical flow[END_REF], but the paucity of said ground-truth is an obstacle to the generation of an adequate training set. Therefore, we propose a simulation pipeline that aims to produce realistic in silico sequences, along with associated deformation parameters that can serve as fully-determined references.

Most methods to simulate US images of arteries [START_REF] Makūnaitė | Simulation of ultrasound rf signals backscattered from a 3D model of pulsating artery surrounded by tissue[END_REF], [START_REF] Meiburger | Validation of the carotid intima-media thickness variability: Can manual segmentations be trusted as ground truth?[END_REF] consist of physics-based ultrasound simulators such as Field II [START_REF] Jensen | Field: A program for simulating ultrasound systems[END_REF], [START_REF] Jensen | Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers[END_REF] or SIMUS [START_REF] Garcia | Make the most of MUST, an open-source Matlab UltraSound Toolbox[END_REF]. These methods take as input in silico phantoms, which are typically generated using specific statistical distributions of reflection coefficients. Alternatively, in silico phantoms have also been simulated from in vivo images [START_REF] Alessandrini | A pipeline for the generation of realistic 3D synthetic echocardiographic sequences: Methodology and open-access database[END_REF], [START_REF] Sun | A pipeline for the generation of synthetic cardiac color Doppler[END_REF]. The latter solution is attractive to generate realistic samples because it directly uses a genuine in vivo image as the source, but its full potential remains locked by the incomplete knowledge of the modeled tissues and of the image-acquisition system parameters. In this work, we present a simulation pipeline devised to counteract these limitations via the inclusion of a post-processing operation based on a generative adversarial network (GAN, [START_REF] Mirza | Conditional generative adversarial nets[END_REF]).

II. INITIAL SIMULATION PHASE

A classical simulation pipeline takes an in vivo clinical static image of the CCA as input and the output is a temporal sequence of synthetic images. We first construct an in silico phantom (part II-A), which is fed into a realistic US simulator (in our case, Field II) along with probe and acquisition parameters (part II-B). These steps are detailed below.

A. Phantom construction

In order to calculate the amplitudes of the reflection coefficients of the scatteres in the in silico phantom from an in vivo B-mode image I, we first inverse the log-compression and introduce variability through Gaussian distribution (see [START_REF] Sun | A pipeline for the generation of synthetic cardiac color Doppler[END_REF]). Reflection coefficients RC m , m = 1 . . . M thus calculated are then assigned to M points at locations (x m , y m ) drawn normally at random:

RC m = I (x m , y m ) max(I) 1 γ • N (0, 1) . ( 1 
)
Here γ is the gamma-compression constant (set to 0.3), and N (0, 1) is the normal distribution. The scatterer map is constructed with a density of 10 per square wavelength, so M 300000 for one image in our case.

B. Modeling of the system

When using clinical images, it is difficult to know all the image-acquisition and reconstruction parameters, particularly for images from open-access multi-center databases such as those used in our work: CUBS 1 [10] 1 and CUBS 2 [9] 2 . Therefore, we had to design our probe model and specify empirical simulation parameters. We have selected a linear probe L12-3v from MUST [START_REF] Garcia | Make the most of MUST, an open-source Matlab UltraSound Toolbox[END_REF], consistent with our application, on which we just changed the number of elements from 128 to 192 (Fig. 2). The acquisition parameters are summarized in Table I. The in vivo images were acquired with scanlinebased beamforming. The sonographer therefore chose a depth of focus located around the IMC of the far wall. For each acquisition, the depth varies (in meters) and we should adjust it for each simulation. To ensure the focus at the IMC, we decided to use a synthetic aperture, thus all depths are at focus in both transmission and reception. This choice may lead to a slight lack of realism away from the IMC. 

C. Considerations about the current modeling limitations

We noticed four main limitations with the conventionally-used modeling strategy:

1) The compression parameters used to produce the envelope image are unknown. Applying an inverse gamma compression to return to the gray level distribution of the envelope image (Eq. 1) is likely inaccurate. Consider the upper part as the in vivo system. For ease of explanation, the medium is represented as a single point scatterer. The resulting B-mode image is therefore the PSF. The simulation (bottom) does not take a single point scatterer as above (because we don't know where it really is and what its reflection coefficient is), but a cloud of scatterers with coefficients calculated from the diffuse spot representing the PSF in the B-mode image, which amounts to adding the double convolution of the in vivo system to the double convolution simulated.

