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GLUING DELAUNAY ENDS TO MINIMAL n-NOIDS USING THE DPW
METHOD

Martin Traizet
Institut Denis Poisson

Université de Tours, 37200 Tours, France
martin.traizet@univ-tours.fr

Abstract: we construct constant mean curvature surfaces in euclidean space by gluing n half
Delaunay surfaces to a non-degenerate minimal n-noid, using the DPW method.

1. Introduction

In [3], Dorfmeister, Pedit and Wu have shown that surfaces with non-zero constant mean
curvature (CMC for short) in euclidean space admit a Weierstrass-type representation, which
means that they can be represented in terms of holomorphic data. This representation is now
called the DPW method. In [18], we used the DPW method to construct CMC n-noids: genus
zero, CMC surfaces with n Delaunay type ends. These n-noids can be described as a unit sphere
with n half Delaunay surfaces with small necksizes attached at prescribed points. They had
already been constructed by Kapouleas in [11] using PDE methods.

In the case n = 3, Alexandrov-embedded CMC trinoids have been classified by Große Brauck-
man, Kusner and Sullivan in [9]. In particular, equilateral CMC trinoids form a 1-parameter
family, parametrized on an open interval. On one end, equilateral trinoids degenerate like the
examples described above: they look like a sphere with 3 half Delaunay surfaces with small neck-
sizes attached at the vertices of a spherical equilateral triangle. On the other end, equilateral
trinoids limit, after suitable blow-up, to a minimal 3-noid: a genus zero minimal surface with 3
catenoidal ends (see Figure 1).

It seems natural to ask if one can generalize this observation and construct CMC n-noids by
gluing half Delaunay surfaces with small necksizes to a minimal n-noid. This is indeed the case,
and has been done by Mazzeo and Pacard in [14] using PDE methods. In this paper, we propose
a quite simple and natural DPW potential to construct these examples. We prove:

Theorem 1. Let n ≥ 3 and let M0 be a non-degenerate minimal n-noid. There exists a smooth
family of CMC surfaces (Mt)0<|t|<ε with the following properties:

(1) Mt has genus zero and n Delaunay ends.
(2) 1

tMt converges to M0 as t→ 0.
(3) If M0 is Alexandrov-embedded, all ends of Mt are of unduloid type if t > 0 and of nodoid

type if t < 0. Moreover, Mt is Alexandrov-embedded if t > 0.

Non-degeneracy of a minimal n-noid will be defined in Section 2. The two surfaces Mt and
M−t are geometrically different: if Mt has an end of unduloid type then the corresponding
end of M−t is of nodoid type. See Proposition 6 for more details. Of course, a minimal n-
noid is never embedded if n ≥ 3 so the surfaces Mt are not embedded. Alexandrov-embedded
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2 GLUING DELAUNAY ENDS TO MINIMAL N -NOIDS USING THE DPW METHOD

Figure 1. A CMC 3-noid (left, image by N. Schmitt [16]) and a minimal 3-noid
(right). There is a tiny “copy” of the minimal 3-noid at the center of the CMC
3-noid.

minimal n-noids whose ends have coplanar axes have been classified by Cosin and Ros in [2],
and Alexandrov-embedded CMC n-noids whose ends have coplanar axes have been classified by
Große-Brauckmann, Kusner and Sullivan in [10].

As already said, these surfaces have already been constructed in [14]. Our motivation to
construct them with the DPW method is to answer the following questions:

(1) How can we produce a DPW potential from the Weierstrass data (g, ω) of the minimal
n-noid M0 ?

(2) How can we prove, with the DPW method, that 1
tMt converges to M0 ?

The answer to Question 2 is Theorem 4 in Section 4, a general blow-up result in the context of
the DPW method. In [19], we use the DPW method to construct higher genus CMC surfaces
with small necks. Theorem 4 is used to ensure that the necks have asymptotically catenoidal
shape.

Remark 1. As the referee pointed out, the relation between minimal surfaces and CMC-1 surfaces
in the DPW framework has already been investigated by Brander and Dorfmeister [1]. In that
paper, the authors propose a DPW potential from the Weierstrass data of a minimal surface M .
The Monodromy Problem is not addressed, however, so the resulting CMC-1 surfaces do not
close, unless M is simply connected.

I would like to thank the referee for his helpful comments and for providing the references [7]
and [8].

2. Non-degenerate minimal n-noids

A minimal n-noid is a complete, immersed minimal surface in R3 with genus zero and n
catenoidal ends. Let M0 be a minimal n-noid and (Σ, g, ω) its Weierstrass data. This means
that M0 is parametrized on Σ by the Weierstrass Representation formula:

(1) ψ(z) = Re

∫ z

z0

(
1
2(1− g2)ω, i

2(1 + g2)ω, gω
)



GLUING DELAUNAY ENDS TO MINIMAL n-NOIDS USING THE DPW METHOD 3

Without loss of generality, we can assume that Σ = C ∪ {∞} \ {p1, · · · , pn}, where p1, · · · , pn
are complex numbers and g 6= 0,∞ at p1, · · · , pn (by rotating M0 if necessary). Then ω needs
a double pole at p1, · · · , pn so has 2n − 2 zeros, counting multiplicity. Since ω needs a zero at
each pole of g, with twice the multiplicity, it follows that g has n− 1 poles so has degree n− 1.
Hence we may write

(2) g =
A(z)

B(z)
and ω =

B(z)2 dz∏n
i=1(z − pi)2

where

A(z) =
n∑
i=1

aiz
n−i and B(z) =

n∑
i=1

biz
n−i.

We are going to deform this Weierstrass data, so we see ai, bi and pi for 1 ≤ i ≤ n as complex
parameters. We denote by x ∈ C3n the vector of these parameters, and by x0 the value of the
parameters corresponding to the minimal n-noid M0.

Let γi be the homology class of a small circle centered at pi and define the following periods
for 1 ≤ i ≤ n and 0 ≤ k ≤ 2, depending on the parameter vector x ∈ C3n:

Pi,k(x) =

∫
γi

gkω

Pi(x) = (Pi,0(x), Pi,1(x), Pi,2(x)) ∈ C3

Qi(x) =

∫
γi

(
1
2(1− g2)ω, i

2(1 + g2)ω, gω
)
∈ C3.

Then
Qi(x) =

(
1
2(Pi,0(x) − Pi,2(x)), i

2(Pi,0(x) + Pi,2(x)), Pi,1(x)
)
.

The components of Qi(x0) are imaginary because the Period Problem is solved for M0. This
gives

(3) Pi,2(x0) = Pi,0(x0) and Pi,1(x0) ∈ iR

Moreover, Im(Qi(x0)) = −φi where φi is the flux vector of M0 at the end pi. By the Residue
Theorem, we have for all x in a neighborhood of x0:

n∑
i=1

Pi(x) = 0

Let P = (P1, · · · , Pn−1) and Q = (Q1, · · · , Qn−1).

Definition 1. M0 is non-degenerate if the differential of P (or equivalently, Q) at x0 has complex
rank 3n− 3.

Remark 2. If n ≥ 3, we may (using Möbius transformations of the sphere) fix the value of three
points, say p1, p2, p3. Then "non-degenerate" means that the differential of P with respect to the
remaining parameters is an isomorphism of C3n−3.

This notion is related to another standard notion of non-degeneracy:

Definition 2. M0 is non-degenerate if its space of bounded Jacobi fields has (real) dimension 3.
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Theorem 2. If M0 is non-degenerate in the sense of Definition 2, then M0 is non-degenerate
in the sense of Definition 1.

