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OPENING NODES IN THE DPW METHOD: CO-PLANAR CASE

MARTIN TRAIZET

Abstract: we combine the DPW method and opening nodes to construct embedded surfaces of positive
constant mean curvature with Delaunay ends in euclidean space, with no limitation to the genus or number
of ends.

AMS classification : 53A10, 53C42

1. Introduction

In [5], Dorfmeister, Pedit and Wu have shown that harmonic maps from a Riemann surface to a
symmetric space admit a Weierstrass-type representation, which means that they can be represented in
terms of holomorphic data. In particular, surfaces with constant mean curvature one (CMC-1 for short)
in euclidean space admit such a representation, owing to the fact that the Gauss map of a CMC-1 surface
is a harmonic map to the 2-sphere. This representation is now called the DPW method and has been
widely used to construct CMC-1 surfaces in R3 and also constant mean curvature surfaces in homogeneous
spaces such as the sphere S3 or hyperbolic space H3: see for example [4, 6, 9, 10, 11, 14, 15, 22].

The input data for the DPW method is called the DPW potential. In principle, all CMC surfaces
can be obtained by the DPW method. But in practice, one has to solve a Monodromy Problem, akin
to the Period Problem for the construction of minimal surfaces via the Weierstrass Representation. So
in general the topology of the constructed examples is limited or symmetries are imposed in order to
reduce the number of equations to be solved. In contrast, Kapouleas [13] has constructed embedded
CMC surfaces with no limitation on the genus or number of ends by gluing round spheres and pieces
of Delaunay surfaces, using PDE methods. It seems an interesting question to see whether such gluing
constructions can be achieved by the DPW method.

In [28], we proposed a DPW potential for CMC n-noids: genus zero CMC-1 surfaces with n Delaunay-
type ends. They look like a round sphere with n half-Delaunay surfaces with small necksize attached at
prescribed points. They are a particular case of the construction of Kapouleas in [13]. The potential is
natural, in the sense that it is a perturbation of the standard spherical potential. This potential has been
adapted to minimal surfaces in H3 and AdS3 in [1] and CMC>1 surfaces in H3 in [21].

In [29], we proposed a DPW potential for another type of CMC n-noids which look like a minimal
n-noid (a genus zero minimal surface with n catenoidal ends) whose catenoidal ends have been replaced
by Delaunay ends. They had already been constructed by Mazzeo and Pacard in [18] using PDE methods.
The potential is derived in a natural way from the Weierstrass data of the minimal n-noid. It has also
been adapted to CMC>1 surfaces in H3 in [21].

Our goal in this paper is to propose a DPW potential for the higher genus surfaces constructed by
Kapouleas in [13] in the case where all the centers of the spheres to be glued together are in the same
plane. The resulting CMC surfaces are invariant by symmetry with respect to that plane. The symmetry
allows us to take advantage of the fact that the standard holomorphic frame for Delaunay surfaces is
unitary on the unit circle, which is a big asset for the resolution of the Monodromy Problem.
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The underlying Riemann surface is defined by opening nodes, which is a standard model for Riemann
surfaces with “small necks”. The theory of opening nodes has been used by the author to construct
minimal surfaces in euclidean space via the classical Weierstrass Representation (see for example [24] or
[25]) or CMC-1 surfaces in hyperbolic space via Bryant Representation [27].

One difficulty with the DPW method is that unlike the Weierstrass data of minimal surfaces, the
DPW potential has little geometric content so it is hard to guess a candidate for the construction of
CMC surfaces with given geometric features. The heuristic that we follow is that the DPW potential
should be a perturbation of the spherical potential where the surface is close to a round sphere and of
the catenoidal potential where the surface has small catenoidal necks.

This paper opens up the possibility of opening nodes in the DPWmethod. We hope the ideas developed
in this paper will be useful to the contruction of minimal and CMC surfaces in other space forms.

Remark 1. In an unpublished paper [30], I proposed a DPW potential for all the surfaces constructed
by Kapouleas in [13], with no symmetry assumption. The potential was, however, quite complicated and
hardly natural, and the paper was long and technical. [30] will not be published in its present form, as
I hope a simpler potential will be found in the general case. The result of Appendix B of [30] has been
moved to the appendix of the present paper to make it self-contained. For the interested reader, the
result of Appendix A of [30] has been moved to [12] where it is needed.

2. Main result

Our goal is to contruct CMC surfaces by gluing spheres and half-Delaunay surfaces. The layout of
these pieces is encoded by a weighted graph in the horizontal plane.

Definition 1. A horizontal weighted graph Γ is the following data:
• A finite number of points vj ∈ R2 for j ∈ J , called vertices. Here J ⊂ N∗ is a finite set used to

index vertices.
• A symmetric subset E ⊂ (J ×J) \∆ where ∆ is the diagonal of J ×J , whose elements are called

edges. Two vertices vj and vk are adjacent if (j, k) ∈ E.
• A finite set of half-lines ∆jk ⊂ R2 for (j, k) ∈ R, called rays, such that ∆jk has endpoint vj . Here
R ⊂ J × (N∗ \ J) is a finite set used to index rays.

• Each edge or ray is given a non-zero weight τjk, (j, k) ∈ E ∪R, with τjk = τkj for (j, k) ∈ E.

For j ∈ J , we denote Ej = {k ∈ J : (j, k) ∈ E} the set of edges issued from the vertex vj , and
Rj = {k ∈ N∗, (j, k) ∈ R} the indices of the rays issued from the vertex vj . Also we denote E+ =
{(j, k) ∈ E : j < k}.

Given a horizontal weighted graph Γ with length-2 edges, we can construct a singular CMC-1 surface
M0 as follows. We identify R2 with the horizontal plane x3 = 0.

• For j ∈ J , place a radius-1 sphere centered at the vertex vj , so if vj and vk are adjacent, the
corresponding spheres are tangent.

• For each (j, k) ∈ R, place an infinite chain of radius-1 spheres with centers on ∆jk at even distance
from vj .

Our goal in this paper is to construct a family of CMC-1 surfaces (Mt)0<t<ε by desingularizing M0,
replacing all tangency points between adjacent spheres by catenoidal necks of size ' tτjk (see Figure 1).
This is only a heuristic way to describe the result, and is not the way we will construct Mt (although
this is how Kapouleas does in [13]).

For the construction to succeed, the weighted graph Γ must satisfy a balancing condition. For (j, k) ∈
E, we denote `jk = |vj − vk| and ujk the unitary vector (vk − vj)/`jk, so ukj = −ujk. For (j, k) ∈ R, we
denote ujk the unitary vector in the direction of the ray ∆jk.
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Figure 1. Left: a balanced graph with 6 edges and 6 rays. All edges and rays have
weight 1. Right: a CMC-1 surface of genus 1 with 6 Delaunay-type ends in the corre-
sponding family. Computer image by N. Schmitt [2].

Definition 2. For j ∈ J , we define the force Fi on the vertex vj by

(1) Fj =
∑

k∈Ej∪Rj

τjkujk.

A horizontal weighted graph Γ is balanced if Fj = 0 for all j ∈ J .

To solve our problem, we need to perturb Γ in order to prescribe small variations of edge-lengths and
forces. The parameters available to deform Γ are the vertices vj ∈ R2 for j ∈ J , the unitary vectors ujk
for (j, k) ∈ R and the weights τjk ∈ R for (j, k) ∈ E+ ∪R.

Definition 3. A horizontal weighted graph Γ is non-degenerate if the jacobian of the map
(
(Fj)j∈J , (`jk)(j,k)∈E+

)
with respect to the above parameters is onto.

Theorem 1. Let Γ be a balanced, non-degenerate horizontal weighted graph with length-2 edges. There
exists a smooth 1-parameter family of immersed CMC-1 surfaces (Mt)0<t<ε with the following properties:

(1) (Mt) converges to M0 as t → 0. The convergence is for the Hausdorf distance on compact sets
of R3.

(2) Mt is homeomorphic to the boundary of a small tubular neighborhood of Γ.
(3) Mt is symmetric with respect to the horizontal plane.
(4) For each (j, k) ∈ R, Mt has a Delaunay end with weight ' 2πtτjk and whose axis converges as

t→ 0 to the ray ∆jk.
(5) If all weights are positive, then Mt is Alexandrov-embedded.
(6) If moreover Γ is pre-embedded, then Mt is embedded.

Definition 4. Following Kapouleas (Definition 2.2 in [13]), we say that Γ is pre-embedded if the distance
between any two edges or rays which have no common endpoint is greater than 2 and the angle between
any two edges or rays with a common endpoint is greater than 60◦.

Remark 2. A balanced graph with even length edges can be transformed into a graph with length-2
edges by adding vertices, transforming an edge of length 2k into k edges of length 2, with the same weight.
Clearly the resulting graph is balanced, and it is easy to see that non-degeneracy is preserved.
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3. Background

3.1. Functional spaces. The DPW method uses loop groups, which are groups of smooth functions
from the unit circle S1 ⊂ C to a matrix group. The circle variable is denoted λ. The DPW method
is usually formulated in the category of smooth maps, but since we plan to use the Implicit Function
Theorem, we need a Banach space. We adopt the following choice, following [28, 29].

Fix some ρ > 1 and let Dρ ⊂ C be the disk |λ| < ρ and Aρ ⊂ C the annulus ρ−1 < |λ| < ρ. We
decompose a smooth function f : S1 → C in Fourier series

f(λ) =
∑
i∈Z

fiλ
i

and define
‖f‖ =

∑
i∈Z
|fi|ρ|i|

Let W be the space of functions f with finite norm. This is a Banach algebra, owing to the fact that the
weight ρ|i| is submultiplicative (see Section 4 in [8]). Functions in W extend holomorphically to Aρ.

We define W≥0, W>0, W≤0 and W<0 as the subspaces of functions f such that fi = 0 for i < 0,
i ≤ 0, i > 0 and i ≥ 0, respectively. Functions in W≥0 extend holomorphically to the disk Dρ and
satisfy |f(λ)| ≤ ‖f‖ for all λ ∈ Dρ. We write W0 ∼ C for the subspace of constant functions, so we have
a direct sum W = W<0 ⊕ W0 ⊕ W>0. A function f will be decomposed as f = f− + f0 + f+ with
(f−, f0, f+) ∈ W<0 ×W0 ×W>0 (and of course f0 = f0).

We define the conjugation operator by

f(λ) = f(λ) =
∑
i∈Z

fiλ
i.

We denote Re(f) = 1
2 (f + f) and Im(f) = 1

2i (f − f) and define WR as the subspace of functions in W
such that Im(f) = 0, and W≥0

R =WR ∩W≥0.
We also define the star operator by

f∗(λ) = f(1/λ) =
∑
i∈Z

f−iλ
i.

The involution f 7→ f∗ exchanges W≥0 and W≤0. We have λ∗ = λ−1 and c∗ = c if c is a constant. A
function f is real on the unit circle if and only if f = f∗. Note that conjugation and star commute.

There is a theory of holomorphic functions between complex Banach space, which retain most prop-
erties of holomorphic functions of several variables. A good reference is [3].

3.2. Loop groups.
• If G is a matrix Lie group, we denote ΛG the Banach Lie group of maps Φ : S1 → G whose

entries are in W.
• If g is the Lie algebra of G, the Lie algebra of ΛG is the set of maps ϕ : S1 → g whose entries are

in W and is denoted Λg.
• Λ+SL(2,C) ⊂ ΛSL(2,C) is the subgroup of maps B whose entries are in W≥0, with B |λ=0

upper triangular.
• ΛR

+SL(2,C) ⊂ Λ+SL(2,C) is the subgroup of maps B such that B |λ=0 has positive entries on
the diagonal.

The following result is the corner stone of the DPW method. It is usually formulated for smooth loops
[19], but adapts with no difficulty to loops with entries in W (see details in Section 3.6 of [29]).

Theorem 2 (Iwasawa decomposition). The multiplication ΛSU(2) × ΛR
+SL(2,C) → ΛSL(2,C) is a

smooth diffeomorphism (in the sense of smooth maps between Banach manifolds). The unique splitting
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of an element Φ ∈ ΛSL(2,C) as Φ = FB with F ∈ ΛSU(2) and B ∈ ΛR
+SL(2,C) is called Iwasawa

decomposition. F is called the unitary factor of Φ and denoted Uni(Φ). B is called the positive factor
and denoted Pos(Φ).

3.3. The DPW method. In the DPW method, one identifies R3 with the Lie algebra su(2) by

(x1, x2, x3) ∈ R3 ∼ −i
(

−x3 x1 + ix2

x1 − ix2 x3

)
∈ su(2).

The input data for the DPW method is a quadruple (Σ, ξ, z0, φ0) where Σ is a Riemann surface, ξ is a
Λsl(2,C)-valued holomorphic 1-form on Σ of the following special form

(2) ξ =

(
α λ−1β
γ −α

)
where α, β, γ are W≥0-valued holomorphic 1-forms on Σ, z0 ∈ Σ is a base point and φ0 ∈ ΛSL(2,C) is
an initial condition. ξ is called the DPW potential. If Σ is simply connected, the DPW method is the
following procedure:

• Solve the Cauchy Problem on Σ:

(3)
{
dzΦ = Φξ
Φ(z0) = φ0

to obtain a solution Φ : Σ→ ΛSL(2,C).
• Compute the Iwasawa decomposition (F (z), B(z)) of Φ(z) for z ∈ Σ.
• Define f : Σ→ su(2) ∼ R3 by the Sym-Bobenko formula:

(4) f(z) = Sym(F (z)) = −2i
∂F (z)

∂λ
F (z)−1 |λ=1 .

Then f is a CMC-1 (branched) conformal immersion. f is regular at z (meaning unbranched) if
and only if β0(z) 6= 0. Its Gauss map is given by

(5) N(z) = Nor(F (z)) = −i F (z)

(
−1 0
0 1

)
F (z)−1 |λ=1 .

The DPW method actually constructs a moving frame for f and the differential of f is given by

(6) df(z) = 2i B0
11(z)2F (z)

(
0 β0(z)

β0(z) 0

)
F (z)−1 |λ=1 .

3.4. The Monodromy Problem. If Σ is not simply connected, lift the DPW potential ξ to the universal
cover rΣ of Σ and choose a point rz0 in the fiber of z0. Solve the Cauchy Problem dΦ = Φξ in rΣ with
initial condition Φ(rz0) = φ0 to define Φ : rΣ → ΛSL(2,C). The DPW method produces an immersion
f : rΣ→ R3.

For γ ∈ π1(Σ, z0), let rγ be the lift of γ to rΣ such that rγ(0) = rz0. The monodromy of Φ with respect
to γ is

M(Φ, γ) = Φ(rγ(1))Φ(rγ(0))−1

The standard condition which ensures that the immersion f descends to a well defined immersion on Σ
is the following system of equations, called the Monodromy Problem:

(7) ∀γ ∈ π1(Σ, z0)


M(Φ, γ) ∈ ΛSU(2) (i)
M(Φ, γ) |λ=1= ±I2 (ii)
∂
∂λM(Φ, γ) |λ=1= 0 (iii)

We will formulate the Monodromy Problem using the notion of principal solution (see Chapter 3.4 in
[23]).
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Definition 5. Let γ : [0, 1] → Σ be a path, not necessarily closed. Let Y : [0, 1] → ΛSL(2,C) be the
solution of the Cauchy Problem {

Y ′(s) = Y (s) ξ(γ(s))(γ′(s))
Y (0) = I2

The principal solution of ξ with respect to γ is P(ξ, γ) = Y (1).

In other words, P(ξ, γ) is the value at γ(1) of the analytical continuation along γ of the solution of
the Cauchy Problem (3) with initial condition Φ(γ(0)) = I2. If p, q are two points on Σ and the path γ
from p to q is clear from the context, we will sometime write P(ξ, p, q) for P(ξ, γ). The principal solution
has the following properties, which follow easily from its definition:

• P(ξ, γ) only depends on the homotopy class of γ.
• The principal solution is a morphism for the product of paths: If γ1 and γ2 are two paths such

that γ1(1) = γ2(0) then
P(ξ, γ1γ2) = P(ξ, γ1)P(ξ, γ2).

• If ψ : Σ1 → Σ2 is a holomorphic map, ξ is a potential on Σ2 and γ is a path on Σ1, then

P(ψ∗ξ, γ) = P(ξ, ψ(γ)).

• If σ : Σ1 → Σ2 is a anti-holomorphic map, then

P(σ∗ξ, γ) = P(ξ, σ(γ)).

Back to the DPW method, if the initial condition is Φ(z0) = I2, which will be the case in this paper, the
Monodromy Problem is equivalent to the following problem:

(8) ∀γ ∈ π1(Σ, z0)


P(ξ, γ) ∈ ΛSU(2) (i)
P(ξ, γ) |λ=1= ±I2 (ii)
∂
∂λP(ξ, γ) |λ=1= 0 (iii)

3.5. Gauging and the Regularity Problem.

Definition 6. A gauge on Σ is a holomorphic map G : Σ→ Λ+SL(2,C).

Let Φ be a solution of dΦ = Φξ and G be a gauge. Let pΦ = ΦG. Then Φ and pΦ define the same
immersion f via the DPW method. The gauged potential is

pξ := pΦ−1dpΦ = G−1ξG+G−1dG

and is denoted ξ ·G, the dot denoting the action of the gauge group on the potential. Gauging does not
change the monodromy of Φ.

Definition 7. We say that ξ is regular at p ∈ Σ if β0(p) 6= 0. This ensures that the immersion f is
unbranched at p.

In general Σ is a compact Riemann surface Σ minus a finite number of points, and the potential ξ
extends meromorphically to Σ.

