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GLUING DELAUNAY ENDS TO MINIMAL n-NOIDS USING THE DPW METHOD

we construct constant mean curvature surfaces in euclidean space by gluing n half Delaunay surfaces to a non-degenerate minimal n-noid, using the DPW method.

Introduction

In [START_REF] Dorfmeister | Weierstrass type representation of harmonic maps into symmetric spaces[END_REF], Dorfmeister, Pedit and Wu have shown that surfaces with non-zero constant mean curvature (CMC for short) in euclidean space admit a Weierstrass-type representation, which means that they can be represented in terms of holomorphic data. This representation is now called the DPW method. In [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF], we used the DPW method to construct CMC n-noids: genus zero, CMC surfaces with n Delaunay type ends. These n-noids can be described as a unit sphere with n half Delaunay surfaces with small necksizes attached at prescribed points. They had already been constructed by Kapouleas in [START_REF] Kapouleas | Complete constant mean curvature surfaces in euclidean three-space[END_REF] using PDE methods.

In the case n = 3, Alexandrov-embedded CMC trinoids have been classified by Große Brauckman, Kusner and Sullivan in [START_REF] Große-Brauckmann | Triunduloids: embedded constant mean curvature surfaces with three ends and genus zero[END_REF]. In particular, equilateral CMC trinoids form a 1-parameter family, parametrized on an open interval. On one end, equilateral trinoids degenerate like the examples described above: they look like a sphere with 3 half Delaunay surfaces with small necksizes attached at the vertices of a spherical equilateral triangle. On the other end, equilateral trinoids limit, after suitable blow-up, to a minimal 3-noid: a genus zero minimal surface with 3 catenoidal ends (see Figure 1).

It seems natural to ask if one can generalize this observation and construct CMC n-noids by gluing half Delaunay surfaces with small necksizes to a minimal n-noid. This is indeed the case, and has been done by Mazzeo and Pacard in [START_REF] Mazzeo | Pacard: Constant mean curvature surfaces with Delaunay ends[END_REF] using PDE methods. In this paper, we propose a quite simple and natural DPW potential to construct these examples. We prove: Theorem 1. Let n ≥ 3 and let M 0 be a non-degenerate minimal n-noid. There exists a smooth family of CMC surfaces (M t ) 0<|t|< with the following properties:

(1) M t has genus zero and n Delaunay ends.

(2) 1 t M t converges to M 0 as t → 0. (3) If M 0 is Alexandrov-embedded, all ends of M t are of unduloid type if t > 0 and of nodoid type if t < 0. Moreover, M t is Alexandrov-embedded if t > 0.

Non-degeneracy of a minimal n-noid will be defined in Section 2. The two surfaces M t and M -t are geometrically different: if M t has an end of unduloid type then the corresponding end of M -t is of nodoid type. See Proposition 6 for more details. Of course, a minimal nnoid is never embedded if n ≥ 3 so the surfaces M t are not embedded. Alexandrov-embedded Figure 1. A CMC 3-noid (left, image by N. Schmitt [START_REF] Schmitt | Constant mean curvature trinoids[END_REF]) and a minimal 3-noid (right). There is a tiny "copy" of the minimal 3-noid at the center of the CMC 3-noid.

minimal n-noids whose ends have coplanar axes have been classified by Cosin and Ros in [START_REF] Cosín | A Plateau problem at infinity for properly immersed minimal surfaces with finite total curvature[END_REF], and Alexandrov-embedded CMC n-noids whose ends have coplanar axes have been classified by Große-Brauckmann, Kusner and Sullivan in [START_REF] Große-Brauckmann | Coplanar constant mean curvature surfaces[END_REF].

As already said, these surfaces have already been constructed in [START_REF] Mazzeo | Pacard: Constant mean curvature surfaces with Delaunay ends[END_REF]. Our motivation to construct them with the DPW method is to answer the following questions:

(1) How can we produce a DPW potential from the Weierstrass data (g, ω) of the minimal n-noid M 0 ? (2) How can we prove, with the DPW method, that 1 t M t converges to M 0 ? The answer to Question 2 is Theorem 4 in Section 4, a general blow-up result in the context of the DPW method. In [19], we use the DPW method to construct higher genus CMC surfaces with small necks. Theorem 4 is used to ensure that the necks have asymptotically catenoidal shape.

Remark 1. As the referee pointed out, the relation between minimal surfaces and CMC-1 surfaces in the DPW framework has already been investigated by Brander and Dorfmeister [START_REF] Brander | Deformations of constant mean curvature surfaces preserving symmetries and the Hopf differential[END_REF]. In that paper, the authors propose a DPW potential from the Weierstrass data of a minimal surface M . The Monodromy Problem is not addressed, however, so the resulting CMC-1 surfaces do not close, unless M is simply connected.

I would like to thank the referee for his helpful comments and for providing the references [START_REF] Gohberg | A factorization problem in normed rings, functions of isometric and symmetric operators and singular integral equations[END_REF] and [START_REF] Gröchenig | Weight functions in time-frequency analysis[END_REF].

Non-degenerate minimal n-noids

A minimal n-noid is a complete, immersed minimal surface in R 3 with genus zero and n catenoidal ends. Let M 0 be a minimal n-noid and (Σ, g, ω) its Weierstrass data. This means that M 0 is parametrized on Σ by the Weierstrass Representation formula: [START_REF] Brander | Deformations of constant mean curvature surfaces preserving symmetries and the Hopf differential[END_REF] ψ(z) = Re

z z 0 1 2 (1 -g 2 )ω, i 2 (1 + g 2 )ω, gω
Without loss of generality, we can assume that

Σ = C ∪ {∞} \ {p 1 , • • • , p n }, where p 1 , • • • , p n are complex numbers and g = 0, ∞ at p 1 , • • • , p n (by rotating M 0 if necessary).
Then ω needs a double pole at p 1 , • • • , p n so has 2n -2 zeros, counting multiplicity. Since ω needs a zero at each pole of g, with twice the multiplicity, it follows that g has n -1 poles so has degree n -1.

Hence we may write

(2) g = A(z) B(z) and ω = B(z) 2 dz n i=1 (z -p i ) 2 where A(z) = n i=1 a i z n-i and B(z) = n i=1 b i z n-i .
We are going to deform this Weierstrass data, so we see a i , b i and p i for 1 ≤ i ≤ n as complex parameters. We denote by x ∈ C 3n the vector of these parameters, and by x 0 the value of the parameters corresponding to the minimal n-noid M 0 .

Let γ i be the homology class of a small circle centered at p i and define the following periods for 1 ≤ i ≤ n and 0 ≤ k ≤ 2, depending on the parameter vector x ∈ C 3n :

P i,k (x) = γ i g k ω P i (x) = (P i,0 (x), P i,1 (x), P i,2 (x)) ∈ C 3 Q i (x) = γ i 1 2 (1 -g 2 )ω, i 2 (1 + g 2 )ω, gω ∈ C 3 .
Then Q i (x) = 1 2 (P i,0(x) -P i,2 (x)), i 2 (P i,0 (x) + P i,2 (x)), P i,1 (x) . The components of Q i (x 0 ) are imaginary because the Period Problem is solved for M 0 . This gives (3) P i,2 (x 0 ) = P i,0 (x 0 ) and P i,1 (x 0 ) ∈ iR Moreover, Im(Q i (x 0 )) = -φ i where φ i is the flux vector of M 0 at the end p i . By the Residue Theorem, we have for all x in a neighborhood of x 0 :

n i=1 P i (x) = 0 Let P = (P 1 , • • • , P n-1 ) and Q = (Q 1 , • • • , Q n-1 ).
Definition 1. M 0 is non-degenerate if the differential of P (or equivalently, Q) at x 0 has complex rank 3n -3.

Remark 2. If n ≥ 3, we may (using Möbius transformations of the sphere) fix the value of three points, say p 1 , p 2 , p 3 . Then "non-degenerate" means that the differential of P with respect to the remaining parameters is an isomorphism of C 3n-3 .

This notion is related to another standard notion of non-degeneracy:

Definition 2. M 0 is non-degenerate if its space of bounded Jacobi fields has (real) dimension 3.

Theorem 2. If M 0 is non-degenerate in the sense of Definition 2, then M 0 is non-degenerate in the sense of Definition 1.