Proof. Assume M0 is non-degenerate in the sense of Definition 2. Then in a neighborhood of
M0, the spaceM of minimal n-noids (up to translation) is a smooth manifold of dimension 3n−3
by a standard application of the Implicit Function Theorem. Moreover, if we write φi ∈ R3 for
the flux vector at the i-th end, then the map φ = (φ1, · · · , φn) provides a local diffeomorphism
between M and the space V of vectors v = (v1, · · · , vn) ∈ (R3)n such that

∑n
i=1 vi = 0. (All

this is proved in Section 4 of [2] in the case where all ends are coplanar. The argument goes
through in the general case.) Hence given a vector v ∈ V , there exists a deformation Mt of
M0 such that Mt ∈ M and d

dtφ(Mt)|t=0 = v. We may write the Weierstrass data of Mt as
above and obtain a set of parameters x(t), depending smoothly on t, such that x(0) = x0. Then
dQ(x0) · x′(0) = −i v. Since Q is holomorphic, its differential is complex-linear so dQ(x0) has
complex rank equal to dimV = 3n− 3. 2

If all ends of M0 have coplanar axes, then M0 is non-degenerate in the sense of Definition 2
by Proposition 2 in [2]. In particular, the (most symmetric) n-noids of Jorge-Meeks are non-
degenerate. This implies that generic n-noids in the component of the Jorge-Meeks n-noid are
non-degenerate.

3. Background

In this section, we recall standard notations and results used in the DPW method. We work
in the “untwisted” setting.

3.1. Loop groups. A loop is a smooth map from the unit circle S1 = {λ ∈ C : |λ| = 1} to a
matrix group. The circle variable is denoted λ and called the spectral parameter. The unit disk
is denoted D. For ρ > 1, we denote Dρ the disk |λ| < ρ, D∗ρ = Dρ \ {0} and Aρ the annulus
1
ρ < |λ| < ρ.

• If G is a matrix Lie group (or Lie algebra), ΛG denotes the group (or algebra) of smooth
maps Φ : S1 → G.
• Λ+SL(2,C) ⊂ ΛSL(2,C) is the subgroup of maps B which extend holomorphically to D
with B(0) upper triangular.
• ΛR

+SL(2,C) ⊂ Λ+SL(2,C) is the subgroup of maps B such that B(0) has positive entries
on the diagonal.

Theorem 3 (Iwasawa decomposition). The multiplication ΛSU(2)× ΛR
+SL(2,C)→ ΛSL(2,C)

is a diffeomorphism. The unique splitting of an element Φ ∈ ΛSL(2,C) as Φ = FB with
F ∈ ΛSU(2) and B ∈ ΛR

+SL(2,C) is called Iwasawa decomposition. F is called the unitary
factor of Φ and denoted Uni(Φ). B is called the positive factor and denoted Pos(Φ).

3.2. The matrix model of R3. In the DPW method, one identifies R3 with the Lie algebra
su(2) by

x = (x1, x2, x3) ∈ R3 ←→ X = −i

(
−x3 x1 + ix2

x1 − ix2 x3

)
∈ su(2).

We have det(X) = ‖x‖2. The group SU(2) acts as linear isometries on su(2) by conjugation:
H ·X = HXH−1.
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3.3. The DPW method. The input data for the DPW method is a quadruple (Σ, ξ, z0, φ0)
where:

• Σ is a Riemann surface.
• ξ = ξ(z, λ) is a Λsl(2,C)-valued holomorphic 1-form on Σ called the DPW potential.
More precisely,

(4) ξ =

(
α λ−1β
γ −α

)
where α(z, λ), β(z, λ), γ(z, λ) are holomorphic 1-forms on Σ with respect to the z variable,
and are holomorphic with respect to λ in the disk Dρ for some ρ > 1.
• z0 ∈ Σ is a base point.
• φ0 ∈ ΛSL(2,C) is an initial condition.

Given this data, the DPW method is the following procedure.

• Let Σ̃ be the universal cover of Σ and z̃0 ∈ Σ̃ be an arbitrary element in the fiber of z0.
Solve the Cauchy Problem on Σ̃:

(5)
{
dΦ(z, λ) = Φ(z, λ)ξ(z, λ)
Φ(z̃0, λ) = φ0(λ)

to obtain a solution Φ : Σ̃→ ΛSL(2,C).
• Compute the Iwasawa decomposition (F (z, ·), B(z, ·)) of Φ(z, ·).
• Define f : Σ̃→ su(2) ∼ R3 by the Sym-Bobenko formula:

(6) f(z) = −2i
∂F

∂λ
(z, 1)F (z, 1)−1 =: Sym(F (z, ·)).

Then f is a CMC-1 (branched) conformal immersion. f is regular at z (meaning un-
branched) if and only if β(z, 0) 6= 0. Its Gauss map is given by

(7) N(z) = −iF (z, 1)

(
−1 0
0 1

)
F (z, 1)−1 =: Nor(F (z, ·)).

The DPW method actually constructs a moving frame for f . The differential of f is
given by

(8) df(z) = 2iB11(z, 0)2F (z, 1)

(
0 β(z, 0)

β(z, 0) 0

)
F (z, 1)−1.

Equation (8) can also be obtained by differentiation of the Sym-Bobenko formula (6).

Remark 3. In [18], I have opposite signs in Equations (6) and (7). This is unfortunate because
it makes the basis (fx, fy, N) negatively oriented. Equation (6) is the right formula, which one
obtains by untwisting the standard Sym-Bobenko formula in the twisted case. See [13] or [17].

3.4. The Monodromy Problem. Assume that Σ is not simply connected so its universal cover
Σ̃ is not trivial. Let Deck(Σ̃/Σ) be the group of fiber-preserving diffeomorphisms of Σ̃. Let Φ

be the solution of the Cauchy Problem (5). For γ ∈ Deck(Σ̃/Σ), let

Mγ(Φ)(λ) = Φ(γ(z), λ)Φ(z, λ)−1
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be the monodromy of Φ with respect to γ (which is independent of z ∈ Σ̃). The standard
condition which ensures that the immersion f descends to a well defined immersion on Σ is the
following system of equations, called the Monodromy Problem.

(9) ∀γ ∈ Deck(Σ̃/Σ)


Mγ(Φ) ∈ ΛSU(2) (i)
Mγ(Φ)(1) = ±I2 (ii)
∂Mγ(Φ)

∂λ (1) = 0 (iii)

One can identify Deck(Σ̃/Σ) with the fundamental group π1(Σ, z0) (see for example Theorem
5.6 in [5]), so we will in general see γ as an element of π1(Σ, z0). Under this identification, the
monodromy of Φ with respect to γ ∈ π1(Σ, z0) is given by

Mγ(Φ)(λ) = Φ(γ̃(1), λ)Φ(γ̃(0), λ)−1

where γ̃ : [0, 1]→ Σ̃ is the lift of γ such that γ̃(0) = z̃0.

3.5. Gauging.

Definition 3. A gauge on Σ is a map G : Σ→ Λ+SL(2,C) such that G(z, λ) depends holomor-
phically on z ∈ Σ and λ ∈ Dρ for some ρ > 1.

Let Φ be a solution of dΦ = Φξ and G be a gauge. Let Φ̂ = Φ×G. Then Φ̂ and Φ define the
same immersion f . This is called “gauging”. The gauged potential is

ξ̂ = Φ̂−1dΦ̂ = G−1ξG+G−1dG

and will be denoted ξ ·G, the dot denoting the action of the gauge group on the potential.

3.6. Functional spaces. We need to introduce a functional space for functions on the unit
circle. We need that space to be a Banach algebra, and functions in that space should extend
holomorphically to a neighborhood of the unit circle. The following choice is natural. We
decompose a smooth function f : S1 → C in Fourier series

f(λ) =
∑
i∈Z

fiλ
i

Fix some ρ > 1 and define
‖f‖ =

∑
i∈Z
|fi|ρ|i|

Let Wρ be the space of functions f with finite norm. This is a Banach algebra, owing to the
fact that the weight ρ|i| is submultiplicative (see Section 4 in [8]). Functions in Wρ extend
holomorphically to the annulus Aρ.