Definition 8. We say that a pole p of ξ is an apparent singularity if there exists a meromorphic gauge
G, defined in a neighborhood of p, such that ξ · G extends holomorphically at p and is regular. This
ensures that the immersion f extends analytically at p.

Our potential will have two kinds of poles: some of them will be ends of the immersion f , the others
will be apparent singularities. Note that ξ must have apparent singularities at the zeros of β0 for f to be
regular. If Σ has positive genus, β0 must have zeros on Σ so apparent singularities cannot be avoided.
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3.6. Dressing and rigid motions. Let Φ be a solution of the Cauchy Problem (3). Let H ∈ ΛSU(2)

and define rΦ(z) = HΦ(z). Then rΦ solves drΦ = rΦξ and the Iwasawa decomposition of rΦ is rF = HF and
rB = B. The Sym-Bobenko formula gives

rf(z) = Sym( rF (z)) =

(
HfH−1 − 2i

∂H

∂λ
H−1

)
|λ=1 .

Consequently, we define a left action of ΛSU(2) on su(2) by

(9) H · x =

(
HxH−1 − 2i

∂H

∂λ
H−1

)
|λ=1 .

The action is by rigid motion and rf = H · f . The Monodromy Problems for Φ and HΦ are equivalent
because H ∈ ΛSU(2).

3.7. Spherical and catenoidal potentials. Delaunay surfaces are obtained from the following standard
potential on C∗:

ξ =

(
0 λ−1r + s

λr + s 0

)
dz

z

with initial condition Φ(1) = I2, where r, s are non-zero real numbers such that r+ s = 1
2 . There are two

limiting cases of interest to us:
• Spherical limit: (r, s) = (1/2, 0) gives

ξS =

(
0 λ−1/2
λ/2 0

)
dz

z

which we call the spherical Delaunay potential. The corresponding solution is

ΦS(z) =
1

2
√
z

(
z + 1 λ−1(z − 1)

λ(z − 1) z + 1

)
.

It Iwasawa decomposition is

FS(z) =
1√

2
√

1 + |z|2

(
z + 1 λ−1(z − 1)

λ(1− z) z + 1

)(
eiθ/2 0

0 e−iθ/2

)

BS(z) =
1√

2|z|
√

1 + |z|2

(
2|z| 0

λ(|z|2 − 1) 1 + |z|2
)

where θ = arg(z). The Sym-Bobenko formula (4) and Equation (5) give

fS(z) =
−i

1 + |z|2

(
−|z − 1|2 1− |z|2 − z + z

1− |z|2 + z − z |z − 1|2
)
∼ 1

1 + |z|2
(
1− |z|2,−2 Im(z), |z − 1|2

)
NS(z) =

−i
1 + |z|2

(
−z − z |z|2 − 1 + z − z

|z|2 − 1 + z − z z + z

)
∼ 1

1 + |z|2
(
|z|2 − 1, 2 Im(z), 2 Re(z)

)
.

Consider the rigid motion

(10) Ψ(x1, x2, x3) = (1− x3,−x2,−x1).

Then

(11) Ψ ◦ fS(z) =
1

1 + |z|2
(
2 Re(z), 2 Im(z), |z|2 − 1

)
= π−1(z)
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where π : C∪ {∞} → S2 is the stereographic projection from the north pole. The poles at 0 and
∞ are of course apparent singularities. This is confirmed by the following gauge:

GS(z) =

(
1+z√
z

0

λ 1−z√
z

√
z

1+z

)
A computation gives

ξS ·GS =

(
0 λ−1

0 0

)
dz

2(z + 1)2

which is regular at 0 and ∞.
• Catenoidal limit: (r, s) = (0, 1/2) gives

ξC =

(
0 1/2

1/2 0

)
dz

z

which we call the catenoidal Delaunay potential. The corresponding solution is

ΦC(z) =
1

2
√
z

(
z + 1 z − 1
z − 1 z + 1

)
which does not depend on λ, so the immersion degenerates into the point 0. A computation gives

NC(z) =
1

1 + |z|2
(
1− |z|2, 2 Im(z), 2 Re(z)

)
.

which is a conformal diffeomorphism from C ∪ {∞} to S2.

3.8. Duality. Let

K(λ) =

(
0 iλ−1/2

iλ1/2 0

)
.

Definition 9. The dual potential of ξ is

ξ† = KξK−1 =

(
−α λ−1γ
β α

)
.

The Delaunay spherical and catenoidal potentials are dual to each other. Note that K is not a
gauge. Duality transforms the immersion in the following explicit way. Let Φ† = KΦK−1 be the
solution of dΦ† = Φ†ξ† with initial condition Φ†(z0) = KΦ(z0)K−1. The Iwasawa decomposition of Φ†

is F † = KFK−1 and B† = KBK−1. The Sym-Bobenko formula gives:

f†(z) =

(
0 i
i 0

)[
f(z) +N(z)− i

(
1 0
0 −1

)](
0 −i
−i 0

)
.

In other words, up to a rigid motion, the dual (branched) immersion f† is the parallel surface at distance
one to f .

4. Strategy

Fix a horizontal weighted graph Γ. Until Section 9, we do not assume that Γ is balanced nor has
length-2 edges. Without loss of generality, we may assume (by rotating the graph Γ) that ujk 6= ±1 for
all (j, k) ∈ E ∪R. We denote C the Riemann sphere C∪{∞}. Take a copy of the Riemann sphere Cj for
each j ∈ J , and a copy of the Riemann sphere Cjk for each (j, k) ∈ E+. For each (j, k) ∈ E+, identify
the point z = ujk in Cj with the point z = 1 in Cjk, and the point z = ukj in Ck with the point z = −1

in Cjk. This defines a compact Riemann surface with nodes Σ0 (the nodes are the double points created
when identifying pairs of points).



OPENING NODES IN THE DPW METHOD: CO-PLANAR CASE 9

Consider the meromorphic DPW potential ξ0 on Σ0 defined by ξ0 = ξS in Cj for j ∈ J and ξ0 = ξC

in Cjk for (j, k) ∈ E+. Fix an arbitrary j0 ∈ J and take as base point z0 the point z = 1 in Cj0
and the initial condition Φ(z0) = I2. The fundamental group π1(Σ0, z0) is generated by paths made of
unit circular arcs connecting the nodes. Whenever a path γ crosses a node, we require the fundamental
solution P(ξ0, γ) to be continuous at the node. (This seems natural and is justified by the theoretical
results of Appendix B: see Remark 14.)

The spherical and catenoidal potentials both take value in Λsu(2) when z ∈ S1. So if all points
ujk are on the unit circle, the fundamental solution P(ξ0, γ) will be in ΛSU(2) for all γ ∈ π1(Σ0, z0).
Unitarization is the hard task in solving the Monodromy Problem, so this explains why we restrict to
horizontal planar graphs Γ.

The strategy of the construction is the following: for small t 6= 0, we define a genuine Riemann surface
Σt by opening the nodes of Σ0. We define a meromorphic potential ξt on Σt as a perturbation of the
above potential ξ0, depending on some parameters. These parameters are determined by solving the
Regularity and Monodromy Problems by an implicit function argument at t = 0.

4.1. Symmetry. In all the paper, σ(z) = 1/z denotes the inversion with respect to the unit circle. The
potentials ξS and ξC both have the symmetry

(12) σ∗ξ = DξD−1 with D =

(
i 0
0 −i

)
.

A potential having the symmetry (12) will be called σ-symmetric. With appropriate initial condition,
the solution of the Cauchy Problem (3) satisfies

(13) σ∗Φ = DΦD−1.

The corresponding surface is invariant by the isometry X 7→ DXD−1 in the su(2)-model, which corre-
sponds to the symmetry with respect to the plane x1 = 0. We keep the σ-symmetry throughout the
construction, and in the end apply the rigid motion Ψ so that the surface is symmetric with respect to
the horizontal plane x3 = 0.

5. Opening nodes

In this section, we define a family of Riemann surfaces Σt,x depending on a small real parameter t and
a certain number of other parameters, which we denote x. We start by defining the Riemann surface with
nodes Σ0,x. We proceed as in Section 4 except that the position of the nodes in Cj become parameters.
(We can fix the nodes at 1 and −1 in Cjk by a Möbius transformation.) Consider a copy Cj of the
Riemann sphere for j ∈ J and a copy Cjk of the Riemann sphere for (j, k) ∈ E+. For (j, k) ∈ E+,
introduce two complex parameters pjk and pkj in a neighborhood of respectively ujk and ukj . It will be
convenient to denote p′jk = 1 and p′kj = −1 the nodes in Cjk. Identify the point z = pjk in Cj with the
point z = p′jk in Cjk and the point z = pkj in Ck with the point z = p′kj in Cjk to create two nodes per
edge. This defines a compact Riemann surface with nodes denoted Σ0,x.

To open nodes for t 6= 0, we introduce local complex coordinates in a neighborhood of pjk and p′jk for
(j, k) ∈ E:

zjk = −2i
z − pjk
z + pjk

: Vjk ⊂ Cj
∼−→ D(0, ε).

z′jk = −2i
z − p′jk
z + p′jk

: V ′jk ⊂ Cjk
∼−→ D(0, ε).

(These coordinates are chosen so that Σt,x has the desired symmetry: see Proposition 1.) We assume
that ε > 0 is small enough so that the disks Vjk for k ∈ Ej are disjoint. For (j, k) ∈ E, we introduce a
non-zero real parameter rjk in a neighborhood of τjk and set tjk = rjkt. Assume that t is small enough so
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that |tjk| < ε2. Remove the disks |zjk| ≤ |tjk|/ε and |z′jk| ≤ |tjk|/ε. Identify each point z in the annulus
|tjk|/ε < |zjk| < ε with the point z′ in the annulus |tjk|/ε < |z′jk| < ε such that

zjk(z)z′jk(z′) = tjk.

In particular, the circle |zjk| = |tjk|1/2 is identified with the circle |z′jk| = |tjk|1/2, with the reverse
orientation. This creates two necks per edge. The resulting compact Riemann surface is denoted Σt,x.
Note that it does not depend on λ. The points z = 0, z = 1 and z = ∞ in Cj are denoted respectively
0j , 1j and ∞j . The points z = 0 and z =∞ in Cjk are denoted 0jk and ∞jk.

Remark 3. The Riemann surface Σt,x does not depend on the number ε > 0 used to define the domains
Vjk, but the smaller ε, the smaller t must be since we need |tjk| < ε2.

5.1. Symmetry.

Proposition 1. Assume that pjk ∈ S1 for all (j, k) ∈ E. Then Σt,x admits an anti-holomorphic involution
σ defined by σ(z) = 1/z in Cj for j ∈ J and Cjk for (j, k) ∈ E+.

Proof: a straightforward computation gives, for pjk ∈ S1

zjk(1/z) = zjk(z).

A similar relation holds for z′jk. Hence since tjk is real,

zjk(z)z′jk(z′) = tjk ⇒ zjk(σ(z))z′jk(σ(z′)) = tjk.

So if z ∼ z′ in Σt,x, then σ(z) ∼ σ(z′) in Σt,x. �

5.2. Meromorphic 1-forms on Σt,x. We denote C(pjk) the circle |zjk| = ε and C(p′jk) the circle
|z′jk| = ε. Assume t 6= 0 and let ω be a meromorphic 1-form on Σt,x with poles outside of the annuli
|tjk|/ε < |zjk| < ε. We have

(14)
∫
C(pjk)

ω = −
∫
C(p′jk)

ω for (j, k) ∈ E

because C(pjk) is homologous to −C(p′jk) in Σt,x. By the Residue Theorem in Cj

(15)
∑
k∈Ej

∫
C(pjk)

ω + 2πi
∑
q∈Cj

Resqω = 0 for j ∈ J

where the sum is taken on all poles q of ω in Cj . In the same way,

(16)
∫
C(p′jk)

ω +

∫
C(p′kj)

ω + 2πi
∑
q∈Cjk

Resqω = 0 for (j, k) ∈ E+.

Definition 10 (Bers). A regular differential on the Riemann surface with nodes Σ0,x is a meromorphic
1-form with simple poles at the nodes pjk and p′jk for (j, k) ∈ E, with opposite residues, and possibly
poles of arbitrary order away from the nodes.

Theorem 3. A meromorphic 1-form ω on Σt 6=0,x (respectively a regular differential ω on Σ0,x) is uniquely
defined by prescribing its poles, principal parts at the poles and periods on the circles C(pjk) and C(p′jk)

for (j, k) ∈ E, subject only to the constraints (14), (15) and (16). Moreover, away from the nodes and
the poles, ω depends holomorphically on t in a neighborhood of 0 and all parameters in the construction.
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This is proved for holomorphic 1-forms in [7] and for meromorphic 1-forms with simple poles in [17]
using algebraic-geometric methods. A proof for poles of arbitrary order is given in [26]. The holomorphic
dependence away from the nodes and the poles means the following: for ε > 0, let Ωε be Σ0,x minus
ε-neighborhoods of all nodes and poles, so Ωε ⊂ Σt,x for t small enough. Then the restriction of ω to the
fixed domain Ωε depends holomorphically on (z, t, x).

6. The potential

In this section, we define a meromorphic potential ξt,x on Σt,x, with poles at the following points:
• 0j and ∞j in Cj for j ∈ J , which are to be apparent singularities,
• pjk in Cj for (j, k) ∈ R, which are to be the Delaunay ends of our surface. Here pjk is a
λ-dependent parameter in the functional space W≥0 in a neighborhood of ujk, for (j, k) ∈ R.

• qjk and σ(qjk) in Cjk, for (j, k) ∈ E+, which are to be apparent singularities. Here qjk is a
λ-dependent parameter in W≥0 in a neighborhood of 0, for (j, k) ∈ E+.

Remark 4. All these λ-dependent parameters will be used to solve the Monodromy Problem. The
cross-ratio of 1, −1, qjk and σ(qjk) is

(1,−1; qjk, σ(qjk)) =
qjkqjk − 1 + 2i Im(qjk)

1− qjkqjk + 2i Im(qjk)
.

The derivative of the cross-ration with respect to Re(qjk) at qjk = 0 is zero, so Re(qjk) serves no purpose
and we restrict qjk to the space iW≥0

R . We could have fixed the singularities at 0jk and ∞jk and
perturbed the position of the nodes at 1 and −1, but then Σt,x would depend on λ. We chose to have a
constant Riemann surface and moving singularities (with respect to λ), which is more conventional than
the reverse.

We define the meromorphic potential ξt,x on Σt,x as the sum of two terms:

ξt,x = ηt,x + t χt,x

where the potential ηt,x is a perturbation of the potential ξ0 described in Section 4, while the potential
χt,x prescribes periods around the nodes and suitable singularities at the Delaunay ends. These potentials
are defined as follows, using Theorem 3:

• The potential ηt,x has simple poles at 0j and ∞j for j ∈ J with residues

Res0jηt,x = −Res∞jηt,x = Mj =

(
iAj λ−1Bj
λCj −iAj

)
,

simple poles at qjk and σ(qjk) for (j, k) ∈ E+ with residues

Resqjkηt,x = −Resσ(qjk)ηt,x = Mjk =

(
iAjk Bjk
Cjk −iAjk

)
and has vanishing periods around the nodes:∫

C(pjk)

ηt,x =

∫
C(p′jk)

ηt,x = 0 for (j, k) ∈ E.

Here Aj , Bj , Cj , Ajk, Bjk, Cjk are parameters in a neighborhood of respectively 0, 1/2, 1/2, 0,
1/2, 1/2 in W≥0

R .
• The potential χt,x has the following periods around the nodes for (j, k) ∈ E:∫

C(pjk)

χt,x = −
∫
C(p′jk)

χt,x = 2πimjk with mjk =

(
ajk λ−1ibjk
icjk −ajk

)
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where ajk, bjk, cjk for (j, k) ∈ E are parameters in W≥0
R to be determined. It has a double pole

at pjk in Cj for (j, k) ∈ R with principal part(
0 0
1 0

)(
ajkpjkdz

(z − pjk)2
+

ibjkdz

z − pjk

)
.

Here ajk, bjk are parameters in W≥0
R to be determined, for (j, k) ∈ R. It is known from [28] that

such a pole creates a Delaunay end, provided the Monodromy Problem is solved. Finally, the
potential χt,x has simple poles with equal residues at 0j and ∞j and simples poles with equal
residues at qjk and σ(qjk). These residues are determined by the constraints (15) and (16) which
give:

(17) Res0jχt,x = Res∞jχt,x = −1

2

∑
k∈Ej

mjk −
1

2

∑
k∈Rj

(
0 0
ibjk 0

)

(18) Resqjkχt,x = Resσ(qjk)χt,x =
1

2
(mjk +mkj).

6.1. Symmetry. The residues and periods of the entries of ηt,x and χt,x have been chosen to be either
real or imaginary so that the potential has the desired symmetry:

Proposition 2. Assume that pjk ∈ S1 for (j, k) ∈ E and pjk = eiθjk with θjk ∈ W≥0
R for (j, k) ∈ R.

Then the potential ξt,x has the symmetry (12):

σ∗ξt,x = Dξt,xD
−1.

Note that the bar denotes the conjugation operator defined in Section 3.1 so this actually means
σ∗ξt,x(z, λ) = Dξt,x(z, λ)D−1. Both sides are holomorphic with respect to λ.

Proof: if ω is a meromorphic 1-form on Σt,x then σ∗ω is meromorphic and

Resσ(p)σ∗ω = Respω.

Hence
Res∞j

σ∗ηt,x = Res0jηt,x = Mj = −DMjD
−1 = Res∞j

Dηt,xD
−1.