2) The inverse reconstruction operator used to obtain the envelope image (namely, the delay-and-sum algorithm) only achieves imperfect fidelity when recovering the initial medium. Therefore, the resulting gray level distribution of the pixels is expected to not exactly correspond quantitatively to the underlying distribution of reflection coefficients.

3) The actual spatial coordinates and the spatial density of the scatterers in the in vivo medium are unknown. Populating the scatterer distribution via drawing at random from the normal distribution from an empirical range is an approximation of the model. 4) The in vivo images are acquired by physical systems that systematically introduce a "double spread" effect: the point spread function (PSF) of the system is defined by the transmission and the reception properties of the system (P SF := pulse * IR trans * IR trans ). Therefore, the reflection coefficients extracted from in vivo images do not correspond to true values. When subsequently applying an ultrasound simulator onto such scatterer distribution, the PSF of the simulator actuates, for a second time, the response of the physical system, which results in exaggeratedly smoothing the simulated signals (Fig. 3). Note that we also do not know with precision the exact excitation signal and impulse response of the transducer used to acquire in vivo images.

The appropriate analytical solution to construct in silico phantoms would be to apply a mathematically-rigorous modelbased inverse reconstruction operator, or at minima, to utilize a proper deconvolution algorithm to extract the scatterers distribution from the in vivo image, however these approaches are still exploratory in the field of ultrasound. An alternative solution may be the use of an artificial intelligence technique named "domain adaptation". The key idea is to train a neural network for in silico to in vivo image translation. To this end, we suggest to use a Generative Adversarial Network (GAN) [START_REF] Mirza | Conditional generative adversarial nets[END_REF], which is well suited for domain adaptation.

Recently, GANs were used to generate synthetic ultrasound images from masks [START_REF] Cronin | Using deep learning to generate synthetic B-mode musculoskeletal ultrasound images[END_REF], or to mimic the image texture with a physics-based simulator [START_REF] Tom | Simulating patho-realistic ultrasound images using deep generative networks with adversarial learning[END_REF]. Nevertheless, to the best of our knowledge, no GAN-based approach was proposed to generate ultrasound image sequences.

III. GAN-BASED POST PROCESSING PHASE A. Dataset

We used a subset (n = 769) of in vivo images from the CUBS 1 [START_REF] Meiburger | Carotid ultrasound boundary study (CUBS): An open multicenter analysis of computerized intima-media thickness measurement systems and their clinical impact[END_REF] and CUBS 2 [START_REF] Meiburger | Carotid ultrasound boundary study (CUBS): Technical considerations on an open multi-center analysis of computerized measurement systems for intima-media thickness measurement[END_REF] databases. As the images also contain text and other graphical inlays, we clipped them out and cropped each sample down to only a region of interest (ROI). Then, the scatterer maps were constructed for each image and simulated using the pipeline presented in Figure ,1, bypassing step 5 (post-processing). Thus, the collection of in vivo images (R) is matched with a corresponding collection of simulated in silico images (S). It is noteworthy that no postprocessing is applied during the simulation. The GAN takes as input S and learns how to predict R. These pairs of images (S, R) made up the data set, which was split into training (70 %), validation (20 %), and test (10 %) subsets.

B. Network & training

A GAN consists of two different networks during the training process: a generator and a discriminator. The generator performs the image-domain adaptation while the discriminator helps the generator by assessing if the generator output resembles an image from the target domain (here in-vivo image). Learning therefore relies on two different loss functions, one for the discriminator (Eq. 2) and one for the generator (Eq. 3).

L Discr = - 1 2 (log (1 -ŷ R) + log (ŷ R )) , (2) 
L Gen = -λ discr log (ŷ R) + λ pixel ||R -R|| 2 , (3) 
where R is the in vivo image, R is the GAN output, ŷR and ŷ R are the probabilities returned by the discriminator that R and R respectively are real images, while λ discr and λ pixel are weighting factors set to 10 -3 and 1, respectively.

During training, we used a batch size of 6. Concerning the pre-processing, the ROIs were normalized between [0, 255] and resized to 256 × 512 pixels. We evaluated three different architectures for the generator (namely, U-net, dilated U-net, and ResNet-based super-resolution GAN).