We define W≥0
ρ , W>0

ρ , W≤0
ρ and W<0

ρ as the subspaces of functions f such that fi = 0 for
i < 0, i ≤ 0, i > 0 and i ≥ 0, respectively. Functions in W≥0

ρ extend holomorphically to the
disk Dρ and satisfy |f(λ)| ≤ ‖f‖ for all λ ∈ Dρ. We write W0 ∼ C for the subspace of constant
functions, so we have a direct sum Wρ =W<0

ρ ⊕W0⊕W>0
ρ . (The Banach algebra Wρ is said to

be decomposable, see [7] page 70.) A function f will be decomposed as f = f− + f0 + f+ with
(f−, f0, f+) ∈ W<0

ρ ×W0 ×W>0
ρ .
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We define the star operator by

f∗(λ) = f(1/λ) =
∑
i∈Z

f−iλ
i

The involution f 7→ f∗ exchangesW≥0
ρ andW≤0

ρ . We have λ∗ = λ−1 and c∗ = c if c is a constant.
A function f is real on the unit circle if and only if f = f∗. We extend the star involution to

loops by M∗(λ) = M(1/λ)
T
, so a loop F is unitary if and only if F ∗F = I2.

If L is a loop group, we denote Lρ ⊂ L the subgroup of loops whose entries are in Wρ. The
loop groups ΛSL(2,C)ρ, ΛSU(2)ρ and ΛR

+SL(2,C)ρ are Banach Lie groups, moreover:

Proposition 1. Iwasawa decomposition restricts to an analytic diffeomorphism between the Ba-
nach Lie groups ΛSL(2,C)ρ and ΛSU(2)ρ × ΛR

+SL(2,C)ρ.

Proof: let Φ ∈ ΛSL(2,C)ρ and let (F,B) be its Iwasawa decomposition. We want to prove
that F and B have entries in Wρ. Since F is unitary, we have Φ∗Φ = B∗B. Now B∗ has
only non-positive powers of λ, so (B∗, B) is a Birkhoff-type decomposition of M = Φ∗Φ. Since
M ∈ ΛSL(2,C)ρ, it is known that both factors of its Birkhoff decomposition have entries in Wρ,
owing to the fact that Wρ is decomposable (see Theorem 1.4 in [7]). So B ∈ ΛR

+SL(2,C)ρ and
F ∈ ΛSU(2)ρ follows.

Let Λsl(2,C)ρ, Λsu(2)ρ and ΛR
+sl(2,C)ρ be the Banach Lie algebras of respectively ΛSL(2,C)ρ,

ΛSU(2)ρ and ΛR
+SL(2,C). The following decomposition is standard (the factors can be written

explicitly in term of Fourier coefficients):

Λsl(2,C)ρ = Λsu(2)ρ ⊕ ΛR
+sl(2,C)ρ.

By the inverse mapping theorem, the multiplication ΛSU(2)ρ × ΛR
+SL(2,C)ρ → ΛSL(2,C)ρ is

an analytic local diffeomorphism in a neighborhood of (I2, I2), and in a neighborhood of any
element (F,B) using left multiplication by F and right multiplication by B. Since we already
know the multiplication is bijective, it is a a global diffeomorphism. 2

4. A blow-up result

In this section, we consider a one-parameter family of DPW potential ξt with solution Φt and
assume that Φ0(z, λ) is independent of λ. Then its unitary part F0(z, λ) is independent of λ. The
Sym Bobenko formula yields that f0 ≡ 0, so the family ft collapses to the origin as t = 0. The
following theorem says that the blow-up 1

t ft converges to a minimal surface whose Weierstrass
data is explicitly computed.

Theorem 4. Let Σ be a Riemann surface, (ξt)t∈I a family of DPW potentials on Σ and (Φt)t∈I
a family of solutions of dΦt = Φtξt on the universal cover Σ̃ of Σ, where I ⊂ R is a neighborhood
of 0. Fix a base point z0 ∈ Σ̃. Assume that

(1) (t, z) 7→ ξt(z, ·) and t 7→ Φt(z0, ·) are C1 maps into Λsl(2,C)ρ and ΛSL(2,C)ρ, respec-
tively.

(2) For all t ∈ I, Φt solves the Monodromy Problem (9).
(3) Φ0(z, λ) is independent of λ:

Φ0(z, λ) =

(
a(z) b(z)
c(z) d(z)

)
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Let ft = Sym(Uni(Φt)) : Σ→ R3 be the CMC-1 immersion given by the DPW method. Then

lim
t→0

1

t
ft(z) = ψ(z)

where ψ : Σ → R3 is a (possibly branched) minimal immersion with the following Weierstrass
data:

g(z) =
−a(z)

c(z)
and ω = 4c(z)2

∂ξ
(−1)
t;12

∂t
|t=0.

The limit is for the uniform C1 convergence on compact subsets of Σ.

Here ξ(−1)
t;12 denotes the coefficient of λ−1 in the upper right entry of ξt. In case ω = 0, the

minimal immersion degenerates into a point and ψ is constant.

Proof: by standard ODE theory, (t, z) 7→ Φt(z, ·) is a C1 map into ΛSL(2,C)ρ. Let (Ft, Bt)
be the Iwasawa decomposition of Φt. By Proposition 1, (t, z) 7→ Ft(z, ·) and (t, z) 7→ Bt(z, ·) are
real analytic maps into ΛSU(2)ρ and ΛR

+SL(2,C)ρ, respectively. At t = 0, Φ0 is constant with
respect to λ, so its Iwasawa decomposition is the standard QR decomposition:

F0 =
1√

|a|2 + |c|2

(
a −c
c a

)
B0 =

1√
|a|2 + |c|2

(
|a|2 + |c|2 ab+ cd

0 1

)
.

The Sym-Bobenko formula (6) yields f0 = 0. Let µt = B0
t;11 and βt = ξ

(−1)
t;12 . By Equation (8),

we have

dft(z) = 2iµt(z)
2Ft(z, 1)

(
0 βt(z)

βt(z) 0

)
Ft(z, 1)−1.

Hence (t, z) 7→ dft(z) is a C1 map. At t = 0, ξ0 is constant with respect to λ, so β0 = 0. Define
f̃t(z) = 1

t ft(z) for t 6= 0. Then df̃t(z) extends at t = 0, as a continous function of (t, z), by

df̃0 =
d

dt
dft|t=0 = 2i

(
a −c
c a

)(
0 β′

β′ 0

)(
a c
−c a

)
= 2i

(
−acβ′ − acβ′ a2β′ − c2β′

a2β′ − c2β′ acβ′ + acβ′

)
where β′ = d

dtβt|t=0. In euclidean coordinates, this gives

df̃0 = 4 Re
[

1
2(c2 − a2)β′, i

2(c2 + a2)β′,−acβ′
]
.

Writing g = −a
c and ω = 4c2β′, we obtain

f̃0(z) = f̃0(z0) + Re

∫ z

z0

[
1
2(1− g2)ω, i

2(1 + g2)ω, gω
]

and we see that f̃0 is a minimal surface with Weierstrass data (g, ω). The last statement of
Theorem 4 comes from the fact that df̃t converges uniformly to df̃0 on compact subsets of Σ.2
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4.1. Example. As an example, we consider the family of Delaunay surfaces given by the follow-
ing DPW potential in C∗:

ξt(z, λ) =

(
0 λ−1r + s

λr + s 0

)
dz

z
with

 r + s = 1
2

rs = t
r < s

with initial condition Φt(1) = I2. As t→ 0, we have (r, s)→ (0, 1
2). We have

Φ0(z, λ) = exp

(
0 1

2
1
2 0

)
log z =

1

2
√
z

(
z + 1 z − 1
z − 1 z + 1

)
∂ξt
∂t
|t=0 =

(
0 2λ−1

2λ 0

)
dz

z
.

Theorem 4 applies and gives

g(z) =
1 + z

1− z
and ω(z) = 4

(
z − 1

2
√
z

)2 2 dz

z
= 2

(
z − 1

z

)2

dz.

This is the Weierstrass data of a horizontal catenoid of waist-radius 4 and axis Ox1, with x1 →
+∞ at the end z = 0.

5. The DPW potential

We now start the proof of Theorem 1. Let (g, ω) be the Weierstrass data of the given minimal
n-noid M0, written as in Section 2. We introduce 3n λ-dependent parameters ai, bi and pi for
1 ≤ i ≤ n in the functional space W≥0

ρ . The vector of these parameters is denoted x ∈ (W≥0
ρ )3n.