Proof. Assume M 0 is non-degenerate in the sense of Definition 2. Then in a neighborhood of M 0 , the space M of minimal n-noids (up to translation) is a smooth manifold of dimension 3n-3 by a standard application of the Implicit Function Theorem. Moreover, if we write φ i ∈ R 3 for the flux vector at the i-th end, then the map φ

= (φ 1 , • • • , φ n ) provides a local diffeomorphism between M and the space V of vectors v = (v 1 , • • • , v n ) ∈ (R 3 ) n such that n i=1 v i = 0.
(All this is proved in Section 4 of [START_REF] Cosín | A Plateau problem at infinity for properly immersed minimal surfaces with finite total curvature[END_REF] in the case where all ends are coplanar. The argument goes through in the general case.) Hence given a vector v ∈ V , there exists a deformation

M t of M 0 such that M t ∈ M and d dt φ(M t )| t=0 = v.
We may write the Weierstrass data of M t as above and obtain a set of parameters x(t), depending smoothly on t, such that x(0) = x 0 . Then

dQ(x 0 ) • x (0) = -i v. Since Q is holomorphic, its differential is complex-linear so dQ(x 0 ) has complex rank equal to dim V = 3n -3. 2 
If all ends of M 0 have coplanar axes, then M 0 is non-degenerate in the sense of Definition 2 by Proposition 2 in [START_REF] Cosín | A Plateau problem at infinity for properly immersed minimal surfaces with finite total curvature[END_REF]. In particular, the (most symmetric) n-noids of Jorge-Meeks are nondegenerate. This implies that generic n-noids in the component of the Jorge-Meeks n-noid are non-degenerate.

Background

In this section, we recall standard notations and results used in the DPW method. We work in the "untwisted" setting. • If G is a matrix Lie group (or Lie algebra), ΛG denotes the group (or algebra) of smooth maps Φ :

S 1 → G. • Λ + SL(2, C) ⊂ ΛSL(2, C) is the subgroup of maps B which extend holomorphically to D with B(0) upper triangular. • Λ R + SL(2, C) ⊂ Λ + SL(2, C
) is the subgroup of maps B such that B(0) has positive entries on the diagonal.

Theorem 3 (Iwasawa decomposition). The multiplication ΛSU (2) × Λ R + SL(2, C) → ΛSL(2, C) is a diffeomorphism. The unique splitting of an element Φ ∈ ΛSL(2, C) as Φ = F B with F ∈ ΛSU (2) and B ∈ Λ R + SL(2, C) is called Iwasawa decomposition.
F is called the unitary factor of Φ and denoted Uni(Φ). B is called the positive factor and denoted Pos(Φ).

3.2.

The matrix model of R 3 . In the DPW method, one identifies R 3 with the Lie algebra su(2) by

x = (x 1 , x 2 , x 3 ) ∈ R 3 ←→ X = -i -x 3 x 1 + ix 2 x 1 -ix 2 x 3 ∈ su(2).
We have det(X) = x 2 . The group SU (2) acts as linear isometries on su(2) by conjugation:

H • X = HXH -1 .
3.3. The DPW method. The input data for the DPW method is a quadruple (Σ, ξ, z 0 , φ 0 ) where:

• Σ is a Riemann surface.

• ξ = ξ(z, λ) is a Λsl(2, C)-valued holomorphic 1-form on Σ called the DPW potential. More precisely, (4)

ξ = α λ -1 β γ -α
where α(z, λ), β(z, λ), γ(z, λ) are holomorphic 1-forms on Σ with respect to the z variable, and are holomorphic with respect to λ in the disk D ρ for some ρ > 1.

• z 0 ∈ Σ is a base point. • φ 0 ∈ ΛSL(2, C) is an initial condition.
Given this data, the DPW method is the following procedure.

• Let Σ be the universal cover of Σ and z 0 ∈ Σ be an arbitrary element in the fiber of z 0 .

Solve the Cauchy Problem on Σ:

(5) dΦ(z, λ) = Φ(z, λ)ξ(z, λ) Φ( z 0 , λ) = φ 0 (λ) to obtain a solution Φ : Σ → ΛSL(2, C). • Compute the Iwasawa decomposition (F (z, •), B(z, •)) of Φ(z, •). • Define f : Σ → su(2) ∼ R 3 by the Sym-Bobenko formula: (6) f (z) = -2i ∂F ∂λ (z, 1)F (z, 1) -1 =: Sym(F (z, •)).
Then f is a CMC-1 (branched) conformal immersion. f is regular at z (meaning unbranched) if and only if β(z, 0) = 0. Its Gauss map is given by ( 7)

N (z) = -iF (z, 1) -1 0 0 1 F (z, 1) -1 =: Nor(F (z, •)).
The DPW method actually constructs a moving frame for f . The differential of f is given by ( 8)

df (z) = 2i B 11 (z, 0) 2 F (z, 1) 0 β(z, 0) β(z, 0) 0 F (z, 1) -1 .
Equation ( 8) can also be obtained by differentiation of the Sym-Bobenko formula [START_REF] Fujimori | Loop group methods for constant mean curvature surfaces[END_REF].

Remark 3. In [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF], I have opposite signs in Equations ( 6) and [START_REF] Gohberg | A factorization problem in normed rings, functions of isometric and symmetric operators and singular integral equations[END_REF]. This is unfortunate because it makes the basis (f x , f y , N ) negatively oriented. Equation (6) is the right formula, which one obtains by untwisting the standard Sym-Bobenko formula in the twisted case. See [START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF] or [START_REF] Schmitt | Unitarization of monodromy representations and constant mean curvature trinoids in 3-dimensional space forms[END_REF].

3.4. The Monodromy Problem. Assume that Σ is not simply connected so its universal cover Σ is not trivial. Let Deck( Σ/Σ) be the group of fiber-preserving diffeomorphisms of Σ. Let Φ be the solution of the Cauchy Problem [START_REF] Forster | Lectures on Riemann surfaces[END_REF]. For γ ∈ Deck( Σ/Σ), let

M γ (Φ)(λ) = Φ(γ(z), λ)Φ(z, λ) -1
be the monodromy of Φ with respect to γ (which is independent of z ∈ Σ). The standard condition which ensures that the immersion f descends to a well defined immersion on Σ is the following system of equations, called the Monodromy Problem.

(

) ∀γ ∈ Deck( Σ/Σ)    M γ (Φ) ∈ ΛSU (2) (i) M γ (Φ)(1) = ±I 2 (ii) ∂Mγ (Φ) ∂λ (1) = 0 (iii) 9 
One can identify Deck( Σ/Σ) with the fundamental group π 1 (Σ, z 0 ) (see for example Theorem 5.6 in [START_REF] Forster | Lectures on Riemann surfaces[END_REF]), so we will in general see γ as an element of π 1 (Σ, z 0 ). Under this identification, the monodromy of Φ with respect to γ ∈ π 1 (Σ, z 0 ) is given by

M γ (Φ)(λ) = Φ( γ(1), λ)Φ( γ(0), λ) -1
where γ : [0, 1] → Σ is the lift of γ such that γ(0) = z 0 .

3.5. Gauging.

Definition 3. A gauge on Σ is a map G : Σ → Λ + SL(2, C) such that G(z, λ) depends holomorphically on z ∈ Σ and λ ∈ D ρ for some ρ > 1.

Let Φ be a solution of dΦ = Φξ and G be a gauge. Let Φ = Φ × G. Then Φ and Φ define the same immersion f . This is called "gauging". The gauged potential is

ξ = Φ -1 d Φ = G -1 ξG + G -1 dG
and will be denoted ξ • G, the dot denoting the action of the gauge group on the potential.

3.6. Functional spaces. We need to introduce a functional space for functions on the unit circle. We need that space to be a Banach algebra, and functions in that space should extend holomorphically to a neighborhood of the unit circle. The following choice is natural. We decompose a smooth function f : S 1 → C in Fourier series

f (λ) = i∈Z f i λ i Fix some ρ > 1 and define f = i∈Z |f i |ρ |i|
Let W ρ be the space of functions f with finite norm. This is a Banach algebra, owing to the fact that the weight ρ |i| is submultiplicative (see Section 4 in [START_REF] Gröchenig | Weight functions in time-frequency analysis[END_REF]). Functions in W ρ extend holomorphically to the annulus A ρ .

