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OPENING NODES IN THE DPW METHOD: CO-PLANAR CASE

Introduction

In [START_REF] Dorfmeister | Weierstrass type representation of harmonic maps into symmetric spaces[END_REF], Dorfmeister, Pedit and Wu have shown that harmonic maps from a Riemann surface to a symmetric space admit a Weierstrass-type representation, which means that they can be represented in terms of holomorphic data. In particular, surfaces with constant mean curvature one (CMC-1 for short) in euclidean space admit such a representation, owing to the fact that the Gauss map of a CMC-1 surface is a harmonic map to the 2-sphere. This representation is now called the DPW method and has been widely used to construct CMC-1 surfaces in R 3 and also constant mean curvature surfaces in homogeneous spaces such as the sphere S 3 or hyperbolic space H 3 : see for example [START_REF] Dorfmeister | Constant mean curvature surfaces with periodic metric[END_REF][START_REF] Dorfmeister | Construction of constant mean curvature n-noids from holomorphic potentials[END_REF][START_REF] Heller | Higher genus minimal surfaces in S 3 and stable bundles[END_REF][START_REF] Heller | Lawson's genus two surface and meromorphic connections[END_REF][START_REF] Heller | A spectral curve approach to Lawson symmetric CMC surfaces of genus 2[END_REF][START_REF] Kilian | Constant mean curvature surfaces of any positive genus[END_REF][START_REF] Kilian | New constant mean curvature surfaces[END_REF][START_REF] Schmitt | Unitarization of monodromy representations and constant mean curvature trinoids in 3-dimensional space forms[END_REF].

The input data for the DPW method is called the DPW potential. In principle, all CMC surfaces can be obtained by the DPW method. But in practice, one has to solve a Monodromy Problem, akin to the Period Problem for the construction of minimal surfaces via the Weierstrass Representation. So in general the topology of the constructed examples is limited or symmetries are imposed in order to reduce the number of equations to be solved. In contrast, Kapouleas [START_REF] Kapouleas | Complete constant mean curvature surfaces in euclidean three-space[END_REF] has constructed embedded CMC surfaces with no limitation on the genus or number of ends by gluing round spheres and pieces of Delaunay surfaces, using PDE methods. It seems an interesting question to see whether such gluing constructions can be achieved by the DPW method.

In [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF], we proposed a DPW potential for CMC n-noids: genus zero CMC-1 surfaces with n Delaunaytype ends. They look like a round sphere with n half-Delaunay surfaces with small necksize attached at prescribed points. They are a particular case of the construction of Kapouleas in [START_REF] Kapouleas | Complete constant mean curvature surfaces in euclidean three-space[END_REF]. The potential is natural, in the sense that it is a perturbation of the standard spherical potential. This potential has been adapted to minimal surfaces in H 3 and AdS 3 in [START_REF] Bobenko | Minimal n-noids in hyperbolic and Anti-de Sitter 3-space[END_REF] and CMC>1 surfaces in H 3 in [START_REF] Raujouan | Constant mean curvature n-noids in hyperbolic space[END_REF].

In [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF], we proposed a DPW potential for another type of CMC n-noids which look like a minimal n-noid (a genus zero minimal surface with n catenoidal ends) whose catenoidal ends have been replaced by Delaunay ends. They had already been constructed by Mazzeo and Pacard in [START_REF] Mazzeo | Pacard: Constant mean curvature surfaces with Delaunay ends[END_REF] using PDE methods. The potential is derived in a natural way from the Weierstrass data of the minimal n-noid. It has also been adapted to CMC>1 surfaces in H 3 in [START_REF] Raujouan | Constant mean curvature n-noids in hyperbolic space[END_REF].

Our goal in this paper is to propose a DPW potential for the higher genus surfaces constructed by Kapouleas in [START_REF] Kapouleas | Complete constant mean curvature surfaces in euclidean three-space[END_REF] in the case where all the centers of the spheres to be glued together are in the same plane. The resulting CMC surfaces are invariant by symmetry with respect to that plane. The symmetry allows us to take advantage of the fact that the standard holomorphic frame for Delaunay surfaces is unitary on the unit circle, which is a big asset for the resolution of the Monodromy Problem.
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The underlying Riemann surface is defined by opening nodes, which is a standard model for Riemann surfaces with "small necks". The theory of opening nodes has been used by the author to construct minimal surfaces in euclidean space via the classical Weierstrass Representation (see for example [START_REF] Traizet | An embedded minimal surface with no symmetries[END_REF] or [START_REF] Traizet | On the genus of triply periodic minimal surfaces[END_REF]) or CMC-1 surfaces in hyperbolic space via Bryant Representation [START_REF] Traizet | Opening nodes on horosphere packings[END_REF].

One difficulty with the DPW method is that unlike the Weierstrass data of minimal surfaces, the DPW potential has little geometric content so it is hard to guess a candidate for the construction of CMC surfaces with given geometric features. The heuristic that we follow is that the DPW potential should be a perturbation of the spherical potential where the surface is close to a round sphere and of the catenoidal potential where the surface has small catenoidal necks. This paper opens up the possibility of opening nodes in the DPW method. We hope the ideas developed in this paper will be useful to the contruction of minimal and CMC surfaces in other space forms.

Remark 1. In an unpublished paper [START_REF] Traizet | Opening nodes and the DPW method[END_REF], I proposed a DPW potential for all the surfaces constructed by Kapouleas in [START_REF] Kapouleas | Complete constant mean curvature surfaces in euclidean three-space[END_REF], with no symmetry assumption. The potential was, however, quite complicated and hardly natural, and the paper was long and technical. [START_REF] Traizet | Opening nodes and the DPW method[END_REF] will not be published in its present form, as I hope a simpler potential will be found in the general case. The result of Appendix B of [START_REF] Traizet | Opening nodes and the DPW method[END_REF] has been moved to the appendix of the present paper to make it self-contained. For the interested reader, the result of Appendix A of [START_REF] Traizet | Opening nodes and the DPW method[END_REF] has been moved to [START_REF] Heller | Area estimates for high genus Lawson surfaces via DPW[END_REF] where it is needed.

Main result

Our goal is to contruct CMC surfaces by gluing spheres and half-Delaunay surfaces. The layout of these pieces is encoded by a weighted graph in the horizontal plane. Definition 1. A horizontal weighted graph Γ is the following data:

• A finite number of points v j ∈ R 2 for j ∈ J, called vertices. Here J ⊂ N * is a finite set used to index vertices. • A symmetric subset E ⊂ (J × J) \ ∆ where ∆ is the diagonal of J × J, whose elements are called edges. Two vertices v j and v k are adjacent if (j, k) ∈ E. • A finite set of half-lines ∆ jk ⊂ R 2 for (j, k) ∈ R, called rays, such that ∆ jk has endpoint v j . Here R ⊂ J × (N * \ J) is a finite set used to index rays. • Each edge or ray is given a non-zero weight τ jk , (j, k) ∈ E ∪ R, with τ jk = τ kj for (j, k) ∈ E.

For j ∈ J, we denote E j = {k ∈ J : (j, k) ∈ E} the set of edges issued from the vertex v j , and R j = {k ∈ N * , (j, k) ∈ R} the indices of the rays issued from the vertex v j . Also we denote E + = {(j, k) ∈ E : j < k}.

Given a horizontal weighted graph Γ with length-2 edges, we can construct a singular CMC-1 surface M 0 as follows. We identify R 2 with the horizontal plane x 3 = 0.

• For j ∈ J, place a radius-1 sphere centered at the vertex v j , so if v j and v k are adjacent, the corresponding spheres are tangent. • For each (j, k) ∈ R, place an infinite chain of radius-1 spheres with centers on ∆ jk at even distance from v j . Our goal in this paper is to construct a family of CMC-1 surfaces (M t ) 0<t< by desingularizing M 0 , replacing all tangency points between adjacent spheres by catenoidal necks of size tτ jk (see Figure 1). This is only a heuristic way to describe the result, and is not the way we will construct M t (although this is how Kapouleas does in [START_REF] Kapouleas | Complete constant mean curvature surfaces in euclidean three-space[END_REF]).

For the construction to succeed, the weighted graph Γ must satisfy a balancing condition. For (j, k) ∈ E, we denote jk = |v j -v k | and u jk the unitary vector (v k -v j )/ jk , so u kj = -u jk . For (j, k) ∈ R, we denote u jk the unitary vector in the direction of the ray ∆ jk . Definition 2. For j ∈ J, we define the force F i on the vertex v j by [START_REF] Bobenko | Minimal n-noids in hyperbolic and Anti-de Sitter 3-space[END_REF] F j = k∈Ej ∪Rj τ jk u jk .

A horizontal weighted graph Γ is balanced if F j = 0 for all j ∈ J.

To solve our problem, we need to perturb Γ in order to prescribe small variations of edge-lengths and forces. The parameters available to deform Γ are the vertices v j ∈ R 2 for j ∈ J, the unitary vectors u jk for (j, k) ∈ R and the weights τ jk ∈ R for (j, k) ∈ E + ∪ R. Definition 3. A horizontal weighted graph Γ is non-degenerate if the jacobian of the map (F j ) j∈J , ( jk ) (j,k)∈E + with respect to the above parameters is onto.

Theorem 1. Let Γ be a balanced, non-degenerate horizontal weighted graph with length-2 edges. There exists a smooth 1-parameter family of immersed CMC-1 surfaces (M t ) 0<t< with the following properties:

(1) (M t ) converges to M 0 as t → 0. The convergence is for the Hausdorf distance on compact sets of R 3 .

(2) M t is homeomorphic to the boundary of a small tubular neighborhood of Γ.

(3) M t is symmetric with respect to the horizontal plane. (4) For each (j, k) ∈ R, M t has a Delaunay end with weight 2πtτ jk and whose axis converges as t → 0 to the ray ∆ jk .

(5) If all weights are positive, then M t is Alexandrov-embedded. [START_REF] Dorfmeister | Construction of constant mean curvature n-noids from holomorphic potentials[END_REF] If moreover Γ is pre-embedded, then M t is embedded. Definition 4. Following Kapouleas (Definition 2.2 in [START_REF] Kapouleas | Complete constant mean curvature surfaces in euclidean three-space[END_REF]), we say that Γ is pre-embedded if the distance between any two edges or rays which have no common endpoint is greater than 2 and the angle between any two edges or rays with a common endpoint is greater than 60 • . Remark 2. A balanced graph with even length edges can be transformed into a graph with length-2 edges by adding vertices, transforming an edge of length 2k into k edges of length 2, with the same weight. Clearly the resulting graph is balanced, and it is easy to see that non-degeneracy is preserved.

Background

3.1. Functional spaces. The DPW method uses loop groups, which are groups of smooth functions from the unit circle S 1 ⊂ C to a matrix group. The circle variable is denoted λ. The DPW method is usually formulated in the category of smooth maps, but since we plan to use the Implicit Function Theorem, we need a Banach space. We adopt the following choice, following [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF][START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF].

Fix some ρ > 1 and let D ρ ⊂ C be the disk |λ| < ρ and A ρ ⊂ C the annulus ρ -1 < |λ| < ρ. We decompose a smooth function f : S 1 → C in Fourier series

f (λ) = i∈Z f i λ i and define f = i∈Z |f i |ρ |i|
Let W be the space of functions f with finite norm. This is a Banach algebra, owing to the fact that the weight ρ |i| is submultiplicative (see Section 4 in [START_REF] Gröchenig | Weight functions in time-frequency analysis[END_REF]). Functions in W extend holomorphically to A ρ . We define W ≥0 , W >0 , W ≤0 and W <0 as the subspaces of functions f such that f i = 0 for i < 0, i ≤ 0, i > 0 and i ≥ 0, respectively. Functions in W ≥0 extend holomorphically to the disk D ρ and satisfy |f (λ)| ≤ f for all λ ∈ D ρ . We write W 0 ∼ C for the subspace of constant functions, so we have

a direct sum W = W <0 ⊕ W 0 ⊕ W >0 . A function f will be decomposed as f = f -+ f 0 + f + with (f -, f 0 , f + ) ∈ W <0 × W 0 × W >0 (and of course f 0 = f 0 ).
We define the conjugation operator by

f (λ) = f (λ) = i∈Z f i λ i .
We denote Re(f ) = 1 2 (f + f ) and Im(f ) = 1 2i (f -f ) and define W R as the subspace of functions in W such that Im(f ) = 0, and W ≥0 R = W R ∩ W ≥0 . We also define the star operator by

f * (λ) = f (1/λ) = i∈Z f -i λ i .
The involution f → f * exchanges W ≥0 and W ≤0 . We have λ * = λ -1 and c * = c if c is a constant. A function f is real on the unit circle if and only if f = f * . Note that conjugation and star commute.

There is a theory of holomorphic functions between complex Banach space, which retain most properties of holomorphic functions of several variables. A good reference is [START_REF] Chae | Holomorphy and calculus in normed spaces[END_REF].

Loop groups.

• If G is a matrix Lie group, we denote ΛG the Banach Lie group of maps Φ : S 1 → G whose entries are in W. • If g is the Lie algebra of G, the Lie algebra of ΛG is the set of maps ϕ : S 1 → g whose entries are in W and is denoted Λg.

• Λ + SL(2, C) ⊂ ΛSL(2, C) is the subgroup of maps B whose entries are in W ≥0 , with B | λ=0 upper triangular. • Λ R + SL(2, C) ⊂ Λ + SL(2, C
) is the subgroup of maps B such that B | λ=0 has positive entries on the diagonal. The following result is the corner stone of the DPW method. It is usually formulated for smooth loops [START_REF] Pressley | Loop Groups[END_REF], but adapts with no difficulty to loops with entries in W (see details in Section 3.6 of [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF]).

Theorem 2 (Iwasawa decomposition). The multiplication ΛSU (2)

× Λ R + SL(2, C) → ΛSL(2, C
) is a smooth diffeomorphism (in the sense of smooth maps between Banach manifolds). The unique splitting of an element Φ ∈ ΛSL(2, C) as Φ = F B with F ∈ ΛSU (2) and B ∈ Λ R + SL(2, C) is called Iwasawa decomposition. F is called the unitary factor of Φ and denoted Uni(Φ). B is called the positive factor and denoted Pos(Φ).

3.3.

The DPW method. In the DPW method, one identifies R 3 with the Lie algebra su(2) by

(x 1 , x 2 , x 3 ) ∈ R 3 ∼ -i -x 3 x 1 + ix 2 x 1 -ix 2 x 3 ∈ su(2).
The input data for the DPW method is a quadruple (Σ, ξ, z 0 , φ 0 ) where Σ is a Riemann surface, ξ is a Λsl(2, C)-valued holomorphic 1-form on Σ of the following special form

(2) ξ = α λ -1 β γ -α
where α, β, γ are W ≥0 -valued holomorphic 1-forms on Σ, z 0 ∈ Σ is a base point and φ 0 ∈ ΛSL(2, C) is an initial condition. ξ is called the DPW potential. If Σ is simply connected, the DPW method is the following procedure:

• Solve the Cauchy Problem on Σ:

(3)

d z Φ = Φξ Φ(z 0 ) = φ 0 to obtain a solution Φ : Σ → ΛSL(2, C). • Compute the Iwasawa decomposition (F (z), B(z)) of Φ(z) for z ∈ Σ. • Define f : Σ → su(2) ∼ R 3 by the Sym-Bobenko formula: (4) f (z) = Sym(F (z)) = -2i ∂F (z) ∂λ F (z) -1 | λ=1 .
Then f is a CMC-1 (branched) conformal immersion. f is regular at z (meaning unbranched) if and only if β 0 (z) = 0. Its Gauss map is given by ( 5)

N (z) = Nor(F (z)) = -i F (z) -1 0 0 1 F (z) -1 | λ=1 .
The DPW method actually constructs a moving frame for f and the differential of f is given by ( 6)

df (z) = 2i B 0 11 (z) 2 F (z) 0 β 0 (z) β 0 (z) 0 F (z) -1 | λ=1 .
3.4. The Monodromy Problem. If Σ is not simply connected, lift the DPW potential ξ to the universal cover r Σ of Σ and choose a point r z 0 in the fiber of z 0 . Solve the Cauchy Problem dΦ = Φξ in r Σ with initial condition Φ(r z 0 ) = φ 0 to define Φ : r Σ → ΛSL(2, C). The DPW method produces an immersion

f : r Σ → R 3 . For γ ∈ π 1 (Σ, z 0 ), let r γ be the lift of γ to r Σ such that r γ(0) = r z 0 . The monodromy of Φ with respect to γ is M(Φ, γ) = Φ(r γ(1))Φ(r γ(0)) -1
The standard condition which ensures that the immersion f descends to a well defined immersion on Σ is the following system of equations, called the Monodromy Problem:

(7) ∀γ ∈ π 1 (Σ, z 0 )    M(Φ, γ) ∈ ΛSU (2) (i) M(Φ, γ) | λ=1 = ±I 2 (ii) ∂ ∂λ M(Φ, γ) | λ=1 = 0 (iii)
We will formulate the Monodromy Problem using the notion of principal solution (see Chapter 3.4 in [START_REF] Teschl | Ordinary differential equations and dynamical systems[END_REF]). 

(s) = Y (s) ξ(γ(s))(γ (s)) Y (0) = I 2
The principal solution of ξ with respect to γ is P(ξ, γ) = Y (1).