The parameter x is in a neighborhood of a (constant) central value x0 ∈ (W0)3n which correspond
to the Weierstrass data of M0, written as in Section 2. We define

Ax(z, λ) =
n∑
i=1

ai(λ)zn−i

Bx(z, λ) =

n∑
i=1

bi(λ)zn−i

(10) gx(z, λ) =
Ax(z, λ)

Bx(z, λ)

(11) ωx(z, λ) =
Bx(z, λ)2 dz∏n
i=1(z − pi(λ))2

.

For t in a neighborhood of 0 in R, we consider the following DPW potential:

ξt,x(z, λ) =

(
0 1

4 t(λ− 1)2λ−1ωx(z, λ)
dgx(z, λ) 0

)
.

We fix a base point z0, away from the poles of g and ω, and we take the initial condition

φ0(λ) =

(
gx(z0, λ) 1
−1 0

)
.

These choices are motivated by the following observations:
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(1) At t = 0, we have

ξ0,x(z, λ) =

(
0 0

dgx(z, λ) 0

)
.

The solution of the Cauchy Problem (5) is given by

(12) Φ0,x(z, λ) =

(
gx(z, λ) 1
−1 0

)
which is well-defined, so the Monodromy Problem (9) is solved at t = 0.

(2) The same conclusion holds if λ = 1 instead of t = 0. In particular, Items (ii) and (iii) of
the Monodromy Problem (9) are automatically solved.

(3) At x = x0, we have gx0 = g so Φ0,x0(z, λ) is independent of λ. Moreover,

∂ξ
(−1)
t,x0;12

∂t
|t=0 =

ω

4
.

Provided the Monodromy Problem is solved for all t in a neighborhood of 0, Theorem
4 applies and the limit minimal surface has Weierstrass data (g, ω) so is the minimal
n-noid M0, up to translation (see details in Section 7.1).

Remark 4. The potential ξt,x is inspired from the potential used in [18] to construct CMC n-
noids by perturbation of a sphere. In fact, in the case dgx = dz, the two potentials are dual to
each other. (See Section 3.2.8 of [19] for the definition of duality in the DPW method.)

5.1. Regularity. Our potential ξt,x has poles at the zeros of Bx and the points p1, · · · , pn.
(At ∞, we have ωx ∼ b21z

−2dz which is holomorphic.) We want the zeros of Bx to be appar-
ent singularities, so we require the potential to be gauge-equivalent to a regular potential in a
neighborhood of these points. Consider the gauge

Gx(z, λ) =

(
gx(z, λ)−1 −1

0 gx(z, λ)

)
The gauged potential is

ξ̂t,x := ξt,x ·Gx =

(
0 1

4 t(λ− 1)2λ−1g2
xωx

g−2
x dgx 0

)
.

We have

g−2
x dgx =

A′xBx −AxB
′
x

A2
x

and g2
xωx =

A2
x dz∏n

i=1(z − pi)2
.

Let ζ be a zero of Bx0 (recall that Bx0 does not depend on λ). Then Ax0(ζ) 6= 0. By continuity,
there exists a neighborhood U of ζ such that for z ∈ U , λ ∈ Dρ and x close enough to x0,
Ax(z, λ) 6= 0. So ξ̂t,x is holomorphic in U × D∗ρ and moreover, ξ̂(−1)

t,x;12 6= 0. This ensures that the
immersion extends analytically to U and is unbranched in U .

6. The monodromy problem

6.1. Formulation of the problem. For i ∈ [1, n], we denote pi,0 the central value of the
parameter pi (so p1,0, · · · , pn,0 are the ends of the minimal n-noidM0). We consider the following
λ-independent domain on the Riemann sphere:

(13) Ω = {z ∈ C : ∀i ∈ [1, n], |z − pi,0| > ε} ∪ {∞}
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where ε > 0 is a fixed, small enough number such that the disks D(pi,0, 8ε) for 1 ≤ i ≤ n are
disjoint. As in [18], we first construct a family of immersions ft on Ω. Then we extend ft to an
n-punctured sphere in Proposition 4.

Let Ω̃ be the universal cover of Ω and Φt,x(z, λ) be the solution of the following Cauchy
Problem on Ω̃:

(14)
{
dΦt,x(z, λ) = Φt,x(z, λ)ξt,x(z, λ)
Φt,x(z̃0, λ) = φ0

We denote γ1, · · · , γn−1 a set of generators of the fundamental group π1(Ω, z0), with γi encircling
the point pi,0. We may assume that each γi is represented by a fixed curve avoiding the poles of
ξt,x. Let

Mi(t,x) =Mγi(Φt,x)

be the monodromy of Φt,x along γi. By Equation (12), we have Mi(0,x) = I2. Recall that
the matrix exponential is a local diffeomorphism from a neighborhood of 0 in the Lie algebra
sl(2,C) (respectively su(2)) to a neighborhood of I2 in SL(2,C) (respectively SU(2)). The
inverse diffeomorphism is denoted log. For t 6= 0 small enough and λ ∈ Dρ \ {1}, we define as in
[18]

M̃i(t,x)(λ) =
4λ

t(λ− 1)2
logMi(t,x)(λ).

Proposition 2. (1) M̃i(t,x)(λ) extends smoothly at t = 0 and λ = 1, and each entry M̃i;k`

is a smooth map from a neighborhood of (0,x0) in R× (W≥0
ρ )3 to Wρ.

(2) At t = 0, we have

(15) M̃i(0,x)(λ) =

(
Pi,1(x) Pi,2(x)
−Pi,0(x) −Pi,1(x)

)
where Pi,k(x) =

∫
γi

gkxωx.

(3) The Monodromy Problem (9) is equivalent to

(16) M̃i(t,x) ∈ Λsu(2) for 1 ≤ i ≤ n− 1.

Proof: we follow the proof of Proposition 1 in [18]. We first consider the case where the
parameter x = (ai, bi, pi)1≤i≤n is constant with respect to λ, so x ∈ C3n. For (µ,x) in a
neighborhood of (0,x0) in C× C3n, we define

ξ̂µ,x(z) =

(
0 µωx(z)

dgx(z) 0

)
where ωx and gx are defined by Equations (10) and (11), except that ai, bi, pi are constant
complex numbers. Let Φ̂µ,x be the solution of the Cauchy Problem dΦ̂µ,x = Φ̂µ,xξ̂µ,x in Ω̃ with
initial condition Φ̂µ,x(z̃0) = φ0. Let Ni(µ,x) = Mγi(Φ̂µ,x). By standard ODE theory, each
entry of Ni is a holomorphic function of (µ,x). At µ = 0, Φ̂0,x is given by Equation (12), so in
particular Ni(0,x) = I2. Hence

Ñi(µ,x) :=
1

µ
logNi(µ,x)
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extends holomorphically at µ = 0 with value Ñi(0,x) = ∂Ni
∂µ (0,x). By Proposition 8 in Appendix

A of [18] (the same formula appeared before on page 39 of [12]):

∂Ni

∂µ
(0,x) =

∫
γi

Φ̂0,x
∂ξ̂µ,x
∂µ
|µ=0Φ̂−1

0,x.

Hence

(17) Ñi(0,x) =

∫
γi

(
gx 1
−1 0

)(
0 ωx

0 0

)(
0 −1
1 gx

)
=

∫
γi

(
gxωx g2

xωx

−ωx −gxωx

)
.

For (t,x) in a neighborhood of (0,x0) in R× (W≥0
ρ )3n, we have

ξt,x(z, λ) = ξ̂µ(t,λ),x(λ)(z) with µ(t, λ) =
t(λ− 1)2

4λ
.

Hence
Mi(t,x)(λ) = Ni(µ(t, λ),x(λ)) and M̃i(t,x)(λ) = Ñi(µ(t, λ),x(λ)).

By substitution (see Proposition 9 in Appendix B of [18]), each entry of M̃i is is a smooth map
from a neighborhood of (0,x0) in R× (W≥0

ρ )3 to Wρ. Moreover, M̃i(0,x) is given by Equation
(17). The fact that M̃i extends holomorphically at λ = 1 implies that Points (ii) and (iii) of
Problem (9) are automatically satisfied. Since λ−1(λ − 1)2 ∈ R for λ ∈ S1, Equation (i) of
Problem (9) is equivalent to Equation (16). 2

6.2. Solution of the monodromy problem. Without loss of generality, we may (using a
Möbius transformation of the sphere) fix the value of p1, p2 and p3. We still denote x ∈
(W≥0

ρ )3n−3 the vector of the remaining parameters.

