
HAL Id: hal-03898005
https://hal.science/hal-03898005v1

Submitted on 14 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Generation of realistic simulated B-mode image texture
with a GAN

Nolann Lainé, Guillaume Zahnd, Olivier Bernard, Maciej Orkisz, Herve
Liebgott

To cite this version:
Nolann Lainé, Guillaume Zahnd, Olivier Bernard, Maciej Orkisz, Herve Liebgott. Generation of real-
istic simulated B-mode image texture with a GAN. 2022 IEEE International Ultrasonics Symposium
(IUS), Oct 2022, Venise, Italy. pp.1-4, �10.1109/IUS54386.2022.9958665�. �hal-03898005�

https://hal.science/hal-03898005v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Generation of realistic simulated B-mode image
texture with a GAN

1st Nolann Lainé? 2nd Guillaume Zahnd† 3rd Olivier Bernard? 4th Maciej Orkisz? 5th Hervé Liebgott?

?Univ Lyon, Université Lyon 1, INSA-Lyon, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
†Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany

Abstract—The intima-media complex of the common carotid
artery is considered the sentinel of a silent killer disease called
atherosclerosis. Morphological biomarkers such as the intima-
media thickness are already exploitable, but dynamic biomarkers,
which reflect tissue deformation over the cardiac cycle, remain to
be validated. Recent motion estimation methods seek to quantify
compression, shear, and elongation coefficients, but their clinical
applicability has not yet been well defined, and their actual
accuracy is difficult to assess due to the absence of ground truth.
This lack of reference also is the main limitation to explore fully
supervised deep learning methods that have shown great potential
in other applications. With this in mind, we propose a simulation
pipeline to produce realistic in silico sequences, by combining
a physics-based simulator with a post-processing based on a
generative adversarial network.

Index Terms—Ultrasound simulation, carotid artery, deep learn-
ing, generative adversarial network, domain adaptation.

I. INTRODUCTION

Cardiovascular diseases—particularly atherosclerosis, known
as the "silent killer"—are considered the leading cause of death
worldwide [7]. We seek to detect early manifestations of the
disease by extracting biomarkers from the common carotid
artery (CCA), considered the sentinel of atherosclerosis [16].
In particular, we aim to quantify the displacement field of
the CCA far wall in ultrasound (US) image sequences and
to deduce thereof its kinematic behavior through a cardiac
cycle, in order to predict if a patient is ill. Nevertheless,
obtaining reliable references to validate motion tracking al-
gorithms remains difficult, as ground truth information is
unavailable. Moreover, newly developed algorithms based on
fully-supervised deep learning generally perform better than
traditional methods in other applications [6], [14], but the
paucity of said ground-truth is an obstacle to the generation of
an adequate training set. Therefore, we propose a simulation
pipeline that aims to produce realistic in silico sequences,
along with associated deformation parameters that can serve
as fully-determined references.

Most methods to simulate US images of arteries [8], [11] con-
sist of physics-based ultrasound simulators such as Field II [4],
[5] or SIMUS [3]. These methods take as input in sil-
ico phantoms, which are typically generated using specific
statistical distributions of reflection coefficients. Alternatively,
in silico phantoms have also been simulated from in vivo im-
ages [1], [13]. The latter solution is attractive to generate

realistic samples because it directly uses a genuine in vivo im-
age as the source, but its full potential remains locked by
the incomplete knowledge of the modeled tissues and of the
image-acquisition system parameters. In this work, we present
a simulation pipeline devised to counteract these limitations
via the inclusion of a post-processing operation based on a
generative adversarial network (GAN, [12]).

II. INITIAL SIMULATION PHASE

A classical simulation pipeline takes an in vivo clinical static
image of the CCA as input and the output is a temporal
sequence of synthetic images. We first construct an in sil-
ico phantom (part II-A), which is fed into a realistic US sim-
ulator (in our case, Field II) along with probe and acquisition
parameters (part II-B). These steps are detailed below.

A. Phantom construction

In order to calculate the amplitudes of the reflection coeffi-
cients of the scatteres in the in silico phantom from an in
vivo B-mode image I , we first inverse the log-compression and
introduce variability through Gaussian distribution (see [13]).
Reflection coefficients RCm, m = 1 . . .M thus calculated
are then assigned to M points at locations (xm, ym) drawn
normally at random:

RCm =

(
I (xm, ym)

max(I)

) 1
γ

· N (0, 1) . (1)

Here γ is the gamma-compression constant (set to 0.3), and
N (0, 1) is the normal distribution. The scatterer map is
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Figure 1. Simulation pipeline with a GAN-based post-processing (step 5).



192 transducers

width = 0.17 mmh
e
ig

h
t 

=
 5

 m
m

kerf = 0.03 mm

pitch = 0.2 mm

Figure 2. Linear probe used in our simulation.

constructed with a density of 10 per square wavelength, so
M ' 300000 for one image in our case.