In the same way, σ∗ηt,x and Dηt,xD−1 have the same residues at 0j , qjk and σ(qjk). Moreover, both have
vanishing periods around the nodes, so by uniqueness in Theorem 3,

σ∗ηt,x = Dηt,xD
−1.

For (j, k) ∈ E, we have since σ(C(pjk)) = −C(pjk)∫
C(pjk)

σ∗χt,x = −
∫
C(pjk)

χt,x = 2πimjk = 2πiDmjkD
−1

so σ∗χt,x andDχt,xD−1 have the same periods around the nodes. For (j, k) ∈ R, assuming that pjk = eiθjk

with θjk ∈ W≥0
R , we have σ(pjk) = pjk and

σ∗
(
ajkpjkdz

(z − pjk)2
+

ibjkdz

z − pjk

)
= − ajkpjkdz

(z − pjk)2
− ibjkdz

z − pjk
+
ibjkdz

z

so σ∗χt,x and Dχt,xD−1 have the same principal part at pjk. Finally, they have the same residues at 0j ,
∞j , qjk and σ(qjk) by computations similar to the above. By uniqueness in Theorem 3, we have

σ∗χt,x = Dχt,xD
−1.

�
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6.2. Explicit formulas at t = 0. It will be convenient to denote, for (j, k) ∈ E+, Mkj = Mjk, Akj =
Ajk, etc... so Mjk makes sense for all (j, k) ∈ E. Be careful however that Ajk and Akj are the same
parameter, whereas ajk and akj are distinct parameters. For complex numbers p, q, we denote ωq the
meromorphic 1-form on the Riemann sphere with simple poles at q and σ(q) with residues 1 and −1,
and ωp,q the meromorphic 1-form with simple poles at p, q and σ(q) with residues 1, −1/2 and −1/2.
Explicitly:

ωq =
dz

z − q
− qdz

qz − 1
=

(1− qq)dz
(z − q)(1− qz)

and ωp,q =
dz

z − p
− dz

2(z − q)
− q dz

2(qz − 1)
.

In particular if q = 0:

ω0 =
dz

z
and ωp,0 =

dz

z − p
− dz

2z
.

Proposition 3. At t = 0 and for any value of the parameter x, we have in Cj for j ∈ J :

η0,x = Mjω0

χ0,x =
∑
k∈Ej

mjkωpjk,0 +
∑
k∈Rj

(
0 0
1 0

)(
ajkpjk dz

(z − pjk)2
+ ibjkωpjk,0

)
and in Cjk for (j, k) ∈ E+:

η0,x = Mjkωqjk

χ0,x = −mjkω1,qjk −mkjω−1,qjk .

Proof: the entries of η0,x and χ0,x are regular meromorphic differentials on the Riemann surface with
nodes Σ0,x. Proposition 3 follows from the fact that a meromorphic 1-form on the Riemann sphere is
uniquely defined by its poles and principal parts. �

We shall need the t-derivative of the potential ξt,x at t = 0. We have of course

∂ξt,x
∂t
|t=0=

∂ηt,x
∂t
|t=0 +χ0,x.

Proposition 4. The t-derivative of the potential ηt,x at t = 0 is given by

∂ηt,x
∂t
|t=0=


∑
k∈Ej

rjkMjk

(1 + q2
jk)

(1− q2
jk)

pjkdz

(z − pjk)2
in Cj for j ∈ J

rjkMj
dz

(z − 1)2
− rkjMk

dz

(z + 1)2
in Cjk for (j, k) ∈ E+.

Proof: by Lemma 3 in [25], for (j, k) ∈ E, the derivative of ηt,x with respect to the parameter tjk at
t = 0 is a meromorphic differential on Σ0,x with two double poles at pjk, p′jk and principal parts given in
term of the coordinates used to open nodes by

(19)
∂ηt,x
∂tjk

|t=0'


−dzjk
(zjk)2

Resp′jk
η0,x

z′jk
at pjk

−dz′jk
(z′jk)2

Respjk
η0,x

zjk
at p′jk

.

We have
dzjk

(zjk)2
=

ipjk dz

(z − pjk)2
and

dz′jk
(z′jk)2

=
ip′jk dz

(z − p′jk)2
.
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Observe that these are globally defined meromorphic 1-forms on the Riemann sphere so ' in (19) becomes
an equality in Cj and Cjk, respectively. By Proposition 3:

Respjk
η0,x

zjk
= Respjk

(z + pjk)

−2i(z − pjk)
Mj

dz

z
= iMj

Recalling that qjk ∈ iW≥0
R so qjk = −qjk and that p′jk = ±1:

Resp′jk
η0,x

z′jk
= Resp′jk

(z + p′jk)

−2i(z − p′jk)
Mjk

(1 + q2
jk)dz

(z − qjk)(1 + qjkz)
= iMjk

1 + q2
jk

1− q2
jk

.

Hence for (j, k) ∈ E:

∂ηt,x
∂tjk

|t=0=


Mjk

(1 + q2
jk)

(1− q2
jk)

pjk dz

(z − pjk)2
in Cj

Mj

p′jkdz

(z − p′jk)2
in Cjk

0 in all other Riemann spheres.

Proposition 4 follows from tjk = rjkt and the chain rule. �

6.3. Central value of the parameters. The vector of all parameters of the construction (except t)
is denoted x. Each parameter is in a neighborhood of a central value denoted with an underscore. The
central values are tabulated below. Some of them we have already seen. The others will be computed
when solving the Monodromy Problem.

Also, we have tried to define the potential in a way as general and natural as possible, but it turns
out a posteriori after solving all equations that we have too many parameters, so we can fix the value of
some of them: Aj , Bj for j ∈ J will not be used. Some computations are simpler with these restrictions
so we assume them from now on.

parameter range space central value
pjk (j, k) ∈ E S1 ujk
p′jk (j, k) ∈ E fixed ±1

rjk (j, k) ∈ E R τjk
Aj j ∈ J fixed 0
Bj j ∈ J fixed 1/2

Cj j ∈ J W≥0
R 1/2

qjk (j, k) ∈ E+ iW≥0
R 0

Ajk (j, k) ∈ E+ W≥0
R 0

Bjk, Cjk (j, k) ∈ E+ W≥0
R 1/2

ajk (j, k) ∈ E W≥0
R τjk(λ− 1)/2

bjk, cjk (j, k) ∈ E W≥0
R 0

pjk (j, k) ∈ R exp(iW≥0
R ) ujk

ajk (j, k) ∈ R W≥0
R τjk(λ− 1)2/2

bjk (j, k) ∈ R W≥0
R 0

7. The Regularity Problem

We want 0j ,∞j and qjk, σ(qjk) to be apparent singularities. In this section, the entries of the potential
will be denoted

(20) ξt,x =

(
α λ−1β
γ −α

)
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and the dependence on the parameters (t, x) will not be written to ease notations.

7.1. Regularity at 0j and ∞j. Fix j ∈ J and consider the gauge

Gj =

(
f 0
λg f−1

)
with f(z) =

1 + z√
z

and g(z) = xj
1− z√
z

+ i yj
1 + z√
z
.

Here xj , yj are parameters in W≥0
R to be determined. At (xj , yj) = (1, 0) we have Gj = GS . We denote

pξ = ξt,x ·Gj =

(
pα λ−1

pβ
pγ −pα

)
.

The gauge has the symmetry Gj ◦ σ = DGjD
−1 so pξ has the symmetry (12) and it suffices to ensure

that pξ is regular at 0j ; regularity at ∞j will follow by symmetry.

Proposition 5. There exists explicit values of xj, yj and Cj in W≥0
R , depending analytically on (t, x),

such that pα and pβ are holomorphic at 0j, pγ has a pole of multiplicity at most 2 and

(21) Re
(
Res0j (zpγ)

)
= 0.

Proof: straightforward computations give

pα = α+ f−1gβ + f−1df

pβ = f−2β

(22) pγ = −2λfgα− λg2β + f2γ + λ(f dg − g df).

Recall that α, β, γ have simple poles at 0j . Hence pβ is holomorphic at 0j and pα has (at most) a simple
pole with residue

Res0j pα = Res0jα+ (xj + iyj)Res0jβ −
1

2
.

We take

(23) xj + iyj =
1/2− Res0jα

Res0jβ

so that pα is holomorphic at 0j . Finally, pγ has at most a double pole at 0j and since f dg − g df has a
simple pole at 0,

Res0j (zpγ) = −2λ(xj + iyj)Res0jα− λ(xj + iyj)
2Res0jβ + Res0jγ.

By definition, recalling the definition of the operator Re in Section 3.1:

Re(Res0jγ) = λCj .

So we see that Equation (21) is equivalent to

Cj = Re
[
2(xj + iyj)Res0jα+ (xj + iyj)

2Res0jβ
]

which using Equation (23) simplifies to

(24) Cj = Re

(
1/4− (Res0jα)2)

Res0jβ

)
.

Note that the residues of α and β involved in Equations (23) and (24) are given, as functions of (t, x), by
the definition of ξt,x. In particular, at t = 0, we have xj = 1 and yj = 0 so Gj = GS , and

(25) Cj |t=0=
1/4 +A2

j

Bj
= 1/2.

�
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At this point, the Regularity Problem at 0j is only partially solved since pγ still has a pole. By Equation
(22), we have

(26) pγ0 = z−1(z + 1)2γ0

so for pγ to be holomorphic at 0j , it is necessary that

Res0j

(
z−1(z + 1)2γ0

)
= 0.

We define for j ∈ J and t 6= 0

(27) Rj(t, x) = t−1Res0j

(
z−1(z + 1)2γ0

t,x

)
∈ C.

Proposition 6. For j ∈ J , the function Rj(t, x) extends analytically at t = 0. Moreover, at the central
value, we have Rj(0, x) = Fj/2, where Fj is the force defined in Equation (1).

Proof: by Proposition 3, we have γ0,x = λCjω0 in Cj so γ0
0,x = 0. Hence Rj extends analytically at

t = 0 and

Rj(0, x) = Res0j

(
z−1(z + 1)2

∂γ0
t,x

∂t
|t=0

)
.

By Proposition 4, we have

∂γt,x
∂t
|t=0=

∑
k∈Ej

(
rjkCjk

(1 + q2
jk)

(1− q2
jk)

pjk dz

(z − pjk)2
+ icjkωpjk,0

)
+
∑
k∈Rj

(
ajkpjk dz

(z − pjk)2
+ ibjkωpjk,0

)
.

At the central value (see the table in Section 6.3) and λ = 0, this simplifies to

∂γ0
t,x

∂t
|t=0=

∑
k∈Ej∪Rj

τjkujk dz

2(z − ujk)2

which is holomorphic at 0j . Hence

Rj(0, x) =
∑

k∈Ej∪Rj

τjk
2ujk

.

�

Remark 5. Proposition 6 explains where the balancing condition comes from. We solve the equation
Rj = 0 in Section 9 using the non-degeneracy hypothesis. Then after the Monodromy Problem is solved,
pγ will in fact be holomorphic at 0j : see Proposition 18.

7.2. Regularity at qjk and σ(qjk). Fix (j, k) ∈ E+. Recall that ξt,x has moving singularities at qjk
and σ(qjk), which depend on λ. We use the following Möbius transformation as local coordinate in a
neighborhood of qjk:

wjk(z) =
z − qjk
1− qjkz

=
z − qjk
1 + qjkz

We have σ ◦ wjk = wjk ◦ σ. We make the change of variable w = wjk and denote

rξ = (w−1
jk )∗ξt,x =

(
rα λ−1

rβ
rγ −rα

)
which has fixed singularities at w = 0 and w =∞ and still has the symmetry (12). We consider a gauge
Gjk of a form dual to Gj :

Gjk =

(
f−1 g

0 f

)
with f =

1 + w√
w

and g = xjk
1− w√
w

+ i yjk
1 + w√
w

.
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Let
pξ = rξ ·Gjk =

(
pα λ−1

pβ
pγ −pα

)
.

The gauge Gjk has the symmetry Gjk ◦ σ = DGjkD
−1 so it suffices to ensure that pξ is regular at w = 0,

regularity at w =∞ will follow by symmetry.

Proposition 7. There exists explicit values of xjk, yjk and Bjk in W≥0
R , depending analytically on (t, x),

such that pα and pγ are holomorphic at w = 0, pβ has a pole of multiplicity at most 2 and

(28) Re
(

Res0(wpβ)
)

= 0.

Proof: we simply dualize the proof of Proposition 5 with rξ in place of ξt,x and obtain:

(29) xjk + iyjk =
1/2 + Res0 rα

Res0rγ
=

1/2 + Resqjkα

Resqjkγ

(30) Bjk = Re

(
1/4− (Res0 rα)2

Res0rγ

)
= Re

(
1/4− (Resqjkα)2

Resqjkγ

)

(31) Bjk |t=0=
1/4 +A2

jk

Cjk
.

�
At this point, the Regularity Problem at qjk is only partially solved since pβ still has a pole. Dualizing

Equation (26) we have

(32) pβ0 = w−1(w + 1)2
rβ0

For pβ to be holomorphic, it is necessary that

Res0

(
w−1(w + 1)2

rβ0
)

= 0.

We define for (j, k) ∈ E+ and t 6= 0:

Rjk(t, x) = t−1Res0

(
w−1(w + 1)2

rβ0
)
∈ C.

Proposition 8. For (j, k) ∈ E+, the function Rjk extends analytically at t = 0 and

(33) Rjk(0, x) = rjk
1 + (q0

jk)2

2(1− q0
jk)2

− rkj
1 + (q0

jk)2

2(1 + q0
jk)2

+
2ib0jk

1− q0
jk

+
2iq0

jkb
0
kj

1 + q0
jk

.

In particular, Rjk(0, x) = 0 at the central value.

Proof: by Proposition 3, we have β0,x = λBjkωqjk in Cjk so rβ0
0,x = 0. Hence Rjk extends analytically

at t = 0 and

Rjk(0, x) = Res0

(
w−1(w + 1)2

∂ rβ0
t,x

∂t
|t=0

)
.

By Proposition 4, remembering that we fixed Bj = Bk = 1/2:
∂βt,x
∂t
|t=0=

rjk dz

2(z − 1)2
− rkj dz

2(z + 1)2
− ibjkω1,qjk − ibkjω−1,qkj .

The first two residues are better computed using the z-coordinate

Resw=0

(
w−1(w + 1)2(w−1

jk )∗
dz

(z ± 1)2

)
= Resz=qjk

(
w−1
jk (wjk + 1)2 dz

(z ± 1)2

)
=

1 + q2
jk

(qjk ± 1)2
.
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The last two residues are better computed using the w-coordinate:

(w−1
jk )∗ω±1,qjk =

dw

w − wjk(±1)
− dw

2w

Res0

(
w−1(w + 1)2(w−1

jk )∗ω1,qjk

)
=
−1

wjk(1)
− 1 =

2

qjk − 1

Res0

(
w−1(w + 1)2(w−1

jk )∗ω−1,qjk

)
=

−1

wjk(−1)
− 1 =

−2qjk
qjk + 1

.

Collecting all terms and setting λ = 0, we obtain Equation (33). �

Remark 6. We solve the equation Rjk(t, x) = 0 using the Implicit Function Theorem in Section 9. Then
after the Monodromy Problem is solved, pβ will in fact be holomorphic at w = 0: see Proposition 20.

8. The Monodromy Problem

From now on, we assume that Cj is given in function of (t, x) by Equation (24) for j ∈ J and Bjk is
given by Equation (30) for (j, k) ∈ E+. Also, we restrict t to be positive.

8.1. Definition of various paths. In this section, we define for (j, k) ∈ E∪R a loop γjk with base point
1j encircling the point pjk, and for (j, k) ∈ E+ a path Γjk connecting 1j to 1k through the two necks
corresponding to the edge (j, k) (see Figure 2). We study carefully how these paths transform under σ.

Fix j ∈ J . We define an order ≺ on the set Ej ∪ Rj by k ≺ ` ⇔ arg(ujk) < arg(uj`), where the
arguments are chosen in (0, 2π). For k ∈ Ej ∪Rj , we fix a curve αjk in the domain {z ∈ Cj : |z| > 1, 0 <
arg(z) < 2π} from 1j to eiεujk and define δjk = αjkσ(αjk)−1. The domain bounded by δjk contains the
points pj` for ` � k. We define inductively the loops γjk for k ∈ Ej ∪Rj by

(34) δjk =
∏
`�k

γj`.

In other words, γjk = (δjk′)
−1δjk where k′ is the predecessor of k for the order ≺. The domain bounded

by γjk contains the point pjk and no other pj`. It will be convenient to also denote

δ′jk =
∏
`≺k

γj`

so δjk = δ′jkγjk. (An empty product means the neutral element.) These paths transform as follows under
σ:

(35) σ(δjk) = δ−1
jk

(36) σ(γjk) = δ′jkγ
−1
jk (δ′jk)−1.

Fix (j, k) ∈ E+. The path Γjk is defined as follows. Fix a number ε′ such that 0 < ε′ < ε, where ε is the
number introduced to open nodes in section 5. Recalling the definition of the coordinate zjk near pjk, we
have

z = pjk
(2 + izjk)

(2− izjk)

so for real x ∈ [−ε, ε], the point zjk = x is on the unit circle and its argument is an increasing function
of x. First assume that τjk > 0 so tjk and tkj are positive. We define the path βjk as the concatenation
of the following 5 paths (taking care to avoid the disks that are removed when opening nodes):

(1) The circular arc from z = eiεujk to zjk = ε′.
(2) The circular arc from zjk = ε′ to zjk = tjk/ε

′. Its endpoint was identified with z′jk = ε′ when
opening nodes.