We define

W ≥0 ρ , W >0 ρ , W ≤0 ρ and W <0 ρ
as the subspaces of functions f such that f i = 0 for i < 0, i ≤ 0, i > 0 and i ≥ 0, respectively. Functions in W ≥0 ρ extend holomorphically to the disk D ρ and satisfy |f (λ)| ≤ f for all λ ∈ D ρ . We write W 0 ∼ C for the subspace of constant functions, so we have a direct sum

W ρ = W <0 ρ ⊕ W 0 ⊕ W >0 ρ .
(The Banach algebra W ρ is said to be decomposable, see [START_REF] Gohberg | A factorization problem in normed rings, functions of isometric and symmetric operators and singular integral equations[END_REF] page 70.) A function f will be decomposed as

f = f -+ f 0 + f + with (f -, f 0 , f + ) ∈ W <0 ρ × W 0 × W >0 ρ .
We define the star operator by

f * (λ) = f (1/λ) = i∈Z f -i λ i
The involution f → f * exchanges W ≥0 ρ and W ≤0 ρ . We have λ * = λ -1 and c * = c if c is a constant. A function f is real on the unit circle if and only if f = f * . We extend the star involution to

loops by M * (λ) = M (1/λ) T , so a loop F is unitary if and only if F * F = I 2 .
If L is a loop group, we denote L ρ ⊂ L the subgroup of loops whose entries are in W ρ . The loop groups ΛSL(2, C) ρ , ΛSU (2) ρ and Λ R + SL(2, C) ρ are Banach Lie groups, moreover: Proposition 1. Iwasawa decomposition restricts to an analytic diffeomorphism between the Banach Lie groups ΛSL(2, C) ρ and ΛSU (2

) ρ × Λ R + SL(2, C) ρ . Proof: let Φ ∈ ΛSL(2, C) ρ
and let (F, B) be its Iwasawa decomposition. We want to prove that F and B have entries in W ρ . Since F is unitary, we have

Φ * Φ = B * B. Now B * has only non-positive powers of λ, so (B * , B) is a Birkhoff-type decomposition of M = Φ * Φ. Since M ∈ ΛSL(2, C) ρ , it is known that both factors of its Birkhoff decomposition have entries in W ρ , owing to the fact that W ρ is decomposable (see Theorem 1.4 in [7]). So B ∈ Λ R + SL(2, C) ρ and F ∈ ΛSU (2) ρ follows. Let Λsl(2, C) ρ , Λsu(2) ρ and Λ R + sl(2, C) ρ be the Banach Lie algebras of respectively ΛSL(2, C) ρ , ΛSU (2) ρ and Λ R + SL(2, C).
The following decomposition is standard (the factors can be written explicitly in term of Fourier coefficients):

Λsl(2, C) ρ = Λsu(2) ρ ⊕ Λ R + sl(2, C) ρ . By the inverse mapping theorem, the multiplication ΛSU (2) ρ × Λ R + SL(2, C) ρ → ΛSL(2, C
) ρ is an analytic local diffeomorphism in a neighborhood of (I 2 , I 2 ), and in a neighborhood of any element (F, B) using left multiplication by F and right multiplication by B. Since we already know the multiplication is bijective, it is a a global diffeomorphism. 2

A blow-up result

In this section, we consider a one-parameter family of DPW potential ξ t with solution Φ t and assume that Φ 0 (z, λ) is independent of λ. Then its unitary part F 0 (z, λ) is independent of λ. The Sym Bobenko formula yields that f 0 ≡ 0, so the family f t collapses to the origin as t = 0. The following theorem says that the blow-up 1 t f t converges to a minimal surface whose Weierstrass data is explicitly computed. Theorem 4. Let Σ be a Riemann surface, (ξ t ) t∈I a family of DPW potentials on Σ and (Φ t ) t∈I a family of solutions of dΦ t = Φ t ξ t on the universal cover Σ of Σ, where

I ⊂ R is a neighborhood of 0. Fix a base point z 0 ∈ Σ. Assume that (1) (t, z) → ξ t (z, •) and t → Φ t (z 0 , •) are C 1 maps into Λsl(2, C) ρ and ΛSL(2, C) ρ , respec- tively. (2) For all t ∈ I, Φ t solves the Monodromy Problem (9). (3) Φ 0 (z, λ) is independent of λ: Φ 0 (z, λ) = a(z) b(z) c(z) d(z)
Let f t = Sym(Uni(Φ t )) : Σ → R 3 be the CMC-1 immersion given by the DPW method. Then

lim t→0 1 t f t (z) = ψ(z)
where ψ : Σ → R 3 is a (possibly branched) minimal immersion with the following Weierstrass data:

g(z) = -a(z) c(z) and ω = 4c(z) 2 ∂ξ (-1) t;12 ∂t | t=0 .
The limit is for the uniform C 1 convergence on compact subsets of Σ.

Here ξ (-1)

t;12 denotes the coefficient of λ -1 in the upper right entry of ξ t . In case ω = 0, the minimal immersion degenerates into a point and ψ is constant.

Proof: by standard ODE theory, (t, z) → Φ t (z, •) is a C 1 map into ΛSL(2, C) ρ . Let (F t , B t ) be the Iwasawa decomposition of Φ t . By Proposition 1, (t, z) → F t (z, •) and (t, z) → B t (z, •) are real analytic maps into ΛSU (2) ρ and Λ R + SL(2, C
) ρ , respectively. At t = 0, Φ 0 is constant with respect to λ, so its Iwasawa decomposition is the standard QR decomposition:

F 0 = 1 |a| 2 + |c| 2 a -c c a B 0 = 1 |a| 2 + |c| 2 |a| 2 + |c| 2 ab + cd 0 1 .
The Sym-Bobenko formula (6) yields f 0 = 0. Let µ t = B 0 t;11 and β t = ξ (-1) t;12 . By Equation ( 8), we have

df t (z) = 2i µ t (z) 2 F t (z, 1) 0 β t (z) β t (z) 0 F t (z, 1) -1 .
Hence (t, z) → df t (z) is a C 1 map. At t = 0, ξ 0 is constant with respect to λ, so β 0 = 0. Define f t (z) = 1 t f t (z) for t = 0. Then d f t (z) extends at t = 0, as a continous function of (t, z), by

d f 0 = d dt df t | t=0 = 2i a -c c a 0 β β 0 a c -c a = 2i -acβ -acβ a 2 β -c 2 β a 2 β -c 2 β acβ + acβ where β = d dt β t | t=0 .
In euclidean coordinates, this gives

d f 0 = 4 Re 1 2 (c 2 -a 2 )β , i 2 (c 2 + a 2 )β , -acβ .
Writing g = -a c and ω = 4c 2 β , we obtain

f 0 (z) = f 0 (z 0 ) + Re z z 0 1 2 (1 -g 2 )ω, i 2 (1 + g 2 )ω, gω
and we see that f 0 is a minimal surface with Weierstrass data (g, ω). The last statement of Theorem 4 comes from the fact that d f t converges uniformly to d f 0 on compact subsets of Σ. 2 4.1. Example. As an example, we consider the family of Delaunay surfaces given by the following DPW potential in C * :

ξ t (z, λ) = 0 λ -1 r + s λr + s 0 dz z with    r + s = 1 2 rs = t r < s
with initial condition Φ t (1) = I 2 . As t → 0, we have (r, s) → (0, 1 2 ). We have

Φ 0 (z, λ) = exp 0 1 2 1 2 0 log z = 1 2 √ z z + 1 z -1 z -1 z + 1 ∂ξ t ∂t | t=0 = 0 2λ -1 2λ 0 dz z .
Theorem 4 applies and gives

g(z) = 1 + z 1 -z and ω(z) = 4 z -1 2 √ z 2 2 dz z = 2 z -1 z 2 dz.
This is the Weierstrass data of a horizontal catenoid of waist-radius 4 and axis Ox 1 , with x 1 → +∞ at the end z = 0.