Proposition 3. Assume that the given minimal n-noid is non-degenerate. For t in a neighbor-
hood of 0, there exists a smooth function x(t) ∈ (W≥0

ρ )3n−3 such that M̃i(t,x(t), ·) ∈ Λsu(2) for
1 ≤ i ≤ n− 1. Moreover, x(0) = x0.

Proof: recalling the definition of Pi,k in Section 2 and Pi,k in Equation (15), we have

Pi,k(x)(λ) = Pi,k(x(λ)).

Hence Pi,k is a smooth map from a neighborhood of x0 in (W≥0
ρ )3n−3 to W≥0

ρ . Moreover, since
x0 is constant, we have for X ∈ (W≥0

ρ )3n−3:

(18) (dPi,k(x0)X)(λ) = dPi,k(x0)X(λ).

Let Pi = (Pi,0,Pi,1,Pi,2) and P = (P1, · · · ,Pn−1). By the non-degeneracy hypothesis and
Remark 2, dP (x0) is an automorphism of C3n−3, so dP(x0) is an automorphism of (W≥0

ρ )3n−3

and restricts to an automorphism of (W>0
ρ )3n−3.

We define the following smooth maps with value inWρ (the star operator is defined in Section
3.6)

Fi(t,x) = M̃i,11(t,x) + M̃i,11(t,x)∗

Gi(t,x) = M̃i,12(t,x) + M̃i,21(t,x)∗
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Problem (16) is equivalent to Fi = Gi = 0. Actually, by definition, Fi = F∗i , so Problem (16) is
equivalent to

Fi(t,x)+ = 0, Re(Fi(t,x)0) = 0 and Gi(t,x) = 0 for 1 ≤ i ≤ n− 1.

At t = 0, we have by Equation (15):

Fi(0,x) = Pi,1(x) + Pi,1(x)∗

Gi(0,x) = Pi,2(x)− Pi,0(x)∗

Equation (3) tells us precisely that that at the central value, we have Fi(0,x0) = 0 and Gi(0,x0) =
0. We have for X ∈ (W≥0

ρ )3n−3:

dFi(0,x0)X = dPi,1(x0)X + (dPi,1(x0)X)∗

dGi(0,x0)X = dPi,2(x0)X − (dPi,0(x0)X)∗

Projecting on W>0
ρ and W<0

ρ we obtain:

(dFi(0,x0)X)+ = dPi,1(x0)X+

(dGi(0,x0)X)+ = dPi,2(x0)X+

(dGi(0,x0)X)− = −(dPi,0(x0)X+)∗

(dGi(0,x0)X)−∗ = −dPi,0(x0)X+.

Hence the operator [
dFi(0,x0)+, dGi(0,x0)+, dGi(0,x0)−∗

]
1≤i≤n−1

only depends on X+ and is an automorphism of (W>0
ρ )3n−3 because dP(x0) is. Projecting on

W0 we obtain:

(dFi(0,x0)X)0 = 2 Re
(
dPi,1(x0)X0

)
(dGi(0,x0)X)0 = dPi,2(x0)X0 − dPi,0(x0)X0.

Hence the R-linear operator [
Re(dFi(0,x0)0), dGi(0,x0)0

]
1≤i≤n−1

only depends onX0 and is surjective from C3n−3 to (R×C)3n−3. This implies that the differential
of the map (F+

i ,G
+
i ,G

−∗
i ,Re(F0

i ),G0
i )1≤i≤n−1 is surjective from (W≥0

ρ )3n−3 to ((W>0
ρ )3 × R ×

C)n−1. Proposition 3 follows from the Implicit Function Theorem. 2

Remark 5. The kernel of the differential has real dimension 3n − 3 so we have 3n − 3 free
real parameters. These parameters correspond to deformations of the flux vectors of the minimal
n-noid.
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7. Geometry of the immersion

From now on, we assume that x(t) is given by Proposition 3. We write ai,t, bi,t and pi,t for
the value of the corresponding parameters. (These parameters are in the space W≥0

ρ so are
functions of λ.) For ease of notation, we write gt, ωt, ξt and Φt for gx(t), ωx(t), ξt,x(t) and Φt,x(t),
respectively. Let Ft = Uni(Φt). Since the Monodromy Problem is solved, the Sym-Bobenko
formula (6) defines a CMC-1 immersion ft : Ω → R3, where Ω is the (fixed) domain defined by
Equation (13).

Proposition 4. The immersion ft extends analytically to

Σt := C ∪ {∞} \ {p1,t(0), · · · , pn,t(0)}
where pi,t(0) is the value of pi,t at λ = 0.

We omit the proof which is exactly the same as the proof of Point 1 of Proposition 4 in [18].
It relies on Theorem 3 in [18] which allows for λ-dependent changes of variables in the DPW
method.

7.1. Convergence to the minimal n-noid.

Proposition 5. lim
t→0

1
t ft = ψ where ψ is (up to translation) the conformal parametrization of

the minimal n-noid given by Equation (1). The limit is the uniform C1 convergence on compact
subsets of Σ0 = C ∪ {∞} \ {p1,0, · · · , pn,0}.

Proof: at t = 0, we have g0 = g and ω0 = ω. By Equation (12) and definition of the potential,
we have

Φ0(z, λ) =

(
g(z) 1
−1 0

)
and

∂ξ
(−1)
t;12

∂t
|t=0 =

ω

4
.

By Theorem 4, 1
t ft converges to a minimal surface with Weierstrass data (g, ω) on compact

subsets of Σ0 minus the poles of g. In a neighborhood of the poles of g, we use the gauge
introduced in Section 5.1. With the notations of this section and writing Φ̂t = ΦtGx(t), we have

Φ̂0(z, λ) =

(
1 0

−g(z)−1 1

)
and

∂ξ̂
(−1)
t;12

∂t
|t=0 =

g2ω

4
.

By Theorem 4 again, 1
t ft converges to a minimal surface with Weierstrass data (g, ω) in a

neighborhood of the poles of g. The two limit minimal surfaces are of course the same, since
they coincide in a neighborhood of z0. 2

7.2. Delaunay ends. In this section, we prove that the immersion ft has Delaunay ends. De-
launay ends in the DPW method have been studied in [4, 13]. Following [17], we gauge our
potential to a perturbation of the standard Delaunay potential and we use the results in [13].

We denote N0 the Gauss map of the minimal n-noid M0. For 1 ≤ i ≤ n, we denote Ci the
catenoid to which M0 is asymptotic at pi,0 and τi > 0 the necksize of Ci.

Definition 4. We say that N0 points to the inside in a neighborhood of pi,0 if it points to the
component of R3 \ Ci containing the axis of Ci.

Proposition 6. For 1 ≤ i ≤ n and t 6= 0:
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(1) The immersion ft has a Delaunay end at pi,t. If we denote wi,t its weight then

lim
t→0

t−1wi,t = ±2πτi

where the sign is + if N0 points to the inside in a neighborhood of pi,0 and − otherwise.
(2) Its axis converges as t → 0 to the half-line through the origin directed by the vector

N0(pi,0).
(3) If N0 points to the inside in a neighborhood of pi,0, there exists a uniform ε > 0 such that

for t > 0 small enough, ft(D∗(pi,0, ε)) is embedded.

Proof: in a neighborhood of the puncture pi,t, we may use w = gt(z) − gt(pi,t) as a local
coordinate. Note that pi,t ∈ W≥0

ρ so, as a function of λ, extends holomorphically to Dρ. Thus
the coordinate w depends holomorphically on λ ∈ Dρ. This is not a problem by Theorem 3 in
[18]. Consider the gauge

G(w) =

(
k√
w

−1
2k
√
w

0
√
w
k

)
.