(3) The circular arc from z′jk = ε′ to z′kj = −ε′ on the upper half unit circle in Cjk.
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Figure 2. The paths γjk (red) and Γjk (green), for (j, k) ∈ E+. The large circles
represent the unit circles in Cj , Cjk and Ck. The tiny circles represent disks that are
removed when opening nodes. The bullets represent ends. The dots connect points that
are identified when opening nodes.

(4) The circular arc from z′kj = −ε′ to z′kj = −tkj/ε′. Its endpoint was identified with zkj = −ε′
when opening nodes.

(5) The circular arc from zkj = −ε′ to z = eiεukj′ , where j′ is the predecessor of j for the order ≺
on Ek ∪Rk (or to z = 1k in case j is the minimum of Ek ∪Rk).

(We could of course group paths (1) and (2) into one single arc, but it is convenient for the proof of
Proposition 13 to write it this way.) If τjk < 0, some signs in the definition of βjk must be changed, the
result being that path number (3) is now on the lower half unit circle. All these paths are on the unit
circle so σ(βjk) = βjk.We define the path Γjk on Σt,x from 1j to 1k as Γjk = αjkβjkα

−1
kj′ (or Γjk = αjkβjk

in case j is the minimum of Ek ∪Rk). It transform as follows under σ:

(37) σ(Γjk) = δ−1
jk Γjk δ

′
kj .

8.2. Formulation of the Monodromy Problem. Let Σt,x be the Riemann surface Σt,x minus the
poles of ξt,x, namely the ends pjk for (j, k) ∈ R, the points 0j ,∞j for j ∈ J and the points qjk, σ(qjk) for
(j, k) ∈ E+. Fix an arbitrary j0 ∈ J and take z0 = 1j0 as base point.

Proposition 9. Assume that the Regularity Problem is solved and that

(38) ∀(j, k) ∈ E ∪R,


P(ξt,x, γjk) ∈ ΛSU(2)
P(ξt,x, γjk) |λ=1= I2
∂
∂λP(ξt,x, γjk) |λ=1= 0

(39) ∀(j, k) ∈ E+,


P(ξt,x,Γjk) ∈ ΛSU(2)
P(ξt,x,Γjk) |λ=1= ±I2
P(ξt,x,Γjk)−1 ∂

∂λP(ξt,x,Γjk) |λ=1= i(Vk − Vj)
where Vj for j ∈ J are arbitrary matrices in su(2). Then the Monodromy Problem (8) is solved.

Proof: for j ∈ J , let γ0j be a closed loop around 0j in the unit disk of Cj , with base point 1j . For
(j, k) ∈ E+, let γqjk be a closed loop with base point 1j defined as follows: Items (1) and (2) in the
definition of βjk from 1j to z′jk = ε in Cjk, then a closed loop in the unit disk of Cjk around qjk, and back
to 1j by the same path. Provided the Regularity Problem at 0j and qjk are solved, the gauged potentials
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ξt,x ·Gj and ξt,x ·Gjk have trivial monodromy around 0j and qjk, respectively. Because the gauges have
multivaluation −I2 around these points, we have

P(ξt,x, γ0j ) = P(ξt,x, γqjk) = −I2.

Any element of π1(Σt,x, z0) can be written as a product of the following paths or their inverse:

(1) γjk for (j, k) ∈ E ∪R,
(2) γ0j for j ∈ J ,
(3) γqjk for (j, k) ∈ E+,
(4) Γjk for (j, k) ∈ E+.

Let c ∈ π1(Σt,x, z0) and decompose it as

c =

n−1∏
i=0

ci

where each ci or c−1
i is a path in the above list. Then

P(ξt,x, c) =

n−1∏
i=0

P(ξt,x, ci)

so we immediately see that the first two items of the Monodromy Problem (7) are solved. Each path ci
goes from a point 1ji to a point 1ji+1 , with ji+1 = ji for paths of type (1), (2) and (3) and jn = j0. Then
we always have

P(ξt,x, ci)
−1 ∂

∂λ
P(ξt,x, ci) |λ=1= i(Vji+1

− Vji).

Indeed, boths sides are zero for paths of type (1), (2), (3), and for paths of type (4) this follows from
Equation (39). Consequently (using that ±I2 commutes with everything)

(40) P(ξt,x, c)
−1 ∂

∂λ
P(ξt,x, c) |λ=1=

n−1∑
i=0

P(ξt,x, ci)
−1 ∂

∂λ
P(ξt,x, ci) |λ=1= i(Vjn − Vj0) = 0.

�
We shall take the following choice for the matrices Vj :

(41) Vj =
−i
2

(
Re(vj) −i Im(vj)
i Im(vj) −Re(vj)

)
where vj denotes the vertices of the given graph Γ. Then for (j, k) ∈ E+, we have vk − vj = `jkujk so

(42) Vk − Vj =
−i `jk

2

(
Re(ujk) −i Im(ujk)
i Im(ujk) −Re(ujk)

)
= −`jk

2
NS(ujk).

Remark 7. (1) There is geometry behind our choice for Vj : we are in fact requiring that the image
of 1j by the immersion is vj for all j ∈ J , up to a rigid motion: see Point (2) of Proposition 18.

(2) If the Regularity Problem at 0j and ∞j is solved, then Equations (38) for k ∈ Ej ∪ Rj are not
independent, as the fundamental group of the n-punctured sphere has n− 1 generators. We will
still solve Problems (38) for all k ∈ Ej ∪ Rj and infer in Point (3) of Proposition 18 that the
Regularity Problem at 0j and ∞j is solved. A similar remark holds for the Regularity Problem
at qjk.
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8.3. The renormalized γ-Monodromy. In this section, we address the Monodromy Problem (38) for
the curves γjk, (j, k) ∈ E ∪ R. To compensate for the lack of symmetry of γjk (see Equation (36)), we
conjugate P(ξt,x, γjk) by P(ξt,x, δ

′
jk)1/2 and define

ĂMjk(t, x) = P(ξt,x, δ
′
jk)1/2P(ξt,x, γjk)P(ξt,x, δ

′
jk)−1/2.

Note that the square root is well-defined for t small enough because at t = 0, ξ0,x is holomorphic at pjk
for all (j, k) ∈ E ∪R so P(ξ0,x, δ

′
jk) = I2. As in [28], we define for t 6= 0:

xMjk(t, x) = t−1 log ĂMjk(t, x).

Proposition 10. For (j, k) ∈ E ∪R:

(1) The renormalized monodromy xMjk(t, x) extends at t = 0 to an analytic map of (t, x) in a neigh-
borhood of (0, x) with value in Λsl(2,C).

(2) xMjk(t, x) has the symmetry

(43) xMjk = −DxMjkD
−1.

(3) Problem (38) is equivalent to the following problem for (j, k) ∈ E ∪R:

(44)


xMjk(t, x) ∈ Λsu(2) (i)
xMjk(t, x) |λ=1= 0 (ii)
∂
∂λ

xMjk(t, x) |λ=1= 0 (iii)

(4) At t = 0, we have

(45) xMjk(0, x) = 2πiRespjk
[
ΦS

∂ξt,x
∂t
|t=0 (ΦS)−1

]
.

Proof:
(1) By standard ODE theory, ĂMjk is an analytic map of all parameters. At t = 0, ĂMjk(0, x) = I2, so

xMjk extends analytically at t = 0.
(2) By Proposition 2 and Equations (35), (36), we have

(46) P(ξt,x, δjk) = DP(ξt,x, δjk)−1D−1

(47) P(ξt,x, γjk) = DP(ξt,x, δ
′
jk)P(ξt,x, γjk)−1P(ξt,x, δ

′
jk)−1D−1.

Hence ĂMjk has the symmetry

ĂMjk(t, x) = DĂMjk(t, x)−1D−1.

Point (2) follows by taking the logarithm, remembering that t ∈ R.
(3) Assuming that P(ξt,x, δ

′
jk) solves the Monodromy Problem (8), the Monodromy Problem for

P(ξt,x, γjk) is equivalent to 
ĂMjk(t, x) ∈ ΛSU(2)
ĂMjk(t, x) |λ=1= I2
∂
∂λ

ĂMjk(t, x) |λ=1= 0

which, taking the logarithm, is equivalent to Problem (44). Remembering the definition of δ′jk,
Point (3) follows by induction on k for the order ≺ on Ej ∪Rj .
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(4) We have, since P(ξ0,x, γjk) = P(ξ0,x, δ
′
jk) = I2:

xMjk(0, x) =
∂

∂t
ĂMjk(t, x) |t=0=

∂

∂t
P(ξt,x, γjk) |t=0 .

At t = 0, we have Aj = 0 and Bj = Cj = 1/2 so ξ0,x = ξS . By Proposition 8 in [28], we obtain

∂

∂t
P(ξt,x, γjk) |t=0=

∫
γjk

ΦS
∂ξt,x
∂t
|t=0 (ΦS)−1 = 2πiRespjkΦS

∂ξt,x
∂t
|t=0 (ΦS)−1.

�

8.4. The Monodromy Problem around nodes. In this section we fix (j, k) ∈ E and solve Problem
(44). Let Ujk = ΦS(pjk). In view of Equation (45), it is advantageous to conjugate xMjk by the inverse
of Ujk. Since pjk ∈ S1, Ujk ∈ ΛSU(2) and Ujk = DUjkD

−1 by Equation (13). So this conjugation does
not affect the Monodromy Problem (44) nor the symmetry (43). We define

|Mjk(t, x) = U−1
jk

xMjk(t, x)Ujk

(48) Fjk(t, x) = i
(

|Mjk;11(t, x) + |Mjk;11(t, x)∗
)

(49) Gjk(t, x) = λ
(

|Mjk;12(t, x) + |Mjk;21(t, x)∗
)
.

so that |Mjk ∈ Λsu(2) is equivalent to Fjk = Gjk = 0. By symmetry (43), Fjk(t, x) and Gjk(t, x) are in
WR. By definition, F∗jk = −Fjk so since F0

jk ∈ R, we have F0
jk = 0 and we do not need to solve F−jk = 0.

The σ-symmetry gives us one more piece of information: if |Mjk ∈ Λsu(2), then the symmetry (43) and
the definition of the conjugation and star operators give

|Mjk;11(λ) = −|M∗jk;11(λ) = |M∗jk;11(λ) = |Mjk;11(1/λ).

This implies
∂

∂λ
|Mjk;11 |λ=1= 0.

We define

(50) E1,jk = (E1,jk,i)1≤i≤6 =

[
F+
jk,G

+
jk, λ(G≤0

jk )∗, i|Mjk;11 |λ=1, |Mjk;21 |λ=1,
∂

∂λ
|Mjk;21 |λ=1

]
x1,jk =

(
a+
jk, b

+
jk, c

+
jk, a

0
jk, b

0
jk, c

0
jk

)
so Problem (44) is equivalent to E1,jk(t, x) = 0.

Proposition 11. For (j, k) ∈ E:
(1) E1,jk(t, x) ∈ (W>0

R )3 × R3.
(2) At the central value, E1,jk(0, x) = 0.
(3) The partial differential of E1,jk with respect to x1,jk at (0, x) is an automorphism of (W>0

R )3×R3.
(4) The full differential of E1,jk with respect to x at (0, x) only involves the variables x1,jk, rjk, Ajk

and Cjk.
(5) If X ∈ Ker(dxE1,jk(0, x)) satisfies dAjk(X) = 0, then dbjk(X) = dcjk(X) = 0.

Proof: Point (1) follows from symmetry. By Propositions 3 and 4, we have in a neighborhood of pjk:

∂

∂t
ξt,x |t=0= mjk

dz

z − pjk
+ rjkMjk

1 + q2
jk

1− q2
jk

pjkdz

(z − pjk)2
+ holomorphic.
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A simple computation gives

∂

∂z

(
ΦS(z)MjkΦS(z)−1

)
|z=pjk= p−1

jk ΦS(pjk)[Mj ,Mjk]ΦS(pjk)−1.

(Here Mj and Mjk have their values at t = 0.) Equation (45) gives

|Mjk(0, x) = 2πimjk + 2πi rjk
1 + q2

jk

1− q2
jk

[Mj ,Mjk] .

Observe that the partial differential of |Mjk with respect to qjk is zero since qjk = 0 at the central value.
Point (4) follows. Assume from now on that qjk = 0 and Ajk = 0. By Equation (31), Bjk = 1

4Cjk
. We

obtain

(51) |Mjk(0, x) = 2πi

(
ajk λ−1ibjk
icjk −ajk

)
+ πi rjk

(
λ−1Cjk − λ

4Cjk
0

0 λ
4Cjk

− λ−1Cjk

)
.

In particular at the central value, this simplifies to

(52) |Mjk(0, x) = 2πi τjk
(λ− 1)2

4λ

(
1 0
0 −1

)
∈ Λsu(2).

which proves Point (2). To prove Point (3), assume that rjk = τjk and Cjk = 1/2 are fixed. Differentiating
Equation (51) at (t, x) = (0, x) we obtain:

dFjk = −2π
(
dajk − da∗jk

)
dGjk = −2π(dbjk + λdc∗jk)

dE1,jk,1 = −2π da+
jk

dE1,jk,2 = −2π(db+jk + λdc0jk)

dE1,jk,3 = −2π(dc+jk + λdb0jk)

dE1,jk,4 − dE1,jk,1 |λ=1= −2π da0
jk

dE1,jk,5 − dE1,jk,3 |λ=1= −2π(dc0jk − db0jk)

dE1,jk,6 −
∂

∂λ
dE1,jk,3 |λ=1= 2πdb0jk.

Point (3) easily follows from these formulas. Finally, to prove Point (5), relax the hypothesis rjk = τjk and
Cjk = 1/2. By Equation (51), the off-diagonal part of |Mjk does not change, so dE1,jk,i for i ∈ {2, 3, 5, 6}
do not change. Since these equations determine bjk and cjk, we obtain dbjk(X) = dcjk(X) = 0. �

Remark 8. We will solve all equations at the same time by one single application of the Implicit Function
Theorem in Section 9.
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8.5. The Monodromy Problem around ends. In this section we fix (j, k) ∈ R and solve Problem
(44). We follow closely the resolution of the same problem in [28]. We cannot take Ujk = ΦS(pjk)

because pjk 6∈ S1 so we take Ujk = ΦS(ujk) and conjugate xMjk by the inverse of Ujk. Observe that if
ajk = bjk = 0 then ξt,x is holomorphic at pjk so xMjk = 0. This prompts us to take

ajk = (λ− 1)2
pajk and bjk = (λ− 1)2

pbjk

with pajk,pbjk ∈ W≥0
R . This way, Points (ii) and (iii) of Problem (44) are automatically satisfied. We define

|Mjk(t, x) =
λ

(λ− 1)2
U−1
jk

xMjk(t, x)Ujk

which extends at λ = 1 to an analytic map of (t, x) (see details in Section 6.2 of [28]). Since (λ− 1)2/λ is
unitary on the unit circle, Point (i) of Problem (44) is equivalent to |Mjk(t, x) ∈ Λsu(2). Define Fjk and
Gjk by Equations (48) and (49) and

E2,jk = (E2,jk,i)1≤i≤4 =
[
F+
jk,G

+
jk, (G

−
jk)∗,G0

jk

]
.

Problem (44) is equivalent to E2,jk(t, x) = 0. Writing pjk = eiθjk with θjk ∈ W≥0
R , we define

x2,jk = (pa+
jk,

pb+jk, θ
+
jk,

pb0jk).

Proposition 12. For (j, k) ∈ R:
(1) E2,jk(t, x) ∈ (W>0

R )3 × R.
(2) At the central value, E2,jk(0, x) = 0.
(3) The differential of E2,jk with respect to x at (0, x) only involves the variable x2,jk and is an

automorphism of (W>0
R )3 × R.

Proof: Point (1) follows from symmetry. Equation (45) gives

|Mjk(0, x) = 2πiλU−1
jk Respjk

[
ΦS(z)

(
0 0
1 0

)
ΦS(z)−1

(
pajkpjk

(z − pjk)2
+

ipbjk
z − pjk

)]
Ujk.

A simple computation gives

∂

∂z
ΦS(z)

(
0 0
1 0

)
ΦS(z)−1 |z=pjk=

λ−1

2pjk
ΦS(pjk)

(
1 0
0 −1

)
ΦS(pjk)−1.

This gives

(53) |Mjk(0, x) = 2πiU−1
jk ΦS(pjk)

(
pajk/2 0

λipbjk −pajk/2

)
ΦS(pjk)−1Ujk.

At the central value, this simplifies to

|Mjk(0, x) = 2πi

(
τjk/4 0

0 −τjk/4

)
∈ Λsu(2)

which proves Point (2). Using Equation (53), we obtain at the central value

∂

∂pjk
|Mjk = 2πi u−1

jk

[(
0 λ−1/2
λ/2 0

)
,

(
τjk/4 0

0 −τjk/4

)]
=

2πi τjk
4ujk

(
0 −λ−1

λ 0

)
.

Hence by the chain rule, since dpjk/dθjk = iujk at x = x:

dx
|Mjk(0, x) = 2πi

(
dpajk/2 −λ−1iτjk dθjk/4

λi dpbjk + λiτjk dθjk/4 −dpajk/2

)
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which gives
dE2,jk,1 = −π dpa+

jk

dE2,jk,2 =
π

2
τjk dθ

+
jk

dE2,jk,3 = −2πdpb+jk −
π

2
τjk dθ

+
jk

dE2,jk,4 = −2π dpb0jk.