The DPW potential

We now start the proof of Theorem 1. Let (g, ω) be the Weierstrass data of the given minimal n-noid M 0 , written as in Section 2. We introduce 3n λ-dependent parameters a i , b i and p i for 1 ≤ i ≤ n in the functional space W ≥0 ρ . The vector of these parameters is denoted x ∈ (W ≥0 ρ ) 3n . The parameter x is in a neighborhood of a (constant) central value x 0 ∈ (W 0 ) 3n which correspond to the Weierstrass data of M 0 , written as in Section 2. We define

A x (z, λ) = n i=1 a i (λ)z n-i B x (z, λ) = n i=1 b i (λ)z n-i (10) g x (z, λ) = A x (z, λ) B x (z, λ) (11) ω x (z, λ) = B x (z, λ) 2 dz n i=1 (z -p i (λ)) 2 .
For t in a neighborhood of 0 in R, we consider the following DPW potential:

ξ t,x (z, λ) = 0 1 4 t(λ -1) 2 λ -1 ω x (z, λ) dg x (z, λ) 0 .
We fix a base point z 0 , away from the poles of g and ω, and we take the initial condition

φ 0 (λ) = g x (z 0 , λ) 1 -1 0 .
These choices are motivated by the following observations:

(1) At t = 0, we have

ξ 0,x (z, λ) = 0 0 dg x (z, λ) 0 .
The solution of the Cauchy Problem ( 5) is given by

(12) Φ 0,x (z, λ) = g x (z, λ) 1 -1 0
which is well-defined, so the Monodromy Problem ( 9) is solved at t = 0. (2) The same conclusion holds if λ = 1 instead of t = 0. In particular, Items (ii) and (iii) of the Monodromy Problem ( 9) are automatically solved. (3) At x = x 0 , we have

g x 0 = g so Φ 0,x 0 (z, λ) is independent of λ. Moreover, ∂ξ (-1) t,x 0 ;12 ∂t | t=0 = ω 4 .
Provided the Monodromy Problem is solved for all t in a neighborhood of 0, Theorem 4 applies and the limit minimal surface has Weierstrass data (g, ω) so is the minimal n-noid M 0 , up to translation (see details in Section 7.1).

Remark 4. The potential ξ t,x is inspired from the potential used in [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF] to construct CMC nnoids by perturbation of a sphere. In fact, in the case dg x = dz, the two potentials are dual to each other. (See Section 3.2.8 of [19] for the definition of duality in the DPW method.)

5.1. Regularity. Our potential ξ t,x has poles at the zeros of B x and the points p 1 , • • • , p n . (At ∞, we have ω x ∼ b 2 1 z -2 dz which is holomorphic.) We want the zeros of B x to be apparent singularities, so we require the potential to be gauge-equivalent to a regular potential in a neighborhood of these points. Consider the gauge

G x (z, λ) = g x (z, λ) -1 -1 0 g x (z, λ)
The gauged potential is

ξ t,x := ξ t,x • G x = 0 1 4 t(λ -1) 2 λ -1 g 2 x ω x g -2
x dg x 0 .

We have

g -2 x dg x = A x B x -A x B x A 2 x and g 2 x ω x = A 2 x dz n i=1 (z -p i ) 2 . Let ζ be a zero of B x 0 (recall that B x 0 does not depend on λ). Then A x 0 (ζ) = 0. By continuity, there exists a neighborhood U of ζ such that for z ∈ U , λ ∈ D ρ and x close enough to x 0 , A x (z, λ) = 0. So ξ t,x is holomorphic in U × D *
ρ and moreover, ξ

(-1)
t,x;12 = 0. This ensures that the immersion extends analytically to U and is unbranched in U .

6. The monodromy problem 6.1. Formulation of the problem. For i ∈ [1, n], we denote p i,0 the central value of the parameter p i (so p 1,0 , • • • , p n,0 are the ends of the minimal n-noid M 0 ). We consider the following λ-independent domain on the Riemann sphere:

(13) Ω = {z ∈ C : ∀i ∈ [1, n], |z -p i,0 | > ε} ∪ {∞}
where ε > 0 is a fixed, small enough number such that the disks D(p i,0 , 8ε) for 1 ≤ i ≤ n are disjoint. As in [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF], we first construct a family of immersions f t on Ω. Then we extend f t to an n-punctured sphere in Proposition 4.

Let Ω be the universal cover of Ω and Φ t,x (z, λ) be the solution of the following Cauchy Problem on Ω:

(14) dΦ t,x (z, λ) = Φ t,x (z, λ)ξ t,x (z, λ) Φ t,x ( z 0 , λ) = φ 0 We denote γ 1 , • • • , γ n-1
a set of generators of the fundamental group π 1 (Ω, z 0 ), with γ i encircling the point p i,0 . We may assume that each γ i is represented by a fixed curve avoiding the poles of

ξ t,x . Let M i (t, x) = M γ i (Φ t,x )
be the monodromy of Φ t,x along γ i . By Equation [START_REF] Kilian | Constant mean curvature cylinders[END_REF], we have M i (0, x) = I 2 . Recall that the matrix exponential is a local diffeomorphism from a neighborhood of 0 in the Lie algebra sl(2, C) (respectively su(2)) to a neighborhood of I 2 in SL(2, C) (respectively SU (2)). The inverse diffeomorphism is denoted log. For t = 0 small enough and λ ∈ D ρ \ {1}, we define as in [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF]]

M i (t, x)(λ) = 4λ t(λ -1) 2 log M i (t, x)(λ). Proposition 2.
(1) M i (t, x)(λ) extends smoothly at t = 0 and λ = 1, and each entry M i;k is a smooth map from a neighborhood of (0, x 0 ) in R × (W ≥0 ρ ) 3 to W ρ . (2) At t = 0, we have [START_REF] Raujouan | On Delaunay ends in the DPW method[END_REF] M i (0, x)(λ) = P i,1 (x) P i,2 (x) -P i,0 (x) -P i,1 (x)

where

P i,k (x) = γ i g k x ω x .
(3) The Monodromy Problem (9) is equivalent to

(16) M i (t, x) ∈ Λsu(2) for 1 ≤ i ≤ n -1.
Proof: we follow the proof of Proposition 1 in [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF]. We first consider the case where the parameter x = (a i , b i , p i ) 1≤i≤n is constant with respect to λ, so x ∈ C 3n . For (µ, x) in a neighborhood of (0, x 0 ) in C × C 3n , we define

ξ µ,x (z) = 0 µ ω x (z) dg x (z) 0
where ω x and g x are defined by Equations ( 10) and [START_REF] Kapouleas | Complete constant mean curvature surfaces in euclidean three-space[END_REF], except that a i , b i , p i are constant complex numbers. Let Φ µ,x be the solution of the Cauchy Problem

d Φ µ,x = Φ µ,x ξ µ,x in Ω with initial condition Φ µ,x ( z 0 ) = φ 0 . Let N i (µ, x) = M γ i ( Φ µ,x )
. By standard ODE theory, each entry of N i is a holomorphic function of (µ, x). At µ = 0, Φ 0,x is given by Equation ( 12), so in particular N i (0, x) = I 2 . Hence

N i (µ, x) := 1 µ log N i (µ, x)
extends holomorphically at µ = 0 with value N i (0, x) = ∂N i ∂µ (0, x). By Proposition 8 in Appendix A of [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF] (the same formula appeared before on page 39 of [START_REF] Kilian | Constant mean curvature cylinders[END_REF]):

∂N i ∂µ (0, x) = γ i Φ 0,x ∂ ξ µ,x ∂µ | µ=0 Φ -1 0,x . Hence (17) N i (0, x) = γ i g x 1 -1 0 0 ω x 0 0 0 -1 1 g x = γ i g x ω x g 2 x ω x -ω x -g x ω x .
For (t, x) in a neighborhood of (0, x 0 ) in R × (W ≥0 ρ ) 3n , we have

ξ t,x (z, λ) = ξ µ(t,λ),x(λ) (z) with µ(t, λ) = t(λ -1) 2 4λ . Hence M i (t, x)(λ) = N i (µ(t, λ), x(λ)) and M i (t, x)(λ) = N i (µ(t, λ), x(λ)).
By substitution (see Proposition 9 in Appendix B of [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF]), each entry of M i is is a smooth map from a neighborhood of (0, x 0 ) in R × (W ≥0 ρ ) 3 to W ρ . Moreover, M i (0, x) is given by Equation ( 17). The fact that M i extends holomorphically at λ = 1 implies that Points (ii) and (iii) of Problem ( 9) are automatically satisfied. Since λ -1 (λ -1) 2 ∈ R for λ ∈ S 1 , Equation (i) of Problem ( 9) is equivalent to Equation ( 16). 2 6.2. Solution of the monodromy problem. Without loss of generality, we may (using a Möbius transformation of the sphere) fix the value of p 1 , p 2 and p 3 . We still denote x ∈ (W ≥0 ρ ) 3n-3 the vector of the remaining parameters. Proposition 3. Assume that the given minimal n-noid is non-degenerate. For t in a neighborhood of 0, there exists a smooth function

x(t) ∈ (W ≥0 ρ ) 3n-3 such that M i (t, x(t), •) ∈ Λsu(2) for 1 ≤ i ≤ n -1. Moreover, x(0) = x 0 .
Proof: recalling the definition of P i,k in Section 2 and P i,k in Equation (15), we have