In other words, P(ξ, γ) is the value at γ(1) of the analytical continuation along γ of the solution of the Cauchy Problem (3) with initial condition Φ(γ(0)) = I 2 . If p, q are two points on Σ and the path γ from p to q is clear from the context, we will sometime write P(ξ, p, q) for P(ξ, γ). The principal solution has the following properties, which follow easily from its definition:

• P(ξ, γ) only depends on the homotopy class of γ.

• The principal solution is a morphism for the product of paths: If γ 1 and γ 2 are two paths such that γ 1 (1) = γ 2 (0) then P(ξ, γ 1 γ 2 ) = P(ξ, γ 1 )P(ξ, γ 2 ).

• If ψ : Σ 1 → Σ 2 is a holomorphic map, ξ is a potential on Σ 2 and γ is a path on Σ 1 , then P(ψ * ξ, γ) = P(ξ, ψ(γ)). • If σ : Σ 1 → Σ 2 is a anti-holomorphic map, then P(σ * ξ, γ) = P(ξ, σ(γ)).
Back to the DPW method, if the initial condition is Φ(z 0 ) = I 2 , which will be the case in this paper, the Monodromy Problem is equivalent to the following problem: Let Φ be a solution of dΦ = Φξ and G be a gauge. Let p Φ = ΦG. Then Φ and p Φ define the same immersion f via the DPW method. The gauged potential is

(8) ∀γ ∈ π 1 (Σ, z 0 )    P(ξ, γ) ∈ ΛSU (2) (i) P(ξ, γ) | λ=1 = ±I 2 (ii) ∂ ∂λ P(ξ, γ) | λ=1 = 0 (iii) 3 
p ξ := p Φ -1 d p Φ = G -1 ξG + G -1 dG
and is denoted ξ • G, the dot denoting the action of the gauge group on the potential. Gauging does not change the monodromy of Φ.

Definition 7. We say that ξ is regular at p ∈ Σ if β 0 (p) = 0. This ensures that the immersion f is unbranched at p.

In general Σ is a compact Riemann surface Σ minus a finite number of points, and the potential ξ extends meromorphically to Σ. Definition 8. We say that a pole p of ξ is an apparent singularity if there exists a meromorphic gauge G, defined in a neighborhood of p, such that ξ • G extends holomorphically at p and is regular. This ensures that the immersion f extends analytically at p. Our potential will have two kinds of poles: some of them will be ends of the immersion f , the others will be apparent singularities. Note that ξ must have apparent singularities at the zeros of β 0 for f to be regular. If Σ has positive genus, β 0 must have zeros on Σ so apparent singularities cannot be avoided. 

r f (z) = Sym( r F (z)) = Hf H -1 -2i ∂H ∂λ H -1 | λ=1 .
Consequently, we define a left action of ΛSU (2) on su(2) by ( 9)

H • x = HxH -1 -2i ∂H ∂λ H -1 | λ=1 .
The action is by rigid motion and r f = H • f . The Monodromy Problems for Φ and HΦ are equivalent because H ∈ ΛSU (2). 

ξ = 0 λ -1 r + s λr + s 0 dz z
with initial condition Φ(1) = I 2 , where r, s are non-zero real numbers such that r + s = 1 2 . There are two limiting cases of interest to us:

• Spherical limit: (r, s) = (1/2, 0) gives ξ S = 0 λ -1 /2 λ/2 0 dz z
which we call the spherical Delaunay potential. The corresponding solution is

Φ S (z) = 1 2 √ z z + 1 λ -1 (z -1) λ(z -1) z + 1 .
It Iwasawa decomposition is

F S (z) = 1 √ 2 1 + |z| 2 z + 1 λ -1 (z -1) λ(1 -z) z + 1 e iθ/2 0 0 e -iθ/2 B S (z) = 1 2|z| 1 + |z| 2 2|z| 0 λ(|z| 2 -1) 1 + |z| 2
where θ = arg(z). The Sym-Bobenko formula (4) and Equation [START_REF] Dorfmeister | Weierstrass type representation of harmonic maps into symmetric spaces[END_REF] give

f S (z) = -i 1 + |z| 2 -|z -1| 2 1 -|z| 2 -z + z 1 -|z| 2 + z -z |z -1| 2 ∼ 1 1 + |z| 2 1 -|z| 2 , -2 Im(z), |z -1| 2 N S (z) = -i 1 + |z| 2 -z -z |z| 2 -1 + z -z |z| 2 -1 + z -z z + z ∼ 1 1 + |z| 2 |z| 2 -1, 2 Im(z), 2 Re(z) .
Consider the rigid motion [START_REF] Heller | Lawson's genus two surface and meromorphic connections[END_REF] Ψ(x 1 , x 2 , x 3 ) = (1 -x 3 , -x 2 , -x 1 ).

Then (11) Ψ • f S (z) = 1 1 + |z| 2 2 Re(z), 2 Im(z), |z| 2 -1 = π -1 (z)
where π : C ∪ {∞} → S 2 is the stereographic projection from the north pole. The poles at 0 and ∞ are of course apparent singularities. This is confirmed by the following gauge: 2 which is regular at 0 and ∞.

G S (z) = 1+z √ z 0 λ 1-z √ z √ z 1+z A computation gives ξ S • G S = 0 λ -1 0 0 dz 2(z + 1)
• Catenoidal limit: (r, s) = (0, 1/2) gives

ξ C = 0 1/2 1/2 0
dz z which we call the catenoidal Delaunay potential. The corresponding solution is

Φ C (z) = 1 2 √ z z + 1 z -1 z -1 z + 1
which does not depend on λ, so the immersion degenerates into the point 0. A computation gives

N C (z) = 1 1 + |z| 2 1 -|z| 2 , 2 Im(z), 2 Re(z) . which is a conformal diffeomorphism from C ∪ {∞} to S 2 . 3.8. Duality. Let K(λ) = 0 iλ -1/2 iλ 1/2 0 .
Definition 9. The dual potential of ξ is

ξ † = KξK -1 = -α λ -1 γ β α .
The Delaunay spherical and catenoidal potentials are dual to each other. Note that K is not a gauge. Duality transforms the immersion in the following explicit way. Let Φ † = KΦK -1 be the solution of dΦ † = Φ † ξ † with initial condition Φ † (z 0 ) = KΦ(z 0 )K -1 . The Iwasawa decomposition of Φ † is F † = KF K -1 and B † = KBK -1 . The Sym-Bobenko formula gives:

f † (z) = 0 i i 0 f (z) + N (z) -i 1 0 0 -1 0 -i -i 0 .
In other words, up to a rigid motion, the dual (branched) immersion f † is the parallel surface at distance one to f .

Strategy

Fix a horizontal weighted graph Γ. Until Section 9, we do not assume that Γ is balanced nor has length-2 edges. Without loss of generality, we may assume (by rotating the graph Γ) that u jk = ±1 for all (j, k) ∈ E ∪ R. We denote C the Riemann sphere C ∪ {∞}. Take a copy of the Riemann sphere C j for each j ∈ J, and a copy of the Riemann sphere C jk for each (j, k) ∈ E + . For each (j, k) ∈ E + , identify the point z = u jk in C j with the point z = 1 in C jk , and the point z = u kj in C k with the point z = -1 in C jk . This defines a compact Riemann surface with nodes Σ 0 (the nodes are the double points created when identifying pairs of points).

Consider the meromorphic DPW potential ξ 0 on Σ 0 defined by ξ 0 = ξ S in C j for j ∈ J and ξ 0 = ξ C in C jk for (j, k) ∈ E + . Fix an arbitrary j 0 ∈ J and take as base point z 0 the point z = 1 in C j0 and the initial condition Φ(z 0 ) = I 2 . The fundamental group π 1 (Σ 0 , z 0 ) is generated by paths made of unit circular arcs connecting the nodes. Whenever a path γ crosses a node, we require the fundamental solution P(ξ 0 , γ) to be continuous at the node. (This seems natural and is justified by the theoretical results of Appendix B: see Remark 14.)

The spherical and catenoidal potentials both take value in Λsu(2) when z ∈ S 1 . So if all points u jk are on the unit circle, the fundamental solution P(ξ 0 , γ) will be in ΛSU (2) for all γ ∈ π 1 (Σ 0 , z 0 ). Unitarization is the hard task in solving the Monodromy Problem, so this explains why we restrict to horizontal planar graphs Γ.

The strategy of the construction is the following: for small t = 0, we define a genuine Riemann surface Σ t by opening the nodes of Σ 0 . We define a meromorphic potential ξ t on Σ t as a perturbation of the above potential ξ 0 , depending on some parameters. These parameters are determined by solving the Regularity and Monodromy Problems by an implicit function argument at t = 0.

4.1.

Symmetry. In all the paper, σ(z) = 1/z denotes the inversion with respect to the unit circle. The potentials ξ S and ξ C both have the symmetry [START_REF] Heller | Area estimates for high genus Lawson surfaces via DPW[END_REF] σ * ξ = DξD -1 with D = i 0 0 -i .

A potential having the symmetry (12) will be called σ-symmetric. With appropriate initial condition, the solution of the Cauchy Problem (3) satisfies ( 13)

σ * Φ = DΦD -1 .
The corresponding surface is invariant by the isometry X → DXD -1 in the su(2)-model, which corresponds to the symmetry with respect to the plane x 1 = 0. We keep the σ-symmetry throughout the construction, and in the end apply the rigid motion Ψ so that the surface is symmetric with respect to the horizontal plane x 3 = 0.

Opening nodes

In this section, we define a family of Riemann surfaces Σ t,x depending on a small real parameter t and a certain number of other parameters, which we denote x. We start by defining the Riemann surface with nodes Σ 0,x . We proceed as in Section 4 except that the position of the nodes in C j become parameters. (We can fix the nodes at 1 and -1 in C jk by a Möbius transformation.) Consider a copy C j of the Riemann sphere for j ∈ J and a copy C jk of the Riemann sphere for (j, k) ∈ E + . For (j, k) ∈ E + , introduce two complex parameters p jk and p kj in a neighborhood of respectively u jk and u kj . It will be convenient to denote p jk = 1 and p kj = -1 the nodes in C jk . Identify the point z = p jk in C j with the point z = p jk in C jk and the point z = p kj in C k with the point z = p kj in C jk to create two nodes per edge. This defines a compact Riemann surface with nodes denoted Σ 0,x .

To open nodes for t = 0, we introduce local complex coordinates in a neighborhood of p jk and p jk for (j, k) ∈ E:

z jk = -2i z -p jk z + p jk : V jk ⊂ C j ∼ -→ D(0, ε). z jk = -2i z -p jk z + p jk : V jk ⊂ C jk ∼ -→ D(0, ε).
(These coordinates are chosen so that Σ t,x has the desired symmetry: see Proposition 1.) We assume that ε > 0 is small enough so that the disks V jk for k ∈ E j are disjoint. For (j, k) ∈ E, we introduce a non-zero real parameter r jk in a neighborhood of τ jk and set t jk = r jk t. Assume that t is small enough so Note that it does not depend on λ. The points z = 0, z = 1 and z = ∞ in C j are denoted respectively 0 j , 1 j and ∞ j . The points z = 0 and z = ∞ in C jk are denoted 0 jk and ∞ jk .

Remark 3. The Riemann surface Σ t,x does not depend on the number ε > 0 used to define the domains V jk , but the smaller ε, the smaller t must be since we need |t jk | < ε 2 .

5.1. Symmetry.

Proposition 1. Assume that p jk ∈ S 1 for all (j, k) ∈ E. Then Σ t,x admits an anti-holomorphic involution σ defined by σ(z) = 1/z in C j for j ∈ J and C jk for (j, k) ∈ E + .

Proof: a straightforward computation gives, for

p jk ∈ S 1 z jk (1/z) = z jk (z).
A similar relation holds for z jk . Hence since t jk is real, Res q ω = 0 for j ∈ J

z jk (z)z jk (z ) = t jk ⇒ z jk (σ(z))z jk (σ(z )) = t jk . So if z ∼ z in Σ t,x , then σ(z) ∼ σ(z ) in Σ t,
where the sum is taken on all poles q of ω in C j . In the same way, ( 16)

C(p jk ) ω + C(p kj ) ω + 2πi q∈C jk Res q ω = 0 for (j, k) ∈ E + .
Definition 10 (Bers). A regular differential on the Riemann surface with nodes Σ 0,x is a meromorphic 1-form with simple poles at the nodes p jk and p jk for (j, k) ∈ E, with opposite residues, and possibly poles of arbitrary order away from the nodes.

Theorem 3. A meromorphic 1-form ω on Σ t =0,x (respectively a regular differential ω on Σ 0,x ) is uniquely defined by prescribing its poles, principal parts at the poles and periods on the circles C(p jk ) and C(p jk ) for (j, k) ∈ E, subject only to the constraints ( 14), ( 15) and [START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF]. Moreover, away from the nodes and the poles, ω depends holomorphically on t in a neighborhood of 0 and all parameters in the construction.

This is proved for holomorphic 1-forms in [START_REF] Fay | Theta Functions on Riemann Surfaces[END_REF] and for meromorphic 1-forms with simple poles in [17] using algebraic-geometric methods. A proof for poles of arbitrary order is given in [START_REF] Traizet | Opening infinitely many nodes[END_REF]. The holomorphic dependence away from the nodes and the poles means the following: for > 0, let Ω be Σ 0,x minus -neighborhoods of all nodes and poles, so Ω ⊂ Σ t,x for t small enough. Then the restriction of ω to the fixed domain Ω depends holomorphically on (z, t, x).

The potential

In this section, we define a meromorphic potential ξ t,x on Σ t,x , with poles at the following points:

• 0 j and ∞ j in C j for j ∈ J, which are to be apparent singularities, • p jk in C j for (j, k) ∈ R, which are to be the Delaunay ends of our surface. Here p jk is a λ-dependent parameter in the functional space W ≥0 in a neighborhood of u jk , for (j, k) ∈ R. • q jk and σ(q jk ) in C jk , for (j, k) ∈ E + , which are to be apparent singularities. Here q jk is a λ-dependent parameter in W ≥0 in a neighborhood of 0, for (j, k) ∈ E + .

Remark 4. All these λ-dependent parameters will be used to solve the Monodromy Problem. The cross-ratio of 1, -1, q jk and σ(q jk ) is

(1, -1; q jk , σ(q jk )) = q jk q jk -1 + 2i Im(q jk ) 1 -q jk q jk + 2i Im(q jk ) .

The derivative of the cross-ration with respect to Re(q jk ) at q jk = 0 is zero, so Re(q jk ) serves no purpose and we restrict q jk to the space iW ≥0 R . We could have fixed the singularities at 0 jk and ∞ jk and perturbed the position of the nodes at 1 and -1, but then Σ t,x would depend on λ. We chose to have a constant Riemann surface and moving singularities (with respect to λ), which is more conventional than the reverse.

We define the meromorphic potential ξ t,x on Σ t,x as the sum of two terms:

ξ t,x = η t,x + t χ t,x
where the potential η t,x is a perturbation of the potential ξ 0 described in Section 4, while the potential χ t,x prescribes periods around the nodes and suitable singularities at the Delaunay ends. These potentials are defined as follows, using Theorem 3:

• The potential η t,x has simple poles at 0 j and ∞ j for j ∈ J with residues

Res 0j η t,x = -Res ∞j η t,x = M j = iA j λ -1 B j λC j -iA j ,
simple poles at q jk and σ(q jk ) for (j, k) ∈ E + with residues

Res q jk η t,x = -Res σ(q jk ) η t,x = M jk = iA jk B jk C jk -iA jk
and has vanishing periods around the nodes:

C(p jk ) η t,x = C(p jk ) η t,x = 0 for (j, k) ∈ E. Here A j , B j , C j , A jk , B jk , C jk are parameters in a neighborhood of respectively 0, 1/2, 1/2, 0, 1/2, 1/2 in W ≥0
R . • The potential χ t,x has the following periods around the nodes for (j, k) ∈ E:

C(p jk ) χ t,x = - C(p jk ) χ t,x = 2πi m jk with m jk = a jk λ -1 ib jk ic jk -a jk
where a jk , b jk , c jk for (j, k) ∈ E are parameters in W ≥0 R to be determined. It has a double pole at p jk in C j for (j, k) ∈ R with principal part 0 0 1 0

a jk p jk dz (z -p jk ) 2 + ib jk dz z -p jk .
Here a jk , b jk are parameters in W ≥0 R to be determined, for (j, k) ∈ R. It is known from [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF] that such a pole creates a Delaunay end, provided the Monodromy Problem is solved. Finally, the potential χ t,x has simple poles with equal residues at 0 j and ∞ j and simples poles with equal residues at q jk and σ(q jk ). These residues are determined by the constraints ( 15) and ( 16) which give:

(17) Res 0j χ t,x = Res ∞j χ t,x = - 1 2 k∈Ej m jk - 1 2 k∈Rj 0 0 ib jk 0 (18)
Res q jk χ t,x = Res σ(q jk ) χ t,x = 1 2 (m jk + m kj ).