Point (3) easily follows. �

8.6. The Γ-Monodromy Problem. In this section, we fix (j, k) ∈ E+ and we solve Problem (39). To
compensate for the lack of symmetry of Γjk (see Equation (37)), we multiply P(ξt,x,Γjk) by suitable (dif-
ferent) factors on the left and right. Then we conjugate by ΦS(ujk) ∈ ΛSU(2) to simplify computations.
We define for t > 0:

Pjk(t, x) = ΦS(ujk)−1P(ξt,x, δjk)−1/2P(ξt,x,Γjk)P(ξt,x, δ
′
kj)

1/2ΦS(ujk).

Definition 11. Let f(t) be a function of the real variable t ≥ 0. We say that f is a smooth function of
t and t log t if there exists a smooth function of two variables g(t, s) defined in a neighborhood of (0, 0)
in R2 such that f(t) = g(t, t log t) for t > 0 and f(0) = g(0, 0).

Remark 9. The function t log t extends continuously at 0 but the extension is not differentiable at 0 and
is only of Hölder class C0,α for all α ∈ (0, 1). Therefore, a smooth function of t and t log t is only of class
C0,α and is not differentiable at t = 0.

Proposition 13. (1) Pjk(t, x) has the symmetry

Pjk = DPjkD
−1.

(2) Pjk(t, x) extends at t = 0 to a smooth function of t, t log t and x. Moreover, we have at t = 0:

Pjk(0, x) = ΦS(ujk)−1ΦS(pjk) exp

(
Mjk

∫ −1

1

ωqjk

)
ΦS(pkj)

−1ΦS(ujk).

(3) At the central value

Pjk(0, x) = ±
(
λ 0
0 λ−1

)
∈ ΛSU(2).

(4) Provided Problem (38) is solved, Problem (39) is equivalent to

(54)


Pjk(t, x) ∈ ΛSU(2) (i)
Pjk(t, x) |λ=1= ±I2 (ii)

Pjk(t, x)−1 ∂
∂λPjk(t, x) |λ=1=

`jk
2

(
1 0
0 −1

)
(iii)

Proof:
(1) Equation (37) and Proposition 2 give

P(ξt,x,Γjk) = DP(ξt,x, δjk)−1P(ξt,x,Γjk)P(ξt,x, δ
′
kj)D

−1.

Using the symmetry (46) and ΦS(ujk) = DΦS(ujk)D−1, we obtain Point (1).
(2) The function P(ξt,x, αjk) is an analytic function of all parameters by Theorem 3 because the

path αjk stays away from the nodes. The same holds for the paths number (1), (3), (5) in the
definition of the path βjk and the path αkj′ . By Theorem 5 in Appendix B (see also Remark
14), the principal solution of ξt,x on path number (2) extends at t = 0 to a smooth function of t,
t log t and x, with the following value at t = 0:

P(Mjω0, zjk = ε′, zjk = 0)P(Mjkωqjk , z
′
jk = 0, z′jk = ε′).
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In the same way, the principal solution on path number (4) extends to a smooth function of t,
t log t and x with the following value at t = 0:

P(Mjkωqjk , z
′
kj = −ε′, z′kj = 0)P(Mkω0, zkj = 0, zkj = −ε′).

Collecting all terms, the function P(ξt,x,Γjk) extends to a smooth function of t and t log t with
the following value at t = 0:

P(Mjω0, 1j , e
iεujk)P(Mjω0, e

iεujk, zjk = ε′)P(Mjω0, zjk = ε′, zjk = 0)

×P(Mjkωqjk , z
′
jk = 0, z′jk = ε′)P(Mjkωqjk , z

′
jk = ε′, z′kj = −ε′)P(Mjkωqjk , z

′
kj = −ε′, z′kj = 0)

×P(Mkω0, zkj = 0, zkj = −ε′)P(Mkω0, zkj = −ε′, eiεukj′)P(Mkω0, e
iεukj′ , 1k)

= P(Mjω0, 1j , pjk)P(Mjkωqjk , 1,−1)P(Mkω0, pkj , 1k)

In the above computation, Mj and Mjk have their value at t = 0, so Mjω0 = ξS . Point (2)
follows.

(3) At (t, x) = (0, x), we have Mjkωqjk = ξC and pjk = −pkj = ujk so

Pjk(0, x) = ΦC(−1)ΦS(−1)−1 = ±
(
λ 0
0 λ−1

)
.

Remark 10. Note that ΦS and ΦC are both multivalued with multivaluation ±I2. This is why
we put a ± sign in Point (3). We do not need to resolve this multivaluation.

(4) Assuming that Problem (38) is solved, Items (i) and (ii) of Problems (39) and (54) are clearly
equivalent. Assuming Item (ii) is true, we have:

∂

∂λ
Pjk(t, x) |λ=1= ΦS(ujk)−1 ∂

∂λ
P(ξt,x,Γjk)ΦS(ujk) |λ=1 .

On the other hand, by Equations (5) and (42):
`jk
2

ΦS(ujk)

(
1 0
0 −1

)
ΦS(ujk)−1 |λ=1=

−i `jk
2

NS(ujk) = i(Vk − Vj)

So Items (iii) of Problems (39) and (54) are equivalent. �

We define for (t, x) in a neighborhoof of (0, x):
rPjk(t, x) = log(Pjk(t, x)Pjk(0, x)−1).

By Point (1) of Proposition 13, rPjk has the symmetry

(55) rPjk = D rPjkD
−1.

Proposition 14. Problem (54) is equivalent to

(56)


rPjk(t, x) ∈ Λsu(2) (i)
rPjk;12(t, x) |λ=1= 0 (ii)

∂
∂λ

rPjk(t, x) |λ=1=
`jk − 2

2

(
1 0
0 −1

)
(iii)

Proof:
• Items (i) of Problems (54) and (56) are equivalent by Point (3) of Proposition 13.
• Item (ii) of Problem (54) is equivalent to rPjk |λ=1= 0. Assuming that Item (i) of Problem (56)

holds, we have by symmetry

rPjk;11(1) = − rP ∗jk;11(1) = − rPjk;11(1) = − rPjk;11(1)

so rPjk;11(1) = 0. Hence Items (ii) of Problems (54) and (56) are equivalent.
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• Assuming Item (ii) of Problem (54) is satisfied, we have

Pjk(t, x) = Pjk(0, x) = ±I2
so

∂

∂λ
rPjk(t, x) |λ=1= Pjk(t, x)−1 ∂

∂λ
Pjk(t, x) |λ=1 −Pjk(0, x)−1 ∂

∂λ
Pjk(0, x) |λ=1

and by Point (3) of Proposition 13,

Pjk(0, x)−1 ∂

∂λ
Pjk(0, x) |λ=1=

(
1 0
0 −1

)
.

So Items (iii) of Problem (54) and (56) are equivalent. �

We define
Fjk(t, x) = rPjk;11(t, x) + rPjk;11(t, x)∗

Gjk(t, x) = i
(

rPjk;12(t, x) + rPjk;21(t, x)∗
)
.

By symmetry (55), Fjk(t, x) and Gjk(t, x) are in WR. We define

E3,jk = (E3,jk,i) |1≤i≤7=

[
F+
jk,G

+
jk, (G

−
jk)∗,F0

jk,G0
jk, i

rPjk;12 |λ=1, i
∂ rPjk;12

∂λ
|λ=1

]

(57) Ljk(t, x) =
∂ rPjk;11(t, x)

∂λ
|λ=1 −

(`jk − 2)

2
.

Problem (56) is equivalent to E3,jk(t, x) = 0 and Ljk(t, x) = 0. We leave aside the equation Ljk(t, x) = 0
for the moment and will solve it in Section 9 using the non-degeneracy hypothesis. Regarding the equation
E3,jk = 0, recall that qjk ∈ iW≥0

R and pjk = eiθjk with θjk ∈ R and define

x3,jk =
(
A+
jk, C

+
jk, Im(q+

jk), A0
jk, C

0
jk, θjk, θkj

)
.

Proposition 15. For (j, k) ∈ E+:
(1) E3,jk(t, x) ∈ (W>0

R )3 × R4.
(2) At the central value, E3,jk(0, x) = 0.
(3) The partial differential of E3,jk at (0, x) with respect to x3,jk is an automorphism of (W>0

R )3×R4.
(4) The full differential of E3,jk at (0, x) only involves the variables x3,jk and Im(q0

jk).
(5) If X ∈ Ker(dE3,jk(0, x)), then dAjk(X) = dCjk(X) = 0.

Proof:
• Point (1) comes from symmetry.
• Point (2) is clear since rPjk(0, x) = 0 by definition.
• We have at t = 0

rPjk(0, x) = log

[
ΦS(ujk)−1ΦS(pjk) exp

(
Mjk

∫ −1

1

ωqjk

)
ΦS(pkj)

−1ΦS(ukj)Φ
C(−1)−1

]
.

Point (4) follows by inspection.
• We set qjk = 0 to compute the partial derivatives with respect to all parameters but qjk. By

Equation (31), at t = 0 we have M2
jk = 1

4I2 so

exp

(
Mjk

∫ −1

1

ω0

)
= exp(πiMjk) = 2iMjk.
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By Equation (31) we have ∂Bjk/∂Ajk = 0 and ∂Bjk/∂Cjk = −1 at x = x. This gives by the
chain rule

∂ rPjk
∂Ajk

(0, x) = 2i
∂Mjk

∂Ajk
ΦC(−1)−1 = 2i

(
i 0
0 −i

)(
0 −i
−i 0

)
=

(
0 2i
−2i 0

)

∂ rPjk
∂Cjk

(0, x) = 2i
∂Mjk

∂Cjk
ΦC(−1)−1 = 2i

(
0 −1
1 0

)(
0 −i
−i 0

)
=

(
−2 0
0 2

)
∂ rPjk
∂θjk

(0, x) = ξS(ujk)
∂pjk
∂θjk

=

(
0 λ−1i/2

λ i/2 0

)
∂ rPjk
∂θkj

(0, x) = −ΦC(−1)ξS(ukj)
∂pkj
∂θkj

ΦC(−1)−1 =

(
0 −λ i/2

−λ−1i/2 0

)
.

• Next we compute the partial derivative with respect to qjk at (0, x):

∂

∂qjk

∫ −1

1

ωqjk =
∂

∂qjk

∫ −1

1

dz

z − qjk
− qjk dz

1 + qjkz

∫ −1

1

dz

z2
− dz = 4

∂ rPjk
∂qjk

(0, x) = 4 ΦC(−1)

(
0 1/2

1/2 0

)
ΦC(−1)−1 =

(
0 2
2 0

)
• Write qjk = iνjk with νjk ∈ W≥0

R . Remembering that θjk, θkj ∈ R we obtain at (0, x):

dFjk = −2dCjk − 2dC∗jk

dGjk = −2(dAjk + dA∗jk)− 2(dνjk − dν∗jk)

dE3,jk,1 = −2dC+
jk

dE3,jk,2 = −2dA+
jk − 2dν+

jk

dE3,jk,3 = −2dA+
jk + 2dν+

jk

dE3,jk,4 = −4dC0
jk

dE3,jk,5 = −4dA0
jk.

If X ∈ Ker(dE3,jk(0, x)), we obtain from these formulas dAjk(X) = dCjk(X) = dν+
jk(X) = 0, so

Point (5) is proved. Regarding Point (3), the partial differential of (E3,jk,i)1≤i≤5 with respect to
(A+

jk, C
+
jk, ν

+
jk, A

0
jk, C

0
jk) is clearly an automorphism of (W>0

R )3 × R2. Observe that dE3,jk,i for
1 ≤ i ≤ 5 do not involve the real variables θjk and θkj so dE3,jk has block-triangular form and is
suffices to compute the differential of the remaining two equations with respect to these variables:

dθjk,θkjE3,jk,6 = 1
2 (−dθjk + dθkj)

dθjk,θkjE3,jk,7 = 1
2 (dθjk + dθkj).

Points (3) follows. �
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9. Solving all equations with the Implicit Function Theorem

There remains a few parameters that we have not used yet and that we can fix, namely: rjk = τjk for
(j, k) ∈ E+, pa0

jk = τjk/2 and θ0
jk = arg(ujk) for (j, k) ∈ R. Remembering that qjk = iνjk, we define

x1 = (x1,jk)(j,k)∈E E1 = (E1,jk)(j,k)∈E

x2 = (x2,jk)(j,k)∈R E2 = (E2,jk)(j,k)∈R

x3 = (x3,jk)(j,k)∈E+ E3 = (E3,jk)(j,k)∈E+

x4 = (rkj , ν
0
jk)(j,k)∈E+ E4 = (Rjk)(j,k)∈E+

x = (x1, x2, x3, x4) E = (E1, E2, E3, E4).

Recall that the central value x depends smoothly on the graph Γ (which has not yet been assumed to be
balanced).

Proposition 16. The partial differential of E(t, x) with respect to x at (0, x) is an automorphism. By
the Implicit Function Theorem, for t ≥ 0 in a neighhorhood of 0, there exists x(t,Γ), depending smoothly
on t, t log t and the graph Γ, such that E(t, x(t,Γ)) = 0 and x(0,Γ) = x(Γ).

Proof:
(1) By Propositions 11, 12 and 15, the partial differential of (E1, E2, E3) with respect to (x1, x2, x3) has

upper-triangular 3× 3 block-form, with automorphisms on the diagonal, so is an automorphism.
(2) Let us prove that L = dxE(0, x) is injective. Let X ∈ Ker(L). By Point (5) of Proposition 15,

dAjk(X) = dCjk(X) = 0. By Point (5) of Proposition 11, dbjk(X) = 0. Differentiating Equation
(33) and remembering that we fixed rjk so drjk = 0, we obtain

dxRjk(0, x) = −1

2
drkj + 2i db0jk + 2iτjkdν

0
jk.

Hence drkj(X) = dν0
jk(X) = 0, so X4 = 0. Hence, by Point (1), X = 0.

(3) Since x4, E4 are in spaces of the same finite dimension, Points (1) and (2) imply that L is an
automorphism by elementary linear algebra. By Point (2) of Proposition 13, E(t, x) is a smooth
function of t, t log t and x, which (Definition 11) means that there exists a smooth function
rE(t, s, x) such that E(t, x) = rE(t, t log t, x). We apply the Implicit Function Theorem to rE at
(t, s, x) = (0, 0, x(Γ)) and obtain a smooth function x(t, s,Γ) such that rE(t, s, x(t, s,Γ)) = 0.
Specializing to s = t log t, we obtain Proposition 16. �

We are not done yet ; we still have to solve the equations Rj = 0 and Ljk = 0, where Rj is defined by
Equation (27) and Ljk is defined by Equation (57). Define

F(t,Γ) =
((
Rj(t, x(t,Γ))

)
j∈J ,

(
Ljk(t, x(t,Γ))

)
(j,k)∈E+

)
.

By Proposition 6 and since rPjk(0, x) = 0, we have:

F(0,Γ) =
((

1
2 Fj(Γ)

)
j∈J ,

(
1− 1

2`jk(Γ)
)

(j,k)∈E+

)
.

By the Implicit Function Theorem, we obtain:

Proposition 17. Assume that the central graph Γ has length-2 edges, is balanced and non-degenerate.
Then for t ≥ 0 small enough, there exists a deformation Γ(t) of Γ, depending smoothly on t and t log t,
such that Γ(0) = Γ and F(t,Γ(t)) = 0.
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10. Geometry of the immersion

From now on, we assume that the parameter vector x is given by Proposition 16 and Γ(t) is given by
Proposition 17. We write xt = x(t,Γ(t)) which is a smooth function of t and t log t. To ease notation,
we write Σt = Σt,xt and ξt = ξt,xt . In the same way, we write ajk,t, pjk,t, etc... for the value of the
parameters ajk, pjk at time t. We also write τjk,t, ujk,t, etc... for the quantities associated to Γ(t), and
τjk = τjk,0, ujk = ujk,0 for the quantities associated to the given graph Γ(0).

We denote Σt the Riemann surface Σt minus the poles of ξt. Let p : rΣt → Σt be a universal cover.
Recall that we have fixed an arbitrary j0 ∈ J and taken z0 = 1j0 as base point. Choose an arbitrary
rz0 in the fiber p−1(z0). Let Φt be the solution of dΦt = Φtξt on rΣt with initial condition Φt(rz0) = I2,
ft = Sym(Uni(Φt)) the immersion given by the DPW method and rft = Ψ◦ft where Ψ is the rigid motion
given by Equation (10). Recall that Σt does not depend on λ, but Σt does, which is a problem as the
DPW method requires a fixed Riemann surface. We address this issue in Section 10.2 using the results
from [28] where the same problem already occured. At this point, all we know for sure is that ft is a well
defined immersion on Σt minus ε-neighborhoods of 0jk, ∞jk for (j, k) ∈ E+ and ujk for (j, k) ∈ R.

Fix a small ε1 such that 0 < ε1 ≤ ε/2 and for t > 0 small enough, consider the following fixed compact
subdomains of Σt:

Ωj,ε1 = Cj \
⋃

k∈Ej∪Rj

D(ujk, ε1) for j ∈ J (spherical parts)

Ωjk,ε1 = Cjk \D(±1, ε1) for (j, k) ∈ E+ (catenoidal parts).

10.1. Spherical parts. Without loss of generality, we may assume by translating the graph that vj0 = 0
so Vj0 = 0. Recall the definition of the gauge Gj in Section 7.1 which we now denote Gj,t as it depends
on t.

Proposition 18. For j ∈ J and t > 0:

(1) The potential ξt restricted to Ωj,ε1 \ {0j ,∞j} depends C1 on t.
(2) rft(1j) = vj,t + e1.
(3) ξt ·Gj,t is regular at 0j and ∞j, so ft extends analytically to 0j and ∞j.
(4) As t→ 0, rft− vj,t converges on Ωj,ε1 to the inverse stereographic projection π−1 : C→ S2. More

precisely, we have

‖ rft − vj,t − π−1‖C1(Ωj,ε1 ) ≤ c t

for some uniform constant c (depending on ε1) and the norm is computed for the spherical metric
on the Riemann sphere.