P i,k (x)(λ) = P i,k (x(λ)). Hence P i,k is a smooth map from a neighborhood of x 0 in (W ≥0 ρ ) 3n-3 to W ≥0 ρ . Moreover, since x 0 is constant, we have for X ∈ (W ≥0 ρ ) 3n-3 : (18) (dP i,k (x 0 )X)(λ) = dP i,k (x 0 )X(λ).
Let P i = (P i,0 , P i,1 , P i,2 ) and P = (P 1 , • • • , P n-1 ). By the non-degeneracy hypothesis and Remark 2, dP (x 0 ) is an automorphism of C 3n-3 , so dP(x 0 ) is an automorphism of (W ≥0 ρ ) 3n-3 and restricts to an automorphism of (W >0 ρ ) 3n-3 . We define the following smooth maps with value in W ρ (the star operator is defined in Section 3.6) 16) is equivalent to F i = G i = 0. Actually, by definition, F i = F * i , so Problem ( 16) is equivalent to

F i (t, x) = M i,11 (t, x) + M i,11 (t, x) * G i (t, x) = M i,12 (t, x) + M i,21 (t, x) * Problem (
F i (t, x) + = 0, Re(F i (t, x) 0 ) = 0 and G i (t, x) = 0 for 1 ≤ i ≤ n -1.
At t = 0, we have by Equation [START_REF] Raujouan | On Delaunay ends in the DPW method[END_REF]: 3) tells us precisely that that at the central value, we have F i (0, x 0 ) = 0 and G i (0, x 0 ) = 0. We have for X ∈ (W ≥0 ρ ) 3n-3 :

F i (0, x) = P i,1 (x) + P i,1 (x) * G i (0, x) = P i,2 (x) -P i,0 (x) * Equation (
dF i (0, x 0 )X = dP i,1 (x 0 )X + (dP i,1 (x 0 )X) * dG i (0, x 0 )X = dP i,2 (x 0 )X -(dP i,0 (x 0 )X) *
Projecting on W >0 ρ and W <0 ρ we obtain:

(dF i (0, x 0 )X) + = dP i,1 (x 0 )X + (dG i (0, x 0 )X) + = dP i,2 (x 0 )X + i (0, x 0 )X) -= -(dP i,0 (x 0 )X + ) *
(dG i (0, x 0 )X) - * = -dP i,0 (x 0 )X + .

Hence the operator

dF i (0, x 0 ) + , dG i (0, x 0 ) + , dG i (0, x 0 ) - * 1≤i≤n-1
only depends on X + and is an automorphism of (W >0 ρ ) 3n-3 because dP(x 0 ) is. Projecting on W 0 we obtain:

(dF i (0, x 0 )X) 0 = 2 Re dP i,1 (x 0 )X 0 (dG i (0, x 0 )X) 0 = dP i,2 (x 0 )X 0 -dP i,0 (x 0 )X 0 .
Hence the R-linear operator Re(dF i (0, x 0 ) 0 ), dG i (0, x 0 ) 0 1≤i≤n-1 only depends on X 0 and is surjective from C 3n-3 to (R×C) 3n-3 . This implies that the differential of the map

(F + i , G + i , G - * i , Re(F 0 i ), G 0 i ) 1≤i≤n-1 is surjective from (W ≥0 ρ ) 3n-3 to ((W >0 ρ ) 3 × R × C) n-1 . Proposition 3 follows from the Implicit Function Theorem. 2 
Remark 5. The kernel of the differential has real dimension 3n -3 so we have 3n -3 free real parameters. These parameters correspond to deformations of the flux vectors of the minimal n-noid.

Geometry of the immersion

From now on, we assume that x(t) is given by Proposition 3. We write a i,t , b i,t and p i,t for the value of the corresponding parameters. (These parameters are in the space W ≥0 ρ so are functions of λ.) For ease of notation, we write g t , ω t , ξ t and Φ t for g x(t) , ω x(t) , ξ t,x(t) and Φ t,x(t) , respectively. Let F t = Uni(Φ t ). Since the Monodromy Problem is solved, the Sym-Bobenko formula (6) defines a CMC-1 immersion f t : Ω → R 3 , where Ω is the (fixed) domain defined by Equation ( 13).

Proposition 4. The immersion f t extends analytically to

Σ t := C ∪ {∞} \ {p 1,t (0), • • • , p n,t (0)}
where p i,t (0) is the value of p i,t at λ = 0.

We omit the proof which is exactly the same as the proof of Point 1 of Proposition 4 in [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF]. It relies on Theorem 3 in [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF] which allows for λ-dependent changes of variables in the DPW method.

7.1. Convergence to the minimal n-noid. Proposition 5. lim t→0 1 t f t = ψ where ψ is (up to translation) the conformal parametrization of the minimal n-noid given by Equation (1). The limit is the uniform

C 1 convergence on compact subsets of Σ 0 = C ∪ {∞} \ {p 1,0 , • • • , p n,0 }.
Proof: at t = 0, we have g 0 = g and ω 0 = ω. By Equation ( 12) and definition of the potential, we have

Φ 0 (z, λ) = g(z) 1 -1 0 and ∂ξ (-1) t;12 ∂t | t=0 = ω 4 .
By Theorem 4, 1 t f t converges to a minimal surface with Weierstrass data (g, ω) on compact subsets of Σ 0 minus the poles of g. In a neighborhood of the poles of g, we use the gauge introduced in Section 5.1. With the notations of this section and writing Φ t = Φ t G x(t) , we have

Φ 0 (z, λ) = 1 0 -g(z) -1 1 and ∂ ξ (-1) t;12 ∂t | t=0 = g 2 ω 4 .
By Theorem 4 again, 1 t f t converges to a minimal surface with Weierstrass data (g, ω) in a neighborhood of the poles of g. The two limit minimal surfaces are of course the same, since they coincide in a neighborhood of z 0 . 2 7.2. Delaunay ends. In this section, we prove that the immersion f t has Delaunay ends. Delaunay ends in the DPW method have been studied in [START_REF] Dorfmeister | Construction of constant mean curvature n-noids from holomorphic potentials[END_REF][START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF]. Following [START_REF] Schmitt | Unitarization of monodromy representations and constant mean curvature trinoids in 3-dimensional space forms[END_REF], we gauge our potential to a perturbation of the standard Delaunay potential and we use the results in [START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF].

We denote N 0 the Gauss map of the minimal n-noid M 0 . For 1 ≤ i ≤ n, we denote C i the catenoid to which M 0 is asymptotic at p i,0 and τ i > 0 the necksize of C i . Definition 4. We say that N 0 points to the inside in a neighborhood of p i,0 if it points to the component of R 3 \ C i containing the axis of C i . Proposition 6. For 1 ≤ i ≤ n and t = 0:

(1) The immersion f t has a Delaunay end at p i,t . If we denote w i,t its weight then

lim t→0 t -1 w i,t = ±2πτ i
where the sign is + if N 0 points to the inside in a neighborhood of p i,0 andotherwise.

(2) Its axis converges as t → 0 to the half-line through the origin directed by the vector N 0 (p i,0 ). (3) If N 0 points to the inside in a neighborhood of p i,0 , there exists a uniform ε > 0 such that for t > 0 small enough, f t (D * (p i,0 , ε)) is embedded.