6.1. Symmetry. The residues and periods of the entries of η t,x and χ t,x have been chosen to be either real or imaginary so that the potential has the desired symmetry:

Proposition 2. Assume that p jk ∈ S 1 for (j, k) ∈ E and p jk = e iθ jk with θ jk ∈ W ≥0 R for (j, k) ∈ R.
Then the potential ξ t,x has the symmetry (12):

σ * ξ t,x = Dξ t,x D -1 .
Note that the bar denotes the conjugation operator defined in Section 3.1 so this actually means σ * ξ t,x (z, λ) = Dξ t,x (z, λ)D -1 . Both sides are holomorphic with respect to λ.

Proof: if ω is a meromorphic 1-form on Σ t,x then σ * ω is meromorphic and

Res σ(p) σ * ω = Res p ω. Hence Res ∞j σ * η t,x = Res 0j η t,x = M j = -DM j D -1 = Res ∞j Dη t,x D -1 .
In the same way, σ * η t,x and Dη t,x D -1 have the same residues at 0 j , q jk and σ(q jk ). Moreover, both have vanishing periods around the nodes, so by uniqueness in Theorem 3,

σ * η t,x = Dη t,x D -1 . For (j, k) ∈ E, we have since σ(C(p jk )) = -C(p jk ) C(p jk ) σ * χ t,x = - C(p jk ) χ t,x = 2πi m jk = 2πiDm jk D -1
so σ * χ t,x and Dχ t,x D -1 have the same periods around the nodes. For (j, k) ∈ R, assuming that p jk = e iθ jk with θ jk ∈ W ≥0 R , we have σ(p jk ) = p jk and

σ * a jk p jk dz (z -p jk ) 2 + ib jk dz z -p jk = - a jk p jk dz (z -p jk ) 2 - ib jk dz z -p jk + ib jk dz z so σ * χ t,
x and Dχ t,x D -1 have the same principal part at p jk . Finally, they have the same residues at 0 j , ∞ j , q jk and σ(q jk ) by computations similar to the above. By uniqueness in Theorem 3, we have

σ * χ t,x = Dχ t,x D -1 .
6.2. Explicit formulas at t = 0. It will be convenient to denote, for (j, k) ∈ E + , M kj = M jk , A kj = A jk , etc... so M jk makes sense for all (j, k) ∈ E. Be careful however that A jk and A kj are the same parameter, whereas a jk and a kj are distinct parameters. For complex numbers p, q, we denote ω q the meromorphic 1-form on the Riemann sphere with simple poles at q and σ(q) with residues 1 and -1, and ω p,q the meromorphic 1-form with simple poles at p, q and σ(q) with residues 1, -1/2 and -1/2. Explicitly:

ω q = dz z -q - qdz qz -1 = (1 -qq)dz (z -q)(1 -qz)
and

ω p,q = dz z -p - dz 2(z -q) - q dz 2(qz -1)
.

In particular if q = 0:

ω 0 = dz z and ω p,0 = dz z -p - dz 2z .
Proposition 3. At t = 0 and for any value of the parameter x, we have in C j for j ∈ J:

η 0,x = M j ω 0 χ 0,x = k∈Ej m jk ω p jk ,0 + k∈Rj 0 0 1 0 a jk p jk dz (z -p jk ) 2 + ib jk ω p jk ,0 and in C jk for (j, k) ∈ E + : η 0,x = M jk ω q jk χ 0,x = -m jk ω 1,q jk -m kj ω -1,q jk .
Proof: the entries of η 0,x and χ 0,x are regular meromorphic differentials on the Riemann surface with nodes Σ 0,x . Proposition 3 follows from the fact that a meromorphic 1-form on the Riemann sphere is uniquely defined by its poles and principal parts.

We shall need the t-derivative of the potential ξ t,x at t = 0. We have of course

∂ξ t,x ∂t | t=0 = ∂η t,x ∂t | t=0 +χ 0,x .
Proposition 4. The t-derivative of the potential η t,x at t = 0 is given by

∂η t,x ∂t | t=0 =          k∈Ej r jk M jk (1 + q 2 jk ) (1 -q 2 jk ) p jk dz (z -p jk ) 2 in C j for j ∈ J r jk M j dz (z -1) 2 -r kj M k dz (z + 1) 2 in C jk for (j, k) ∈ E + .
Proof: by Lemma 3 in [START_REF] Traizet | On the genus of triply periodic minimal surfaces[END_REF], for (j, k) ∈ E, the derivative of η t,x with respect to the parameter t jk at t = 0 is a meromorphic differential on Σ 0,x with two double poles at p jk , p jk and principal parts given in term of the coordinates used to open nodes by [START_REF] Pressley | Loop Groups[END_REF] ∂η

t,x ∂t jk | t=0        -dz jk (z jk ) 2 Res p jk η 0,x z jk at p jk -dz jk (z jk ) 2 Res p jk η 0,x z jk at p jk .
We have

dz jk (z jk ) 2 = ip jk dz (z -p jk ) 2 and dz jk (z jk ) 2 = ip jk dz (z -p jk ) 2 .
Observe that these are globally defined meromorphic 1-forms on the Riemann sphere so in [START_REF] Pressley | Loop Groups[END_REF] becomes an equality in C j and C jk , respectively. By Proposition 3:

Res p jk η 0,x z jk = Res p jk (z + p jk ) -2i(z -p jk ) M j dz z = iM j
Recalling that q jk ∈ iW ≥0 R so q jk = -q jk and that p jk = ±1:

Res p jk η 0,x z jk = Res p jk (z + p jk ) -2i(z -p jk ) M jk (1 + q 2 jk )dz (z -q jk )(1 + q jk z) = iM jk 1 + q 2 jk 1 -q 2 jk .
Hence for (j, k) ∈ E:

∂η t,x ∂t jk | t=0 =              M jk (1 + q 2 jk ) (1 -q 2 jk ) p jk dz (z -p jk ) 2 in C j M j p jk dz (z -p jk ) 2
in C jk 0 in all other Riemann spheres.

Proposition 4 follows from t jk = r jk t and the chain rule.

6.3. Central value of the parameters. The vector of all parameters of the construction (except t) is denoted x. Each parameter is in a neighborhood of a central value denoted with an underscore. The central values are tabulated below. Some of them we have already seen. The others will be computed when solving the Monodromy Problem. Also, we have tried to define the potential in a way as general and natural as possible, but it turns out a posteriori after solving all equations that we have too many parameters, so we can fix the value of some of them: A j , B j for j ∈ J will not be used. Some computations are simpler with these restrictions so we assume them from now on. 

p jk (j, k) ∈ E S 1 u jk p jk (j, k) ∈ E fixed ±1 r jk (j, k) ∈ E R τ jk A j j ∈ J fixed 0 B j j ∈ J fixed 1/2 C j j ∈ J W ≥0 R 1/2 q jk (j, k) ∈ E + iW ≥0 R 0 A jk (j, k) ∈ E + W ≥0 R 0 B jk , C jk (j, k) ∈ E + W ≥0 R 1/2 a jk (j, k) ∈ E W ≥0 R τ jk (λ -1)/2 b jk , c jk (j, k) ∈ E W ≥0 R 0 p jk (j, k) ∈ R exp(iW ≥0 R ) u jk a jk (j, k) ∈ R W ≥0 R τ jk (λ -1) 2 /2 b jk (j, k) ∈ R W ≥0 R 0

The Regularity Problem

We want 0 j , ∞ j and q jk , σ(q jk ) to be apparent singularities. In this section, the entries of the potential will be denoted [START_REF] Raujouan | On Delaunay ends in the DPW method[END_REF] 

ξ t,x = α λ -1 β γ -α
and the dependence on the parameters (t, x) will not be written to ease notations.

7.1. Regularity at 0 j and ∞ j . Fix j ∈ J and consider the gauge

G j = f 0 λg f -1 with f (z) = 1 + z √ z and g(z) = x j 1 -z √ z + i y j 1 + z √ z .
Here x j , y j are parameters in W ≥0 R to be determined. At (x j , y j ) = (1, 0) we have G j = G S . We denote

p ξ = ξ t,x • G j = p α λ -1 p β p γ -p α .
The gauge has the symmetry G j • σ = DG j D -1 so p ξ has the symmetry [START_REF] Heller | Area estimates for high genus Lawson surfaces via DPW[END_REF] and it suffices to ensure that p ξ is regular at 0 j ; regularity at ∞ j will follow by symmetry.

Proposition 5. There exists explicit values of x j , y j and C j in W ≥0 R , depending analytically on (t, x), such that p α and p β are holomorphic at 0 j , p γ has a pole of multiplicity at most 2 and

(21) Re Res 0j (zp γ) = 0.
Proof: straightforward computations give

p α = α + f -1 gβ + f -1 df p β = f -2 β (22) p γ = -2λf gα -λg 2 β + f 2 γ + λ(f dg -g df ).
Recall that α, β, γ have simple poles at 0 j . Hence p β is holomorphic at 0 j and p α has (at most) a simple pole with residue

Res 0j p α = Res 0j α + (x j + iy j )Res 0j β - 1 2 .
We take [START_REF] Teschl | Ordinary differential equations and dynamical systems[END_REF] x j + iy j = 1/2 -Res 0j α Res 0j β so that p α is holomorphic at 0 j . Finally, p γ has at most a double pole at 0 j and since f dg -g df has a simple pole at 0,

Res 0j (zp γ) = -2λ(x j + iy j )Res 0j α -λ(x j + iy j ) 2 Res 0j β + Res 0j γ.
By definition, recalling the definition of the operator Re in Section 3.1:

Re(Res 0j γ) = λC j .
So we see that Equation ( 21) is equivalent to

C j = Re 2(x j + iy j )Res 0j α + (x j + iy j ) 2 Res 0j β which using Equation (23) simplifies to (24) C j = Re 1/4 -(Res 0j α) 2 ) Res 0j β .
Note that the residues of α and β involved in Equations ( 23) and ( 24) are given, as functions of (t, x), by the definition of ξ t,x . In particular, at t = 0, we have x j = 1 and y j = 0 so G j = G S , and

C j | t=0 = 1/4 + A 2 j B j = 1/2. (25) 
At this point, the Regularity Problem at 0 j is only partially solved since p γ still has a pole. By Equation ( 22), we have [START_REF] Traizet | Opening infinitely many nodes[END_REF] p γ 0 = z -1 (z + 1) 2 γ 0 so for p γ to be holomorphic at 0 j , it is necessary that

Res 0j z -1 (z + 1) 2 γ 0 = 0.
We define for j ∈ J and t = 0

(27) R j (t, x) = t -1 Res 0j z -1 (z + 1) 2 γ 0 t,x ∈ C. Proposition 6.
For j ∈ J, the function R j (t, x) extends analytically at t = 0. Moreover, at the central value, we have R j (0, x) = F j /2, where F j is the force defined in Equation (1).

Proof: by Proposition 3, we have γ 0,x = λC j ω 0 in C j so γ 0 0,x = 0. Hence R j extends analytically at t = 0 and

R j (0, x) = Res 0j z -1 (z + 1) 2 ∂γ 0 t,x ∂t | t=0 .
By Proposition 4, we have

∂γ t,x ∂t | t=0 = k∈Ej r jk C jk (1 + q 2 jk ) (1 -q 2 jk ) p jk dz (z -p jk ) 2 + ic jk ω p jk ,0 + k∈Rj a jk p jk dz (z -p jk ) 2 + ib jk ω p jk ,0 .
At the central value (see the table in Section 6.3) and λ = 0, this simplifies to

∂γ 0 t,x ∂t | t=0 = k∈Ej ∪Rj τ jk u jk dz 2(z -u jk ) 2
which is holomorphic at 0 j . Hence R j (0, x) = k∈Ej ∪Rj τ jk 2u jk .

Remark 5. Proposition 6 explains where the balancing condition comes from. We solve the equation R j = 0 in Section 9 using the non-degeneracy hypothesis. Then after the Monodromy Problem is solved, p γ will in fact be holomorphic at 0 j : see Proposition 18.

7.2. Regularity at q jk and σ(q jk ). Fix (j, k) ∈ E + . Recall that ξ t,x has moving singularities at q jk and σ(q jk ), which depend on λ. We use the following Möbius transformation as local coordinate in a neighborhood of q jk :

w jk (z) = z -q jk 1 -q jk z = z -q jk 1 + q jk z We have σ • w jk = w jk • σ.
We make the change of variable w = w jk and denote

r ξ = (w -1 jk ) * ξ t,x = r α λ -1 r β r γ -r α
which has fixed singularities at w = 0 and w = ∞ and still has the symmetry [START_REF] Heller | Area estimates for high genus Lawson surfaces via DPW[END_REF]. We consider a gauge G jk of a form dual to G j :

G jk = f -1 g 0 f with f = 1 + w √ w and g = x jk 1 -w √ w + i y jk 1 + w √ w . Let p ξ = r ξ • G jk = p α λ -1 p β p γ -p α .
The gauge G jk has the symmetry G jk • σ = DG jk D -1 so it suffices to ensure that p ξ is regular at w = 0, regularity at w = ∞ will follow by symmetry. Proof: we simply dualize the proof of Proposition 5 with r ξ in place of ξ t,x and obtain:

(29)

x jk + iy jk = 1/2 + Res 0 r α Res 0 r γ = 1/2 + Res q jk α Res q jk γ (30) B jk = Re 1/4 -(Res 0 r α) 2 Res 0 r γ = Re 1/4 -(Res q jk α) 2 Res q jk γ (31) B jk | t=0 = 1/4 + A 2 jk C jk .
At this point, the Regularity Problem at q jk is only partially solved since p β still has a pole. Dualizing Equation [START_REF] Traizet | Opening infinitely many nodes[END_REF] we have (32)

p β 0 = w -1 (w + 1) 2 r β 0
For p β to be holomorphic, it is necessary that

Res 0 w -1 (w + 1) 2 r β 0 = 0.
We define for (j, k) ∈ E + and t = 0:

R jk (t, x) = t -1 Res 0 w -1 (w + 1) 2 r β 0 ∈ C.
Proposition 8. For (j, k) ∈ E + , the function R jk extends analytically at t = 0 and

(33) R jk (0, x) = r jk 1 + (q 0 jk ) 2 2(1 -q 0 jk ) 2 -r kj 1 + (q 0 jk ) 2 2(1 + q 0 jk ) 2 + 2ib 0 jk 1 -q 0 jk + 2iq 0 jk b 0 kj 1 + q 0 jk .
In particular, R jk (0, x) = 0 at the central value.

Proof: by Proposition 3, we have β 0,x = λB jk ω q jk in C jk so r β 0 0,x = 0. Hence R jk extends analytically at t = 0 and

R jk (0, x) = Res 0 w -1 (w + 1) 2 ∂ r β 0 t,x ∂t | t=0 .
By Proposition 4, remembering that we fixed B j = B k = 1/2:

∂β t,x ∂t | t=0 = r jk dz 2(z -1) 2 - r kj dz 2(z + 1) 2 -ib jk ω 1,q jk -ib kj ω -1,q kj .
The first two residues are better computed using the z-coordinate

Res w=0 w -1 (w + 1) 2 (w -1 jk ) * dz (z ± 1) 2 = Res z=q jk w -1 jk (w jk + 1) 2 dz (z ± 1) 2 = 1 + q 2 jk (q jk ± 1) 2 .
The last two residues are better computed using the w-coordinate:

(w -1 jk ) * ω ±1,q jk = dw w -w jk (±1) - dw 2w Res 0 w -1 (w + 1) 2 (w -1 jk ) * ω 1,q jk = -1 w jk (1) -1 = 2 q jk -1 Res 0 w -1 (w + 1) 2 (w -1 jk ) * ω -1,q jk = -1 w jk (-1) -1 = -2q jk q jk + 1 .
Collecting all terms and setting λ = 0, we obtain Equation (33).

Remark 6. We solve the equation R jk (t, x) = 0 using the Implicit Function Theorem in Section 9. Then after the Monodromy Problem is solved, p β will in fact be holomorphic at w = 0: see Proposition 20.

The Monodromy Problem

From now on, we assume that C j is given in function of (t, x) by Equation ( 24) for j ∈ J and B jk is given by Equation ( 30) for (j, k) ∈ E + . Also, we restrict t to be positive. 8.1. Definition of various paths. In this section, we define for (j, k) ∈ E ∪R a loop γ jk with base point 1 j encircling the point p jk , and for (j, k) ∈ E + a path Γ jk connecting 1 j to 1 k through the two necks corresponding to the edge (j, k) (see Figure 2). We study carefully how these paths transform under σ.

Fix j ∈ J. We define an order ≺ on the set E j ∪ R j by k ≺ ⇔ arg(u jk ) < arg(u j ), where the arguments are chosen in (0, 2π). For k ∈ E j ∪ R j , we fix a curve α jk in the domain {z ∈ C j : |z| > 1, 0 < arg(z) < 2π} from 1 j to e iε u jk and define δ jk = α jk σ(α jk ) -1 . The domain bounded by δ jk contains the points p j for k. We define inductively the loops γ jk for k ∈ E j ∪ R j by (34)

δ jk = k γ j .
In other words, γ jk = (δ jk ) -1 δ jk where k is the predecessor of k for the order ≺. The domain bounded by γ jk contains the point p jk and no other p j . It will be convenient to also denote

δ jk = ≺k γ j
so δ jk = δ jk γ jk . (An empty product means the neutral element.) These paths transform as follows under σ:

(35) σ(δ jk ) = δ -1 jk (36) σ(γ jk ) = δ jk γ -1 jk (δ jk ) -1 . Fix (j, k) ∈ E + .
The path Γ jk is defined as follows. Fix a number ε such that 0 < ε < ε, where ε is the number introduced to open nodes in section 5. Recalling the definition of the coordinate z jk near p jk , we have

z = p jk (2 + iz jk ) (2 -iz jk ) so for real x ∈ [-ε, ε],
the point z jk = x is on the unit circle and its argument is an increasing function of x. First assume that τ jk > 0 so t jk and t kj are positive. We define the path β jk as the concatenation of the following 5 paths (taking care to avoid the disks that are removed when opening nodes):

(1) The circular arc from z = e iε u jk to z jk = ε .