Proof:

(1) Recall that x(t) is a smooth function of t and t log t so is not even differentiable at t = 0. However,
assuming that Equation (24) holds, we have, for all values of the parameter x, ξ0,x = ξS in Ωj,ε1 ,
so ξ0,x does not depend on x. By Proposition 24 in Appendix C, ξt = ξt,x(t), restricted to
Ωj,ε1 \ {0j ,∞j}, extends to a C1 function of t in a neighborhood of 0.

(2) Choose a path c from z0 to 1j on Σt and let rc be the lift of c to rΣt such that rc(0) = rz0. Let
r1j = rc(1) ∈ p−1(1j). Let rΩj,ε1 be the component of p−1(Ωj,ε1 \ {0j ,∞j}) containing r1j . Since
ξ0 = ξS in Cj we have

(58) Φ0 = Φ0(r1j)Φ
S in rΩj,ε1 .
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By Equation (39), we have

(59)


Φt(r1j) ∈ ΛSU(2)

Φt(r1j) |λ=1= ±I2
Φt(r1j)

−1 ∂
∂λΦt(r1j) |λ=1= i Vj,t.

By the Sym-Bobenko formula (4) and Equation (41),

ft(1j) = 2Vj,t ∼ (0,−Im(vj,t),−Re(vj,t)).

rft(1j) = Ψ(ft(1j)) = (1 + Re(vj,t), Im(vj,t, 0).

(3) To prove Point (3), we apply Theorem 4 in Appendix A to the potential pξt = ξt · Gj,t. Let `
be the maximum of Ej ∪ Rj for the order ≺. The path δj` bounds a disk-type domain in Ωj,ε1
containing 0j and ∞j and not containing −1. The potential pξt satisfies Hypothesis (1) to (3) of
Theorem 4 in Ω thanks to Propositions 5, 6 and 17. By Equation (34), Φt solves the Monodromy
Problem on δj`. At t = 0 we have by Equation (23) xj = 1 and yj = 0 so Gj,0 = GS . Hence

pξ0 = ξS ·GS =

(
0 λ−1

0 0

)
dz

2(z + 1)2
.

Let pΦt = Φ0(r1j)
−1ΦtGj,t. Since Φ0(r1j) ∈ ΛSU(2), pΦt solves the Monodromy Problem on δj` and

pΦ0 = ΦSGS =

(
2 z−1

2λ(z+1)

0 1/2

)
.

Theorem 4 tells us that pξt is holomorphic at 0j . Finally pβ0(0j) = dz/2 so pβ0
t (0j) 6= 0 for t small

enough so ft is regular at 0j . Regularity at ∞j follows by σ-symmetry.
(4) Let qΦt be the solution of dqΦt = qΦtξt with initial condition qΦ(r1t) = I2 and qft = Sym(Uni(qΦ)).

By Point (1) and standard ODE theory, qΦt is a C1 function of t in a neighborhood of 0 and
z ∈ Ωj,ε1 \ {0j ,∞j}. Since Iwasawa decomposition is a diffeomorphism (Theorem 2), Uni(qΦt)

and Pos(qΦt) are C1, so by Equation (6), d qft is C1. Let K be a compact subset of Ωj,ε1 \{0j ,∞j}.
By the mean value inequality,

‖ qft(z)− qft(1j)− qf0(z) + qf0(1j)‖ ≤ C(K)t for z ∈ K.

Since Φt(r1j) |λ=1= I2, ft and qft differ by a translation. Also ξ0 = ξS so qf0 = fS . Hence

‖ft(z)− ft(1j)− fS(z) + fS(1)‖ ≤ C(K)t.

By Point (2) and Equation (11) we obtain

‖ rft(z)− vj,t − π−1(z)‖ ≤ C(K)t for z ∈ K.

This estimate is extended to neighborhoods of 0j and ∞j using the gauge Gj,t. �

10.2. Delaunay ends. For p ∈ C, D∗(p, r) denotes the punctured disk 0 < |z − p| < r.

Proposition 19. There exists ε2 > 0 such that for (j, k) ∈ R and t > 0 small enough:
(1) ft extends analytically to D∗(p0

jk,t, ε2).
(2) ft has a Delaunay end of weight ' 2πtτjk at p0

jk,t.
(3) The axis of the Delaunay end of rft at p0

jk,t converges to the half-line vj + R+ujk as t→ 0.
(4) If τjk > 0, then ft(D∗(p0

jk,t, ε2)) is embedded.
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Proof: These facts are proved in [28] in a similar situation, using general results about Delaunay ends
from [16] and [20]. The potential in [28] has the form(

0 λ−1dz
t(λ− 1)2ωt 0

)
where ωt has double poles. We gauge our potential to a similar form so we can apply the results of [28].
Fix (j, k) ∈ R. Recall that αt, βt are holomorphic at pjk,t and γt has a double pole with principal part

γt = t(λ− 1)2

(
pajk,tpjk,tdz

(z − pjk,t)2
+
ipbjk,tdz

z − pjk,t
+O(1)dz

)
where O(1) means a holomorphic function in a neighborhood of pjk,t. Define κt ∈ W≥0 by κt =

pjk,tβt(pjk,t)/dz. At t = 0, we have β0 = dz
2z so κ0 = 1/2. Consider the gauge

Gt =

( √
κt
z 0

λ
2
√
κtz

√
z
κt

)
.

A computation gives

pξt := ξt ·Gt =

(
αt + βt

2κt
− dz

2z
zβt
λκt

−λαtz −
λβt
4κtz

+ κtγt
z −αt − βt

2κt
+ dz

2z

)
.

Thanks to our choice of κt and given the principal part of γt, pξt has the form

(60) pξt =

(
0 λ−1dz

t(λ− 1)2ωt 0

)
+

(
O(1) O(z − pjk,t)
O(1) O(1)

)
with

ωt = κt

(
pajk,tdz

(z − pjk,t)2
+

(ipbjk,t − pajk,t)dz

pjk,t(z − pjk,t)

)
.

The gauged potential pξt now has the same form as in [28] up to a holomorphic term which is of no
consequence (see Remark 11 below). By Proposition 4 in [28], ft extends analytically to D∗(p0

jk,t, ε2),
κtpajk,t is a real constant and ft has a Delaunay end of weight 8πtκtpajk,t at p0

jk,t. Since κ0pajk,0 = τjk/4,
Point (2) follows. Let pΦt = Φ0(r1j)

−1ΦtGt. At t = 0 we have by Equation (58)

pΦ0(z) = ΦS(z)G0(z) =
1√
2

(
1 λ−1(z − 1)
λ z + 1

)
= H

(
1 λ−1z
0 1

)
, H =

1√
2

(
1 −λ−1

λ 1

)
.

Let qΦt = H−1
pΦt and qft be the corresponding immersion. Then qΦ0 has the same value as Φ0 in [28].

By Proposition 5 in [28], the axis of the Delaunay end of qft at p0
jk,t converges to the half-line through

(0, 0, 1) spanned by −ujk. (The signs in Proposition 5 are actually opposite, but this is because we have
the opposite Sym-Bobenko formula in [28].) Applying the isometries represented by H, Φ0(r1j) and the
rigid motion Ψ, we obtain Point (3). Point (4) is proved in Proposition 6 in [28].

Remark 11. The proof of Proposition 4 in [28] uses a gauge of the form

G =

( √
w
k 0
−λ

2k
√
w

k√
w

)
with w = z − pjk,t and k ∈ W≥0.

Then

pξt ·G =

(
pαt −

pβt
2w + dw

2w
k2 pβt
λw

λpαt
k2 −

λpβt
4k2w + wpγt

k2 + λ dw
2k2w −pαt +

pβt
2w −

dw
2w

)
.
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What only matters is the residue of pξt · G at w = 0. So the second term in the right-hand side of (60)
can be neglected because its (1, 2) entry has a zero at w = 0 and the other entries are holomorphic.

10.3. Catenoidal parts. Recall from Section 7.2 the definition of the complex coordinate wjk on Cjk
and the gauge Gjk, which we write respectively wjk,t and Gjk,t as they now depend on t. We denote
pξjk,t = (w−1

jk,t)
∗ξt ·Gjk,t. We cannot use z = 1 as base point in Cjk so we use instead the point ijk defined

as z = i if τjk > 0 and z = −i if τjk < 0. This point lies on the path Γjk.

Proposition 20. For (j, k) ∈ E+ and t > 0 small enough:

(1) The potential pξjk,t is regular at w = 0. Consequently, the immersion ft extends analytically to a
neighborhood of 0jk and ∞jk.

(2) The potential ξt is regular on Σt, so ft is a regular immersion.
(3) The blow-up t−1( rft − rft(ijk))) converges on Ωjk,ε1 as t → 0 to a minimal catenoidal immersion

from C\{±1} to R3. The limit catenoid has waist radius |τjk| and its axis, oriented from the end
at z = 1 to the end at z = −1, is a line parallel to ujk and oriented by τjkujk. The convergence
is for the C1 norm.

Proof: fix (j, k) ∈ E+.
(1) We start by computing Φ0 in Ωjk,ε1 . Split the path Γjk as Γjk = Γjk1Γjk2 with Γjk1(1) =

Γjk2(0) = ijk. Consider the lift of Γjk1 to rΣt starting at r1j and let rıjk be its endpoint. Consider
the lift of Γjk2 starting at rıjk and let r1k be its endpoint. Let rΩjk,ε1 be the component of
p−1(Ωjk,ε1 ∩ Σt) which contains rıjk. By Theorem 5, Φt(rıjk) extends to a smooth function of t
and t log t. Moreover, since ξ0 = ξC in Ωjk,ε1 , we have Φ0 = MΦC for some matrix M which
is determined by the fact that Φ0 is continuous at the nodes (see Remark 14). This gives by
Equation (58)

(61) Φ0(z) = Φ0(r1j)Φ
S(ujk)ΦC(z) = Φ0(r1k)ΦS(ukj)Φ

C(−1)−1ΦC(z) in rΩjk,ε1 .

(2) The proof of Point (1) is essentially the same as the proof of Point (3) of Proposition 18. We
apply the dual version of Theorem 4, Corollary 1 in Appendix A. Observe that

(62) Γ−1
jk1γjkΓjk1 ∈ π1(Σt, ijk)

is homotopic to a loop δ1 contained in Ωjk,ε1 going around 1 in the clockwise direction, and

(63) Γjk2γkjΓ
−1
jk2 ∈ π1(Σt, ijk)

is homotopic to a loop δ2 contained in Ωjk,ε1 going around −1 in the clockwise direction. The
product of the loops (62) and (63) is a reparametrization (changing the base point) of

(64) γjkΓjkγkjΓ
−1
jk .

The Monodromy Problem for Φt on the loop (64) is solved so it is also solved on δ1δ2. We now
make the change of variable w = wjk,t(z). The path wjk,t(δ1δ2) bounds a disk-type domain in
C \ {±1} containing 0 and ∞. The potential pξt satisfies Hypothesis (1) to (3) of Corollary 1
thanks to Propositions 7, 8 and 16. Let pΦt = (w−1

jk,t)
∗ΦtGjk,t. At t = 0, we have wjk,0(z) = z

and by Equation (29) xjk = 1, yjk = 0 so

Gjk,0 =

( √
z

1+z
1−z√
z

0 1+z√
z

)

pξ0 = ξC ·Gjk,0 =

(
0 0
1 0

)
dz

2(z + 1)2
.



34 MARTIN TRAIZET

Using Equation (61), we have

pΦ0 = Φ0(r1j)Φ
S(ujk)ΦCGjk,0 = Φ0(r1j)Φ

S(ujk)

(
1/2 0
z−1

2(z+1) 2

)
where Φ0(r1j)Φ

S(ujk) ∈ ΛSU(2). By Corollary 1, pξt is holomorphic at 0.

Remark 12. To deal with the fact that pξt is not C1 with respect to t, we write t = exp(−1/s2),
so pξt(s) extends to a smooth function of s in a neighborhood of 0, and use s as the time parameter
when applying Corollary 1.

(3) By Equation (32), since pβt is holomorphic at w = 0, rβ0
t has a zero of multiplicity at least one at

w = 0. So β0
t has a zero of multiplicity at least one at z = q0

jk,t and at z = σ(q0
jk,t) by symmetry,

for a total of 2 card(E+) zeros. It has simple poles at 0j and ∞j for j ∈ J . By elementary
topology, the genus of Σt is g = card(E+) − card(J) + 1. Hence the number of zeros of β0

t ,
counting multiplicities, is equal to

#poles + 2g − 2 = 2 card(J) + 2g − 2 = 2 card(E+).

So the zeros at q0
jk,t and σ(q0

jk,t) are simple and β0
t has no other zero. This proves Point (2), and

yields that pβ0
t does not vanish at w = 0, so completes the proof of Point (1).

(4) To prove Point (3), we use Theorem 4 in [29]. One technical issue is that this theorem requires a
C1 family of potentials ξt and we do not have that regularity. This problem is solved as follows.
Forget for a moment that the parameter x has been determined as a smooth function of t and
log t and consider the potential ξt,x, only assuming that the parameter Bjk is given by Equation
(30). Consider the gauged potential

qξt,x = ξt,x · qGx with qGx =
1√

2Cjk

(
1 2i Ajk
0 2Cjk

)
.

Then at t = 0 we have in Ωjk,ε1 , using Proposition 3 and Equation (30):

qξ0,x = η0,x · qGx =

(
0 2(BjkCjk −A2

jk)

1/2 0

)
dz

z
=

(
0 1/2

1/2

)
dz

z
= ξC .

Since this does not depend on x, Proposition 24 in Appendix C ensures that qξt = qξt,x(t) extends
to a C1 function in a neighborhood of t = 0. Moreover

d

dt
qξt =

∂

∂t
qξt,x |(t,x)=(0,x(0))=

∂

∂t
ξt,x |t=0 .

Define in rΩjk,ε1

qΦt = qHjk,tΦt qGx(t) with qHjk,t = ΦC(rıjk)Uni(Φt(rıjk))−1.

At t = 0, we have qGx(0) = I2 and by Equation (61)

(65) qHjk,0 = ΦC(rıjk)Φ0(rıjk)−1 =
(

Φ0(r1j)Φ
S(ujk)

)−1

.

Hence qΦ0 = ΦC in rΩjk,ε1 . Let qft = Sym(Uni(qΦt)). By Theorem 4 in [29], t−1
qft converges to a

minimal immersion with Weierstrass data

g = −
qΦ0;11

qΦ0;21

=
z + 1

1− z

ω = 4(qΦ0;21)2 ∂

∂t
qβ0
t |t=0=

(z − 1)2

z

τjk
2

(
dz

(z − 1)2
− dz

(z + 1)2

)
=

2τjk dz

(z + 1)2
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using Proposition 4. With the change of variable w = (z + 1)/(1 − z) we obtain g = w and
ω = τjkdw/w

2. This is the Weierstrass data of a catenoid with neck-size |τjk| and vertical axis
(from the end at w =∞ to w = 0) oriented by −τjke3. Let hjk,t be the rigid motion represented
by qHjk,t and ~hjk,t its linear part, where the action is given by (9). We have qft = hjk,t ◦ ft. At
t = 0, we have by Equation (65) qHjk,0 |λ=1= ΦS(ujk)−1 |λ=1. So by Equation (5), ~hjk,0 maps
NS(ujk) to e3. This means that t−1(ft− ft(ijk)) converges to a catenoid with axis (from the end
at z = 1 to z = −1) oriented by −τjkNS(ujk). We have

~Ψ(NS(ujk)) = (−Re(ujk),−Im(ujk), 0) ∼ −ujk

so t−1( rft − rft(ijk)) converges to a catenoid with axis oriented by τjkujk. The convergence is on
compact subsets of Ωjk,ε1 \{0jk,∞jk}. It is extended to neighborhoods of 0jk and∞jk using the
gauge Gjk,t. �

10.4. Edge-length estimate. Recall that `jk,t = ‖vk,t − vj,t‖ is the length of the edge (j, k) on Γt.

Proposition 21. As t→ 0, we have for (j, k) ∈ E+

(66) `jk,t = 2− 2 τjk t log t+O(t).

(67) rft(ijk) = 1
2 (vj,t + vk,t) +O(t)

Remark 13. (1) Equation (66) estimates how much the spheres centered at vj and vk move away
from each other if τjk > 0 (or toward each other if τjk < 0) to fit in a catenoidal neck of size
' τjkt. It is in agreement with the half-period of a Delaunay surface of necksize τjkt which is
known to have the asymptotic (66) as t → 0 (see for example Proposition 7 in [18] – a scaling
of 1/2 must be applied because the mean curvature is the trace of the fundamental form in that
paper).

(2) Equation (67) tells us that the waist of the catenoidal neck is centered at the middle of vj,t, vk,t,
up to an O(t) term.

Proof: forget for a moment that x is determined as a function of t. We first compute the term of order
t log t in P(ξt,x,Γjk). Recall that the only terms where a t log t appears are those corresponding to path
numbers (2) and (4) in the definition of βjk. To estimate the term corresponding to path number (2), we
use Point (3) of Theorem 5 where γ denotes the circle |zjk| = ε. We have

P(ξt,x, γ) = P(ξt,x, 1j , zjk = ε′)−1P(ξt,x, γjk)P(ξt,x, 1j , zjk = ε′)

Using Equation (52)

∂

∂t
P(ξt,x, γ) |t=0= ΦS(zjk = ε′)−1 ∂

∂t
P(ξt,x, γjk) |t=0 ΦS(zjk = ε′)

= ΦS(zjk = ε′)−1ΦS(pjk)|Mjk(0, x)ΦS(pjk)−1ΦS(zjk = ε′)

= 2πiτjk
(λ− 1)2

4λ
ΦS(zjk = ε′)−1ΦS(ujk)

(
1 0
0 −1

)
ΦS(ujk)−1ΦS(zjk = ε′) +O(x− x).