IV. RESULTS

Peak signal-to-noise ratio (PSNR, Eq. 4) was used to measure the similarity between images I 1 and I 2 (S vs. R or S vs. R):

P SN R(I 1 , I 2 ) (dB) = 10 • log 10 255 2 ||I 1 -I 2 || 2 , (4) 
where 255 is the maximal gray level of the pixels. Quantitative results are reported in Table II, while Figure 4 qualitatively illustrates example results obtained with the best architecture. V. DISCUSSION

The networks, and particularly the dilated U-net, help to provide in silico images that are more similar to the source clinical images compared to the intermediate simulation result (Fig. 4). In the initial simulated images, we observed that the proximal wall often lacks luminance, which likely means that the simulation fails to reproduce the presence-or lack thereof-of time gain compensation. Conversely, the GAN succeeds in correcting this axial profile, which explains the gain in dB. Nevertheless, current GAN results do not seem to improve the image texture, as the GAN output appears smoother than both simulated and in vivo images. Moreover, when applying the GAN to an in silico sequence, in which the scatterers obeyed a controlled displacement field, we observed a jitter in the movie appearance.

There are several avenues to explore to improve our method. First, the proposed GAN is not scanner-specific and has learned to average the features from different scanners. Conditional GAN architectures could be a solution to take scanner information into account. Second, temporal information was not explored. A cycle-GAN architecture fed with a 2D + t volume could learn the spatio-temporal filtering and temporal coherence and likely eliminate jitter effects. Last but not least, we noticed a potential issue in the pre-processing step:

The ROIs extracted from the in vivo images have different initial sizes, but are reshaped to a fixed size. Therefore, the appearance (speckle size and radial-to-axial proportions) of the texture is altered, and the network is forced to operate under 
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 1 Figure 1. Simulation pipeline with a GAN-based post-processing (step 5).

Figure 2 .

 2 Figure 2. Linear probe used in our simulation.

Figure 3 .

 3 Figure3. Expansion of the PSF function. Consider the upper part as the in vivo system. For ease of explanation, the medium is represented as a single point scatterer. The resulting B-mode image is therefore the PSF. The simulation (bottom) does not take a single point scatterer as above (because we don't know where it really is and what its reflection coefficient is), but a cloud of scatterers with coefficients calculated from the diffuse spot representing the PSF in the B-mode image, which amounts to adding the double convolution of the in vivo system to the double convolution simulated.

Figure 4 .

 4 Figure 4. Example images. Top: in vivo US common carotid images (R). Middle: corresponding in silico images (S), simulated with Field II. Bottom: corresponding in silico images ( R), post-processed by the GAN.

Table II PSNR

 II ON EACH SUBSET FOR THREE DIFFERENT ARCHITECTURES. THIRD COLUMN: PSNR BETWEEN THE in silico IMAGE WITHOUT POST-PROCESSING. FOURTH COLUMN: PSNR BETWEEN IN VIVO IMAGE AND THE IN SILICO IMAGE POST-PROCESSED BY THE GAN.different receptive fields (in meter). Since we aim to mimic the texture, the spatial information captured by the network is essential, and a pre-processing step to transform the database into isotropic and homogeneous data could be beneficial.VI. ACKNOWLEDGMENTSThis work was partly supported, via NL's doctoral grant, by the LABEX PRIMES (ANR-11-LABX-0063) of Université de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). The authors have no relevant financial or nonfinancial interests to disclose.

	Model	Subset	PSNR original vs. simulated (dB) PSNR original vs. GAN output (dB)
		training	15.5 ± 3.5	24.7 ± 1.6
	U-net	validation	15.6 ± 3.4	22.2 ± 2.1
		test	15.5 ± 3.1	22.3 ± 1.8
		training	15.5 ± 3.5	25.7 ± 1.8
	Dilated U-net	validation	15.6 ± 3.4	23.4 ± 2.1
		test	15.5 ± 3.1	23.3 ± 2.0
		training	15.5 ± 3.5	17.1 ± 2.9
	Super-resolution GAN (ResNet-based) validation	15.6 ± 3.4	16.4 ± 3.6
		test	15.5 ± 3.1	16.2 ± 3.2
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