(2) The circular arc from z jk = ε to z jk = t jk /ε . Its endpoint was identified with z jk = ε when opening nodes. (3) The circular arc from z jk = ε to z kj = -ε on the upper half unit circle in C jk . 2) into one single arc, but it is convenient for the proof of Proposition 13 to write it this way.) If τ jk < 0, some signs in the definition of β jk must be changed, the result being that path number (3) is now on the lower half unit circle. All these paths are on the unit circle so σ(β jk ) = β jk . We define the path Γ jk on Σ t,x from 1 j to 1 k as Γ jk = α jk β jk α -1 kj (or Γ jk = α jk β jk in case j is the minimum of E k ∪ R k ). It transform as follows under σ:

(37) σ(Γ jk ) = δ -1 jk Γ jk δ kj .
8.2. Formulation of the Monodromy Problem. Let Σ t,x be the Riemann surface Σ t,x minus the poles of ξ t,x , namely the ends p jk for (j, k) ∈ R, the points 0 j , ∞ j for j ∈ J and the points q jk , σ(q jk ) for (j, k) ∈ E + . Fix an arbitrary j 0 ∈ J and take z 0 = 1 j0 as base point.

Proposition 9. Assume that the Regularity Problem is solved and that

(38) ∀(j, k) ∈ E ∪ R,    P(ξ t,x , γ jk ) ∈ ΛSU (2) P(ξ t,x , γ jk ) | λ=1 = I 2 ∂ ∂λ P(ξ t,x , γ jk ) | λ=1 = 0 (39) ∀(j, k) ∈ E + ,    P(ξ t,x , Γ jk ) ∈ ΛSU (2) P(ξ t,x , Γ jk ) | λ=1 = ±I 2 P(ξ t,x , Γ jk ) -1 ∂ ∂λ P(ξ t,x , Γ jk ) | λ=1 = i(V k -V j )
where V j for j ∈ J are arbitrary matrices in su [START_REF] Bobenko | Constant mean curvature surfaces based on fundamental quadrilaterals[END_REF]. Then the Monodromy Problem (8) is solved.

Proof: for j ∈ J, let γ 0j be a closed loop around 0 j in the unit disk of C j , with base point 1 j . For (j, k) ∈ E + , let γ q jk be a closed loop with base point 1 j defined as follows: Items (1) and (2) in the definition of β jk from 1 j to z jk = ε in C jk , then a closed loop in the unit disk of C jk around q jk , and back to 1 j by the same path. Provided the Regularity Problem at 0 j and q jk are solved, the gauged potentials ξ t,x • G j and ξ t,x • G jk have trivial monodromy around 0 j and q jk , respectively. Because the gauges have multivaluation -I 2 around these points, we have

P(ξ t,x , γ 0j ) = P(ξ t,x , γ q jk ) = -I 2 .
Any element of π 1 (Σ t,x , z 0 ) can be written as a product of the following paths or their inverse:

(1)

γ jk for (j, k) ∈ E ∪ R, (2) γ 0j for j ∈ J, (3) γ q jk for (j, k) ∈ E + , (4) Γ jk for (j, k) ∈ E + .
Let c ∈ π 1 (Σ t,x , z 0 ) and decompose it as

c = n-1 i=0 c i
where each c i or c -1 i is a path in the above list. Then

P(ξ t,x , c) = n-1 i=0 P(ξ t,x , c i )
so we immediately see that the first two items of the Monodromy Problem [START_REF] Fay | Theta Functions on Riemann Surfaces[END_REF] are solved. Each path c i goes from a point 1 ji to a point 1 ji+1 , with j i+1 = j i for paths of type ( 1), ( 2) and (3) and j n = j 0 . Then we always have

P(ξ t,x , c i ) -1 ∂ ∂λ P(ξ t,x , c i ) | λ=1 = i(V ji+1 -V ji ).
Indeed, boths sides are zero for paths of type (1), ( 2), (3), and for paths of type (4) this follows from Equation (39). Consequently (using that ±I 2 commutes with everything) (40)

P(ξ t,x , c) -1 ∂ ∂λ P(ξ t,x , c) | λ=1 = n-1 i=0 P(ξ t,x , c i ) -1 ∂ ∂λ P(ξ t,x , c i ) | λ=1 = i(V jn -V j0 ) = 0.
We shall take the following choice for the matrices V j :

(41)

V j = -i 2 Re(v j ) -i Im(v j ) i Im(v j ) -Re(v j )
where v j denotes the vertices of the given graph Γ. Then for (j, k)

∈ E + , we have v k -v j = jk u jk so (42) V k -V j = -i jk 2 Re(u jk ) -i Im(u jk ) i Im(u j k) -Re(u jk ) = - jk 2 
N S (u jk ).

Remark 7.

(1) There is geometry behind our choice for V j : we are in fact requiring that the image of 1 j by the immersion is v j for all j ∈ J, up to a rigid motion: see Point (2) of Proposition 18.

(2) If the Regularity Problem at 0 j and ∞ j is solved, then Equations (38) for k ∈ E j ∪ R j are not independent, as the fundamental group of the n-punctured sphere has n -1 generators. We will still solve Problems (38) for all k ∈ E j ∪ R j and infer in Point (3) of Proposition 18 that the Regularity Problem at 0 j and ∞ j is solved. A similar remark holds for the Regularity Problem at q jk . 8.3. The renormalized γ-Monodromy. In this section, we address the Monodromy Problem (38) for the curves γ jk , (j, k) ∈ E ∪ R. To compensate for the lack of symmetry of γ jk (see Equation ( 36)), we conjugate P(ξ t,x , γ jk ) by P(ξ t,x , δ jk ) 1/2 and define Ă M jk (t, x) = P(ξ t,x , δ jk ) 1/2 P(ξ t,x , γ jk )P(ξ t,x , δ jk ) -1/2 .

Note that the square root is well-defined for t small enough because at t = 0, ξ 0,x is holomorphic at p jk for all (j, k) ∈ E ∪ R so P(ξ 0,x , δ jk ) = I 2 . As in [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF], we define for t = 0:

x M jk (t, x) = t -1 log Ă M jk (t, x).
Proposition 10. For (j, k) ∈ E ∪ R:

(1) The renormalized monodromy x M jk (t, x) extends at t = 0 to an analytic map of (t, x) in a neighborhood of (0, x) with value in Λsl(2, C).

(2) x M jk (t, x) has the symmetry

(43) x M jk = -D x M jk D -1 .
(3) Problem (38) is equivalent to the following problem for (j, k) ∈ E ∪ R:

(44)      x M jk (t, x) ∈ Λsu(2) (i) x M jk (t, x) | λ=1 = 0 (ii) ∂ ∂λ x M jk (t, x) | λ=1 = 0 (iii) (4 
) At t = 0, we have

(45) x M jk (0, x) = 2πi Res p jk Φ S ∂ξ t,x ∂t | t=0 (Φ S ) -1 .
Proof:

(1) By standard ODE theory, Ă M jk is an analytic map of all parameters. At t = 0, Ă M jk (0, x) = I 2 , so

x M jk extends analytically at t = 0. (2) By Proposition 2 and Equations ( 35), (36), we have

(46) P(ξ t,x , δ jk ) = DP(ξ t,x , δ jk ) -1 D -1 (47) P(ξ t,x , γ jk ) = DP(ξ t,x , δ jk )P(ξ t,x , γ jk ) -1 P(ξ t,x , δ jk ) -1 D -1 .
Hence Ă M jk has the symmetry

Ă M jk (t, x) = D Ă M jk (t, x) -1 D -1 .
Point (2) follows by taking the logarithm, remembering that t ∈ R. (3) Assuming that P(ξ t,x , δ jk ) solves the Monodromy Problem (8), the Monodromy Problem for

P(ξ t,x , γ jk ) is equivalent to      Ă M jk (t, x) ∈ ΛSU (2) Ă M jk (t, x) | λ=1 = I 2 ∂ ∂λ Ă M jk (t, x) | λ=1 = 0
which, taking the logarithm, is equivalent to Problem (44). Remembering the definition of δ jk , Point (3) follows by induction on k for the order ≺ on E j ∪ R j .

(4) We have, since P(ξ 0,x , γ jk ) = P(ξ 0,x , δ jk ) = I 2 :

x M jk (0, x) = ∂ ∂t Ă M jk (t, x) | t=0 = ∂ ∂t P(ξ t,x , γ jk ) | t=0 .
At t = 0, we have A j = 0 and B j = C j = 1/2 so ξ 0,x = ξ S . By Proposition 8 in [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF], we obtain

∂ ∂t P(ξ t,x , γ jk ) | t=0 = γ jk Φ S ∂ξ t,x ∂t | t=0 (Φ S ) -1 = 2πi Res p jk Φ S ∂ξ t,x ∂t | t=0 (Φ S ) -1 .
8.4. The Monodromy Problem around nodes. In this section we fix (j, k) ∈ E and solve Problem (44). Let U jk = Φ S (p jk ). In view of Equation ( 45), it is advantageous to conjugate x M jk by the inverse of U jk . Since p jk ∈ S 1 , U jk ∈ ΛSU (2) and U jk = DU jk D -1 by Equation [START_REF] Kapouleas | Complete constant mean curvature surfaces in euclidean three-space[END_REF]. So this conjugation does not affect the Monodromy Problem (44) nor the symmetry (43). We define We define

| M jk (t, x) = U -1 jk x M jk (t, x)U jk (48) F jk (t, x) = i | M jk;11 (t, x) + | M jk;11 (t, x) * (49) G jk (t, x) = λ | M jk;12 (t, x) + | M jk;21 (t, x) * . so that | M jk ∈ Λsu(2) is equivalent to F jk = G jk = 0. By symmetry (43), F jk (t, x) and G jk (t, x) are in W R . By definition, F * jk = -F jk so since F 0 jk ∈ R,
(50) E 1,jk = (E 1,jk,i ) 1≤i≤6 = F + jk , G + jk , λ(G ≤0 jk ) * , i | M jk;11 | λ=1 , | M jk;21 | λ=1 , ∂ ∂λ | M jk;21 | λ=1 x 1,jk = a + jk , b + jk , c + jk , a 0 jk , b 0 jk , c 0 jk so Problem (44) is equivalent to E 1,jk (t, x) = 0. Proposition 11. For (j, k) ∈ E: (1) E 1,jk (t, x) ∈ (W >0 R ) 3 × R 3 . (2) At the central value, E 1,jk (0, x) = 0.
(3) The partial differential of E 1,jk with respect to x 1,jk at (0, x) is an automorphism of (W >0 R ) 3 × R 3 . (4) The full differential of E 1,jk with respect to x at (0, x) only involves the variables x 1,jk , r jk , A jk and C jk . (5) If X ∈ Ker(d x E 1,jk (0, x)) satisfies dA jk (X) = 0, then db jk (X) = dc jk (X) = 0.

Proof: Point (1) follows from symmetry. By Propositions 3 and 4, we have in a neighborhood of p jk :

∂ ∂t ξ t,x | t=0 = m jk dz z -p jk + r jk M jk 1 + q 2 jk 1 -q 2 jk p jk dz (z -p jk ) 2 + holomorphic. A simple computation gives ∂ ∂z Φ S (z)M jk Φ S (z) -1 | z=p jk = p -1 jk Φ S (p jk )[M j , M jk ]Φ S (p jk ) -1 .
(Here M j and M jk have their values at t = 0.) Equation ( 45) gives

| M jk (0, x) = 2πi m jk + 2πi r jk 1 + q 2 jk 1 -q 2 jk [M j , M jk ] .
Observe that the partial differential of | M jk with respect to q jk is zero since q jk = 0 at the central value. Point (4) follows. Assume from now on that q jk = 0 and A jk = 0. By Equation (31), B jk = 1 4C jk . We obtain

(51) | M jk (0, x) = 2πi a jk λ -1 ib jk ic jk -a jk + πi r jk λ -1 C jk -λ 4C jk 0 0 λ 4C jk -λ -1 C jk .
In particular at the central value, this simplifies to

(52) | M jk (0, x) = 2πi τ jk (λ -1) 2 4λ 1 0 0 -1 ∈ Λsu(2).
which proves Point (2). To prove Point (3), assume that r jk = τ jk and C jk = 1/2 are fixed. Differentiating Equation ( 51) at (t, x) = (0, x) we obtain:

dF jk = -2π da jk -da * jk dG jk = -2π(db jk + λdc * jk ) dE 1,jk,1 = -2π da + jk dE 1,jk,2 = -2π(db + jk + λdc 0 jk ) dE 1,jk,3 = -2π(dc + jk + λdb 0 jk ) dE 1,jk,4 -dE 1,jk,1 | λ=1 = -2π da 0 jk dE 1,jk,5 -dE 1,jk,3 | λ=1 = -2π(dc 0 jk -db 0 jk ) dE 1,jk,6 - ∂ ∂λ dE 1,jk,3 | λ=1 = 2πdb 0 jk .
Point (3) easily follows from these formulas. Finally, to prove Point (5), relax the hypothesis r jk = τ jk and C jk = 1/2. By Equation (51), the off-diagonal part of | M jk does not change, so dE 1,jk,i for i ∈ {2, 3, 5, 6} do not change. Since these equations determine b jk and c jk , we obtain db jk (X) = dc jk (X) = 0. Remark 8. We will solve all equations at the same time by one single application of the Implicit Function Theorem in Section 9. 8.5. The Monodromy Problem around ends. In this section we fix (j, k) ∈ R and solve Problem (44). We follow closely the resolution of the same problem in [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF]. We cannot take U jk = Φ S (p jk ) because p jk ∈ S 1 so we take U jk = Φ S (u jk ) and conjugate x M jk by the inverse of U jk . Observe that if a jk = b jk = 0 then ξ t,x is holomorphic at p jk so x M jk = 0. This prompts us to take a jk = (λ -1) 2 p a jk and b jk = (λ -1) 2 p b jk with p a jk , p b jk ∈ W ≥0 R . This way, Points (ii) and (iii) of Problem (44) are automatically satisfied. We define

| M jk (t, x) = λ (λ -1) 2 U -1 jk x M jk (t, x)U jk
which extends at λ = 1 to an analytic map of (t, x) (see details in Section 6.2 of [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF]). Since (λ -1) 2 /λ is unitary on the unit circle, Point (i) of Problem ( 44) is equivalent to | M jk (t, x) ∈ Λsu(2). Define F jk and G jk by Equations ( 48) and ( 49) and

E 2,jk = (E 2,jk,i ) 1≤i≤4 = F + jk , G + jk , (G - jk ) * , G 0 jk .
Problem (44) is equivalent to E 2,jk (t, x) = 0. Writing p jk = e iθ jk with θ jk ∈ W ≥0 R , we define

x 2,jk = (p a + jk , p b + jk , θ + jk , p b 0 jk ). Proposition 12. For (j, k) ∈ R: (1) E 2,jk (t, x) ∈ (W >0 R ) 3 × R. (2) At the central value, E 2,jk (0, x) = 0.
(3) The differential of E 2,jk with respect to x at (0, x) only involves the variable x 2,jk and is an automorphism of (W >0 R ) 3 × R. Proof: Point (1) follows from symmetry. Equation (45) gives

| M jk (0, x) = 2πiλ U -1 jk Res p jk Φ S (z) 0 0 1 0 Φ S (z) -1 p a jk p jk (z -p jk ) 2 + i p b jk z -p jk U jk .
A simple computation gives

∂ ∂z Φ S (z) 0 0 1 0 Φ S (z) -1 | z=p jk = λ -1 2p jk Φ S (p jk ) 1 0 0 -1 Φ S (p jk ) -1 .
This gives

(53) | M jk (0, x) = 2πi U -1 jk Φ S (p jk ) p a jk /2 0 λi p b jk -p a jk /2 Φ S (p jk ) -1 U jk .
At the central value, this simplifies to

| M jk (0, x) = 2πi τ jk /4 0 0 -τ jk /4 ∈ Λsu(2)
which proves Point (2). Using Equation (53), we obtain at the central value

∂ ∂p jk | M jk = 2πi u -1 jk 0 λ -1 /2 λ/2 0 , τ jk /4 0 0 -τ jk /4 = 2πi τ jk 4u jk 0 -λ -1 λ 0 .
Hence by the chain rule, since dp jk /dθ jk = iu jk at x = x: 8.6. The Γ-Monodromy Problem. In this section, we fix (j, k) ∈ E + and we solve Problem (39). To compensate for the lack of symmetry of Γ jk (see Equation (37)), we multiply P(ξ t,x , Γ jk ) by suitable (different) factors on the left and right. Then we conjugate by Φ S (u jk ) ∈ ΛSU (2) to simplify computations. We define for t > 0: P jk (t, x) = Φ S (u jk ) -1 P(ξ t,x , δ jk ) -1/2 P(ξ t,x , Γ jk )P(ξ t,x , δ kj ) 1/2 Φ S (u jk ). Definition 11. Let f (t) be a function of the real variable t ≥ 0. We say that f is a smooth function of t and t log t if there exists a smooth function of two variables g(t, s) defined in a neighborhood of (0, 0) in R 2 such that f (t) = g(t, t log t) for t > 0 and f (0) = g(0, 0). Remark 9. The function t log t extends continuously at 0 but the extension is not differentiable at 0 and is only of Hölder class C 0,α for all α ∈ (0, 1). Therefore, a smooth function of t and t log t is only of class C 0,α and is not differentiable at t = 0. Proposition 13.

d x | M jk (0, x) = 2πi dp a jk /2 -λ -
(1) P jk (t, x) has the symmetry

P jk = DP jk D -1 .
(2) P jk (t, x) extends at t = 0 to a smooth function of t, t log t and x. Moreover, we have at t = 0:

P jk (0, x) = Φ S (u jk ) -1 Φ S (p jk ) exp M jk -1
1 ω q jk Φ S (p kj ) -1 Φ S (u jk ).