By Theorem 5, the principal solution of ξt,x on path number (2) is equal to[
I2 + τjkt log t

(λ− 1)2

4λ
ΦS(zjk = ε′)−1ΦS(ujk)

(
1 0
0 −1

)
ΦS(ujk)−1ΦS(zjk = ε′)

]
× P(ξ0,x, zjk = ε′, zjk = tjk/ε

′) +O(t) + t log tO(x− x).
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By the same argument, the principal solution of ξt,x on path number (4) is equal to[
I2 − τjkt log t

(λ− 1)2

4λ
ΦC(z′kj = −ε′)−1ΦC(−1)

(
1 0
0 −1

)
ΦC(−1)−1ΦC(z′kj = −ε′)

]
× P(ξ0,x, z

′
kj = −ε′, z′kj = −tkj/ε′) +O(t) + t log tO(x− x).

The computation in the proof of Point (2) of Proposition 13 gives after simplification

P(ξt,x,Γjk) = P(ξ0,x,Γjk)+τjkt log t
(λ− 1)2

4λ
ΦS(ujk)

[(
1 0
0 −1

)
,ΦC(−1)

]
ΦS(ukj)

−1+O(t)+t log tO(x−x).

Recalling the definition of Pjk and rPjk from Section 8.6, we obtain

Pjk(t, x) = Pjk(0, x)+τjkt log t
(λ− 1)2

4λ

[(
1 0
0 −1

)
,ΦC(−1)

]
ΦS(ukj)

−1ΦS(ujk)+O(t)+t log tO(x−x).

rPjk(t, x) = rPjk(0, x) + τjkt log t
(λ− 1)2

4λ

(
2 0
0 −2

)
+O(t) + t log tO(x− x) +O((x− x)2).

We substitute the value x(t) = x(t,Γ) given by Proposition 16. (At this point, the graph Γ is fixed.)
Recalling that x(t) = x +O(t log t) and rPjk(0, x) = 0, we obtain

(68) rPjk(t, x(t)) = dx
rPjk(0, x)(x(t)− x) + τjkt log t

(λ− 1)2

2λ

(
1 0
0 −1

)
+O(t).

Write δx(t) = x(t)−x and extend this notation to all parameters. Recalling from the proof of Proposition
15 the formula for dx

rPjk(0, x) and the definition of Fjk, we obtain

F+
jk(t, x(t)) = −2 δC+

jk(t) + λτjkt log t+O(t) = 0

F0
jk(t, x(t)) = −4 δC0

jk(t)− 2τjkt log t+O(t) = 0

which gives

(69) δCjk(t) =
τjk
2
t log t (λ− 1) +O(t).

The definition of Ljk and Equation (68) give (recalling that τjk and `jk depend on the graph Γ)

Ljk(t, x(t,Γ)) =
∂

∂λ
(−2δCjk(t,Γ)) |λ=1 −

`jk(Γ)− 2

2
= −τjk(Γ)t log t+O(t)− `jk(Γ)− 2

2
.

By Proposition 17, the graph Γt satisfies Ljk(t, x(t,Γt)) = 0, and this gives Point (1) of Proposition 21.

Since the t log t factor in Equation (68) is diagonal, the resolution of the remaining equations of the
system E3,jk(t, x(t)) = 0, which only involve the off-diagonal part of rPjk(t, x(t)), gives

δAjk(t) = O(t), δq+
jk(t) = O(t), δθjk(t) = O(t) and δθkj(t) = O(t).

By Point (5) of Proposition 11, we obtain δbjk(t) = O(t). Finally, the resolution of Rjk(t, x(t)) = 0 gives
δrkj(t) = O(t) and δq0

jk(t) = O(t) so δqjk(t) = O(t).

Recall that Γjk1 denotes the first half of the path Γjk, from 1j to ijk. By a computation similar to the
above we have

P(ξt,x,Γjk1) = P(ξ0,x,Γjk1) + τjkt log t
(λ− 1)2

4λ
ΦS(ujk)

(
1 0
0 −1

)
ΦC(ijk) +O(t) + t log tO(x− x)

P(ξ0,x,Γjk1) = ΦS(pjk) exp

(
Mjk

∫ ijk

1

ωqjk

)
∂

∂Cjk
P(ξ0,x,Γjk1) = ΦS(ujk)

∂

∂Cjk
exp (Mjkπ ijk/2) =

√
2 ijkΦS(ujk)

(
0 −1
1 0

)
.
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We substitute x = x(t). Using Equation (69) and that δqjk, δAjk, δθjk are O(t), we obtain

P(ξt,x(t),Γjk1) = ΦS(ujk)ΦC(ijk)
(
I2 + τjkt log tQjk +O(t)

)
with

Qjk =

√
2

2
ijk(λ− 1)ΦC(ijk)−1

(
0 −1
1 0

)
+

(λ− 1)2

4λ
ΦC(ijk)−1

(
1 0
0 −1

)
ΦC(ijk)

=
λ− 1

2

(
1 −ijk
ijk −1

)
+

(λ− 1)2

4

(
0 ijk
−ijk 0

)
=

(
1
2 (λ− 1)

ijk
4 (λ−1 − λ)

ijk
4 (λ− λ−1) 1

2 (1− λ)

)
The differential of Iwasawa decomposition at the identity is the projection on the factors of the decom-
position of the Lie algebra Λsl(2,C) as Λsu(2)⊕ Λsl+R (2,C). The matrix Qjk decomposes as

Qjk =
ijk
4

(
0 λ−1 − λ

λ− λ−1 0

)
+

1

2

(
λ− 1 0

0 1− λ

)
∈ Λsu(2)⊕ Λsl+R (2,C).

Hence

Uni(P(ξt,x(t),Γjk1)) = ΦS(ujk)ΦC(ijk)

[
I2 +

τjk ijk
4

t log t

(
0 λ−1 − λ

λ− λ−1 0

)
+O(t)

]
.

Finally the Sym Bobenko formula (4) gives

Sym(Uni(P(ξt,x(t),Γjk1)))

= fS(ujk)− 2i
τjk ijk

4
t log tΦS(ujk)ΦC(ijk)

(
0 −2
2 0

)
ΦC(ijk)−1ΦS(ujk)−1 |λ=1 +O(t)

= fS(ujk)− iτjkt log tΦS(ujk)

(
−1 0
0 1

)
ΦS(ujk)−1 |λ=1 +O(t)

= fS(ujk) + τjkt log tNS(ujk) +O(t)

and Point (2) follows. �

10.5. Transition annuli. For (j, k) ∈ E and t > 0, let Ajk,t be the annulus |tjk|/ε < |zjk,t| < ε which
is identified with the annulus |tjk|/ε < |z′jk,t| < ε when opening nodes. We have for |zjk,t| ≤ 1

(70)
1

2
≤ |zjk,t|
|z − pjk,t|

≤ 3

2
.

So provided |pjk,t − ujk| ≤ ε
6 , which is true for t small enough, the outer boundary component of Ajk,t

(namely the circle |zjk,t| = ε) is included in Ωj,ε1 . Likewise, the inner boundary component of Ajk,t
(namely the circle |z′jk,t| = ε) is included in Ωjk,ε1 .

Proposition 22. For t > 0 small enough and (j, k) ∈ E+:

(1) The images of Ajk,t and Akj,t by rft are graphs over annuli in the plane orthogonal to ujk.
(2) If τjk > 0, the image of the annulus Ajk,t ∪ Ωjk,ε1 ∪ Akj,t is embedded.

Proof:
(1) We may think of the universal covering rAjk,t of Ajk,t as the Riemann surface on which log zjk,t

is well defined. Let c > 0 such that for u ∈ S1 and z ∈ D(u, 1
2 )

‖ΦS(z)− ΦS(u)‖ ≤ c|z − u| and ‖ΦC(z)− ΦC(u)‖ ≤ c|z − u|.

Then for t small enough we have, by Equations (58), (61) and (70)

(71) ‖Φt − Φ0(r1j)Φ
S(ujk)‖ ≤ 4cε on ∂Ajk,t
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We would like to apply the maximum principle to conclude that the same estimate holds inside
Ajk,t. This is of course not possible because Φt is not well defined on Ajk,t, but this problem is
easily solved as follows. Define on rAjk,t

Gt = exp

(
− log zjk,t

2πi
logM(Φt, γjk)

)
.

ThenGtΦt descends to a well defined holomorphic function onAjk,t. Also, we haveGt = I2+O(t),
so by Equation (71), for t small enough

‖GtΦt − Φ0(r1j)Φ
S(ujk)‖ ≤ 5cε on ∂Ajk,t.

By the maximum principle

‖GtΦt − Φ0(r1j)Φ
S(ujk)‖ ≤ 5cε in Ajk,t.

(The maximum principle for Banach valued holomorphic functions states that if ‖f‖ has an
interior maximum then ‖f‖ is constant, and is an easy consequence of the Gauss mean value
formula.) Hence for t small enough

‖Φt − Φ0(r1j)Φ
S(ujk)‖ ≤ 6cε in Ajk,t.

Fix a positive α < 1/4. Using that Iwasawa decomposition is differentiable, we have, provided ε
is chosen small enough (observe that c is a universal constant)

‖Uni(Φt)− Φ0(r1j)Φ
S(ujk)‖ ≤ α in Ajk,t.

Let Nt be the Gauss map of ft. By Equation (5), we obtain since Φ0(r1j) |λ=1= I2

‖Nt −NS(ujk)‖ ≤ 2α in Ajk,t

Recall that ~Ψ ◦NS(ujk) = −ujk and let π⊥ujk be the projection on the plane orthogonal to ujk.
Then π⊥ujk ◦ rft is a local diffeomorphism on Ajk,t. By Proposition 18, the image by π⊥ujk ◦ rft
of the outer boundary component |zjk,t| = ε is close to a circle of center π⊥ujk(vj) and radius of
order ε1. By Proposition 20, the image by π⊥ujk ◦ rft of the inner boundary component |z′jk,t| = ε

is close to a circle of center π⊥ujk(vj) and radius of order t. Hence the projection of the inner
boundary component is inside the projection of the outer boundary component, so π⊥ujk ◦ rft is a
diffeomorphism onto its image by a standard covering argument. This proves Point (1).

(2) Introduce a coordinate system (x, y, z) with origin rft(ijk) and x-axis parallel to the line (vj,t, vk,t).
In the following, left and right refer to the x-axis (so vj,t is on the left of vk,t). Let St be the
hemisphere −1 ≤ x ≤ 0 of the unit sphere centered at (−1, 0, 0). Assume τjk > 0. By Proposition
20, the right boundary of rft(Ajk,t) is on the left of St. By Proposition 18, the left boundary of
rft(Ajk,t) is at distance O(t) from the radius 1-sphere centered at vj,t so is on the left of St by
Point (2) of Proposition 21. Moreover, the mean curvature vector on rft(Ajk,t) points to the left
(because it does so on the left boundary). By the maximum principle, rft(Ajk,t) is on the left
of St so in particular lies in the half-space x < 0. By the same argument, rft(Akj,t) lies in the
half-space x > 0. Hence they are disjoint and it is now clear, from Proposition 20 and Point (1),
that the image of Ajk,t ∪ Ωjk,ε1 ∪ Akj,t is embedded. �

10.6. Embeddedness. Let Mt be the image of rft.

Proposition 23. If all weights τjk are positive, then for t > 0 small enough, Mt is Alexandrov-embedded.
If moreover the graph Γ is pre-embedded, then for t > 0 small enough, Mt is embedded.
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Proof: we follow closely the proof of Proposition 7 in [29]. Assume that all τjk are positive. By
Proposition 18 and taking ε1 > 0 small enough, we may find, for (j, k) ∈ E ∪ R, a Jordan curve γ′jk,t,
freely homotopic to γjk, whose image is in a plane Πjk,t orthogonal to (vj,t, vk,t), and moreover:

• If (j, k) ∈ E, γ′jk,t lies in Ωj,ε1 ∩ Ajk,t,
• If (j, k) ∈ R, γ′jk,t lies in Ωj,ε1 ∩D∗(p0

jk,t, ε2).

Let ∆jk,t ⊂ Πjk,t be the flat disk bounded by rft(γ
′
jk,t).

• For j ∈ J , let Ω′j,t ⊂ Ωj,ε1 be the domain bounded by the curves γ′jk,t for k ∈ Ej ∪ Rj . By
Proposition 18, rft(Ω

′
j,t) is embedded and does not intersect the disks ∆jk,t for k ∈ Ej ∪ Rj .

Hence the union of rft(Ω
′
j,t) and ∆jk,t for k ∈ Ej ∪ Rj is the image of a continuous injection of

the 2-sphere. By the Jordan Brouwer Theorem, it is the boundary of a bounded domain Wj,t.
• For (j, k) ∈ R, let Djk,t be the disk bounded by γ′jk,t and D

∗
jk,t = Djk,t \ {p0

jk,t}. By Proposition
19, rft(D

∗
jk,t) is embedded. By the proof of Claim 3 in [29], its reunion with ∆jk,t bounds a

cylindrically bounded domain Wjk,t.
• For (j, k) ∈ E+, let A′jk,t ⊂ Ajk,t ∪ Ωjk,ε1 ∪ Akj,t be the annulus bounded by γ′jk,t and γ′kj,t.

By Proposition 22, rft(A′jk,t) is embedded. By Claim 1 below and the Jordan Brouwer Theorem,
rft(A′jk,t) ∪∆jk,t ∪∆kj,t is the boundary of a bounded domain Wjk,t.

Let Wt be the closed manifold with boundary obtained as the disjoint union of all W j,t for j ∈ J and
W jk,t for (j, k) ∈ E ∪ R, identifying W j,t and W jk,t for k ∈ Ej ∪ Rj along their common boundary
∆jk,t. Let Ft : Wt → R3 be the canonical injection on each W j,t and W jk,t. Note that Ft is a priori
not injective, since the domains may overlap (its image Ft(Wt) is what is called an immersed domain.)
But Ft is a proper local diffeomorphism whose boundary restriction parametrizes Mt. Moreover, we may
compactify Wt by adding one point per domain W jk,t for (j, k) ∈ R. This proves that Mt is Alexandrov
embedded.

Assume now that Γ is pre-embedded. Then the domains Wj,t for j ∈ J and Wjk,t for (j, k) ∈ E ∪ R
are disjoint, and their closures intersect only along the disks ∆jk,t. Hence the map Ft is an embedding
so Mt is embedded. �

Claim 1. We may choose the curves γ′jk,t and γ
′
kj,t so that rft(A′jk,t) does not intersect the disks ∆jk,t

and ∆kj,t.

Proof: we continue with the coordinate system (x, y, z) introduced in the proof of Point (2) of Propo-
sition 22. By Proposition 18, we may find a Jordan curve γ′′jk,t in Ωj,ε1 ∩Ajk,t whose image is at constant
distance from the x-axis. Let A′′jk,t be the annulus bounded by γ′′jk,t ∪ γ′kj,t and A′′t = rft(A′′jk,t). Consider
half a period of a Delaunay surface Dt with axis Ox and necksize τjkt/2, bounded on the left by a circle
of maximum radius and on the right by a circle of radius τjkt/2. Translate the Delaunay surface Dt from
the left until a first contact point p′′t with A′′t occurs. By Propositions 20 and 22, p′′t cannot be on the
right boundary of Dt (which is too small) nor on the left boundary of Dt (which is too big). By the
maximum principle, p′′t must be on the left boundary of A′′t and has minimum x-coordinate. Choose the
curve γ′jk,t so that Πjk,t is the plane orthogonal to the x-axis and containing p′′t . Then A′′t , being on the
right of Πjk,t, does not intersect ∆jk,t. The annulus bounded by γ′jk,t and γ

′′
jk,t is inside Ωj,ε1 so its image

does not intersect ∆jk,t by Proposition 18. Hence rf(A′jk,t) does not intersect ∆jk,t, and in the same way,
it does not intersect ∆kj,t. �

This concludes the proof of Theorem 1.
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Appendix A. A regularity result

In this section we prove a regularity result in the spirit of Theorem 5 in [30] or Theorem 6 in [12].
The philosophy of these results is to idenfity which part of the Regularity Problem is solved when the
Monodromy Problem around a singularity is solved. For use in other papers, we consider the Monodromy
Problem associated to the general Sym-Bobenko formula in space forms with Sym-points at λ1, λ2, with
either

(1) λ1 = λ2 = 1 (R3 case)
(2) λ1 = eiθ, λ2 = e−iθ with 0 < θ < π (S3 case)
(3) λ1 = eq, λ2 = e−q with q > 0 (H3 case).