Here we can take k = 1, but later on we will take another value of k so we do the computation
for general values of k 6= 0. The gauged potential is

ξ̂t := ξt ·G =

(
0 dw

4k2w
+ wt(λ−1)2

4k2λ
ωt

k2dw
w 0

)
Since ωt has a double pole at pi,t, ξ̂t has a simple pole at w = 0 with residue

Ai,t(λ) =

(
0 1

4k2
+ t(λ−1)2

4k2λ
αi,t(λ)

k2 0

)
where

(19) αi,t = Respi,t(wωt) = Respi,t(gt(z)− gt(pi,t))ωt.

Claim 1. For t small enough, αi,t is a real constant (i.e. independent of λ, possibly depending
on t).

Proof: the proof is similar to the proof of Point 2 of Proposition 4 in [18]. We use the standard
theory of Fuchsian systems. Fix t 6= 0 and λ ∈ S1 \{1}. Assume that αi,t(λ) 6= 0. Let Φ̂t = ΦtG.
The eigenvalues of Ai,t are ±Λi,t with

Λi,t(λ)2 =
1

4
+
t(λ− 1)2

4λ
αi,t(λ).

Provided t 6= 0 is small enough, Λi,t 6∈ Z/2 so the system is non resonant and Φ̂t has the following
standard zAP form in the universal cover of D(0, ε)∗:

Φ̂t(w, λ) = V (λ) exp(Ai,t(λ) logw)P (w, λ)

where P (w, λ) descends to a well defined holomorphic function of w ∈ D(0, ε) with P (0, λ) = I2.
Consequently, its monodromy is

Mγi(Φ̂t) = V (λ) exp(2πiAi,t)V (λ)−1
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with eigenvalues exp(±2πiΛi,t(λ)). Since the Monodromy Problem is solved, the eigenvalues are
unitary complex numbers, so Λi,t(λ) ∈ R which implies that αi,t(λ) ∈ R. This of course remains
true if αi,t(λ) = 0. Hence αi,t is real on S1 \ {1}. Since all the parameters involved in the
definition of ωt are in W≥0

ρ , αi,t is holomorphic in the unit disk. Hence it is constant. 2

Returning to the proof of Proposition 6, let (r, s) ∈ R2 be the solution of

(20)

 rs = 1
4 tαi,t

r + s = 1
2

r < s

Since r < s,
√
rλ+ s is well defined and does not vanish for λ ∈ D. We take k =

√
rλ+ s in the

definition of the gauge G. Using Equation (20), we have:

(rλ−1 + s)(rλ+ s) = 1
4 + rs(λ− 1)2λ−1 = 1

4 + 1
4 t(λ− 1)2λ−1αi,t.

So the residue of ξ̂t becomes

Ai,t =

(
0 1

rλ+s

(
1
4 + t(λ−1)2

4λ αi,t

)
rλ+ s 0

)
=

(
0 rλ−1 + s

rλ+ s 0

)
which is the residue of the standard Delaunay potential. By [13], the immersion ft has a Delaunay
end at pi,t of weight wi,t = 8πrs = 2πtαi,t. It remains to relate αi,0 to the logarithmic growth τi.
For ease of notation, let us write pi = pi,0. Assume that N0 points to the inside in a neighborhood
of pi. The flux of M0 along γi is equal to

φi = 2πτiN0(pi) = 2π
τi

|g(pi)|2 + 1

(
2 Re(g(pi)), 2 Im(g(pi)), |g(pi)|2 − 1

)
On the other hand, we have seen in Section 2 that the flux is equal to

φi = −2πRespi
(

1
2(1− g2)ω, i

2(1 + g2)ω, gω
)

Comparing these two expressions for φi, we obtain

Respi(gω) = −τi
|g(pi)|2 − 1

|g(pi)|2 + 1
and Respiω = −2τi

g(pi)

|g(pi)|2 + 1

Using Equation (19), this gives

αi,0 = Respi(gω)− g(pi) Respiω = τi

If N0 points to the outside in a neighborhood of pi, then φi = −2πτiN0(pi), so the same
computation gives αi,0 = −τi. This proves Point 1 of Proposition 6.

To prove Point 2, we use Theorem 5 in Appendix A. We need to compute Φ̂0 at w = 1. At
t = 0, we have k = 1√

2
so

G(1) =
1√
2

(
1 −1
0 2

)
.

At t = 0, we have w = g(z)− g(pi), so w = 1⇔ g(z) = g(pi) + 1. Using Equation (12),

Φ̂0(1) =
1√
2

(
g(pi) + 1 1
−1 0

)(
1 −1
0 2

)
=

1√
2

(
g(pi) + 1 −g(pi) + 1
−1 1

)
.
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Fix 0 < α < 1. By Theorem 5 (using tαi,t as the time parameter), there exists ε > 0, T > 0 and
c such that for 0 < |t| < T :

‖ft(z)− fDi,t(z)‖ ≤ c|t| |z − pi,t|α in D∗(pi,t, ε)

where fDi,t : C \ {pi,t} → R3 is a Delaunay immersion. We compute the limit axis of fDi,t using
Point 3 of Theorem 5:

Φ̂0(1)H =

(
g(pi) 1
−1 0

)
= Φ0(pi).

Q = F0(pi)

Qe3Q
−1 = Nor(F0(pi)) = N0(pi).

This proves Point 2 of Proposition 6. If N0 points to the inside in a neighborhood of pi,0, then
for t > 0, tαi,t > 0 so Point 3 follows from Point 2 of Theorem 5. 2

7.3. Alexandrov-embeddedness. We recall from [2, 9] the definition of Alexandrov-embeddedness
in the non-compact case:

Definition 5. A surface M of finite topology is Alexandrov-embedded if M is properly immersed,
if each end ofM is embedded, and if there exists a compact 3-manifoldW with boundary ∂W = S,
n points q1, · · · , qn ∈ S and a proper immersion F : W = W \{q1, · · · , qn} → R3 whose restriction
to S = S \ {q1, · · · , qn} parametrizes M .

Lemma 1. Let M be an Alexandrov-embedded minimal surface with n catenoidal ends. With the
notations of Definition 5, we equip W with the flat metric induced by F , so F is a local isometry,
and we denote N the inside normal to S. Then there exists a flat 3-manifold W ′ containing W ,
a local isometry F ′ : W ′ → R3 extending F and r > 0 such that the tubular neighborhood TubrS
is embedded in W ′. In other words, the map (x, s) 7→ expx(sN(x)) from S × (−r, r) to W ′ is
well defined and is a diffeomorphism onto its image.

Proof: since M has catenoidal ends, there exists r > 0 such that the inside tubular neighbor-
hood map

g : S × (0, r)→W, g(x, s) = expx(sN(x))

is a diffeomorphism onto its image. Since F is a local isometry, we have

(21) F (g(x, s)) = F (x) + s dF (x)N(x) for (x, s) ∈ S × (0, r).

We define W ′ as the disjoint union (S × (−r, r)) tW where we identify (x, s) ∈ S × (0, r) with
its image g(x, s) ∈W . We define F ′ : W ′ → R3 by F ′ = F in W and

F ′(x, s) = F (x) + s dF (x)N(x) for (x, s) ∈ S × (−r, r).
The map F ′ is well defined by Equation (21). We equip S × (−r, r) with the flat metric in-
duced by the local diffeomorphism F ′, which extends the metric already defined on S× (0, r) by
identification with W . Since

dF ′(x, 0)(X,T ) = dF (x)X + TdF (x)N(x)

the metric restricted to S × {0} is the product metric, so the normal to S × {0} in S × (−r, r)
is N(x, 0) = (0, 1). Since F ′ is a local isometry, we have for (x, s) ∈ S × (−r, r)

F ′
(

exp(x,0) sN(x, 0)
)

= F ′(x, 0) + sdF ′(x, 0)(0, 1) = F (x) + sdF (x)N(x) = F ′(x, s)
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Figure 2. Decomposition of a 4-noid into pieces. Only one Delaunay end is
represented, and F (W0,t) is represented as an embedded domain for clarity, but
in general it will be immersed.

Hence exp(x,0) sN(x, 0) = (x, s) so Tubr(S × {0}) is embedded in S × (−r, r). 2

We now return to the proof of Theorem 1. We orient the minimal n-noidM0 so that its Gauss
map points to the inside in a neighborhood of p1. For 0 < |t| < ε, we denote Mt the image of
the immersion ft that we have constructed.