(3) At the central value

P jk (0, x) = ± λ 0 0 λ -1 ∈ ΛSU (2). (4) Provided Problem (38) is solved, Problem (39) is equivalent to (54)        P jk (t, x) ∈ ΛSU (2) (i) P jk (t, x) | λ=1 = ±I 2 (ii) P jk (t, x) -1 ∂ ∂λ P jk (t, x) | λ=1 = jk 2 1 0 0 -1 (iii) 
Proof:

(1) Equation (37) and Proposition 2 give

P(ξ t,x , Γ jk ) = DP(ξ t,x , δ jk ) -1 P(ξ t,x , Γ jk )P(ξ t,x , δ kj )D -1 .
Using the symmetry (46) and Φ S (u jk ) = DΦ S (u jk )D -1 , we obtain Point (1). (2) The function P(ξ t,x , α jk ) is an analytic function of all parameters by Theorem 3 because the path α jk stays away from the nodes. The same holds for the paths number (1), (3), [START_REF] Dorfmeister | Weierstrass type representation of harmonic maps into symmetric spaces[END_REF] in the definition of the path β jk and the path α kj . By Theorem 5 in Appendix B (see also Remark 14), the principal solution of ξ t,x on path number (2) extends at t = 0 to a smooth function of t, t log t and x, with the following value at t = 0: P(M j ω 0 , z jk = ε , z jk = 0)P(M jk ω q jk , z jk = 0, z jk = ε ).

In the same way, the principal solution on path number (4) extends to a smooth function of t, t log t and x with the following value at t = 0:

P(M jk ω q jk , z kj = -ε , z kj = 0)P(M k ω 0 , z kj = 0, z kj = -ε ).
Collecting all terms, the function P(ξ t,x , Γ jk ) extends to a smooth function of t and t log t with the following value at t = 0: P(M j ω 0 , 1 j , e iε u jk )P(M j ω 0 , e iε u jk , z jk = ε )P(M j ω 0 , z jk = ε , z jk = 0)

× P(M jk ω q jk , z jk = 0, z jk = ε )P(M jk ω q jk , z jk = ε , z kj = -ε )P(M jk ω q jk , z kj = -ε , z kj = 0)

× P(M k ω 0 , z kj = 0, z kj = -ε )P(M k ω 0 , z kj = -ε , e iε u kj )P(M k ω 0 , e iε u kj , 1 k ) = P(M j ω 0 , 1 j , p jk )P(M jk ω q jk , 1, -1)P(M k ω 0 , p kj , 1 k )
In the above computation, M j and M jk have their value at t = 0, so M j ω 0 = ξ S . Point (2) follows.

(3) At (t, x) = (0, x), we have M jk ω q jk = ξ C and p jk = -p kj = u jk so

P jk (0, x) = Φ C (-1)Φ S (-1) -1 = ± λ 0 0 λ -1 .
Remark 10. Note that Φ S and Φ C are both multivalued with multivaluation ±I 2 . This is why we put a ± sign in Point (3). We do not need to resolve this multivaluation.

(4) Assuming that Problem (38) is solved, Items (i) and (ii) of Problems ( 39) and ( 54) are clearly equivalent. Assuming Item (ii) is true, we have:

∂ ∂λ P jk (t, x) | λ=1 = Φ S (u jk ) -1 ∂ ∂λ P(ξ t,x , Γ jk )Φ S (u jk ) | λ=1 .
On the other hand, by Equations ( 5) and (42):

jk 2 Φ S (u jk ) 1 0 0 -1 Φ S (u jk ) -1 | λ=1 = -i jk 2 N S (u jk ) = i(V k -V j )
So Items (iii) of Problems (39) and (54) are equivalent. We define for (t, x) in a neighborhoof of (0, x): r P jk (t, x) = log(P jk (t, x)P jk (0, x) -1 ). By symmetry (55), F jk (t, x) and G jk (t, x) are in W R . We define

       r P jk (t, x) ∈ Λsu(2) (i) r P jk;12 (t, x) | λ=1 = 0 (ii) ∂ ∂λ r P jk (t, x) | λ=1 = jk -2 2 1 0 0 -1 (iii) Proof: • Items (i) of
E 3,jk = (E 3,jk,i ) | 1≤i≤7 = F + jk , G + jk , (G - jk ) * , F 0 jk , G 0 jk , i r P jk;12 | λ=1 , i ∂ r P jk;12 ∂λ | λ=1 (57) L jk (t, x) = ∂ r P jk;11 (t, x) ∂λ | λ=1 - ( jk -2) 2 .
Problem (56) is equivalent to E 3,jk (t, x) = 0 and L jk (t, x) = 0. We leave aside the equation L jk (t, x) = 0 for the moment and will solve it in Section 9 using the non-degeneracy hypothesis. Regarding the equation E 3,jk = 0, recall that q jk ∈ iW ≥0 R and p jk = e iθ jk with θ jk ∈ R and define x 3,jk = A + jk , C + jk , Im(q + jk ), A 0 jk , C 0 jk , θ jk , θ kj .

Proposition 15. For (j, k)

∈ E + : (1) E 3,jk (t, x) ∈ (W >0 R ) 3 × R 4 .
(2) At the central value, E 3,jk (0, x) = 0.

(3) The partial differential of E 3,jk at (0, x) with respect to x 3,jk is an automorphism of (W >0 R ) 3 × R 4 . (4) The full differential of E 3,jk at (0, x) only involves the variables x 3,jk and Im(q 0 jk ). (5) If X ∈ Ker(dE 3,jk (0, x)), then dA jk (X) = dC jk (X) = 0.

Proof:

• Point (1) comes from symmetry.

• Point ( 2) is clear since r P jk (0, x) = 0 by definition.

• We have at t = 0 r P jk (0, x) = log Φ S (u jk ) -1 Φ S (p jk ) exp M jk -1 1 ω q jk Φ S (p kj ) -1 Φ S (u kj )Φ C (-1) -1 .
Point (4) follows by inspection.

• We set q jk = 0 to compute the partial derivatives with respect to all parameters but q jk . By Equation (31), at t = 0 we have

M 2 jk = 1 4 I 2 so exp M jk -1 1 ω 0 = exp(πiM jk ) = 2iM jk .
By Equation (31) we have ∂B jk /∂A jk = 0 and ∂B jk /∂C jk = -1 at x = x. This gives by the chain rule

∂ r P jk ∂A jk (0, x) = 2i ∂M jk ∂A jk Φ C (-1) -1 = 2i i 0 0 -i 0 -i -i 0 = 0 2i -2i 0 ∂ r P jk ∂C jk (0, x) = 2i ∂M jk ∂C jk Φ C (-1) -1 = 2i 0 -1 1 0 0 -i -i 0 = -2 0 0 2 ∂ r P jk ∂θ jk (0, x) = ξ S (u jk ) ∂p jk ∂θ jk = 0 λ -1 i/2 λ i/2 0 ∂ r P jk ∂θ kj (0, x) = -Φ C (-1)ξ S (u kj ) ∂p kj ∂θ kj Φ C (-1) -1 = 0 -λ i/2 -λ -1 i/2
0 .

• Next we compute the partial derivative with respect to q jk at (0, x):

∂ ∂q jk -1 1 ω q jk = ∂ ∂q jk -1 1 dz z -q jk - q jk dz 1 + q jk z -1 1 dz z 2 -dz = 4 ∂ r P jk ∂q jk (0, x) = 4 Φ C (-1) 0 1/2 1/2 0 Φ C (-1) -1 = 0 2 2 0 • Write q jk = iν jk with ν jk ∈ W ≥0 R .
Remembering that θ jk , θ kj ∈ R we obtain at (0, x):

dF jk = -2dC jk -2dC * jk dG jk = -2(dA jk + dA * jk ) -2(dν jk -dν * jk ) dE 3,jk,1 = -2dC + jk dE 3,jk,2 = -2dA + jk -2dν + jk dE 3,jk,3 = -2dA + jk + 2dν + jk dE 3,jk,4 = -4dC 0 jk dE 3,jk,5 = -4dA 0 jk .
If X ∈ Ker(dE 3,jk (0, x)), we obtain from these formulas dA jk (X) = dC jk (X) = dν + jk (X) = 0, so Point ( 5) is proved. Regarding Point (3), the partial differential of (E 3,jk,i ) 1≤i≤5 with respect to

(A + jk , C + jk , ν + jk , A 0 jk , C 0 jk ) is clearly an automorphism of (W >0 R ) 3 × R 2 .
Observe that dE 3,jk,i for 1 ≤ i ≤ 5 do not involve the real variables θ jk and θ kj so dE 3,jk has block-triangular form and is suffices to compute the differential of the remaining two equations with respect to these variables:

d θ jk ,θ kj E 3,jk,6 = 1 2 (-dθ jk + dθ kj ) d θ jk ,θ kj E 3,jk,7 = 1 2 (dθ jk + dθ kj ). Points (3) follows.

Solving all equations with the Implicit Function Theorem

There remains a few parameters that we have not used yet and that we can fix, namely: r jk = τ jk for (j, k) ∈ E + , p a 0 jk = τ jk /2 and θ 0 jk = arg(u jk ) for (j, k) ∈ R. Remembering that q jk = iν jk , we define

x 1 = (x 1,jk ) (j,k)∈E E 1 = (E 1,jk ) (j,k)∈E x 2 = (x 2,jk ) (j,k)∈R E 2 = (E 2,jk ) (j,k)∈R x 3 = (x 3,jk ) (j,k)∈E + E 3 = (E 3,jk ) (j,k)∈E + x 4 = (r kj , ν 0 jk ) (j,k)∈E + E 4 = (R jk ) (j,k)∈E + x = (x 1 , x 2 , x 3 , x 4 ) E = (E 1 , E 2 , E 3 , E 4 ).
Recall that the central value x depends smoothly on the graph Γ (which has not yet been assumed to be balanced).

Proposition 16. The partial differential of E(t, x) with respect to x at (0, x) is an automorphism. By the Implicit Function Theorem, for t ≥ 0 in a neighhorhood of 0, there exists x(t, Γ), depending smoothly on t, t log t and the graph Γ, such that E(t, x(t, Γ)) = 0 and x(0, Γ) = x(Γ).

Proof:

(1) By Propositions 11, 12 and 15, the partial differential of (E 1 , E 2 , E 3 ) with respect to (x 1 , x 2 , x 3 ) has upper-triangular 3 × 3 block-form, with automorphisms on the diagonal, so is an automorphism. (2) Let us prove that L = d x E(0, x) is injective. Let X ∈ Ker(L). By Point (5) of Proposition 15, dA jk (X) = dC jk (X) = 0. By Point (5) of Proposition 11, db jk (X) = 0. Differentiating Equation (33) and remembering that we fixed r jk so dr jk = 0, we obtain

d x R jk (0, x) = - 1 2
dr kj + 2i db 0 jk + 2iτ jk dν 0 jk .

Hence dr kj (X) = dν 0 jk (X) = 0, so X 4 = 0. Hence, by Point (1), X = 0. (3) Since x 4 , E 4 are in spaces of the same finite dimension, Points (1) and ( 2) imply that L is an automorphism by elementary linear algebra. By Point (2) of Proposition 13, E(t, x) is a smooth function of t, t log t and x, which (Definition 11) means that there exists a smooth function r E(t, s, x) such that E(t, x) = r E(t, t log t, x). We apply the Implicit Function Theorem to r E at (t, s, x) = (0, 0, x(Γ)) and obtain a smooth function x(t, s, Γ) such that r E(t, s, x(t, s, Γ)) = 0. Specializing to s = t log t, we obtain Proposition 16.

We are not done yet ; we still have to solve the equations R j = 0 and L jk = 0, where R j is defined by Equation ( 27) and L jk is defined by Equation (57). Define

F(t, Γ) = R j (t, x(t, Γ)) j∈J , L jk (t, x(t, Γ)) (j,k)∈E + .
By Proposition 6 and since r P jk (0, x) = 0, we have:

F(0, Γ) = 1 2 F j (Γ) j∈J , 1 -1 2 jk (Γ) (j,k)∈E + .
By the Implicit Function Theorem, we obtain:

Proposition 17. Assume that the central graph Γ has length-2 edges, is balanced and non-degenerate. Then for t ≥ 0 small enough, there exists a deformation Γ(t) of Γ, depending smoothly on t and t log t, such that Γ(0) = Γ and F(t, Γ(t)) = 0.

Geometry of the immersion

From now on, we assume that the parameter vector x is given by Proposition 16 and Γ(t) is given by Proposition 17. We write x t = x(t, Γ(t)) which is a smooth function of t and t log t. To ease notation, we write Σ t = Σ t,xt and ξ t = ξ t,xt . In the same way, we write a jk,t , p jk,t , etc... for the value of the parameters a jk , p jk at time t. We also write τ jk,t , u jk,t , etc... for the quantities associated to Γ(t), and τ jk = τ jk,0 , u jk = u jk,0 for the quantities associated to the given graph Γ(0).

We denote Σ t the Riemann surface Σ t minus the poles of ξ t . Let p : r Σ t → Σ t be a universal cover. Recall that we have fixed an arbitrary j 0 ∈ J and taken z 0 = 1 j0 as base point. Choose an arbitrary r z 0 in the fiber p -1 (z 0 ). Let Φ t be the solution of dΦ t = Φ t ξ t on r Σ t with initial condition Φ t (r z 0 ) = I 2 , f t = Sym(Uni(Φ t )) the immersion given by the DPW method and r f t = Ψ • f t where Ψ is the rigid motion given by Equation [START_REF] Heller | Lawson's genus two surface and meromorphic connections[END_REF]. Recall that Σ t does not depend on λ, but Σ t does, which is a problem as the DPW method requires a fixed Riemann surface. We address this issue in Section 10.2 using the results from [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF] where the same problem already occured. At this point, all we know for sure is that f t is a well defined immersion on Σ t minus ε-neighborhoods of 0 jk , ∞ jk for (j, k) ∈ E + and u jk for (j, k) ∈ R.

Fix a small ε 1 such that 0 < ε 1 ≤ ε/2 and for t > 0 small enough, consider the following fixed compact subdomains of Σ t :

Ω j,ε1 = C j \ k∈Ej ∪Rj D(u jk , ε 1 ) for j ∈ J (spherical parts) Ω jk,ε1 = C jk \ D(±1, ε 1 ) for (j, k) ∈ E + (catenoidal parts).
10.1. Spherical parts. Without loss of generality, we may assume by translating the graph that v j0 = 0 so V j0 = 0. Recall the definition of the gauge G j in Section 7.1 which we now denote G j,t as it depends on t.

Proposition 18. For j ∈ J and t > 0:

(1) The potential ξ t restricted to Ω j,ε1 \ {0 j , ∞ j } depends C 1 on t.

(2) r f t (1 j ) = v j,t + e 1 .

(3) ξ t • G j,t is regular at 0 j and ∞ j , so f t extends analytically to 0 j and ∞ j . (4) As t → 0, r f t -v j,t converges on Ω j,ε1 to the inverse stereographic projection π -1 : C → S 2 . More precisely, we have

r f t -v j,t -π -1 C 1 (Ωj,ε 1 ) ≤ c t
for some uniform constant c (depending on ε 1 ) and the norm is computed for the spherical metric on the Riemann sphere.

Proof:

(1) Recall that x(t) is a smooth function of t and t log t so is not even differentiable at t = 0. However, assuming that Equation ( 24) holds, we have, for all values of the parameter x, ξ 0,x = ξ S in Ω j,ε1 , so ξ 0,x does not depend on x. By Proposition 24 in Appendix C, ξ t = ξ t,x(t) , restricted to Ω j,ε1 \ {0 j , ∞ j }, extends to a C 1 function of t in a neighborhood of 0.