B. Modeling of the system

When using clinical images, it is difficult to know all the
image-acquisition and reconstruction parameters, particularly
for images from open-access multi-center databases such as
those used in our work: CUBS 1 [10]1 and CUBS 2 [9]2.
Therefore, we had to design our probe model and specify
empirical simulation parameters. We have selected a linear
probe L12-3v from MUST [3], consistent with our application,
on which we just changed the number of elements from 128
to 192 (Fig. 2). The acquisition parameters are summarized
in Table I. The in vivo images were acquired with scanline-
based beamforming. The sonographer therefore chose a depth
of focus located around the IMC of the far wall. For each
acquisition, the depth varies (in meters) and we should adjust
it for each simulation. To ensure the focus at the IMC, we
decided to use a synthetic aperture, thus all depths are at focus
in both transmission and reception. This choice may lead to a
slight lack of realism away from the IMC.

Table I
ACQUISITION PARAMETERS.

Parameters Settings
Excitation signal (pulse) Sinusoidal (one period)
Probe impulse response (IR) Hanning window × pulse
Central frequency (fc) 7.5MHz
Sampling frequency (fs) 45MHz
Insonification mode Synthetic aperture
F-number 1.5
Apodization in emission Hanning
Apodization in reception Hanning

C. Considerations about the current modeling limitations

We noticed four main limitations with the conventionally-used
modeling strategy:

1) The compression parameters used to produce the enve-
lope image are unknown. Applying an inverse gamma
compression to return to the gray level distribution of
the envelope image (Eq. 1) is likely inaccurate.

1http://dx.doi.org/10.17632/fpv535fss7.1
2http://dx.doi.org/10.17632/m7ndn58sv6.1
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Figure 3. Expansion of the PSF function. Consider the upper part as the
in vivo system. For ease of explanation, the medium is represented as a
single point scatterer. The resulting B-mode image is therefore the PSF. The
simulation (bottom) does not take a single point scatterer as above (because we
don’t know where it really is and what its reflection coefficient is), but a cloud
of scatterers with coefficients calculated from the diffuse spot representing the
PSF in the B-mode image, which amounts to adding the double convolution
of the in vivo system to the double convolution simulated.

2) The inverse reconstruction operator used to obtain the
envelope image (namely, the delay-and-sum algorithm)
only achieves imperfect fidelity when recovering the
initial medium. Therefore, the resulting gray level distri-
bution of the pixels is expected to not exactly correspond
quantitatively to the underlying distribution of reflection
coefficients.

3) The actual spatial coordinates and the spatial density of
the scatterers in the in vivo medium are unknown. Pop-
ulating the scatterer distribution via drawing at random
from the normal distribution from an empirical range is
an approximation of the model.

4) The in vivo images are acquired by physical systems
that systematically introduce a “double spread” effect:
the point spread function (PSF) of the system is defined
by the transmission and the reception properties of the
system (PSF := pulse∗IRtrans ∗IRtrans). Therefore,
the reflection coefficients extracted from in vivo images
do not correspond to true values. When subsequently
applying an ultrasound simulator onto such scatterer
distribution, the PSF of the simulator actuates, for a
second time, the response of the physical system, which
results in exaggeratedly smoothing the simulated signals
(Fig. 3). Note that we also do not know with precision
the exact excitation signal and impulse response of the
transducer used to acquire in vivo images.

The appropriate analytical solution to construct in silico phan-
toms would be to apply a mathematically-rigorous model-
based inverse reconstruction operator, or at minima, to utilize
a proper deconvolution algorithm to extract the scatterers
distribution from the in vivo image, however these approaches
are still exploratory in the field of ultrasound. An alternative
solution may be the use of an artificial intelligence technique
named “domain adaptation”. The key idea is to train a neural
network for in silico to in vivo image translation. To this



end, we suggest to use a Generative Adversarial Network
(GAN) [12], which is well suited for domain adaptation.
Recently, GANs were used to generate synthetic ultrasound
images from masks [2], or to mimic the image texture with a
physics-based simulator [15]. Nevertheless, to the best of our
knowledge, no GAN-based approach was proposed to generate
ultrasound image sequences.

III. GAN-BASED POST PROCESSING PHASE

A. Dataset

We used a subset (n = 769) of in vivo images from the
CUBS 1 [10] and CUBS 2 [9] databases. As the images also
contain text and other graphical inlays, we clipped them out
and cropped each sample down to only a region of interest
(ROI). Then, the scatterer maps were constructed for each
image and simulated using the pipeline presented in Figure,1,
bypassing step 5 (post-processing). Thus, the collection of in
vivo images (R) is matched with a corresponding collection of
simulated in silico images (S). It is noteworthy that no post-
processing is applied during the simulation. The GAN takes
as input S and learns how to predict R. These pairs of images
(S,R) made up the data set, which was split into training
(70%), validation (20%), and test (10%) subsets.