Proof: in a neighborhood of the puncture p i,t , we may use w = g t (z) -g t (p i,t ) as a local coordinate. Note that p i,t ∈ W ≥0 ρ so, as a function of λ, extends holomorphically to D ρ . Thus the coordinate w depends holomorphically on λ ∈ D ρ . This is not a problem by Theorem 3 in [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF]. Consider the gauge

G(w) = k √ w -1 2k √ w 0 √ w k .
Here we can take k = 1, but later on we will take another value of k so we do the computation for general values of k = 0. The gauged potential is

ξ t := ξ t • G = 0 dw 4k 2 w + wt(λ-1) 2 4k 2 λ ω t k 2 dw w 0
Since ω t has a double pole at p i,t , ξ t has a simple pole at w = 0 with residue

A i,t (λ) = 0 1 4k 2 + t(λ-1) 2 4k 2 λ α i,t (λ) k 2 0 where (19) α i,t = Res p i,t (wω t ) = Res p i,t (g t (z) -g t (p i,t ))ω t .
Claim 1. For t small enough, α i,t is a real constant (i.e. independent of λ, possibly depending on t).

Proof: the proof is similar to the proof of Point 2 of Proposition 4 in [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF]. We use the standard theory of Fuchsian systems. Fix t = 0 and λ ∈ S 1 \ {1}. Assume that α i,t (λ) = 0.

Let Φ t = Φ t G. The eigenvalues of A i,t are ±Λ i,t with Λ i,t (λ) 2 = 1 4 + t(λ -1) 2 4λ α i,t (λ).
Provided t = 0 is small enough, Λ i,t ∈ Z/2 so the system is non resonant and Φ t has the following standard z A P form in the universal cover of D(0, ε) * :

Φ t (w, λ) = V (λ) exp(A i,t (λ) log w)P (w, λ)
where P (w, λ) descends to a well defined holomorphic function of w ∈ D(0, ε) with P (0, λ) = I 2 . Consequently, its monodromy is

M γ i ( Φ t ) = V (λ) exp(2πiA i,t )V (λ) -1
with eigenvalues exp(±2πiΛ i,t (λ)). Since the Monodromy Problem is solved, the eigenvalues are unitary complex numbers, so Λ i,t (λ) ∈ R which implies that α i,t (λ) ∈ R. This of course remains true if α i,t (λ) = 0. Hence α i,t is real on S 1 \ {1}. Since all the parameters involved in the definition of ω t are in W ≥0 ρ , α i,t is holomorphic in the unit disk. Hence it is constant. 2

Returning to the proof of Proposition 6, let (r, s) ∈ R 2 be the solution of (20)

   rs = 1 4 tα i,t r + s = 1 2 r < s Since r < s,
√ rλ + s is well defined and does not vanish for λ ∈ D. We take k = √ rλ + s in the definition of the gauge G. Using Equation (20), we have:

(rλ -1 + s)(rλ + s) = 1 4 + rs(λ -1) 2 λ -1 = 1 4 + 1 4 t(λ -1) 2 λ -1 α i,t . So the residue of ξ t becomes A i,t = 0 1 rλ+s 1 4 + t(λ-1) 2 4λ α i,t rλ + s 0 = 0 rλ -1 + s rλ + s 0
which is the residue of the standard Delaunay potential. By [START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF], the immersion f t has a Delaunay end at p i,t of weight w i,t = 8πrs = 2πtα i,t . It remains to relate α i,0 to the logarithmic growth τ i . For ease of notation, let us write p i = p i,0 . Assume that N 0 points to the inside in a neighborhood of p i . The flux of M 0 along γ i is equal to

φ i = 2πτ i N 0 (p i ) = 2π τ i |g(p i )| 2 + 1 2 Re(g(p i )), 2 Im(g(p i )), |g(p i )| 2 -1
On the other hand, we have seen in Section 2 that the flux is equal to

φ i = -2π Res p i 1 2 (1 -g 2 )ω, i 2 (1 + g 2 )ω
, gω Comparing these two expressions for φ i , we obtain

Res p i (gω) = -τ i |g(p i )| 2 -1 |g(p i )| 2 + 1 and Res p i ω = -2τ i g(p i ) |g(p i )| 2 + 1
Using Equation (19), this gives

α i,0 = Res p i (gω) -g(p i ) Res p i ω = τ i
If N 0 points to the outside in a neighborhood of p i , then φ i = -2πτ i N 0 (p i ), so the same computation gives α i,0 = -τ i . This proves Point 1 of Proposition 6.

To prove Point 2, we use Theorem 5 in Appendix A. We need to compute

Φ 0 at w = 1. At t = 0, we have k = 1 √ 2 so G(1) = 1 √ 2 1 -1 0 2 . At t = 0, we have w = g(z) -g(p i ), so w = 1 ⇔ g(z) = g(p i ) + 1. Using Equation (12), Φ 0 (1) = 1 √ 2 g(p i ) + 1 1 -1 0 1 -1 0 2 = 1 √ 2 g(p i ) + 1 -g(p i ) + 1 -1 1 .
Fix 0 < α < 1. By Theorem 5 (using tα i,t as the time parameter), there exists ε > 0, T > 0 and c such that for 0 < |t| < T :

f t (z) -f D i,t (z) ≤ c|t| |z -p i,t | α in D * (p i,t , ε) where f D i,t : C \ {p i,t } → R 3
is a Delaunay immersion. We compute the limit axis of f D i,t using Point 3 of Theorem 5:

Φ 0 (1)H = g(p i ) 1 -1 0 = Φ 0 (p i ). Q = F 0 (p i ) Qe 3 Q -1 = Nor(F 0 (p i )) = N 0 (p i ).
This proves Point 2 of Proposition 6. If N 0 points to the inside in a neighborhood of p i,0 , then for t > 0, tα i,t > 0 so Point 3 follows from Point 2 of Theorem 5. 2 7.3. Alexandrov-embeddedness. We recall from [START_REF] Cosín | A Plateau problem at infinity for properly immersed minimal surfaces with finite total curvature[END_REF][START_REF] Große-Brauckmann | Triunduloids: embedded constant mean curvature surfaces with three ends and genus zero[END_REF] the definition of Alexandrov-embeddedness in the non-compact case: Definition 5. A surface M of finite topology is Alexandrov-embedded if M is properly immersed, if each end of M is embedded, and if there exists a compact 3-manifold W with boundary ∂W = S, n points q 1 , • • • , q n ∈ S and a proper immersion

F : W = W \{q 1 , • • • , q n } → R 3 whose restriction to S = S \ {q 1 , • • • , q n } parametrizes M . Lemma 1.
Let M be an Alexandrov-embedded minimal surface with n catenoidal ends. With the notations of Definition 5, we equip W with the flat metric induced by F , so F is a local isometry, and we denote N the inside normal to S. Then there exists a flat 3-manifold W containing W , a local isometry F : W → R 3 extending F and r > 0 such that the tubular neighborhood Tub r S is embedded in W . In other words, the map (x, s) → exp x (sN (x)) from S × (-r, r) to W is well defined and is a diffeomorphism onto its image.

Proof: since M has catenoidal ends, there exists r > 0 such that the inside tubular neighborhood map g : S × (0, r) → W, g(x, s) = exp x (sN (x)) is a diffeomorphism onto its image. Since F is a local isometry, we have

(21) F (g(x, s)) = F (x) + s dF (x)N (x) for (x, s) ∈ S × (0, r).
We define W as the disjoint union (S × (-r, r)) W where we identify (x, s) ∈ S × (0, r) with its image g(x, s) ∈ W . We define

F : W → R 3 by F = F in W and F (x, s) = F (x) + s dF (x)N (x) for (x, s) ∈ S × (-r, r).
The map F is well defined by Equation (21). We equip S × (-r, r) with the flat metric induced by the local diffeomorphism F , which extends the metric already defined on S × (0, r) by identification with W . Since

dF (x, 0)(X, T ) = dF (x)X + T dF (x)N (x)
the metric restricted to S × {0} is the product metric, so the normal to S × {0} in S × (-r, r) is N (x, 0) = (0, 1). Since F is a local isometry, we have for (x, s) ∈ S × (-r, r) Hence exp (x,0) sN (x, 0) = (x, s) so Tub r (S × {0}) is embedded in S × (-r, r). 2

F exp (x,0) sN (x, 0) = F (x, 0) + sdF (x, 0)(0, 1) = F (x) + sdF (x)N (x) = F (x, s)
We now return to the proof of Theorem 1. We orient the minimal n-noid M 0 so that its Gauss map points to the inside in a neighborhood of p 1 . For 0 < |t| < , we denote M t the image of the immersion f t that we have constructed.