(2) Choose a path c from z 0 to 1 j on Σ t and let r c be the lift of c to r Σ t such that r c(0) = r z 0 . Let

r 1 j = r c(1) ∈ p -1 (1 j ). Let r Ω j,ε1 be the component of p -1 (Ω j,ε1 \ {0 j , ∞ j }) containing r 1 j . Since ξ 0 = ξ S in C j we have (58) Φ 0 = Φ 0 ( r 1 j )Φ S in r Ω j,ε1 .
By Equation (39), we have

(59)    Φ t ( r 1 j ) ∈ ΛSU (2) Φ t ( r 1 j ) | λ=1 = ±I 2 Φ t ( r 1 j ) -1 ∂ ∂λ Φ t ( r 1 j ) | λ=1 = i V j,t
. By the Sym-Bobenko formula (4) and Equation (41),

f t (1 j ) = 2V j,t ∼ (0, -Im(v j,t ), -Re(v j,t )). r f t (1 j ) = Ψ(f t (1 j )) = (1 + Re(v j,t ), Im(v j,t , 0).
(3) To prove Point (3), we apply Theorem 4 in Appendix A to the potential p ξ t = ξ t • G j,t . Let be the maximum of E j ∪ R j for the order ≺. The path δ j bounds a disk-type domain in Ω j,ε1 containing 0 j and ∞ j and not containing -1. The potential p ξ t satisfies Hypothesis (1) to (3) of Theorem 4 in Ω thanks to Propositions 5, 6 and 17. By Equation (34), Φ t solves the Monodromy Problem on δ j . At t = 0 we have by Equation [START_REF] Teschl | Ordinary differential equations and dynamical systems[END_REF] x j = 1 and y j = 0 so G j,0 = G S . Hence

p ξ 0 = ξ S • G S = 0 λ -1 0 0 dz 2(z + 1) 2 . Let p Φ t = Φ 0 ( r 1 j ) -1 Φ t G j,t . Since Φ 0 ( r 1 j ) ∈ ΛSU (2), p Φ t solves the Monodromy Problem on δ j and p Φ 0 = Φ S G S = 2 z-1 2λ(z+1) 0 1/2 .
Theorem 4 tells us that p ξ t is holomorphic at 0 j . Finally p β 0 (0 j ) = dz/2 so p β 0 t (0 j ) = 0 for t small enough so f t is regular at 0 j . Regularity at ∞ j follows by σ-symmetry. (4) Let q Φ t be the solution of d q Φ t = q Φ t ξ t with initial condition q Φ( r 1 t ) = I 2 and q f t = Sym(Uni( q Φ)). By Point (1) and standard ODE theory, q Φ t is a C 1 function of t in a neighborhood of 0 and z ∈ Ω j,ε1 \ {0 j , ∞ j }. Since Iwasawa decomposition is a diffeomorphism (Theorem 2), Uni( q Φ t ) and Pos( q Φ t ) are C 1 , so by Equation ( 6), d q f t is C 1 . Let K be a compact subset of Ω j,ε1 \ {0 j , ∞ j }. By the mean value inequality,

q f t (z) -q f t (1 j ) -q f 0 (z) + q f 0 (1 j ) ≤ C(K)t for z ∈ K.
Since Φ t ( r 1 j ) | λ=1 = I 2 , f t and q f t differ by a translation. Also ξ 0 = ξ S so q f 0 = f S . Hence

f t (z) -f t (1 j ) -f S (z) + f S (1) ≤ C(K)t.
By Point (2) and Equation ( 11) we obtain

r f t (z) -v j,t -π -1 (z) ≤ C(K)t for z ∈ K.
This estimate is extended to neighborhoods of 0 j and ∞ j using the gauge G j,t .

10.2. Delaunay ends. For p ∈ C, D * (p, r) denotes the punctured disk 0 < |z -p| < r.

Proposition 19. There exists ε 2 > 0 such that for (j, k) ∈ R and t > 0 small enough:

(1) f t extends analytically to D * (p 0 jk,t , ε 2 ). (2) f t has a Delaunay end of weight 2πtτ jk at p 0 jk,t . (3) The axis of the Delaunay end of r f t at p 0 jk,t converges to the half-line

v j + R + u jk as t → 0. (4) If τ jk > 0, then f t (D * (p 0 jk,t , ε 2 )) is embedded.
Proof: These facts are proved in [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF] in a similar situation, using general results about Delaunay ends from [START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF] and [START_REF] Raujouan | On Delaunay ends in the DPW method[END_REF]. The potential in [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF] has the form

0 λ -1 dz t(λ -1) 2 ω t 0
where ω t has double poles. We gauge our potential to a similar form so we can apply the results of [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF]. Fix (j, k) ∈ R. Recall that α t , β t are holomorphic at p jk,t and γ t has a double pole with principal part

γ t = t(λ -1) 2 p a jk,t p jk,t dz (z -p jk,t ) 2 + i p b jk,t dz z -p jk,t + O(1)dz
where O(1) means a holomorphic function in a neighborhood of p jk,t . Define κ t ∈ W ≥0 by κ t = p jk,t β t (p jk,t )/dz. At t = 0, we have β 0 = dz 2z so κ 0 = 1/2. Consider the gauge

G t = κt z 0 λ 2 √ κtz z κt
.

A computation gives

p ξ t := ξ t • G t = α t + βt 2κt -dz 2z zβt λκt -λαt z -λβt 4κtz + κtγt z -α t -βt 2κt + dz 2z .
Thanks to our choice of κ t and given the principal part of γ t , p ξ t has the form (60)

p ξ t = 0 λ -1 dz t(λ -1) 2 ω t 0 + O(1) O(z -p jk,t ) O (1) O(1) 
with ω t = κ t p a jk,t dz (z -p jk,t ) 2 + (i p b jk,tp a jk,t )dz p jk,t (z -p jk,t ) .

The gauged potential p ξ t now has the same form as in [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF] up to a holomorphic term which is of no consequence (see Remark 11 below). By Proposition 4 in [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF], f t extends analytically to D * (p 0 jk,t , ε 2 ), κ t p a jk,t is a real constant and f t has a Delaunay end of weight 8πtκ t p a jk,t at p 0 jk,t . Since κ 0 p a jk,0 = τ jk /4, Point (2) follows. Let p Φ t = Φ 0 ( r 1 j ) -1 Φ t G t . At t = 0 we have by Equation ( 58)

p Φ 0 (z) = Φ S (z)G 0 (z) = 1 √ 2 1 λ -1 (z -1) λ z + 1 = H 1 λ -1 z 0 1 , H = 1 √ 2 1 -λ -1 λ 1 .
Let q Φ t = H -1 p Φ t and q f t be the corresponding immersion. Then q Φ 0 has the same value as Φ 0 in [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF]. By Proposition 5 in [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF], the axis of the Delaunay end of q f t at p 0 jk,t converges to the half-line through (0, 0, 1) spanned by -u jk . (The signs in Proposition 5 are actually opposite, but this is because we have the opposite Sym-Bobenko formula in [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF].) Applying the isometries represented by H, Φ 0 ( r 1 j ) and the rigid motion Ψ, we obtain Point (3). Point (4) is proved in Proposition 6 in [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF].

Remark 11. The proof of Proposition 4 in [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF] uses a gauge of the form

G = √ w k 0 -λ 2k √ w k √ w
with w = z -p jk,t and k ∈ W ≥0 .

Then

p ξ t • G = p α t - p βt 2w + dw 2w k 2 p βt λw λ p αt k 2 -λ p βt 4k 2 w + wp γt k 2 + λ dw 2k 2 w -p α t + p βt 2w -dw 2w .
What only matters is the residue of p ξ t • G at w = 0. So the second term in the right-hand side of (60) can be neglected because its (1, 2) entry has a zero at w = 0 and the other entries are holomorphic. 10.3. Catenoidal parts. Recall from Section 7.2 the definition of the complex coordinate w jk on C jk and the gauge G jk , which we write respectively w jk,t and G jk,t as they now depend on t. We denote p ξ jk,t = (w -1 jk,t ) * ξ t • G jk,t . We cannot use z = 1 as base point in C jk so we use instead the point i jk defined as z = i if τ jk > 0 and z = -i if τ jk < 0. This point lies on the path Γ jk .

Proposition 20. For (j, k) ∈ E + and t > 0 small enough:

(1) The potential p ξ jk,t is regular at w = 0. Consequently, the immersion f t extends analytically to a neighborhood of 0 jk and ∞ jk .

(2) The potential ξ t is regular on Σ t , so f t is a regular immersion.

(3) The blow-up t -1 ( r f tr f t (i jk ))) converges on Ω jk,ε1 as t → 0 to a minimal catenoidal immersion from C \ {±1} to R 3 . The limit catenoid has waist radius |τ jk | and its axis, oriented from the end at z = 1 to the end at z = -1, is a line parallel to u jk and oriented by τ jk u jk . The convergence is for the C 1 norm.

Proof: fix (j, k) ∈ E + .

(1) We start by computing Φ 0 in Ω jk,ε1 . Split the path Γ jk as Γ jk = Γ jk1 Γ jk2 with Γ jk1 (1) = Γ jk2 (0) = i jk . Consider the lift of Γ jk1 to r Σ t starting at r 1 j and let r ı jk be its endpoint. Consider the lift of Γ jk2 starting at r ı jk and let r 1 k be its endpoint. Let r Ω jk,ε1 be the component of p -1 (Ω jk,ε1 ∩ Σ t ) which contains r ı jk . By Theorem 5, Φ t (r ı jk ) extends to a smooth function of t and t log t. Moreover, since ξ 0 = ξ C in Ω jk,ε1 , we have Φ 0 = M Φ C for some matrix M which is determined by the fact that Φ 0 is continuous at the nodes (see Remark 14). This gives by Equation (58)

(61) Φ 0 (z) = Φ 0 ( r 1 j )Φ S (u jk )Φ C (z) = Φ 0 ( r 1 k )Φ S (u kj )Φ C (-1) -1 Φ C (z) in r Ω jk,ε1 .
(2) The proof of Point ( 1) is essentially the same as the proof of Point (3) of Proposition 18. We apply the dual version of Theorem 4, Corollary 1 in Appendix A. Observe that (62) Γ -1 jk1 γ jk Γ jk1 ∈ π 1 (Σ t , i jk ) is homotopic to a loop δ 1 contained in Ω jk,ε1 going around 1 in the clockwise direction, and (63) Γ jk2 γ kj Γ -1 jk2 ∈ π 1 (Σ t , i jk ) is homotopic to a loop δ 2 contained in Ω jk,ε1 going around -1 in the clockwise direction. The product of the loops (62) and ( 63) is a reparametrization (changing the base point) of (64) γ jk Γ jk γ kj Γ -1 jk . The Monodromy Problem for Φ t on the loop (64) is solved so it is also solved on δ 1 δ 2 . We now make the change of variable w = w jk,t (z). The path w jk,t (δ 1 δ 2 ) bounds a disk-type domain in C \ {±1} containing 0 and ∞. The potential p ξ t satisfies Hypothesis (1) to (3) of Corollary 1 thanks to Propositions 7, 8 and 16. Let p Φ t = (w -1 jk,t ) * Φ t G jk,t . At t = 0, we have w jk,0 (z) = z and by Equation [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF] x jk = 1, y jk = 0 so

G jk,0 = √ z 1+z 1-z √ z 0 1+z √ z p ξ 0 = ξ C • G jk,0 = 0 0 1 0 dz 2(z + 1) 2 .
Using Equation (61), we have

p Φ 0 = Φ 0 ( r 1 j )Φ S (u jk )Φ C G jk,0 = Φ 0 ( r 1 j )Φ S (u jk ) 1/2 0 z-1 2(z+1)

2

where Φ 0 ( r 1 j )Φ S (u jk ) ∈ ΛSU [START_REF] Bobenko | Constant mean curvature surfaces based on fundamental quadrilaterals[END_REF]. By Corollary 1, p ξ t is holomorphic at 0.

Remark 12. To deal with the fact that p ξ t is not C 1 with respect to t, we write t = exp(-1/s 2 ), so p ξ t(s) extends to a smooth function of s in a neighborhood of 0, and use s as the time parameter when applying Corollary 1.

(3) By Equation (32), since p β t is holomorphic at w = 0, r β 0 t has a zero of multiplicity at least one at w = 0. So β 0 t has a zero of multiplicity at least one at z = q 0 jk,t and at z = σ(q 0 jk,t ) by symmetry, for a total of 2 card(E + ) zeros. It has simple poles at 0 j and ∞ j for j ∈ J. By elementary topology, the genus of Σ t is g = card(E + ) -card(J) + 1. Hence the number of zeros of β 0 t , counting multiplicities, is equal to

#poles + 2g -2 = 2 card(J) + 2g -2 = 2 card(E + ).
So the zeros at q 0 jk,t and σ(q 0 jk,t ) are simple and β 0 t has no other zero. This proves Point (2), and yields that p β 0 t does not vanish at w = 0, so completes the proof of Point ( 1). ( 4) To prove Point (3), we use Theorem 4 in [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF]. One technical issue is that this theorem requires a C 1 family of potentials ξ t and we do not have that regularity. This problem is solved as follows.

Forget for a moment that the parameter x has been determined as a smooth function of t and log t and consider the potential ξ t,x , only assuming that the parameter B jk is given by Equation [START_REF] Traizet | Opening nodes and the DPW method[END_REF]. Consider the gauged potential

q ξ t,x = ξ t,x • q G x with q G x = 1 2C jk 1 2i A jk 0 2C jk .
Then at t = 0 we have in Ω jk,ε1 , using Proposition 3 and Equation [START_REF] Traizet | Opening nodes and the DPW method[END_REF]:

q ξ 0,x = η 0,x • q G x = 0 2(B jk C jk -A 2 jk ) 1/2 0 dz z = 0 1/2 1/2 dz z = ξ C .
Since this does not depend on x, Proposition 24 in Appendix C ensures that q ξ t = q ξ t,x(t) extends to a C 1 function in a neighborhood of t = 0. Moreover d dt

q ξ t = ∂ ∂t q ξ t,x | (t,x)=(0,x(0)) = ∂ ∂t ξ t,x | t=0 . Define in r Ω jk,ε1 q Φ t = q H jk,t Φ t q G x(t) with q H jk,t = Φ C (r ı jk )Uni(Φ t (r ı jk )) -1 .
At t = 0, we have q G x(0) = I 2 and by Equation (61)

(65) q H jk,0 = Φ C (r ı jk )Φ 0 (r ı jk ) -1 = Φ 0 ( r 1 j )Φ S (u jk ) -1
.

Hence q Φ 0 = Φ C in r Ω jk,ε1 . Let q f t = Sym(Uni( q Φ t )). By Theorem 4 in [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF], t -1 q f t converges to a minimal immersion with Weierstrass data

g = - q Φ 0;11 q Φ 0;21 = z + 1 1 -z ω = 4( q Φ 0;21 ) 2 ∂ ∂t q β 0 t | t=0 = (z -1) 2 z τ jk 2 dz (z -1) 2 - dz (z + 1) 2 =
2τ jk dz (z + 1) 2 using Proposition 4. With the change of variable w = (z + 1)/(1 -z) we obtain g = w and ω = τ jk dw/w 2 . This is the Weierstrass data of a catenoid with neck-size |τ jk | and vertical axis (from the end at w = ∞ to w = 0) oriented by -τ jk e 3 . Let h jk,t be the rigid motion represented by q H jk,t and h jk,t its linear part, where the action is given by [START_REF] Heller | Higher genus minimal surfaces in S 3 and stable bundles[END_REF]. We have q f t = h jk,t • f t . At t = 0, we have by Equation (65) q H jk,0 | λ=1 = Φ S (u jk ) -1 | λ=1 . So by Equation ( 5), h jk,0 maps N S (u jk ) to e 3 . This means that t -1 (f t -f t (i jk )) converges to a catenoid with axis (from the end at z = 1 to z = -1) oriented by -τ jk N S (u jk ). We have (67)

Ψ(N S (u jk )) = (-Re(u jk ), -Im(u jk ), 0) ∼ -u jk so t -1 ( r f t -r f t (i jk ))
r f t (i jk ) = 1 2 (v j,t + v k,t ) + O(t) Remark 13.
(1) Equation ( 66) estimates how much the spheres centered at v j and v k move away from each other if τ jk > 0 (or toward each other if τ jk < 0) to fit in a catenoidal neck of size τ jk t. It is in agreement with the half-period of a Delaunay surface of necksize τ jk t which is known to have the asymptotic (66) as t → 0 (see for example Proposition 7 in [START_REF] Mazzeo | Pacard: Constant mean curvature surfaces with Delaunay ends[END_REF] -a scaling of 1/2 must be applied because the mean curvature is the trace of the fundamental form in that paper).

(2) Equation (67) tells us that the waist of the catenoidal neck is centered at the middle of v j,t , v k,t , up to an O(t) term.