Proposition 7. If M0 is Alexandrov embedded, then for t > 0 small enough, Mt is Alexandrov
embedded.

Proof: our strategy is to cut Mt by suitable planes into pieces which are either close to M0 or
Delaunay surfaces (see Figure 2). Then we prove that each piece, together with flat disks in the
cutting planes, is the boundary of a domain, using the Jordan Brouwer Theorem.

Since M0 is Alexandrov embedded, N0 points to the inside in a neighborhood of each end, so
Mt has embedded ends by Proposition 6. Let ε > 0 be the number given by our application of
Theorem 5 in Section 7.2 and fDi,t : C\{pi,t} → R3 be the Delaunay immersion which approximates
ft in D∗(pi,t, ε). Recall that ft(D∗(pi,t, ε)) is embedded. Let f̃t = 1

t ft. By Proposition 5, f̃t
converges to ψ on compact subsets of Σ0, where ψ : Σ0 → R3 is a parametrization of M0. Since
M0 has catenoidal ends, we may assume (taking ε smaller if necessary) that ψ(D∗(pi,0, ε)) is
embedded and N0 6= N0(pi,0) in D∗(pi,0, ε).

Let hi : R3 → R be the height function in the direction N0(pi,0), defined by

hi(x) = 〈x,N0(pi,0)〉.
We shall cut Mt by the plane hi = δ where δ > 0 is a fixed, large enough number such that for
1 ≤ i ≤ n,

δ > max
C(pi,0,ε)

hi ◦ ψ.

Since lim
z→pi,0

hi ◦ ψ(z) = +∞, we may fix a positive, small enough ε′ < ε such that

min
C(pi,0,ε′)

hi ◦ ψ > δ.

Let Ai,t be the annulus defined by ε′ ≤ |z − pi,t| ≤ ε. Since N0 6= N0(pi,0) in Ai,0,
min
Ai,0
‖N0(z)−N0(pi,0)‖ > 0.
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For t > 0 small enough:

(22) max
C(pi,t,ε)

hi ◦ f̃t < δ

(23) min
C(pi,t,ε′)

hi ◦ f̃t > δ

(24) min
Ai,t
‖Nt(z)−N0(pi,0)‖ > 0.

Hence the function hi ◦ f̃t has no critical point in the annulus Ai,t. So hi ◦ f̃t = δ defines a regular
closed curve γi,t in Ai,t. At t = 0, hi ◦ ψ = δ is a single curve around pi,0, so γi,t has only one
component and is not contractible in Ai,t. Let Di,t ⊂ C be the topological disk bounded by γi,t
and D∗i,t = Di,t \ {pi,t}. Let ∆i,t be the closed topological disk bounded by f̃t(γi,t) in the plane
defined by hi(x) = δ.

Claim 2. For t > 0 small enough, f̃t(D∗i,t) ∩∆i,t = ∅.

Proof: of course, hi ◦ f̃t > δ in D∗i,t ∩Ai,t. What we need to prove is that f̃t(D∗(pi,t, ε′)) does
not intersect ∆i,t. We do this by comparison with the Delaunay surface. Let Πi = N0(pi,0)⊥ and
πi = R3 → Πi be the orthogonal projection. Since ψ has a catenoidal end at pi,0, ψ(Ai,t) is a
graph over an annulus in the plane Πi, with inside boundary circle πi ◦ ψ(C(pi,t, ε)) and outside
boundary circle πi ◦ ψ(C(pi,t, ε

′)). Moreover, N0 is close to N0(pi,t). Since f̃t is C1 close to ψ
in Ai,t, for t > 0 small enough, f̃t(Ai,t) is a graph over an annulus in the plane Πi, with inside
boundary circle πi ◦ f̃t(C(pi,t, ε)) and outside boundary circle πi ◦ f̃t(C(pi,t, ε

′)).

Now we go back to the original scale. Since ft is C1 close to fDi,t in D
∗(pi,t, ε), we conclude that

fDi,t(Ai,t) is a graph over an annulus in the plane Πi, with inside boundary circle πi◦fDi,t(C(pi,t, ε))

and outside boundary circle πi ◦ fDi,t(C(pi,t, ε
′)). Then from the geometry of Delaunay surfaces,

there exists a curve γi,t,0 in D∗(pi,t, ε′) such that fDi,t(γi,t,0) is a closed curve in the plane hi = 1
2 .

Let Di,t,0 be the disk bounded by γi,t,0 and Ai,t,0 be the closed annulus bounded by γi,t and γi,t,0.
Then hi ◦ fDi,t > 1

2 in Di,t,0 and fDi,t(Ai,t,0) is a graph over an annulus in the plane Πi. Since ft is
C1 close to fDi,t in D

∗(pi,t, ε), we conclude that hi ◦ ft > 1
4 in D∗i,t,0 and ft(Ai,t,0) is a graph over

an annulus in the plane Πi.

Back to the scale 1
t , f̃t(Di,t ∩ Ai,t,0) is a graph over an annulus in the plane Πi whose inside

boundary circle is πi◦f̃t(γi,t) = πi(∂∆i,t), so f̃t(Di,t∩Ai,t,0)∩∆i,t = ∅. Moreover, hi◦f̃t > 1
4t � δ

in D∗i,t,0 so f̃t(D∗i,t,0) ∩∆i,t = ∅. 2

Claim 3. For t > 0 small enough, f̃t(D∗i,t) ∪ ∆i,t is the boundary of a cylindrically bounded
domain Wi,t ⊂ R3.

Proof: since ft is close to fDi,t in D
∗
i,t, we can find an increasing diverging sequence (Rt,k)k∈N

such that ft(D∗i,t) intersects the plane hi = Rt,k transversally along a closed curve ft(γi,t,k).
(Explicitely, we can take Rt,k = 1

2 + k hi(Tt) where Tt ∈ R3 is the period of the Delaunay surface
fDi,t.) Let Ai,t,k be the annulus bounded by γi,t and γi,t,k. Let ∆i,t,k be the closed disk bounded
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by f̃t(γi,t,k) in the plane hi = t−1Rt,k. Then f̃t(Ai,t,k)∪∆i,t∪∆i,t,k is topologically a sphere: the
image of S2 by an injective continuous map. By the Jordan Brouwer Theorem, it is the boundary
of a bounded domain Wi,t,k. Clearly, Wi,t,k ⊂Wi,t,k+1. We take Wi,t =

⋃
k∈NWi,t,k. 2

Let Ωt = C ∪ {∞} \ (D1,t ∪ · · · ∪Dn,t). Let W ′ be the flat 3-manifold given by Lemma 1 and
denote F : W ′ → R3 its developing map (instead of F ′). (Here W ′ is an open manifold, meaning
not a manifold-with-boundary.)

Claim 4. For t > 0 small enough, there exists a compact domain W0,t in W ′ such that

F (∂W0,t) = f̃t(Ωt) ∪∆1,t ∪ · · · ∪∆n,t.

Proof: by definition, ψ lifts to a diffeomorphism ψ̂ : Σ0 → S ⊂W ′ such that F ◦ ψ̂ = ψ. Since
M0 has catenoidal ends, there exists domains V1, · · · , Vn in W ′ such that for 1 ≤ i ≤ n:

• F : Vi → F (Vi) ⊂ R3 is a diffeomorphism,
• Vi is foliated by flat disks on which hi ◦ F is constant (in particular, hi ◦ F is constant
on ∂Vi),
• ψ̂(D∗(pi,0, ε)) ⊂ Vi (which might require taking a smaller ε > 0),
• hi < δ on Vi ∩ ψ̂(Σ0 \

⋃n
i=1D(pi,0, ε)) (which might require taking a larger δ).