Proposition 7. If M 0 is Alexandrov embedded, then for t > 0 small enough, M t is Alexandrov embedded.

Proof: our strategy is to cut M t by suitable planes into pieces which are either close to M 0 or Delaunay surfaces (see Figure 2). Then we prove that each piece, together with flat disks in the cutting planes, is the boundary of a domain, using the Jordan Brouwer Theorem.

Since M 0 is Alexandrov embedded, N 0 points to the inside in a neighborhood of each end, so M t has embedded ends by Proposition 6. Let ε > 0 be the number given by our application of Theorem 5 in Section 7.2 and f D i,t : C\{p i,t } → R 3 be the Delaunay immersion which approximates f t in D * (p i,t , ε). Recall that f t (D * (p i,t , ε)) is embedded. Let f t = 1 t f t . By Proposition 5, f t converges to ψ on compact subsets of Σ 0 , where ψ : Σ 0 → R 3 is a parametrization of M 0 . Since M 0 has catenoidal ends, we may assume (taking ε smaller if necessary) that ψ(D * (p i,0 , ε)) is embedded and N 0 = N 0 (p i,0 ) in D * (p i,0 , ε).

Let h i : R 3 → R be the height function in the direction N 0 (p i,0 ), defined by

h i (x) = x, N 0 (p i,0 ) .
We shall cut M t by the plane h i = δ where δ > 0 is a fixed, large enough number such that for

1 ≤ i ≤ n, δ > max C(p i,0 ,ε) h i • ψ.
Since lim z→p i,0 h i • ψ(z) = +∞, we may fix a positive, small enough ε < ε such that min C(p i,0 ,ε )

h i • ψ > δ.
Let A i,t be the annulus defined by ε ≤ |z -

p i,t | ≤ ε. Since N 0 = N 0 (p i,0 ) in A i,0 , min A i,0 N 0 (z) -N 0 (p i,0 ) > 0.
For t > 0 small enough:

(22) max C(p i,t ,ε) h i • f t < δ (23) min C(p i,t ,ε ) h i • f t > δ (24) min A i,t N t (z) -N 0 (p i,0 ) > 0.
Hence 

(x) = δ. Claim 2. For t > 0 small enough, f t (D * i,t ) ∩ ∆ i,t = ∅. Proof: of course, h i • f t > δ in D * i,t ∩ A i,t
. What we need to prove is that f t (D * (p i,t , ε )) does not intersect ∆ i,t . We do this by comparison with the Delaunay surface. Let Π i = N 0 (p i,0 ) ⊥ and π i = R 3 → Π i be the orthogonal projection. Since ψ has a catenoidal end at p i,0 , ψ(A i,t ) is a graph over an annulus in the plane Π i , with inside boundary circle π i • ψ(C(p i,t , ε)) and outside boundary circle 

π i • ψ(C(p i,t , ε )). Moreover, N 0 is close to N 0 (p i,t ). Since f t is C 1 close to ψ in A i,
π i • f D i,t (C(p i,t , ε )).
Then from the geometry of Delaunay surfaces, there exists a curve γ i,t,0 in D * (p i,t , ε ) such that f D i,t (γ i,t,0 ) is a closed curve in the plane h i = 1 2 . Let D i,t,0 be the disk bounded by γ i,t,0 and A i,t,0 be the closed annulus bounded by γ i,t and γ i,t,0 . Then 

h i • f D i,t > 1 2 in D i,
i • f t (γ i,t ) = π i (∂∆ i,t ), so f t (D i,t ∩A i,t,0 )∩∆ i,t = ∅. Moreover, h i • f t > 1 4t δ in D * i,t,0 so f t (D * i,t,0 ) ∩ ∆ i,t = ∅. 2 Claim 3. For t > 0 small enough, f t (D * i,t ) ∪ ∆ i,
Let Ω t = C ∪ {∞} \ (D 1,t ∪ • • • ∪ D n,t 2 
). Let W be the flat 3-manifold given by Lemma 1 and denote F : W → R 3 its developing map (instead of F ). (Here W is an open manifold, meaning not a manifold-with-boundary.) Claim 4. For t > 0 small enough, there exists a compact domain W 0,t in W such that

F (∂W 0,t ) = f t (Ω t ) ∪ ∆ 1,t ∪ • • • ∪ ∆ n,t . Proof: by definition, ψ lifts to a diffeomorphism ψ : Σ 0 → S ⊂ W such that F • ψ = ψ. Since M 0 has catenoidal ends, there exists domains V 1 , • • • , V n in W such that for 1 ≤ i ≤ n: • F : V i → F (V i ) ⊂ R 3 is a diffeomorphism, • V i is foliated by flat disks on which h i • F is constant (in particular, h i • F is constant on ∂V i ), • ψ(D * (p i,0 , ε)) ⊂ V i (which might require taking a smaller ε > 0), • h i < δ on V i ∩ ψ(Σ 0 \ n i=1 D(p i,0 , 
ε)) (which might require taking a larger δ). Let r > 0 be the radius of the embedded tubular neighborhood of S in W constructed in Lemma 1. For t > 0 small enough,

|| f t -ψ|| < r in Ω t , so f t lifts to f t : Ω t → W such that F • f t = f t . (Explicitely, f t (z) = exp ψ(z) ( f t (z) -ψ(z)).
) From the properties of V i and the convergence of f t to ψ on compact subsets of Σ 0 , we have for t > 0 small enough (25)

f t (Ω t ∩ D(p i,0 , ε)) ⊂ V i (26) h i < δ on V i ∩ f t (Σ 0 \ n i=1 D(p i,0 , ε)). By Equation (25), f t (γ i,t ) ⊂ V i so ∆ i,t lifts to a closed disk ∆ i,t ⊂ V i such that ∂ ∆ i,t = f t (γ i,t ) and F ( ∆ i,t ) = ∆ i,t . Since F is a diffeomorphism on V i , f t (Ω t ∩D(p i,t , ε)) is disjoint from ∆ i,t . By (26), f t (Ω t \ n i=1 D(p i,t , ε)) is disjoint from ∆ i,t . Hence f t (Ω t )∩ ∆ i,t = ∅. Then f t (Ω t )∪ ∆ 1,t ∪• • •∪ ∆ n,t is a topological sphere in W . Since M 0 has genus zero, W is homeomorphic to R 3 . By the Jordan Brouwer Theorem, f t (Ω t ) ∪ ∆ 1,t ∪ • • • ∪ ∆ n,t is the boundary of a compact domain W 0,t ⊂ W . 2
Returning to the proof of Proposition 7, let W t be the abstract 3-manifold with boundary obtained as the disjoint union W 0,t W 1,t • • • W n,t , identifying W 0,t and W i,t along their boundaries ∆ i,t and ∆ i,t via the map F for 1 ≤ i ≤ n. Let F t : W t → R 3 be the map defined by F t = F in W 0,t and F t = id in W i,t for 1 ≤ i ≤ n. Then F t is a proper local diffeomorphism whose boundary restriction parametrizes M t . Moreover, since each W i,t is homeomorphic to a closed ball minus a boundary point, we may compactify W t by adding n points. This proves that M t is Alexandrov-embedded. 2

Appendix A. Appendix: On Delaunay ends in the DPW method

As already said, Delaunay ends in the DPW method have been studied in [START_REF] Kilian | Delaunay ends of constant mean curvature surfaces[END_REF], where it is proved that if ξ is a holomorphic perturbation of the standard Delaunay potential, the resulting immersion has a Delaunay end at z = 0 and is close to a Delaunay surface in a disk D(0, ε). In case the potential ξ t depends on a parameter t and the Delaunay residue has weight ∼ t, their result has been refined by T. Raujouan in [START_REF] Raujouan | On Delaunay ends in the DPW method[END_REF], yielding a uniform ε as t → 0. This is delicate because the corresponding Fuchsian system is resonant at t = 0. The result of [START_REF] Raujouan | On Delaunay ends in the DPW method[END_REF] is the key to proving embeddedness of the CMC n-noids constructed in [START_REF] Traizet | Construction of constant mean curvature n-noids using the DPW method[END_REF].

We consider the standard Delaunay residue for t ≤ 1 16 :

A t (λ) = 0 λ -1 r + s λr + s 0 where

   r + s = 1 2 rs = t r < s
In particular, in the limit case t = 0, we have

A 0 = 0 1 2 1 2 0 .