Proof: forget for a moment that x is determined as a function of t. We first compute the term of order t log t in P(ξ t,x , Γ jk ). Recall that the only terms where a t log t appears are those corresponding to path numbers (2) and (4) in the definition of β jk . To estimate the term corresponding to path number (2), we use Point (3) of Theorem 5 where γ denotes the circle |z jk | = ε. We have P(ξ t,x , γ) = P(ξ t,x , 1 j , z jk = ε ) -1 P(ξ t,x , γ jk )P(ξ t,x , 1 j , z jk = ε ) Using Equation ( 52)

∂ ∂t P(ξ t,x , γ) | t=0 = Φ S (z jk = ε ) -1 ∂ ∂t P(ξ t,x , γ jk ) | t=0 Φ S (z jk = ε ) = Φ S (z jk = ε ) -1 Φ S (p jk ) | M jk (0, x)Φ S (p jk ) -1 Φ S (z jk = ε ) = 2πiτ jk (λ -1) 2 4λ Φ S (z jk = ε ) -1 Φ S (u jk ) 1 0 0 -1 Φ S (u jk ) -1 Φ S (z jk = ε ) + O(x -x).
By Theorem 5, the principal solution of ξ t,x on path number (2) is equal to

I 2 + τ jk t log t (λ -1) 2 4λ Φ S (z jk = ε ) -1 Φ S (u jk ) 1 0 0 -1 Φ S (u jk ) -1 Φ S (z jk = ε ) × P(ξ 0,x , z jk = ε , z jk = t jk /ε ) + O(t) + t log t O(x -x).
By the same argument, the principal solution of ξ t,x on path number (4) is equal to

I 2 -τ jk t log t (λ -1) 2 4λ Φ C (z kj = -ε ) -1 Φ C (-1) 1 0 0 -1 Φ C (-1) -1 Φ C (z kj = -ε ) × P(ξ 0,x , z kj = -ε , z kj = -t kj /ε ) + O(t) + t log t O(x -x).
The computation in the proof of Point (2) of Proposition 13 gives after simplification

P(ξ t,x , Γ jk ) = P(ξ 0,x , Γ jk )+τ jk t log t (λ -1) 2 4λ Φ S (u jk ) 1 0 0 -1 , Φ C (-1) Φ S (u kj ) -1 +O(t)+t log t O(x-x).
Recalling the definition of P jk and r P jk from Section 8.6, we obtain

P jk (t, x) = P jk (0, x)+τ jk t log t (λ -1) 2 4λ 1 0 0 -1 , Φ C (-1) Φ S (u kj ) -1 Φ S (u jk )+O(t)+t log t O(x-x). r P jk (t, x) = r P jk (0, x) + τ jk t log t (λ -1) 2 4λ 2 0 0 -2 + O(t) + t log t O(x -x) + O((x -x) 2 ).
We substitute the value x(t) = x(t, Γ) given by Proposition 16. (At this point, the graph Γ is fixed.) Recalling that x(t) = x + O(t log t) and r P jk (0, x) = 0, we obtain

(68) r P jk (t, x(t)) = d x r P jk (0, x)(x(t) -x) + τ jk t log t (λ -1) 2 2λ 1 0 0 -1 + O(t).
Write δx(t) = x(t) -x and extend this notation to all parameters. Recalling from the proof of Proposition 15 the formula for d x r P jk (0, x) and the definition of F jk , we obtain

F + jk (t, x(t)) = -2 δC + jk (t) + λτ jk t log t + O(t) = 0 F 0 jk (t, x(t)) = -4 δC 0 jk (t) -2τ jk t log t + O(t) = 0 which gives (69) δC jk (t) = τ jk 2 t log t (λ -1) + O(t).
The definition of L jk and Equation (68) give (recalling that τ jk and jk depend on the graph Γ)

L jk (t, x(t, Γ)) = ∂ ∂λ (-2δC jk (t, Γ)) | λ=1 - jk (Γ) -2 2 = -τ jk (Γ)t log t + O(t) - jk (Γ) -2 2 .
By Proposition 17, the graph Γ t satisfies L jk (t, x(t, Γ t )) = 0, and this gives Point (1) of Proposition 21.

Since the t log t factor in Equation ( 68) is diagonal, the resolution of the remaining equations of the system E 3,jk (t, x(t)) = 0, which only involve the off-diagonal part of r P jk (t, x(t)), gives

δA jk (t) = O(t), δq + jk (t) = O(t), δθ jk (t) = O(t)
and δθ kj (t) = O(t). By Point (5) of Proposition 11, we obtain δb jk (t) = O(t). Finally, the resolution of R jk (t, x(t)) = 0 gives δr kj (t) = O(t) and δq 0 jk (t) = O(t) so δq jk (t) = O(t). Recall that Γ jk1 denotes the first half of the path Γ jk , from 1 j to i jk . By a computation similar to the above we have

P(ξ t,x , Γ jk1 ) = P(ξ 0,x , Γ jk1 ) + τ jk t log t (λ -1) 2 4λ Φ S (u jk ) 1 0 0 -1 Φ C (i jk ) + O(t) + t log t O(x -x) P(ξ 0,x , Γ jk1 ) = Φ S (p jk ) exp M jk i jk 1 ω q jk ∂ ∂C jk P(ξ 0,x , Γ jk1 ) = Φ S (u jk ) ∂ ∂C jk exp (M jk π i jk /2) = √ 2 i jk Φ S (u jk ) 0 -1 1 
0 .

We substitute x = x(t). Using Equation (69) and that δq jk , δA jk , δθ jk are O(t), we obtain

P(ξ t,x(t) , Γ jk1 ) = Φ S (u jk )Φ C (i jk ) I 2 + τ jk t log t Q jk + O(t) with Q jk = √ 2 2 i jk (λ -1)Φ C (i jk ) -1 0 -1 1 0 + (λ -1) 2 4λ Φ C (i jk ) -1 1 0 0 -1 Φ C (i jk ) = λ -1 2 1 -i jk i jk -1 + (λ -1) 2 4 0 i jk -i jk 0 = 1 2 (λ -1) i jk 4 (λ -1 -λ) i jk 4 (λ -λ -1 ) 1 2 (1 -λ)
The differential of Iwasawa decomposition at the identity is the projection on the factors of the decomposition of the Lie algebra Λsl(2, C) as Λsu(2) ⊕ Λsl + R (2, C). The matrix Q jk decomposes as

Q jk = i jk 4 0 λ -1 -λ λ -λ -1 0 + 1 2 λ -1 0 0 1 -λ ∈ Λsu(2) ⊕ Λsl + R (2, C). Hence Uni(P(ξ t,x(t) , Γ jk1 )) = Φ S (u jk )Φ C (i jk ) I 2 + τ jk i jk 4 t log t 0 λ -1 -λ λ -λ -1 0 + O(t) .
Finally the Sym Bobenko formula (4) gives

Sym(Uni(P(ξ t,x(t) , Γ jk1 ))) = f S (u jk ) -2i τ jk i jk 4 t log t Φ S (u jk )Φ C (i jk ) 0 -2 2 0 Φ C (i jk ) -1 Φ S (u jk ) -1 | λ=1 +O(t) = f S (u jk ) -iτ jk t log t Φ S (u jk ) -1 0 0 1 Φ S (u jk ) -1 | λ=1 +O(t) = f S (u jk ) + τ jk t log t N S (u jk ) + O(t)
and Point (2) follows. 

,t | = ε) is included in Ω jk,ε1 .
Proposition 22. For t > 0 small enough and (j, k) ∈ E + :

(1) The images of A jk,t and A kj,t by r f t are graphs over annuli in the plane orthogonal to u jk . (2) If τ jk > 0, the image of the annulus A jk,t ∪ Ω jk,ε1 ∪ A kj,t is embedded.

Proof:

(1) We may think of the universal covering r A jk,t of A jk,t as the Riemann surface on which log z jk,t is well defined. Let c > 0 such that for u ∈ S 1 and z ∈ D(u, 1 2 ) Φ S (z) -Φ S (u) ≤ c|z -u| and

Φ C (z) -Φ C (u) ≤ c|z -u|.
Then for t small enough we have, by Equations ( 58), ( 61) and (70)

(71) Φ t -Φ 0 ( r 1 j )Φ S (u jk ) ≤ 4cε on ∂A jk,t
Proof: we follow closely the proof of Proposition 7 in [START_REF] Traizet | Gluing Delaunay ends to minimal n-noids using the DPW method[END_REF]. Assume that all τ jk are positive. By Proposition 18 and taking ε 1 > 0 small enough, we may find, for (j, k) ∈ E ∪ R, a Jordan curve γ jk,t , freely homotopic to γ jk , whose image is in a plane Π jk,t orthogonal to (v j,t , v k,t ), and moreover:

• If (j, k) ∈ E, γ jk,t lies in Ω j,ε1 ∩ A jk,t , • If (j, k) ∈ R, γ jk,t lies in Ω j,ε1 ∩ D * (p 0 jk,t , ε 2 ).
Let ∆ jk,t ⊂ Π jk,t be the flat disk bounded by r f t (γ jk,t ).

• For j ∈ J, let Ω j,t ⊂ Ω j,ε1 be the domain bounded by the curves γ jk,t for k ∈ E j ∪ R j . By Proposition 18, r f t (Ω j,t ) is embedded and does not intersect the disks ∆ jk,t for k ∈ E j ∪ R j . Hence the union of r f t (Ω j,t ) and ∆ jk,t for k ∈ E j ∪ R j is the image of a continuous injection of the 2-sphere. By the Jordan Brouwer Theorem, it is the boundary of a bounded domain W j,t . Assume now that Γ is pre-embedded. Then the domains W j,t for j ∈ J and W jk,t for (j, k) ∈ E ∪ R are disjoint, and their closures intersect only along the disks ∆ jk,t . Hence the map F t is an embedding so M t is embedded. Claim 1. We may choose the curves γ jk,t and γ kj,t so that r f t (A jk,t ) does not intersect the disks ∆ jk,t and ∆ kj,t .

Proof: we continue with the coordinate system (x, y, z) introduced in the proof of Point (2) of Proposition 22. By Proposition 18, we may find a Jordan curve γ jk,t in Ω j,ε1 ∩ A jk,t whose image is at constant distance from the x-axis. Let A jk,t be the annulus bounded by γ jk,t ∪ γ kj,t and A t = r f t (A jk,t ). Consider half a period of a Delaunay surface D t with axis Ox and necksize τ jk t/2, bounded on the left by a circle of maximum radius and on the right by a circle of radius τ jk t/2. Translate the Delaunay surface D t from the left until a first contact point p t with A t occurs. By Propositions 20 and 22, p t cannot be on the right boundary of D t (which is too small) nor on the left boundary of D t (which is too big). By the maximum principle, p t must be on the left boundary of A t and has minimum x-coordinate. Choose the curve γ jk,t so that Π jk,t is the plane orthogonal to the x-axis and containing p t . Then A t , being on the right of Π jk,t , does not intersect ∆ jk,t . The annulus bounded by γ jk,t and γ jk,t is inside Ω j,ε1 so its image does not intersect ∆ jk,t by Proposition 18. Hence r f (A jk,t ) does not intersect ∆ jk,t , and in the same way, it does not intersect ∆ kj,t . This concludes the proof of Theorem 1.

Lemma 1. For (t, x) in a neighborhood of (0, 0), the only solution to the Monodromy Problem (7) or (72) for M(Φ t,x , δ) is x = 0.

Proof: let

M (t, x) = H log M(Φ t,x , δ)H -1 with H = λ 1/2 0 0 λ -1/2 ∈ ΛSU (2).
(The reason to conjugate by H will be clear in a moment.) By Proposition 8 in [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF], the partial differential of M with respect to x at (0, 0), applied to the vector x = (a, b, c), is given by

d x M (0, 0) • x = δ N ω x
where

N = HΦ 0 0 0 1 0 Φ -1 0 H -1 = k(z-1) 2λ(z+1) -k 2 ρ 2 (z-1) 2 4λ(z+1) 2 1 λρ 2 -k(z-1) 2λ(z+1)
.

Since N ω x has only poles at 0, -1 and ∞, we have by the Residue Theorem

d x M (0, 0) • x = 2πi Res 0 (N ω x ) + Res ∞ (N ω x ) = -2πi Res -1 (N ω x ).
Computing the residue at z = -1, we obtain This is precisely Equation (51) with a jk , b jk , c jk replaced by r a, r b, r c and r jk = 0. So in the R 3 case, the proof of Point (3) of Proposition 11 yields that for t in a neighborhood of 0, the Monodromy Problem [START_REF] Fay | Theta Functions on Riemann Surfaces[END_REF] uniquely determines (r a, r b, r c), hence x, as a function of t. Now x = 0 is a trivial solution (since ξ t,0 is holomorphic in Ω) so x = 0 is the unique solution. In the S 3 case (respectively the H 3 case), the Monodromy Problem is equivalent, using the ρ-symmetry, to It easily follows (since e iθ ∈ R) that dE(0, 0) is an isomorphism from W >0 R × R 3 to W >0 R × R × C. Again, we conclude with the Implicit Function Theorem that the only solution of the Monodromy Problem is x = 0. We omit the proof in the H 3 case which is similar.

By duality, we obtain the following result (with the same hypothesis on Ω and δ):

Corollary 1. Let ξ t be a C 1 family of σ-symmetric DPW potentials on Ω with the following properties:

(1) α t , γ t are holomorphic in Ω and β t has at most a double pole at 0 and ∞, (2) Re(Res 0 (zβ t )) = 0, (3) Res 0 (β 0 t ) = 0. Assume that there exists a continuous family of σ-symmetric solutions Φ t of dΦ t = Φ t ξ t such that the Monodromy Problem [START_REF] Fay | Theta Functions on Riemann Surfaces[END_REF] or (72) for M(Φ t , δ) is solved. Further assume that at t = 0 ξ 0 = 0 0 1 0 k dz (z + 1) 2 and Φ 0 (1) is diagonal. Then for t in a neighborhood of 0, ξ t is holomorphic at 0 and ∞.

Appendix B. Principal solution through a neck

Fix some numbers 0 < ε < ε. For t ∈ C such that 0 < |t| < ε 2 , let A t ⊂ C be the annulus |t|/ε < |z| < ε and ψ t : A t → A t be the involution defined by ψ t (z) = t/z. We see an element of the universal cover Ă C * of C * as a complex number t ∈ C * with a determination of its argument (which we do not write), so the function log t is well defined on Ă C * . We denote t → e 2πi t the Deck transformation of Ă C * which increases the argument of t by 2π. For t ∈ Ă C * , let β t be the curve from ε to t/ε parametrized for s ∈ [0, 1] by β t (s) = (ε ) 1-2s t s = (ε ) 1-2s e s log t .

Our goal is to understand the limit behavior of P(ξ t , β t ) as t → 0, under suitable hypothesis on the potential ξ t . Let γ be the circle parametrized by γ(s) = ε e 2πis . Theorem 5. Let ξ t be a family of Λsl(n, C) valued holomorphic 1-forms on A t , depending holomorphically on t ∈ D * (0, ε 2 ), and let p ξ t = ψ * t ξ t . Assume that lim t→0 ξ t = ξ 0 and lim t→0 p ξ t = p ξ 0 where ξ 0 and p ξ 0 are holomorphic in D(0, ε) and the limit is uniform on compact subsets of D * (0, ε). Define for t ∈ Ă C * small enough r F (t) = P(ξ t , γ) -log t 2πi P(ξ t , β t ). Then

(1) The function r F satisfies r F (e 2πi t) = r F (t) so descends to a well defined holomorphic function F (t) defined in a punctured neighborhood of 0.

(2) The function F extends holomorphically at t = 0 with F (0) = P(ξ 0 , ε , 0)P( p ξ 0 , 0, ε ).

(3) If t > 0, the function P(ξ t , β t ) extends to a smooth function of t and t log t with value F (0) at t = 0. Moreover we have as t → 0 P(ξ t , β t ) = I 2 + t log t 2πi ∂ ∂t P(ξ t , γ) | t=0 F (0) + O(t).

Remark 14. We apply Theorem 5 in the proof of Proposition 13 with ξ t = (z -1 jk ) * ξ t,x and t = t jk . Then z jk = ψ t • z jk so p ξ t = ((z jk ) -1 ) * ξ t,x . By Proposition 3, ξ 0 and p ξ 0 are both holomorphic in D(0, ε), with ξ 0 = (z -1 jk ) * (M j ω 0 ) and p ξ 0 = ((z jk ) -1 ) * (M jk ω q jk ). Theorem 5 says that P((z -1 jk ) * ξ t,x , ε , t jk /ε ) extends at t = 0 to a smooth function of t jk and t jk log t jk with value at t jk = 0 P((z -1 jk ) * (M j ω 0 ), ε , 0) P(((z jk ) -1 ) * (M jk ω q jk ), 0, ε ). To justify that the extension is a smooth function of t, t log t and x we use Hartog Theorem on separate holomorphy to ensure that the function F depends holomorphically on (t, x). In other words, P(ξ t,x , z jk = ε , z jk = ε ) extends to a smooth function of t, t log t and x with value at t = 0 P(M j ω 0 , z jk = ε , z jk = 0) P(M jk ω q jk , z jk = 0, z jk = ε ) = P(ξ 0,x , z jk = ε , z jk = ε ) where in the last expression, it is understood that the principal solution is continuous at the node. This gives some theoretical ground for the heuristic explained in Section 4.

Proof: first of all, by the change of variables z = z/ε and t = t/(ε ) 2 , we may assume without loss of generality that ε = 1 (so ε > 1). The expression of β t simplifies to β t (s) = t s . The restriction of ξ t to the unit circle γ extends holomorphically at t = 0, with value ξ 0 . Since ξ 0 is holomorphic in D(0, ε), P(ξ 0 , γ) = I 2 . Hence log P(ξ t , γ) and r F (t) are well defined for t small enough. Point (1) follows from the fact that the path β e 2πi t is homotopic to γβ t . To prove Point (2), we split the path β t into β t = α t p α -1 t where α t (s) = β t (s/2) = t s/2 and p α t (s) = β t (1 -s/2) = ψ t (α t (s)). Lemma 2. There exists a uniform constant C such that for t small enough enough:

(74) 1 0 [ξ t (α t (s)) -ξ 0 (α t (s))] α t (s) ds ≤ C|t| 1/2 . Proof: we use the letter C to denote various uniform constants. Fix some ε 2 ∈ (1, ε). On the circle C(0, ε 2 ), ξ t depends holomorphically on t in a neighborhood of 0 so (75) C(0,ε2) ξ t -ξ 0 ≤ C|t|.