B. Network & training

A GAN consists of two different networks during the training
process: a generator and a discriminator. The generator per-
forms the image-domain adaptation while the discriminator
helps the generator by assessing if the generator output re-
sembles an image from the target domain (here in-vivo image).
Learning therefore relies on two different loss functions, one
for the discriminator (Eq. 2) and one for the generator (Eq. 3).

LDiscr = −1

2
(log (1− ŷR̃) + log (ŷR)) , (2)

LGen = −λdiscr log (ŷR̃) + λpixel||R− R̃||2, (3)

where R is the in vivo image, R̃ is the GAN output, ŷR and
ŷR̃ are the probabilities returned by the discriminator that R
and R̃ respectively are real images, while λdiscr and λpixel
are weighting factors set to 10−3 and 1, respectively.
During training, we used a batch size of 6. Concerning the
pre-processing, the ROIs were normalized between [0, 255]
and resized to 256× 512 pixels. We evaluated three different
architectures for the generator (namely, U-net, dilated U-net,
and ResNet-based super-resolution GAN).

IV. RESULTS

Peak signal-to-noise ratio (PSNR, Eq. 4) was used to measure
the similarity between images I1 and I2 (S vs. R or S vs. R̃):

PSNR(I1, I2)(dB) = 10 · log10
(

2552

||I1 − I2||2

)
, (4)

where 255 is the maximal gray level of the pixels. Quantitative
results are reported in Table II, while Figure 4 qualitatively
illustrates example results obtained with the best architecture.

Example 1 Example 2 Example 3

Figure 4. Example images. Top: in vivo US common carotid images (R).
Middle: corresponding in silico images (S), simulated with Field II. Bottom:
corresponding in silico images (R̃), post-processed by the GAN.

V. DISCUSSION

The networks, and particularly the dilated U-net, help to
provide in silico images that are more similar to the source
clinical images compared to the intermediate simulation result
(Fig. 4). In the initial simulated images, we observed that
the proximal wall often lacks luminance, which likely means
that the simulation fails to reproduce the presence—or lack
thereof—of time gain compensation. Conversely, the GAN
succeeds in correcting this axial profile, which explains the
gain in dB. Nevertheless, current GAN results do not seem
to improve the image texture, as the GAN output appears
smoother than both simulated and in vivo images. Moreover,
when applying the GAN to an in silico sequence, in which the
scatterers obeyed a controlled displacement field, we observed
a jitter in the movie appearance.

There are several avenues to explore to improve our method.
First, the proposed GAN is not scanner-specific and has
learned to average the features from different scanners. Con-
ditional GAN architectures could be a solution to take scanner
information into account. Second, temporal information was
not explored. A cycle-GAN architecture fed with a 2D+ t
volume could learn the spatio-temporal filtering and temporal
coherence and likely eliminate jitter effects. Last but not
least, we noticed a potential issue in the pre-processing step:
The ROIs extracted from the in vivo images have different
initial sizes, but are reshaped to a fixed size. Therefore, the
appearance (speckle size and radial-to-axial proportions) of the
texture is altered, and the network is forced to operate under



Table II
PSNR ON EACH SUBSET FOR THREE DIFFERENT ARCHITECTURES. THIRD COLUMN: PSNR BETWEEN THE in silico IMAGE WITHOUT POST-PROCESSING.

FOURTH COLUMN: PSNR BETWEEN IN VIVO IMAGE AND THE IN SILICO IMAGE POST-PROCESSED BY THE GAN.

Model Subset PSNR original vs. simulated (dB) PSNR original vs. GAN output (dB)
training 15.5± 3.5 24.7± 1.6

U-net validation 15.6± 3.4 22.2± 2.1
test 15.5± 3.1 22.3± 1.8

training 15.5± 3.5 25.7± 1.8
Dilated U-net validation 15.6± 3.4 23.4± 2.1

test 15.5± 3.1 23.3± 2.0
training 15.5± 3.5 17.1± 2.9

Super-resolution GAN (ResNet-based) validation 15.6± 3.4 16.4± 3.6
test 15.5± 3.1 16.2± 3.2

different receptive fields (in meter). Since we aim to mimic
the texture, the spatial information captured by the network is
essential, and a pre-processing step to transform the database
into isotropic and homogeneous data could be beneficial.
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isz et al., “Carotid wall longitudinal motion in ultrasound imaging: An
expert consensus review,” Ultrasound in Medicine & Biology, vol. 46,
no. 10, pp. 2605–2624, October 2020.