Let r > 0 be the radius of the embedded tubular neighborhood of S inW ′ constructed in Lemma
1. For t > 0 small enough, ||f̃t − ψ|| < r in Ωt, so f̃t lifts to f̂t : Ωt →W ′ such that F ◦ f̂t = f̃t.
(Explicitely, f̂t(z) = exp

ψ̂(z)
(f̃t(z)− ψ(z)).) From the properties of Vi and the convergence of f̂t

to ψ̂ on compact subsets of Σ0, we have for t > 0 small enough

(25) f̂t(Ωt ∩D(pi,0, ε)) ⊂ Vi

(26) hi < δ on Vi ∩ f̂t(Σ0 \
⋃n
i=1D(pi,0, ε)).

By Equation (25), f̂t(γi,t) ⊂ Vi so ∆i,t lifts to a closed disk ∆̂i,t ⊂ Vi such that ∂∆̂i,t = f̂t(γi,t) and
F (∆̂i,t) = ∆i,t. Since F is a diffeomorphism on Vi, f̂t(Ωt∩D(pi,t, ε)) is disjoint from ∆̂i,t. By (26),
f̂t(Ωt\

⋃n
i=1D(pi,t, ε)) is disjoint from ∆̂i,t. Hence f̂t(Ωt)∩∆̂i,t = ∅. Then f̂t(Ωt)∪∆̂1,t∪· · ·∪∆̂n,t

is a topological sphere inW ′. SinceM0 has genus zero,W ′ is homeomorphic to R3. By the Jordan
Brouwer Theorem, f̂t(Ωt)∪ ∆̂1,t ∪ · · · ∪ ∆̂n,t is the boundary of a compact domain W0,t ⊂W ′. 2

Returning to the proof of Proposition 7, let Wt be the abstract 3-manifold with boundary
obtained as the disjoint union W 0,t tW 1,t t · · · tWn,t, identifying W 0,t and W i,t along their
boundaries ∆̂i,t and ∆i,t via the map F for 1 ≤ i ≤ n. Let Ft : Wt → R3 be the map defined
by Ft = F in W 0,t and Ft = id in W i,t for 1 ≤ i ≤ n. Then Ft is a proper local diffeomorphism
whose boundary restriction parametrizes Mt. Moreover, since each W i,t is homeomorphic to a
closed ball minus a boundary point, we may compactifyWt by adding n points. This proves that
Mt is Alexandrov-embedded. 2

Appendix A. Appendix: On Delaunay ends in the DPW method

As already said, Delaunay ends in the DPW method have been studied in [13], where it is
proved that if ξ is a holomorphic perturbation of the standard Delaunay potential, the resulting
immersion has a Delaunay end at z = 0 and is close to a Delaunay surface in a disk D(0, ε). In
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case the potential ξt depends on a parameter t and the Delaunay residue has weight ∼ t, their
result has been refined by T. Raujouan in [15], yielding a uniform ε as t → 0. This is delicate
because the corresponding Fuchsian system is resonant at t = 0. The result of [15] is the key to
proving embeddedness of the CMC n-noids constructed in [18].

We consider the standard Delaunay residue for t ≤ 1
16 :

At(λ) =

(
0 λ−1r + s

λr + s 0

)
where

 r + s = 1
2

rs = t
r < s

In particular, in the limit case t = 0, we have

A0 =

(
0 1

2
1
2 0

)
.

Definition 6 ([15]). A perturbed Delaunay potential is a family of DPW potentials ξt of the form

ξt(z, λ) = At(λ)
dz

z
+Rt(z, λ)dz

where Rt is of class C2 with respect to (t, z, λ) ∈ (−T, T )×D(0, ε)×Aρ for some positive ε and
T , and satisfies R0 = 0. In particular, ξ0 = A0

dz
z .

Let (e1, e2, e3) represent the canonical basis of R3 in the su(2) model.

Theorem 5. Let ξt be a perturbed Delaunay potential. Let Φt(z, λ) be a family of solutions
of dΦt = Φtξt in the universal cover of the punctured disk D∗(0, ε). Assume that Φt(z, λ) de-
pends continuously on (t, z, λ) and that the Monodromy Problem for Φt is solved. Let ft =
Sym(Uni(Φt)) be the immersion given by the DPW method. Finally, assume that Φ0(1, ·) is
constant (i.e. independent of λ).

Given 0 < α < 1, there exists uniform positive numbers ε′ ≤ ε, T ′ ≤ T , c and a family of
Delaunay immersions fDt : C∗ → R3 such that:

(1) For 0 < |t| < T ′ and 0 < |z| < ε′:

‖ft(z)− fDt (z)‖ ≤ c|t| |z|α.

(2) For 0 < t < T ′, ft : D∗(0, ε′)→ R3 is an embedding.
(3) The end of fDt at z = 0 has weight 8πt and its axis converges when t→ 0 to the half-line

spanned by the vector Qe3Q
−1 where

Q = Uni (Φ0(1)H) and H =
1√
2

(
1 1
−1 1

)
.

Thomas Raujouan has proved this result in [15], Theorem 3, in the case Φ0(1, λ) = I2. He
proves that the limit axis is spanned by e1. (In fact, he finds that the limit axis is −e1, but this is
because he has the opposite sign in the Sym-Bobenko formula. See Remark 3.) Then in Section
2 of [15], he explains, in the case r > s, how to extend his result to the case where Φ0(1, λ) is
constant. We adapt his method to the case r < s.
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Lemma 2. Under the assumptions of Theorem 5, there exists a gauge G(z) and a change of
variable h(z) with h(0) = 0 such that ξ̃t = (h∗ξt) · G is a perturbed Delaunay potential (with
residue At) and Φ̃t = (h∗Φt)×G satisfies at t = 0

(27) Φ̃0(1, λ) = QH−1 ∈ ΛSU(2).

Proof: we follow the method explained in Section 2 of [15]. We take the change of variable in
the form

h(z) =
z

pz + q

where p, q are complex numbers (independent of t) to be determined, with q 6= 0. We consider
the following gauge:

G(z) =
1√

q(pz + q)

(
pz + q pz

0 q

)
.

It is chosen so that

(28) G(0) = I2 and dG = GA0
dz

z
−A0G

dh

h
.

(In fact, the gauge G is found as the only solution of Problem (28) which is upper triangular.)
We have

ξ̃t = (h∗ξt) ·G = G−1

(
At(λ)

dh

h
+Rt(h, λ)dh

)
G+G−1dG.

Since G(0) = I2, ξ̃t has a simple pole at z = 0 with residue At. Using Equation (28), we obtain
at t = 0:

ξ̃0 = G−1A0
dh

h
G+G−1dG = A0

dz

z
.

Hence ξ̃t is a perturbed Delaunay potential. It remains to compute Φ̃0(1). The matrix H
diagonalises A0:

A0 = H

( −1
2 0
0 1

2

)
H−1

Hence

Φ0(z) = Φ0(1)zA0 = Φ0(1)H

( 1√
z

0

0
√
z

)
H−1

Φ̃0(1) = Φ0(h(1))G(1)

= Φ0(1)H

( √
p+ q 0
0 1√

p+q

)
H−1 1√

q(p+ q)

(
p+ q p

0 q

)

= Φ0(1)H

( √
q p√

q

0 1√
q

)
H−1

We decompose Φ0(1)H = QR with Q ∈ SU(2) and R =
( ρ µ

0 1
ρ

)
. Then

Φ̃0(1) = Q

(
ρ µ
0 1

ρ

)( √
q p√

q

0 1√
q

)
H−1
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We take q = 1
ρ2

and p = −µ
ρ to cancel the two matrices in the middle and obtain Equation (27).

2

We can now prove Theorem 5. Let

Φ̂t(z, λ) = HQ−1Φ̃t(z, λ) = HQ−1Φt(h(z), λ)G(z, λ)

Since Φ̂0(1, λ) = I2, we can apply Theorem 3 in [15] which says that the resulting immersion f̂t
satisfies Points 1 and 2 of Theorem 5 and its limit axis is spanned by e1. We have

ft ◦ h = QH−1f̂tHQ
−1

so ft◦h and f̂t differ by a rotation and the limit axis of ft is spanned by the vector QH−1e1HQ
−1.

Now

H−1e1H = − i

2

(
1 −1
1 1

)(
0 1
1 0

)(
1 1
−1 1

)
= −i

(
−1 0
0 1

)
= e3.

2
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