Definition 6 ([15]

). A perturbed Delaunay potential is a family of DPW potentials ξ t of the form

ξ t (z, λ) = A t (λ) dz z + R t (z, λ)dz
where R t is of class C 2 with respect to (t, z, λ) ∈ (-T, T ) × D(0, ε) × A ρ for some positive ε and T , and satisfies R 0 = 0. In particular, ξ 0 = A 0 dz z .

Let (e 1 , e 2 , e 3 ) represent the canonical basis of R 3 in the su(2) model.

Theorem 5. Let ξ t be a perturbed Delaunay potential. Let Φ t (z, λ) be a family of solutions of dΦ t = Φ t ξ t in the universal cover of the punctured disk D * (0, ε). Assume that Φ t (z, λ) depends continuously on (t, z, λ) and that the Monodromy Problem for Φ t is solved. Let f t = Sym(Uni(Φ t )) be the immersion given by the DPW method. Finally, assume that Φ 0 (1, •) is constant (i.e. independent of λ).

Given 0 < α < 1, there exists uniform positive numbers ε ≤ ε, T ≤ T , c and a family of Delaunay immersions f D t : C * → R 3 such that: (1) For 0 < |t| < T and 0 < |z| < ε :

f t (z) -f D t (z) ≤ c|t| |z| α .
(2) For 0 < t < T , f t : D * (0, ε ) → R 3 is an embedding.

(3) The end of f D t at z = 0 has weight 8πt and its axis converges when t → 0 to the half-line spanned by the vector Qe 3 Q -1 where

Q = Uni (Φ 0 (1)H) and H = 1 √ 2 1 1 -1 1 .
Thomas Raujouan has proved this result in [START_REF] Raujouan | On Delaunay ends in the DPW method[END_REF], Theorem 3, in the case Φ 0 (1, λ) = I 2 . He proves that the limit axis is spanned by e 1 . (In fact, he finds that the limit axis is -e 1 , but this is because he has the opposite sign in the Sym-Bobenko formula. See Remark 3.) Then in Section 2 of [START_REF] Raujouan | On Delaunay ends in the DPW method[END_REF], he explains, in the case r > s, how to extend his result to the case where Φ 0 (1, λ) is constant. We adapt his method to the case r < s. Lemma 2. Under the assumptions of Theorem 5, there exists a gauge G(z) and a change of variable h(z) with h(0) = 0 such that ξ t = (h * ξ t ) • G is a perturbed Delaunay potential (with residue A t ) and Φ t = (h * Φ t ) × G satisfies at t = 0 (27) Φ 0 (1, λ) = QH -1 ∈ ΛSU (2).

Proof: we follow the method explained in Section 2 of [START_REF] Raujouan | On Delaunay ends in the DPW method[END_REF]. We take the change of variable in the form h(z) = z pz + q where p, q are complex numbers (independent of t) to be determined, with q = 0. We consider the following gauge:

G(z) = 1
q(pz + q) pz + q pz 0 q .

It is chosen so that (28) G(0) = I 2 and dG = GA 0 dz z -A 0 G dh h .

(In fact, the gauge G is found as the only solution of Problem (28) which is upper triangular.)

We have

ξ t = (h * ξ t ) • G = G -1 A t (λ) dh h + R t (h, λ)dh G + G -1 dG.
Since G(0) = I 2 , ξ t has a simple pole at z = 0 with residue A t . Using Equation (28), we obtain at t = 0:

ξ 0 = G -1 A 0 dh h G + G -1 dG = A 0 dz z .
Hence ξ t is a perturbed Delaunay potential. It remains to compute Φ 0 (1). The matrix H diagonalises A 0 :

A 0 = H -1 2 0 0 1 2 H -1 Hence Φ 0 (z) = Φ 0 (1)z A 0 = Φ 0 (1)H 1 √ z 0 0 √ z H -1 Φ 0 (1) = Φ 0 (h(1))G(1) = Φ 0 (1)H √ p + q 0 0 1 √ p+q H -1 1 
q(p + q) p + q p 0 q

= Φ 0 (1)H √ q p √ q 0 1 √ q H -1
We decompose Φ 0 (1)H = QR with Q ∈ SU (2) and R =

ρ µ 0 1 ρ . Then Φ 0 (1) = Q ρ µ 0 1 ρ √ q p √ q 0 1 √ q H -1
We take q = 1 ρ 2 and p = -µ ρ to cancel the two matrices in the middle and obtain Equation (27). 2

We can now prove Theorem 5. Let Φ t (z, λ) = HQ -1 Φ t (z, λ) = HQ -1 Φ t (h(z), λ)G(z, λ) Since Φ 0 (1, λ) = I 2 , we can apply Theorem 3 in [START_REF] Raujouan | On Delaunay ends in the DPW method[END_REF] which says that the resulting immersion f t satisfies Points 1 and 2 of Theorem 5 and its limit axis is spanned by e 1 . We have

f t • h = QH -1 f t HQ -1
so f t •h and f t differ by a rotation and the limit axis of f t is spanned by the vector QH -1 e 1 HQ -1 . Now

H -1 e 1 H = - i 2 1 -1 1 1 0 1 1 0 1 1 -1 1 = -i -1 0 0 1 = e 3 .

2
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3. 1 . 1 ρ

 11 Loop groups. A loop is a smooth map from the unit circle S 1 = {λ ∈ C : |λ| = 1} to a matrix group. The circle variable is denoted λ and called the spectral parameter. The unit disk is denoted D. For ρ > 1, we denote D ρ the disk |λ| < ρ, D * ρ = D ρ \ {0} and A ρ the annulus < |λ| < ρ.

Figure 2 .

 2 Figure 2. Decomposition of a 4-noid into pieces. Only one Delaunay end is represented, and F (W 0,t ) is represented as an embedded domain for clarity, but in general it will be immersed.

  the function h i • f t has no critical point in the annulus A i,t . So h i • f t = δ defines a regular closed curve γ i,t in A i,t . At t = 0, h i • ψ = δ is a single curve around p i,0 , so γ i,t has only one component and is not contractible in A i,t . Let D i,t ⊂ C be the topological disk bounded by γ i,t and D * i,t = D i,t \ {p i,t }. Let ∆ i,t be the closed topological disk bounded by f t (γ i,t ) in the plane defined by h i

  t , for t > 0 small enough, f t (A i,t ) is a graph over an annulus in the plane Π i , with inside boundary circle π i • f t (C(p i,t , ε)) and outside boundary circle π i • f t (C(p i,t , ε )). we go back to the original scale. Sincef t is C 1 close to f D i,t in D * (p i,t , ε), we conclude that f D i,t (A i,t) is a graph over an annulus in the plane Π i , with inside boundary circle π i •f D i,t (C(p i,t , ε)) and outside boundary circle

	Now

  t,0 and f D i,t (A i,t,0 ) is a graph over an annulus in the planeΠ i . Since f t is C 1 close to f D i,t in D * (p i,t , ε), we conclude that h i • f t > 1 4 in D * i,t,0 and f t (A i,t,0) is a graph over an annulus in the plane Π i .Back to the scale 1 t , f t (D i,t ∩ A i,t,0 ) is a graph over an annulus in the plane Π i whose inside boundary circle is π

  t is the boundary of a cylindrically bounded domainW i,t ⊂ R 3 . Proof: since f t is close to f D i,t in D * i,t , we can find an increasing diverging sequence (R t,k ) k∈N such that f t (D (γ i,t,k ) in the plane h i = t -1 R t,k . Then f t (A i,t,k ) ∪ ∆ i,t ∪ ∆ i,t,k is topologically a sphere: the image of S 2 by an injective continuous map. By the Jordan Brouwer Theorem, it is the boundary of a bounded domain W i,t,k . Clearly, W i,t,k ⊂ W i,t,k+1 . We take W i,t = k∈N W i,t,k .

* i,t ) intersects the plane h i = R t,k transversally along a closed curve f t (γ i,t,k ). (Explicitely, we can take R t,k = 1 2 + k h i (T t ) where T t ∈ R 3 is the period of the Delaunay surface f D i,t .) Let A i,t,k be the annulus bounded by γ i,t and γ i,t,k . Let ∆ i,t,k be the closed disk bounded by f t