The Monodromy Problem in cases (2) and (3) is

(72)
{
M(Φ, γ) ∈ ΛSU(2)
M(Φ, γ) |λ1

=M(Φ, γ) |λ2
= ±I2

Theorem 4. Let Ω ⊂ C be a σ-symmetric domain containing the points 0, ∞ and not containing −1.
Let ξt =

(
αt λ

−1βt
γt −αt

)
be a C1 family of σ-symmetric DPW potentials with the following properties:

(1) αt, βt are holomorphic in Ω and γt has at most a double pole at 0 and ∞,
(2) Re(Res0(zγt)) = 0,
(3) Res0(γ0

t ) = 0.
Assume that there exists a continuous family of σ-symmetric solutions Φt of dΦt = Φtξt in the universal
covering of Ω \ {0,∞} and a σ-symmetric curve δ ⊂ Ω bounding a disk-type domain containing 0 and ∞,
such that the Monodromy Problem (7) or (72) forM(Φt, δ) is solved. Further assume that at t = 0

ξ0 =

(
0 λ−1

0 0

)
k dz

(z + 1)2

with k ∈ R∗ and Φ0(1) is diagonal. Then for t in a neighborhood of 0, ξt is holomorphic at 0 and ∞.

Proof: Let (F,B) be the Iwasawa decomposition of Φ0(1) (both factors are diagonal). Replacing Φt
by F−1Φt, we may assume that Φ0(1) is a diagonal matrix in Λ+

RSL(2,C) so

Φ0(z) =

(
ρ 0
0 1

ρ

)(
1 k(z−1)

2λ(z+1)

0 1

)
with ρ ∈ W≥0

R . By Hypothesis (2) and (3), we may write

Res0(zγt) = iat and Res0(γt) = λ(bt + ict)

with at, bt, ct ∈ W≥0
R . For x = (a, b, c) ∈ (W≥0

R )3, define

ωx = ia(1− z2)
dz

z2
+ λ
(
b+ ic

1− z
1 + z

)dz
z
.

Then
σ∗ωx = −ωx, Res0(zωx) = ia and Res0ωx = λ(b+ ic).

Writing xt = (at, bt, ct), we see that γt − ωxt is holomorphic at 0 and ∞ by symmetry. Define

ξt,x =

(
αt λ−1βt

γt − ωxt −αt

)
+

(
0 0
ωx 0

)
.

(The first term is holomorphic in Ω). Let Φt,x be the solution of dΦt,x = Φt,xξt,x with initial condition
Φt,x(z0) = Φt(z0), where z0 is an arbitrary base point. Then ξt,xt = ξt and Φt,xt = Φt. Since ξ0 is
holomorphic at 0, we have x0 = 0. Theorem 4 follows from the following
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Lemma 1. For (t, x) in a neighborhood of (0, 0), the only solution to the Monodromy Problem (7) or
(72) forM(Φt,x, δ) is x = 0.

Proof: let

M(t, x) = H logM(Φt,x, δ)H
−1 with H =

(
λ1/2 0

0 λ−1/2

)
∈ ΛSU(2).

(The reason to conjugate by H will be clear in a moment.) By Proposition 8 in [28], the partial differential
of M with respect to x at (0, 0), applied to the vector x = (a, b, c), is given by

dxM(0, 0) · x =

∫
δ

Nωx

where

N = HΦ0

(
0 0
1 0

)
Φ−1

0 H−1 =

(
k(z−1)
2λ(z+1)

−k2ρ2(z−1)2

4λ(z+1)2

1
λρ2 − k(z−1)

2λ(z+1)

)
.

Since Nωx has only poles at 0, −1 and ∞, we have by the Residue Theorem

dxM(0, 0) · x = 2πi
(
Res0(Nωx) + Res∞(Nωx)

)
= −2πiRes−1(Nωx).

Computing the residue at z = −1, we obtain

dxM(0, 0) = 2πi

(
−k db λ−1ik2ρ2(2da− λdc/2)

2i dc/ρ2 k db

)
.

Define
ra = −kb, rb = k2ρ2(2a− λc/2) and rc = 2c/ρ2.

It is clear that (a, b, c) 7→ (ra,rb,rc) is an automorphism of (W≥0
R )3. The point of this change of variables

(and the conjugation by H) is that we now have

dxM(0, 0) = 2πi

(
dra λ−1i drb
i drc −dra

)
.

This is precisely Equation (51) with ajk, bjk, cjk replaced by ra, rb, rc and rjk = 0. So in the R3 case, the
proof of Point (3) of Proposition 11 yields that for t in a neighborhood of 0, the Monodromy Problem
(7) uniquely determines (ra,rb,rc), hence x, as a function of t. Now x = 0 is a trivial solution (since ξt,0
is holomorphic in Ω) so x = 0 is the unique solution. In the S3 case (respectively the H3 case), the
Monodromy Problem is equivalent, using the ρ-symmetry, to M ∈ Λsu(2)

Im(M11 |λ=eiθ ) = 0
M21 |λ=eiθ= 0

respectively


M ∈ Λsu(2)
Im(M11 |λ=eq ) = 0
Re(M12 |λ=eq ) = 0
Re(M21 |λ=eq ) = 0

In the S3 case, define F , G by Equations (48) and (49) with M in place of |Mjk and

E = (Ei)1≤i≤5 =
(
F+,G+, λ(G−)∗, Im(M11 |λ=eiθ ),M21 |λ=eiθ

)
.

Then
dE1 = −2πdra+

dE2 = −2π(drb+ + λdrc0)

dE3 = −2π(drc+ + λdrb0)

dE4 + Re(dE1 |λ=eiθ ) = 2πdra0

dE5 − dE3 |λ=eiθ= 2π(eiθdrb0 − drc0).



42 MARTIN TRAIZET

It easily follows (since eiθ 6∈ R) that dE(0, 0) is an isomorphism from W>0
R ×R3 to W>0

R ×R×C. Again,
we conclude with the Implicit Function Theorem that the only solution of the Monodromy Problem is
x = 0. We omit the proof in the H3 case which is similar. �

By duality, we obtain the following result (with the same hypothesis on Ω and δ):

Corollary 1. Let ξt be a C1 family of σ-symmetric DPW potentials on Ω with the following properties:
(1) αt, γt are holomorphic in Ω and βt has at most a double pole at 0 and ∞,
(2) Re(Res0(zβt)) = 0,
(3) Res0(β0

t ) = 0.
Assume that there exists a continuous family of σ-symmetric solutions Φt of dΦt = Φtξt such that the
Monodromy Problem (7) or (72) forM(Φt, δ) is solved. Further assume that at t = 0

ξ0 =

(
0 0
1 0

)
k dz

(z + 1)2

and Φ0(1) is diagonal. Then for t in a neighborhood of 0, ξt is holomorphic at 0 and ∞.

Appendix B. Principal solution through a neck

Fix some numbers 0 < ε′ < ε. For t ∈ C such that 0 < |t| < ε2, let At ⊂ C be the annulus
|t|/ε < |z| < ε and ψt : At → At be the involution defined by ψt(z) = t/z. We see an element of the
universal cover ĂC∗ of C∗ as a complex number t ∈ C∗ with a determination of its argument (which we do
not write), so the function log t is well defined on ĂC∗. We denote t 7→ e2πit the Deck transformation of
ĂC∗ which increases the argument of t by 2π. For t ∈ ĂC∗, let βt be the curve from ε′ to t/ε′ parametrized
for s ∈ [0, 1] by

βt(s) = (ε′)1−2sts = (ε′)1−2ses log t.

Our goal is to understand the limit behavior of P(ξt, βt) as t → 0, under suitable hypothesis on the
potential ξt. Let γ be the circle parametrized by γ(s) = ε′e2πis.

Theorem 5. Let ξt be a family of Λsl(n,C) valued holomorphic 1-forms on At, depending holomorphically
on t ∈ D∗(0, ε2), and let pξt = ψ∗t ξt. Assume that

lim
t→0

ξt = ξ0 and lim
t→0

pξt = pξ0

where ξ0 and pξ0 are holomorphic in D(0, ε) and the limit is uniform on compact subsets of D∗(0, ε).
Define for t ∈ ĂC∗ small enough

rF (t) = P(ξt, γ)−
log t
2πi P(ξt, βt).

Then
(1) The function rF satisfies rF (e2πit) = rF (t) so descends to a well defined holomorphic function F (t)

defined in a punctured neighborhood of 0.
(2) The function F extends holomorphically at t = 0 with

F (0) = P(ξ0, ε
′, 0)P(pξ0, 0, ε

′).

(3) If t > 0, the function P(ξt, βt) extends to a smooth function of t and t log t with value F (0) at
t = 0. Moreover we have as t→ 0

P(ξt, βt) =

(
I2 +

t log t

2πi

∂

∂t
P(ξt, γ) |t=0

)
F (0) +O(t).
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Remark 14. We apply Theorem 5 in the proof of Proposition 13 with ξt = (z−1
jk )∗ξt,x and t = tjk. Then

z′jk = ψt ◦ zjk so pξt = ((z′jk)−1)∗ξt,x. By Proposition 3, ξ0 and pξ0 are both holomorphic in D(0, ε), with
ξ0 = (z−1

jk )∗(Mjω0) and pξ0 = ((z′jk)−1)∗(Mjkωqjk). Theorem 5 says that P((z−1
jk )∗ξt,x, ε

′, tjk/ε
′) extends

at t = 0 to a smooth function of tjk and tjk log tjk with value at tjk = 0

P((z−1
jk )∗(Mjω0), ε′, 0)P(((z′jk)−1)∗(Mjkωqjk), 0, ε′).

To justify that the extension is a smooth function of t, t log t and x we use Hartog Theorem on separate
holomorphy to ensure that the function F depends holomorphically on (t, x). In other words, P(ξt,x, zjk =
ε′, z′jk = ε′) extends to a smooth function of t, t log t and x with value at t = 0

P(Mjω0, zjk = ε′, zjk = 0)P(Mjkωqjk , z
′
jk = 0, z′jk = ε′) = P(ξ0,x, zjk = ε′, z′jk = ε′)

where in the last expression, it is understood that the principal solution is continuous at the node. This
gives some theoretical ground for the heuristic explained in Section 4.

Proof: first of all, by the change of variables z′ = z/ε′ and t′ = t/(ε′)2, we may assume without loss
of generality that ε′ = 1 (so ε > 1). The expression of βt simplifies to βt(s) = ts. The restriction of ξt
to the unit circle γ extends holomorphically at t = 0, with value ξ0. Since ξ0 is holomorphic in D(0, ε),
P(ξ0, γ) = I2. Hence logP(ξt, γ) and rF (t) are well defined for t small enough. Point (1) follows from the
fact that the path βe2πit is homotopic to γβt. To prove Point (2), we split the path βt into βt = αtpα

−1
t

where
αt(s) = βt(s/2) = ts/2 and pαt(s) = βt(1− s/2) = ψt(αt(s)).

Since F (t) is well-defined, we may assume that | arg t| ≤ π. Provided |t| ≤ e−π, we have | log t| ≤ 2| log |t| |
so

(73) |α′t(s)| = 1
2 |t|

s/2| log t| ≤ |t|s/2| log |t| |.

Integrating the estimate (73), we see that the length of the spiral αt is bounded by 2.

Lemma 2. There exists a uniform constant C such that for t small enough enough:

(74)
∫ 1

0

‖ [ξt(αt(s))− ξ0(αt(s))]α
′
t(s)‖ ds ≤ C|t|1/2.

Proof: we use the letter C to denote various uniform constants. Fix some ε2 ∈ (1, ε). On the circle
C(0, ε2), ξt depends holomorphically on t in a neighborhood of 0 so

(75)
∫
C(0,ε2)

‖ξt − ξ0‖ ≤ C|t|.

By the change of variable formula, the convergence of pξt to pξ0 and the holomorphicity of ξ0 and pξ0 in
D(0, ε):

(76)
∫
C(0,|t|/ε2)

‖ξt − ξ0‖ ≤
∫
C(0,ε2)

‖pξt‖+

∫
C(0,|t|/ε2)

‖ξ0‖ ≤ C.

We expand ξt − ξ0 in Laurent series in the annulus |t|/ε2 ≤ |z| ≤ ε2 as

ξt(z)− ξ0(z) =
∑
k∈Z

Ak(t)zkdz

where the matrices Ak(t) are given by

Ak(t) =
1

2πi

∫
C(0,ε2)

ξt(z)− ξ0(z)

zk+1
=

1

2πi

∫
C(0,|t|/ε2)

ξt(z)− ξ0(z)

zk+1
.
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Estimates (75) and (76) give us respectively:

(77) ‖Ak(t)‖ ≤ C |t|
εk+1

2

and ‖Ak(t)‖ ≤ C εk+1
2

|t|k+1
.

Then we have the following estimates:∫ 1

0

‖[ξt(αt(s))− ξ0(αt(s))]α
′
t(s)‖ ds ≤

∑
k∈Z

∫ 1

0

‖Ak(t)‖ |αt(s)|k |α′t(s)| ds

≤
∑
k∈Z

∫ 1

0

‖Ak(t)‖ |t|(k+1)s/2 | log |t| | ds using (73)

= ‖A−1(t)‖ | log |t| |+
∑
k 6=−1

2

k + 1
‖Ak(t)‖

(
1− |t|(k+1)/2

)
≤ ‖A−1(t)‖ | log |t| |+ 2

∑
k≥0

‖Ak(t)‖+ 2
∑
k≤−2

‖Ak(t)‖ |t|
k+1
2

≤ C|t log |t| |+ C
∑
k≥0

|t|
εk+1

2

+ C
∑
k≤−2

(
ε2

|t|1/2

)k+1

using (77)

≤ C|t log |t| |+ C|t|+ C|t| 12 .

�
Returning to the proof of Theorem 5, let Φ0 be the solution of dΦ0 = Φ0ξ0 in D(0, ε) with initial

condition Φ0(1) = In. Let Yt(s) be the solution on [0, 1] of the Cauchy Problem{
Y ′t (s) = Yt(s)ξt(αt(s))α

′
t(s)

Yt(0) = I2.

By definition, P(ξt, αt) = Yt(1). Define

Zt(s) = Yt(s)− Φ0(αt(s)).

Then

Z ′t(s) = Yt(s)ξt(αt(s))α
′
t(s)− Φ0(αt(s))ξ0(αt(s))α

′
t(s)

= Zt(s)ξt(αt(s))α
′
t(s) + Φ0(αt(s))[ξt(αt(s))− ξ0(αt(s))]α

′
t(s).

Hence

‖Zt(s)‖ =

∥∥∥∥∫ s

0

Z ′t(x)dx

∥∥∥∥ ≤ ∫ s

0

‖Zt(x)‖ ‖ξt(αt(x))α′t(x)‖dx

+

∫ s

0

‖Φ0(αt(x))‖ ‖ [ξt(αt(x))− ξ0(αt(x))]α′t(x)‖dx

By Grönwall inequality:

‖Zt(1)‖ ≤
∫ 1

0

‖Φ0(αt(s))‖ ‖ [ξt(αt(s))− ξ0(αt(s))]α
′
t(s)‖ds× exp

(∫ 1

0

‖ξt(αt(s))α′t(s)‖ds
)
.

Using Lemma 2, uniform bounds for Φ0 and ξ0 in D(0, 1) and the length of αt, we obtain

‖P(ξt, αt)− Φ0(αt(1))‖ = ‖Zt(1)‖ ≤ C|t|1/2.

Since Φ0 is holomorphic in D(0, 1),

‖Φ0(αt(1))− Φ0(0)‖ ≤ C|αt(1)| = C|t|1/2
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Hence

(78) ‖P(ξt, αt)− Φ0(0)‖ ≤ C|t|1/2.

Let pΦ0 be the solution of dpΦ0 = pΦ0
pξ0 with initial condition pΦ0(1) = In. By the same argument, we have

(79) ‖P(ξt, pαt)− pΦ0(0)|| ≤ C|t|1/2.

By Equations (78) and (79):

‖P(ξt, βt)− Φ0(0)pΦ0(0)−1|| = ‖P(ξt, αt)P(ξt, pαt)
−1 − Φ0(0)pΦ0(0)−1|| ≤ C|t|1/2.

Since P(ξt, γ) = I2 +O(t), we finally obtain∥∥∥F (t)− Φ0(0)pΦ0(0)−1
∥∥∥ ≤ C|t|1/2.

By Riemann Extension Theorem, F extends holomorphically at t = 0, and

F (0) = Φ0(0)pΦ0(0)−1 = P(ξ0, 1, 0)P(pξ0, 0, 1).

Finally, to prove Point (3), assume that t > 0 and write

P(ξt, βt) = exp

(
t log t

2πi
t−1 logP(ξt, γ)

)
F (t).

Since P(ξ0, γ) = I2, t−1 logP(ξt, γ) extends holomorphically at t = 0 with value ∂
∂tP(ξt, γ) |t=0 and Point

(3) follows. �

Appendix C. Differentiability of smooth functions of t and t log t

Proposition 24. Let E be a finite dimensional space and g(t, s, z) be a smooth function from a neigh-
borhood of (0, 0, z0) in R2 × E to a normed space F . Define

f(t, z) =

{
g(t, t log |t|, z) if t 6= 0
g(0, 0, z) if t = 0.

Assume that g(0, s, z) only depends on z. Then f is of class C1 and

df(0, z) =
∂g

∂t
(0, 0, z)dt+ dzg(0, 0, z).

Proof: f is clearly continuous. For t 6= 0, we have by the chain rule:

df(t, z) =
∂g

∂t
(t, t log |t|, z)dt+

∂g

∂s
(t, t log |t|, z)(1 + log |t|)dt+ dzg(t, t log |t|, z).

From the hypothesis, ∂g∂s (0, s, z) = 0 so

‖∂g
∂s

(t, s, z)‖ = ‖∂g
∂s

(t, s, z)− ∂g

∂s
(0, s, z)‖ = O(t).

Hence

lim
(t,z)→(0,z0)

df(t, z) =
∂g

∂t
(0, 0, z0)dt+ dzg(0, 0, z0).

It follows (using the Mean Value Inequality) that f is differentiable at (0, z0) and that it is of class C1.
�
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