By the change of variable formula, the convergence of p ξ t to p ξ 0 and the holomorphicity of ξ 0 and p ξ 0 in D(0, ε): Then we have the following estimates: Returning to the proof of Theorem 5, let Φ 0 be the solution of dΦ 0 = Φ 0 ξ 0 in D(0, ε) with initial condition Φ 0 (1) = I n . Let Y t (s) be the solution on [0, 1] of the Cauchy Problem Y t (s) = Y t (s)ξ t (α t (s))α t (s) Y t (0) = I 2 .

By definition, P(ξ t , α t ) = Y t (1). Define Z t (s) = Y t (s) -Φ 0 (α t (s)).

Then Z t (s) = Y t (s)ξ t (α t (s))α t (s) -Φ 0 (α t (s))ξ 0 (α t (s))α t (s) = Z t (s)ξ t (α t (s))α t (s) + Φ 0 (α t (s))[ξ t (α t (s)) -ξ 0 (α t (s))]α t (s). Φ 0 (α t (s)) [ξ t (α t (s)) -ξ 0 (α t (s))] α t (s) ds × exp 1 0 ξ t (α t (s))α t (s) ds .

Using Lemma 2, uniform bounds for Φ 0 and ξ 0 in D(0, 1) and the length of α t , we obtain P(ξ t , α t ) -Φ 0 (α t (1)) = Z t (1) ≤ C|t| 1/2 . Since Φ 0 is holomorphic in D(0, 1), Φ 0 (α t (1)) -Φ 0 (0) ≤ C|α t (1)| = C|t| 1/2
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 1 Figure 1. Left: a balanced graph with 6 edges and 6 rays. All edges and rays have weight 1. Right: a CMC-1 surface of genus 1 with 6 Delaunay-type ends in the corresponding family. Computer image by N. Schmitt [2].

. 5 .

 5 Gauging and the Regularity Problem. Definition 6. A gauge on Σ is a holomorphic map G : Σ → Λ + SL(2, C).

3. 6 .

 6 Dressing and rigid motions. Let Φ be a solution of the Cauchy Problem (3). Let H ∈ ΛSU (2) and define r Φ(z) = HΦ(z). Then r Φ solves d r Φ = r Φξ and the Iwasawa decomposition of r Φ is r F = HF and r B = B. The Sym-Bobenko formula gives

3. 7 .

 7 Spherical and catenoidal potentials. Delaunay surfaces are obtained from the following standard potential on C * :

Proposition 7 .

 7 There exists explicit values of x jk , y jk and B jk in W ≥0 R , depending analytically on (t, x), such that p α and p γ are holomorphic at w = 0, p β has a pole of multiplicity at most 2 and(28) Re Res 0 (w p β) = 0.

Figure 2 .

 2 Figure 2. The paths γ jk (red) and Γ jk (green), for (j, k) ∈ E + . The large circles represent the unit circles in C j , C jk and C k . The tiny circles represent disks that are removed when opening nodes. The bullets represent ends. The dots connect points that are identified when opening nodes.

  we have F 0 jk = 0 and we do not need to solve F - jk = 0. The σ-symmetry gives us one more piece of information: if | M jk ∈ Λsu(2), then the symmetry (43) and the definition of the conjugation and star operators give | M jk;11 (λ) = -| M * jk;11 (λ) = | M * jk;11 (λ) = | M jk;11 (1/λ). This implies ∂ ∂λ | M jk;11 | λ=1 = 0.

  d x M (0, 0) = 2πi -k db λ -1 ik 2 ρ 2 (2da -λdc/2) 2i dc/ρ 2 k db . Define r a = -kb, r b = k 2 ρ 2 (2a -λc/2) and r c = 2c/ρ 2 . It is clear that (a, b, c) → (r a,r b, r c) is an automorphism of (W ≥0 R ) 3 . The point of this change of variables (and the conjugation by H) is that we now have d x M (0, 0) = 2πi dr a λ -1 i d r b i dr c -dr a .

11 | 11 |

 1111 λ=e iθ ) = 0 M 21 | λ=e iθ = 0 λ=e q ) = 0 Re(M 12 | λ=e q ) = 0 Re(M 21 | λ=e q ) = 0In the S 3 case, define F, G by Equations (48) and (49) with M in place of | M jk andE = (E i ) 1≤i≤5 = F + , G + , λ(G -) * , Im(M 11 | λ=e iθ ), M 21 | λ=e iθ .ThendE 1 = -2πdr a +dE 2 = -2π(d r b + + λdr c 0 ) dE 3 = -2π(dr c + + λd r b 0 ) dE 4 + Re(dE 1 | λ=e iθ ) = 2πdr a 0 dE 5 -dE 3 | λ=e iθ = 2π(e iθ d r b 0 -dr c 0 ).

SinceF

  (t) is well-defined, we may assume that | arg t| ≤ π. Provided |t| ≤ e -π , we have | log t| ≤ 2| log |t| | so (73) |α t (s)| = 1 2 |t| s/2 | log t| ≤ |t| s/2 | log |t| |. Integrating the estimate (73), we see that the length of the spiral α t is bounded by 2.

  |t|/ε2) ξ 0 ≤ C. We expand ξ t -ξ 0 in Laurent series in the annulus |t|/ε 2 ≤ |z| ≤ ε 2 as ξ t (z) -ξ 0 (z) = k∈Z A k (t)z k dzwhere the matrices A k (t) are given byA k (t) = 1 2πi C(0,ε2) ξ t (z) -ξ 0 (z) z k+1 = 1 2πi C(0,|t|/ε2) ξ t (z) -ξ 0 (z) z k+1 .Estimates (75) and (76) give us respectively:(77)A k (t) ≤ C |t| ε k+1

1 0[ 1 0A 1 0A 2 A k (t) |t| k+1 2 ≤≤

 11122 ξ t (α t (s)) -ξ 0 (α t (s))]α t (s) ds ≤ k∈Z k (t) |α t (s)| k |α t (s)| ds ≤ k∈Z k (t) |t| (k+1)s/2 | log |t| | ds using (73) = A -1 (t) | log |t| | + k =-1 2 k + 1 A k (t) 1 -|t| (k+1)/2 ≤ A -1 (t) | log |t| | + 2 k≥0 A k (t) + 2 k≤-C|t log |t| | + C C|t log |t| | + C|t| + C|t|

Z 0 Φ 0

 00 t (x) ξ t (α t (x))α t (x) dx + s (α t (x)) [ξ t (α t (x)) -ξ 0 (α t (x))] α t (x) dx By Grönwall inequality: Z t (1) ≤ 1 0

  that |t jk | < ε 2 . Remove the disks |z jk | ≤ |t jk |/ε and |z jk | ≤ |t jk |/ε. Identify each point z in the annulus |t jk |/ε < |z jk | < ε with the point z in the annulus |t jk |/ε < |z jk | < ε such that z jk (z)z jk (z ) = t jk . In particular, the circle |z jk | = |t jk | 1/2 is identified with the circle |z jk | = |t jk | 1/2 , with the reverse orientation. This creates two necks per edge. The resulting compact Riemann surface is denoted Σ t,x .

  x . 5.2. Meromorphic 1-forms on Σ t,x . We denote C(p jk ) the circle |z jk | = ε and C(p jk ) the circle |z jk | = ε. Assume t = 0 and let ω be a meromorphic 1-form on Σ t,x with poles outside of the annuli |t jk |/ε < |z jk | < ε.

	We have		
	(14)	ω = -	ω for (j, k) ∈ E
	C(p jk )	C(p jk )
	because C(p jk ) is homologous to -C(p jk ) in Σ t,x . By the Residue Theorem in C j
	(15)	ω + 2πi	
	k∈Ej C(p jk )	q∈Cj

  1 iτ jk dθ jk /4 λi d p b jk + λiτ jk dθ jk /4 -dp a jk /2

	which gives
	dE 2,jk,1 = -π dp a + jk
	dE 2,jk,2 = dE 2,jk,3 = -2πd p b + π τ jk dθ + jk 2 jk -π 2 τ jk dθ + jk
	dE 2,jk,4 = -2π d p b 0 jk .
	Point (3) easily follows.

  converges to a catenoid with axis oriented by τ jk u jk . The convergence is on compact subsets of Ω jk,ε1 \ {0 jk , ∞ jk }. It is extended to neighborhoods of 0 jk and ∞ jk using the gauge G jk,t . 10.4. Edge-length estimate. Recall that jk,t = v k,t -v j,t is the length of the edge (j, k) on Γ t . Proposition 21. As t → 0, we have for (j, k) ∈ E + (66) jk,t = 2 -2 τ jk t log t + O(t).

  So provided |p jk,t -u jk | ≤ ε 6 , which is true for t small enough, the outer boundary component of A jk,t (namely the circle |z jk,t | = ε) is included in Ω j,ε1 . Likewise, the inner boundary component of A jk,t (namely the circle |z jk

	(70)	1 2	≤	|z jk,t | |z -p jk,t |	≤	3 2	.

10.5. Transition annuli. For (j, k) ∈ E and t > 0, let A jk,t be the annulus |t jk |/ε < |z jk,t | < ε which is identified with the annulus |t jk |/ε < |z jk,t | < ε when opening nodes. We have for |z jk,t | ≤ 1

  • For (j, k) ∈ R, let D jk,t be the disk bounded by γ jk,t and D * jk,t = D jk,t \ {p 0 jk,t }. By Proposition 19, r f t (D * jk,t ) is embedded. By the proof of Claim 3 in [29], its reunion with ∆ jk,t bounds a cylindrically bounded domain W jk,t . • For (j, k) ∈ E + , let A jk,t ⊂ A jk,t ∪ Ω jk,ε1 ∪ A kj,t be the annulus bounded by γ jk,t and γ kj,t . By Proposition 22, r f t (A jk,t ) is embedded. By Claim 1 below and the Jordan Brouwer Theorem,

r f t (A jk,t ) ∪ ∆ jk,t ∪ ∆ kj,t is the boundary of a bounded domain W jk,t .

Let W t be the closed manifold with boundary obtained as the disjoint union of all W j,t for j ∈ J and W jk,t for (j, k) ∈ E ∪ R, identifying W j,t and W jk,t for k ∈ E j ∪ R j along their common boundary ∆ jk,t . Let F t : W t → R 3 be the canonical injection on each W j,t and W jk,t . Note that F t is a priori not injective, since the domains may overlap (its image F t (W t ) is what is called an immersed domain.) But F t is a proper local diffeomorphism whose boundary restriction parametrizes M t . Moreover, we may compactify W t by adding one point per domain W jk,t for (j, k) ∈ R. This proves that M t is Alexandrov embedded.

We would like to apply the maximum principle to conclude that the same estimate holds inside A jk,t . This is of course not possible because Φ t is not well defined on A jk,t , but this problem is easily solved as follows. Define on r A jk,t G t = exp -log z jk,t 2πi log M(Φ t , γ jk ) .

Then G t Φ t descends to a well defined holomorphic function on A jk,t . Also, we have G t = I 2 +O(t), so by Equation (71), for t small enough G t Φ t -Φ 0 ( r 1 j )Φ S (u jk ) ≤ 5cε on ∂A jk,t .

By the maximum principle

(The maximum principle for Banach valued holomorphic functions states that if f has an interior maximum then f is constant, and is an easy consequence of the Gauss mean value formula.) Hence for t small enough

Fix a positive α < 1/4. Using that Iwasawa decomposition is differentiable, we have, provided ε is chosen small enough (observe that c is a universal constant)

Let N t be the Gauss map of f t . By Equation ( 5), we obtain since Φ 0 ( r

Recall that Ψ • N S (u jk ) = -u jk and let π ⊥ u jk be the projection on the plane orthogonal to u jk . (2) Introduce a coordinate system (x, y, z) with origin r f t (i jk ) and x-axis parallel to the line (v j,t , v k,t ). In the following, left and right refer to the x-axis (so v j,t is on the left of v k,t ). Let S t be the hemisphere -1 ≤ x ≤ 0 of the unit sphere centered at (-1, 0, 0). Assume τ jk > 0. By Proposition 20, the right boundary of r f t (A jk,t ) is on the left of S t . By Proposition 18, the left boundary of

from the radius 1-sphere centered at v j,t so is on the left of S t by Point (2) of Proposition 21. Moreover, the mean curvature vector on r f t (A jk,t ) points to the left (because it does so on the left boundary). By the maximum principle, r f t (A jk,t ) is on the left of S t so in particular lies in the half-space x < 0. By the same argument, r f t (A kj,t ) lies in the half-space x > 0. Hence they are disjoint and it is now clear, from Proposition 20 and Point [START_REF] Bobenko | Minimal n-noids in hyperbolic and Anti-de Sitter 3-space[END_REF], that the image of A jk,t ∪ Ω jk,ε1 ∪ A kj,t is embedded. 10.6. Embeddedness. Let M t be the image of r f t .

Proposition 23. If all weights τ jk are positive, then for t > 0 small enough, M t is Alexandrov-embedded. If moreover the graph Γ is pre-embedded, then for t > 0 small enough, M t is embedded.

Appendix A. A regularity result

In this section we prove a regularity result in the spirit of Theorem 5 in [START_REF] Traizet | Opening nodes and the DPW method[END_REF] or Theorem 6 in [START_REF] Heller | Area estimates for high genus Lawson surfaces via DPW[END_REF]. The philosophy of these results is to idenfity which part of the Regularity Problem is solved when the Monodromy Problem around a singularity is solved. For use in other papers, we consider the Monodromy Problem associated to the general Sym-Bobenko formula in space forms with Sym-points at λ 1 , λ 2 , with either

(1)

, λ 2 = e -q with q > 0 (H 3 case). The Monodromy Problem in cases ( 2) and ( 3) is

Let Ω ⊂ C be a σ-symmetric domain containing the points 0, ∞ and not containing -1.

Let ξ t = αt λ -1 βt γt -αt be a C 1 family of σ-symmetric DPW potentials with the following properties:

(1) α t , β t are holomorphic in Ω and γ t has at most a double pole at 0 and ∞, (2) Re(Res 0 (zγ t )) = 0, (3) Res 0 (γ 0 t ) = 0. Assume that there exists a continuous family of σ-symmetric solutions Φ t of dΦ t = Φ t ξ t in the universal covering of Ω \ {0, ∞} and a σ-symmetric curve δ ⊂ Ω bounding a disk-type domain containing 0 and ∞, such that the Monodromy Problem [START_REF] Fay | Theta Functions on Riemann Surfaces[END_REF] or (72) for M(Φ t , δ) is solved. Further assume that at t = 0

with k ∈ R * and Φ 0 (1) is diagonal. Then for t in a neighborhood of 0, ξ t is holomorphic at 0 and ∞.

Proof: Let (F, B) be the Iwasawa decomposition of Φ 0 (1) (both factors are diagonal). Replacing Φ t by F -1 Φ t , we may assume that Φ 0 (1) is a diagonal matrix in Λ + R SL(2, C) so

with ρ ∈ W ≥0 R . By Hypothesis ( 2) and (3), we may write Res 0 (zγ t ) = ia t and Res 0 (γ

Writing x t = (a t , b t , c t ), we see that γ t -ω xt is holomorphic at 0 and ∞ by symmetry. Define

(The first term is holomorphic in Ω). Let Φ t,x be the solution of dΦ t,x = Φ t,x ξ t,x with initial condition Φ t,x (z 0 ) = Φ t (z 0 ), where z 0 is an arbitrary base point. Then ξ t,xt = ξ t and Φ t,xt = Φ t . Since ξ 0 is holomorphic at 0, we have x 0 = 0. Theorem 4 follows from the following Hence (78)

Let p Φ 0 be the solution of d p Φ 0 = p Φ 0 p ξ 0 with initial condition p Φ 0 (1) = I n . By the same argument, we have

By Equations ( 78) and (79):

Since P(ξ t , γ) = I 2 + O(t), we finally obtain

By Riemann Extension Theorem, F extends holomorphically at t = 0, and

Finally, to prove Point (3), assume that t > 0 and write

Since P(ξ 0 , γ) = I 2 , t -1 log P(ξ t , γ) extends holomorphically at t = 0 with value ∂ ∂t P(ξ t , γ) | t=0 and Point (3) follows.

Appendix C. Differentiability of smooth functions of t and t log t Proposition 24. Let E be a finite dimensional space and g(t, s, z) be a smooth function from a neighborhood of (0, 0, z 0 ) in R 2 × E to a normed space F . Define

Assume that g(0, s, z) only depends on z. Then f is of class C 1 and df (0, z) = ∂g ∂t (0, 0, z)dt + d z g(0, 0, z).

Proof: f is clearly continuous. For t = 0, we have by the chain rule: df (t, z) = ∂g ∂t (0, 0, z 0 )dt + d z g(0, 0, z 0 ).

It follows (using the Mean Value Inequality) that f is differentiable at (0, z 0 ) and that it is of class C 1 .